
 LaNDING aid GETHHGG awAY DISTANCES
by
K. Takeuchi

```
Submittea in Partial ruli゙illment of the Requirements
                        for the
            Degree of
        MASHER OF SCILNCE
            from the
massachusetts Institute of Tecinnology
```

 1921
 Signature of author.
 Certification oj the Department of
 Shysice (aeronkuthoai Engineering)

UOTMENTA:

```
    Qage.
Introduction---------------------------------
eart I
    L Lquation for larding
        distance when enoine
        is shut cfff. ----------------------
    2 The landing distance
        of varible ving area----------------
    3 The landing aistance
        of the monoplene enc
        the biplane equiped
        by the Lanuley Pages
        *lotted derofoil.--------------------
    TThe landing O, the monoplane
        with flep is includeul
Part ~ Keversible pitch propeller-------i3
    4 Nes&tive thrust of reversible
        pitch propellex.------------------1b
        at maximun L to ע ratic
    S Bachard trmuet os nesmuive
        pitch propeller et max.
        liit coeti, OI the blaies--------N
    6 The lanuing aietance or
        biglane with revecsible
        pitch propeller----------------------
```


COHTHRO(contineued)

7 Conclusion for the
Ianding distace-----------------------------2.-2.

```
1l The best type of acroplane or
    minimum eetting away uintance-----------------
    - Rough calculation of gettice
        eway distance or usual type
        Of Eeroplare------------------------------------
    9 The settine away distance of
        the other type of aeroplane--------------------30
        !
            (a) (a) type of monoplane----------------30
            (b) ulotted wnne-------------------------31
            (c) monoplane with ilap----------------3/
            (d) Acroplane equiped by
                variable pitcn propoller-----------id
    LO Conclusion for best type or minimum
        getting away distance --------------------------
    L1 Conclusion for best type of minimum
    lanuing and minimun setting away
    distance ----------------------------------------
```

Rest Type of Aeroplane of Pinimum T, anding Distance

Best Type of Aeroplare of Minimum fetting Away Distance.

Introduction.

During the past several years mechanics and performance of airplanes have been studied exhaustively. Rut the subject of minimum landing and also minimum getting away distance has not been treated theoretically except, "The Tanding of Aeroplanes", (Rritish Advisory Committee Report for Aeronautics No. 666) by Glauert and "T, anding Run and Get Away for Standard Airplanes", by Fleñin, as far as I have known.

Roth Mr. Glauert and Mr. Klemin treated the Landing distance mathematically, but did not touch the best type of airplane which has a minimum landing distance and minimum getting away distance. As Mr. Glauert said in his report in the development of civil aviation, increasing importance will be attached to the eass and safety of landing. This is one of the most important reasons why this subject is discussed in this Thesis.

It has been a pretty long time since variable camber, Variable area of aeroplane wing and reversible pitch propeller were suggested for improving the landing condition of aeroplanes. But these schemes for improving the landing distance have not been touched by any one. In this Thesis the best type of airplane of minimum landing distance and best type of minimum getting away
distance will be treated taking into corsiceration the variable camber, variable area of aerofoil and reversible pitch airscrew. It is a well known fact that any aerofoil which gives the greater lift gives the more improved landing. Therefore the Handley Page's Slotted Wing will be discussed because this form of wing has greater lift coefficient than those of any other which are existing.

1. Tandinc distance of aeroplane when

 the engine is shut off.1. Fquation for landing distance when Fngine is shut off.

For the practical method of landing an aeroplane it may be represented closely in the following manner.

The aeroplane crosses the edge of the aerodrons at Height ho, sufficient to give the necessary clearance over trees or buildings and glides down to Feight ho at a constant speed T.

The elevator control is then used to flatten out the Plight path until the speed has fallen to the stalling speed ro When the aeroplane begins to settie on the ground and eventially is brought to rest by the dras of the airforces and of the friction of the under carriages and tail skid. The distance from the edge of the aerodroms to the place at which the aeroplane is stopped, may be more useful for practical landing than the distance from the ground at which the airplane is touched to the position at which the plane is stopped. But for simplicity the usual meaning of the landing, distance, that is, the distance after the aeroplane touches the ground will he discussed as the landing distance. Consider the case of a landing with the engine shut off in winch the pilot flattens out after a dive, places his machine in a stalling attitude and gradually loses speed, until the wheels and skid touch the ground simultaneously.

The equation of motion after touching the ground then becomes, assuming the attitide is constant and to be that of stalling angle of incidence.

$$
\frac{W}{g} \frac{d r}{d t}=K_{0} \rho \Omega r^{2}-\mu\left(w-K_{2} \rho \rho r^{2}\right) \cdots(1)
$$

W Weight of the machine
g Gravity
V speed of the machine
5 surface area of the wings
μ frictional coefficient of the ground
K_{L} lift coefficient of the wings
K_{D} total drag coefficient
ie. drag coefficient of the wings
Pus coefficient of plate x equiv. area of body
Tet Vo be the stalling velocity of the machine and put $\lambda_{0}=\frac{K_{0}}{K_{L}}$ then the equation (1) becomes

$$
\frac{d V}{d t} r=-\lambda_{0} \frac{v^{2}}{V_{0}^{2}}-\mu\left(g-\frac{V^{2}}{V_{0}^{2}}\right)
$$

Integrate the Imit $l=0 \quad v=V_{0} ; l=L \quad V=0$

$$
\begin{equation*}
\Delta=\frac{\bar{V}_{0}^{2}}{2 g\left(\lambda_{0}-\mu\right)} \log \frac{\lambda_{0}}{\lambda^{\mu}} \cdots \tag{2}
\end{equation*}
$$

In this case of the engine being shut off the landing distance is the function of stalling velocity, ratio of $\frac{k_{p}}{K_{b}}$ and ie. λ_{0} and frictional coefficient of the ground.

The above equation easily shows that this length will be made shortest when stalling speed ie. landing speed is least and 入。is largest.
great

Friction of the ground could le madenit we nade/speciel scheme by which a great friction on the ground would de given. But this scheme is not practical because the ground must be
sericusly injured.
Therefore we have two methods of improving the landing distance.
(1) One is to increase the wing area when about to 1 and.
(2) The other is to increase the maximum lift coefficient when landing.

The former means the variable wing area the lotter means variable camber wing and Handley Page's slottec Wing. All above methods have not yet heen put into practice owine to the mechanicai difficulties in their apolication.
2. The Tanding Distance of Variable Wing Area

Three possible ways of enlereing the wincs area when landing are:
(a) The wing of the machine which flights as a monoplane consists of two parte which can be separated gradually. The wing area of a biplane increases about twice when landing.
(b) A part of a wing is folded into the fuselage while flying in the sky and it may he pulled out from the fuselage when landing.
(c) The tip of the wings are telesconic in direction of the span and may he pulled out to the greater area when landing.

Py (b) and (c) methods the wing area can not be increased so much that the Ianding speed is decreased effectively. If (a) can be realized the landing speed must be decreased a great deal. Therefore (a) is the only worthy one to he considered. Tor convenience sake the monorlane which can be separated into/biplane when landire will be called (a) type monoplane.

Before the commutation of the landing distance when (a) type monoplane is realized, the landing distance of a biplane must be calculated. As Mr. Claus er, R.A.T. IS biplane of zero stagger will ce adopted sot calculating. At stalling speed the data coefficient being increased 0.015, mean friction coefficient oi the ground has been estimated as 0. Of for fohechs and 0.50 for tail skid. Assuming that one sixth of the to 0 al digit Ousts on the tail skid, the value adopted for

$$
\mu=\frac{0.50 \times 1}{\sigma}+\frac{0.05 \times 5}{\sigma}=0.12
$$

$K_{D}=0.069+\frac{1}{4}(0.069)=0.081$
assuming tho body resistance is the one forth of wing assistance at stalling attitude.

$$
K_{L}=0.538 \times 0.94=0.505
$$

Where 0.94 is Efficiency of biplane effect.

$$
\begin{aligned}
& \lambda_{0}=\frac{0.081}{0.505}=0.160 \\
& \mu_{0}=0.12
\end{aligned}
$$

$$
\begin{aligned}
\angle & =\frac{F_{0}^{2}}{\left.2 g \lambda_{0}=u\right)} \log _{e} \frac{\lambda_{0}}{\mu}=\frac{58.6^{2} \times 2.3}{2 \times 32(0.160-.12) \log _{10} \cdot 160} 1 / 2 \\
& =382 \mathrm{mut} .
\end{aligned}
$$

38 fut is the landing distance of tine biplane. If we take the moncuane with the sand wotoht as the biplane the monoplane venally has a little greater velocity
 will be used for a monoplane. It will os assume that (a) type monoplane has The following property.
$W=$ Weight of total usual biplane
$W=$ Weight of wing (15% of total weight of the machine)
W_{1} Foxtra weight for mechenisms to separats the Jonoplane to a biplane
$=50$ percent of wing weight
The gap cannot be so great as usual biplane if (a) type monoplane would be applaced therefore gap is assumed 75\% of tile chord of the wing which has 80% of efficiency of biplane effect

Vo $=$ stalling speed of the machine as a biplane
Tctal weight of (a) type monoplane

$$
\begin{aligned}
& =W+\frac{15}{100} W \times \frac{50}{100} \\
& =1.08 W
\end{aligned}
$$

$\therefore 1.08 \mathrm{~W}=\rho K \times 0.8 \bar{V}_{0}^{\prime 2} \times 2 \mathrm{~A}$ Where A is the area of the monoplane wing.
therefore $\frac{1.08}{1.6} \nabla_{0}=\nabla_{0}^{12}$

$$
\text { or } \nabla_{0}^{\prime}=.82 \nabla_{0}=32.8^{\text {m.p.k }}=48 \text { pect } / \mathrm{sec}
$$

The stalling speed of the (a) trpe monoplanc is 48 feet pex̂osecond.

The body resistance of the monoplane may he approximately the same as the usual biplane with the same area of wings when the machinc beones tore biplane. So we get the drag coefficient and lift coefficient for the (a) tyoe monoplane taking 0.80 as a biplane effect efficiency for lift when landing.

$$
\begin{aligned}
& K_{0}^{\prime}=0.069 \times 2+1 / 4 \times 0.069=0.156 \\
& K_{L}^{\prime}=0.437 \times 2 \times 0.3=0.699 \\
& \lambda_{0}^{\prime}=\frac{0.156}{0.699}=.223
\end{aligned}
$$

The larding distance

$$
L=\frac{48^{2}}{2 g(.223-12)} \log \frac{.223}{12}=207 \mathrm{pect}
$$

34. 0 \% of the Ianding distance $i=$ cht down by adopting an (A) type monoplane.
35. The landine distance of the Monoplami arid the Pipiane equ ipsd by the Handey Page's Slotied Wings and the Variable Camber of Wings. Mr. Mandley Daee designed very peculiai ausfoils with slowe misch can be opened as shown on figuze 1.

Whese foras of the wings aodoles were tested at the
National Physical Laboratory in Fngland glowing the astonishing rusultswith the slots onened the total litts on the slotted wings we:c sreatly improved us sons aesopoils and with the sloto closed pactically all the advaritages of the oruinary sectione.

(a) (blA) Biplans

Section (61 A) has the section with the slot ciosed and under side gap filled up being mith a R.A. 1.15.
(51A) has the leading edge of the aft main aerofoil with a slight Phillips entry as shown in Tigure 1 and the maximum lift coefficint is increased from 0.52 to 0.8 at 20 degrees in increase of 64 percent, and lift drag ratio is higher with the slot open at all angles above 12 decrees of angle of incidence.

Extra weight of equipment adopting (5IA) for an aeroplane wing may be estimated under 25 of the total wing weight.

If (5IA) aerofoil can be used as the wing of a biplane, it a landing distance will be computed as follows, assuming the landing is done at 20 degrees of angle of incidence.

Tandley Page's many biplane combination tests have show us that with the necessary biplane correction the slotted monoplane can be applied to the biplane.
whore y is correction for lift of biplane. $\therefore \bar{V}_{2}^{2}=0.656{V_{0}^{2}}^{2}$

$$
\nabla_{2}=0.81 \nabla_{0}=32.4^{\mathrm{m} \cdot \mathrm{p} \cdot \mathrm{~h}}=47.5^{\mathrm{\mu ut}} / \mathrm{sec}
$$

$$
K_{D_{2}}=\text { drag coefficient or wings }+0.069 \times \frac{1}{4}
$$

$$
=0.1239
$$

$$
\begin{aligned}
\lambda_{2} & =0.0737 \\
\mu & =0.12
\end{aligned}
$$

The $\operatorname{Ianding}$ distance $=\frac{58 \cdot 6^{2}}{2 g(0.197-1 / 2)} \log _{e} \frac{1 / 97}{\cdot 12}=284^{\text {h et }}$

$$
\begin{aligned}
& \text { th }=\text { Weight of (51A) }=1.25 \mathrm{w} \\
& W_{i}=1.04 \mathrm{~W} \\
& \text { Th }=\text { landing speed of the plane } \\
& 1.04 W=y K_{L_{2}} \rho{V_{2}^{2}}^{2} A \\
& =1.04 x y K_{L} \rho{V_{0}}^{2} A
\end{aligned}
$$

plane.
(b) R. A. T. Biolane with flap alone all lencth.

Biplane of R. A. T. 9 upper wing with flap 0.385 of the chord and lower wing has no flap. The British Advisory Committee Report for Aeronautics 1913-1914 shows us that the increase of lift coefeicient is very much less in the case of the biplane.

It night be expected that increase of lift coefficient in the biplane would be half that found in the case of the monoplane, actually the increase is only about one third and for larger angles of flap than 15 degrees to the chord no further increase of lift coefficient is obtained.

As flap 15 degrees to the chord lift is maximum 0.625 In its value at 15 degrees angle of incidence where In no flap, maximurn lift is 0.57 at 15 degree angle of incidence where $\angle D=6$

$$
\nabla_{3}^{\prime}=\sqrt{\frac{.57}{625}} \nabla_{3}=0.955 V_{3}
$$

The landing distance may be shortened roughly lof mhich is not so effective.
R.A. 3 . 15 biplane with flaps extending along all length both upper and lower wings was tested in National Physical T.aboratomy in England but the report is not in our hands yet. Howerer me can presumu fromthe abore resil th that biplanes with flaps extending along all leneth, both unper anc lower wings, cancbt be expected to improve so much as a monoplane with flap extending alone the whole length.
(c) B. A. T. 13 monoplane with flap 0.385 of the caced
extending along all loneth. Trom wig. 2 we get the drae and

Iift cosficicient of monoplane R. A. T. 13 with flap settled zero degres at the stalling angle o.. incidence which is about the same performance as with no flap.

$$
\left\{\begin{array}{l}
K_{4}=0.0693 \text { plus } 1 / 40.0693=0.0866 \\
K_{4}=0.505 \\
\lambda=\frac{0.0866}{0.505}=0.171 \\
M=.12
\end{array}\right.
$$

Stalling speed of this monoplane may be not less than $45 \mathrm{~m} . \mathrm{p} . \mathrm{h}$. becauce the lift coefficient at the landing speed is not as great as usual machine. Assuming, the landing speed is $45 \mathrm{~m} . \mathrm{p} . \mathrm{h}$. $=66$ fect per second, we can calculate the landinf distance as 290 fest using the ahove given data.

If we regulate the flap so that at the stalling speed it is inclined to the chord at 45 desress then stelline attitude is 7 degrees of angle of incidence where the lift and drae coefficient of the wing are 0.775 and 0.1830 respectively.

$$
\left\{\begin{array}{l}
K_{D_{4}}^{\prime}=0.1830=4+\frac{1}{4} 0.0693=0.200 \\
K_{L_{4}}^{\prime}=0.775 \\
\lambda_{4}^{\prime}=.253
\end{array}\right.
$$

Stalling speed
The 1 anding distance $=\frac{53 \cdot 2^{2}}{64(\cdot 258-12)} \operatorname{loge}^{\cdot 2588} \cdot 12045$ fect. 245 fect is the required landing distence.
(d) R. A. F. 9 moncplane with flap 0.22 of the chord

Extencing along the whole leneth.
The Experiments of R. A. T. 9 with flap 0.22 of the chord were made in N.P.T./ which ars shown on TiE. 3. Apolying the same treatment to the R. A. T. 9 monoplane with maps 0.22

of the cho.d extematng alone whe whole length. The landing distance 206 feet can be obtained as 10 degrevs 05 angly of incidence and flap 60° degree to the chord whore stailing speed is b2.6 feet per sec. and the monopare whith the samit flap 30 degrees to the chord at the staling speed has the stalline speed 53.5 feet per second and its landing distance is computed as 253 feet.
(e) Slotted aerofoil with flap R.A.T. 9 Monoplane

Figure 4

Assuming the ilap is regulated at 18 degrees to the chord when the machinc lane at stan土merret. Tler $K_{L}=0.915$ at 18 deeress of incidence can te aesm on Fic. \& Drag coefficient is nether given now sugested in the Haridey Page's anouncement of his Cesulta on Aydation or Aeriai Age. But is may de esta-
 gioos engle of incidence $\angle / 0=3.72$.

Slouted aseoroil almaye has greator L/D velues above
12 degrees of incidence. Therefore slotbed atrozovi witil flaps

little greater than the flap aerofoil.
Estimate $L / D=4$

$$
K_{L_{5}}=.915 \text { and drag coefficient }
$$

of the wing is 0.229 therefore the drag cocficient of the machine

$$
\begin{array}{r}
K_{D_{5}}=.256 \\
\lambda_{5}=\frac{.256}{.915}=.280 \\
\nabla_{5}^{\prime} \times .915=0.604 \nabla_{5}
\end{array}
$$

Where 0.604 is the R. A. F. 9 lift coefficient at stalling speed $\therefore \nabla_{5}^{\prime}=34.2 \mathrm{~m} . \mathrm{p.h} .=50.2 \mathrm{teet} / \mathrm{sec}$
The landing distance computed in the same manner is about 230 feet. If 3 slotted wing with flap inclined to the chord 20 degree at stalling speed is used as an aeroplane wing then stalling speed is 45.3 feet per second and the landine distance can be reduced to 210 feet.
If Reversible Pitch Propeile:

The variable pitch propeller has beon suggested as a brake to reduce the run of an aeroplane when l anding and thus to snable it to be mare in a small landing ground. In this case the blade would be given limits of variation sufficient to allow them to be reversed and exert a backward thrust. Thus when the aeroplane touched the ground the blades would he reversed and the engine opened out to obtain the maximum reversed thrust.

Let us consider whether any appreciable braking effect can be obtained by zunning the engine on the ground while the propeller can be reversed so that it may give the maximum

negative that is backward thrust.
As an example take the propel lar No. 17 of Dr. Durant's report No. 14 for National Advisory Committees for Aeronautics of U. S. A.

Assume the propeller to have a diameter of 9.5 feet and that it is used with a Liberty Engine having a maximum speed of I,700 r.p.m. in the sea level.

The $/ / \mathrm{n}$ d metic (where V is speed of the machine; n is number of revolution per minute; D asancter) at a apoc of 110 mon. is $\frac{110 \times 1.46}{27.4 \times 9.5}=0.62$

The thrust coefficient from Plate X in Demands report is 0.525 and the thrust is given her the formula

$$
T=\frac{T_{s} \theta^{2} \nabla^{2} \Delta}{100}
$$

Where Δ is the donstty of the sir on the ground

$$
\Delta=0.0761 \text { Inc. per coo. foot }
$$

Using the forming

$$
T=\frac{0.525 \times(9.5)^{2} \times(160)^{2} \times 0.0761}{100}
$$

whore its efficianor is 73.3%. The torque is given by the formula

$$
Q_{e}=\frac{Q_{C} D^{3} T^{2}}{1000}
$$

Aonvirn the formula

$$
\text { Where } \quad \alpha_{c}=0.70
$$

$$
\begin{aligned}
Q & =\frac{0.70 \times 9.5^{3} \times 160^{2} \times 0.0761}{1000} \\
& =1140 \text { Ihs. foot }
\end{aligned}
$$

The power under the dominion is $\frac{140 \times 2 \pi \times 27.4}{550}=358 \mathrm{~h} .0$. This is the limit which Liberty con Ton ck out, Nerntire trans of pronelace is investigated experimentally and is reported in
the Advisory Committee Report No. 30 and Eifet's "Influence de la Valeur et de la Variation du pas Obtenu: par le Decalage desc Pales", in his "Etudes Iffielics mene". But these ats nut applicable to the :evarsibl pitch propeller. Experimental results of models of negative pitch propellers in wind tumid os tho gee of full sized negative pitch papellex have not been given hence it is very difficult to calculate the backward thrust of negative pitch propeller and it may not be expected to compute precisely these thrust without knowing of lift and drift coefficient of the sections of the blades at ted native angle of incidence.
4. Negative Thrust or Reversible

The propeller adopted above has the foluwine properties:

If we assume roughly that all area of the propeller assembled on $2 / 3$ radius then we nave as mean drift to lift ratio of the bade $1 / 10$ in its value so that ta propeller efiliciancy has 0.730 percent in its efficiency at the given conditions. Because

$$
\left\{\begin{array}{l}
\phi=\tan ^{-1}\left\{\frac{\text { speed of the nuachine }}{-2 \pi x x}\right\}=16^{\circ} \\
\gamma=\tan ^{-1} \frac{1}{15}=4^{\circ} \\
\text { Efinciency }=\frac{\tan 16^{\circ}}{\tan \left(6^{\circ}+4^{\circ}\right)}=0.730 \\
\text { angle or incidence is assincd as } 3^{\circ}
\end{array}\right.
$$

In Bairstow's Applied Aerodynamics p.p. 128 the author says that small camber of the under surface is of little importance for the shape of the curve although a modification known as R. A. F. 6a has been used on many occasions and differs from 2. A. 5.6 only in the fact that in the form the under surface is flat. Fig. 7 shows us that lift to drag ratio is the maximum in its absolute value (-3.6) at - 5 degree of incidence. It is a very clear matter that we can $\varepsilon \in t$ the greater maximum lift to drag ratic in absolute value than -3.6 using the flat under surface and the considerably greater value at least than - 7 which is the maximum lift to draE zatio of flat plate that can he expected.

A good, desicned reversible pitch propeller will heve a maximum lift to drag ratio over the -10 in absolute value of negative angle of incicence.

$$
\text { Estimating rather low value }-7 \text { (in absolute) will be }
$$ used as the mean maximum lift to dras ratio of the negative pitch, propeller which may be at a negative few degrees of incidence say $=50^{\circ}$.

Fig. 8

- 78 -
for negative pitch propeller. For the propeller which was applied before that is No. 17

$$
\phi=16^{\circ} \text { and angle of incidence }
$$

is 3° at $110 \mathrm{~m} . \mathrm{p} . \mathrm{h}$. and $1700 \mathrm{rap} . \mathrm{m}$. Therefore if the propeller blade is twisted 18° about the axis perpendicular to the propeller shaft then the angle of incidence becomes - 50 when the speed of the machine is $40 \mathrm{~m} . \mathrm{p} . \mathrm{h}$. that is, stalling speed of the machine and at the full speed of the engine.

Torque for the negative pitch propeller it will be

$$
\begin{aligned}
Q^{\prime} & =A_{1} L_{c}{ }^{\prime}\left(\frac{1}{7} \cos \sigma^{\circ}-i \sigma^{\circ}\right){V_{R}}^{2} R \\
& =0.039 A, \angle_{c}^{\prime} \pi_{R}^{2} R
\end{aligned}
$$

On the other hand the propeller has the following torque at 110 m.n.h. and full speed of the engine.

$$
\begin{aligned}
Q & =\left(\frac{1}{15} \cos 16^{\circ}+A^{\prime} 16^{\circ}\right) L_{c} A_{1} R V_{R}^{2} \\
& =0.293 \times A_{c} \angle_{c} R V_{R}^{2} \\
\therefore \frac{Q^{\prime}}{Q} & =\frac{039 L_{C}^{\prime} V_{R}^{2}}{293 Z_{c} V_{R}^{2}}
\end{aligned}
$$

but $\frac{L_{c}^{\prime}}{L_{c}}$ is estimated about $1 / 3$ from Fig. 7
Therefore $\frac{1 \prime}{2}<\frac{1}{27}_{C}^{C}$ is the torque ratio at full speed of the engine. Torque corresponding to the maximum lift to drag ratio of negative pitch which is very much less than that of the usual type of propeller.
In this case of reversible piton propeller, it is so
far from $=$ full utilization of aging power to use angle of negative incidence corresponding to the maximum lift to drag ratio.
5. Backward Trust of Negative Pitch

Propeller at the Maximum Lift Coefficient of The Blades.

Greater negative lift coefficient of R.A.F. 6 is -3.59 at -40° and at that point lift to drag ratio is -1.08 . Negative lift cosficient may be expected at about -400 on any usual aerofoil but greater lift coefficient and less drag coefficient can be clearly expected by good shaped asrofoil for negative pitch propellet. At first we will try to estimate the negative thrust using the same lift and drag coefficient of R.A.T. 6 . The torque can be roughly estimated at the following formula at the condition of a revolution per minute is 1700 and speed of the machine is $40 \mathrm{~m} . \mathrm{p} . \mathrm{h}$.

$$
Q^{\prime \prime}=A_{1} R\left(\frac{1}{1.08} \cos 6^{\circ}-\sin 6^{\circ}\right) 0.369{V_{R}^{\prime \prime}}^{\prime 2}
$$

\# Where 0.369 is the lift coeff.

$$
\begin{aligned}
& =9 \times 3.16(.870-.105) 0.369 \times 0.00237(550)^{2} \\
& =5710 \mathrm{lb} . \text { foot }
\end{aligned}
$$

Thrust T" $=A,\left(\angle c \cos \phi+D_{c} \sin \phi\right)\left(550 \sec 6^{\circ}\right)^{2} \times 0.00237$

$$
=9 \times\left(.369 \cos 60+343 \sin 6^{\circ}\right) \times 303000 \times 0.00<37
$$

$=2620$ 1 hs.
Brake Power $=\rho N^{2} D^{5} Q_{c} \times 2 \pi N$

$$
=\rho N^{\prime 2} D^{5} Q_{0}^{\prime} \times 2 \pi N^{\prime}
$$

Where $\left\{\begin{array}{c}\rho \text { is density of air } \\ N \& N ' \text { are revolution of the propeller } \\ \text { are torque coff. s. }\end{array}\right.$
D is the diameter of the propeller

$$
\begin{aligned}
N^{3} & =N^{3} \times \frac{Q C}{Q_{C}}=1700^{3} \times \frac{1140}{5710} \\
& =9943
\end{aligned}
$$

994 r.p.m. is the speed of the nerative pitch propeller when 358 horse power of the encine is worked out and when its angle of incidence is coresponding to the maximum lift coefticient of the blades.

Therefore the negative thwat which can be put out from 368 horse power is given by

$$
\begin{aligned}
T^{\prime \prime} & =2660\left(\frac{994}{700}\right)^{2} \\
& =895 \mathrm{Ihs} .
\end{aligned}
$$

At full power of the liberty engine revolution of the negative pitch propeller becomes $994 \times \sqrt[3]{\frac{400}{358}}-594 \sqrt{1.037}$

$$
=1030 \mathrm{r.p.m} \quad \text { and then the thrust becomes } 960 \text { Irs. }
$$ If the machinc is at rest, then $\phi=0$ and torque and thwust are calculated as the followinc values.

$$
\begin{aligned}
& \text { Torque }=7040 \text { lh. foot at } 1700 \text { r.p.m. } \\
& \text { Thrinst }=2390 \text { lhs. } \quad \text { at } 1700 \text { r.p.m. }
\end{aligned}
$$

Negative thrust which can be put out when the manhine is at rest and when the engine power is atilized fully is as followis.

$$
\left\{\begin{array}{c}
\text { mrust }=762 \text { Ins vicre propeller revolution } \\
\text { at } 962 \text { per minute }
\end{array}\right.
$$

We have arrived/such conclusion about the backward thrust of the neqative pitch propeller when the angle of incidence of maximum lift coefficient of the blade is used.
$\left\{\begin{array}{l}\text { mhe backward than }=960 \text { lhs. at } 40 \mathrm{~m} . \mathrm{p} . \mathrm{h} \text {. of the } \\ \text { the backward thrust- } 700 \mathrm{Lns} \text {. at the rest of the machine. }\end{array}\right.$
6. The Landing Distance of Biplane with Reversible Pitch Propeller.

In the front page we know that 400 horse power Liberty engine can work out about 960 lbs. of the negative thrust at stalling speed of the aeroplane while the propeller speed/about 1030 revolutions per minute.

On the other hand when the machine is at the rest, negatire thrust reduces to about 760 Ins. while the propeller revoIllation is about 960 per minute.

A 400 horse power machine may usually he about 4500 Ihs. in its total weight.

Then

4500 lhsftotal wight of the machine
360 lief Negative mean thrust while lending.
The landing distance can be competed by an dying th a following formula.

$$
\frac{W}{g} \frac{d v}{d t}=-K_{D} \rho S v^{2}-\mu\left(W-K_{\Delta} \rho S \nabla^{2}\right)-\text { Thust }
$$

t

Where $\mu=$ friction coed. of the ground
Integrate the differential equation and we can et

$$
\begin{aligned}
& \text { Invading distance }=\int_{V_{0}=}^{0} \frac{d v^{2}}{\frac{2 g(\lambda,-\mu)}{V_{0}^{2}} v^{2}+2 g\left(1+\frac{T}{\pi \omega}\right)} \\
& \text { where } \lambda_{0}=K / k<\quad \text { and } V_{0} \text { is scathing speed } \\
& \text { or lending distance }=\frac{\nabla_{0}^{2}}{2 g\left(\lambda_{0}-u\right)} \log =\frac{\lambda_{0}+\frac{\dot{\tau}}{\pi}}{\mu+\frac{T}{\pi}}
\end{aligned}
$$

By substitution of the following number in the above equation

$$
\begin{aligned}
& \nabla_{0}=58.6 \text { fest pec. } \\
& g=32 \text { feet } / \mathrm{sec}^{2} \\
& \mu=0.12 \\
& \lambda_{0}=0.197 \\
& \frac{T}{\pi}=\frac{860}{4500}=0.192
\end{aligned}
$$

The landing distance

$$
\begin{aligned}
& =\frac{58.6^{2}}{64(0.197-0.12)} \log _{e} \frac{0.197+192}{0.12+192} \\
& =1450 \times \log _{6} 1.23 \\
& =1450 \times 0.0969 \\
& =140 \mathrm{fe}
\end{aligned}
$$

140 feet is the landing distance.

7 . Conclusion for the Landine Distance. The landing distance of usial type of biplane as well as monoplane with vamiable area of wing; with all kinc of variable camber of wines and finally the lending aistance of biplane with wvesible pitci propeller have been computed. For fasy comaring of these landine distances, following table is made.
Type of planes Landing Distance

No. 1 Jsual R. A. 7. 15 biplane _-..._ 310 feet
No. 2 (a) type monoplane - 210 feet No. 3 (5 /a) siotted wine monoulare——. 284 feet,
No. 4 R.A. $\mathrm{F} \cdot \mathrm{bi} \mathrm{pianc}$ ith fians 290 fect
No. 5 R.A.E. 13 mononlane with flap———210 feet
No. 6 Slotted $A \in$ rofoil with flap
R.A.T. 9 monoplane
No. 7 R.A. ${ }^{\circ}$. Eiplatowith weveranis
pitch propeller

No. 2 monoplane in the sky and biplane when landing has a very good landing distance which is only 210 feet.

No. z is only one possible method by whit the lancing
 the limit of Vailiable wing atwa. However, it is aliont ime
 Heving good perionnanca can ve sepanatea mbo bipiano/using some mechanicms. No. 2 is/psetty good schems for improving the landine distance only theoretically but is not at all good for practicai application on acount of the great difficulties of mechanisms.

No. 3 and No. 4 do not so much improve the landing distance as show on the ahove table.

No. 5 is pretby Eood improving of the landing distance and this achems can he acomplished mith no diteiculty and almost without extra weight for mechanism. Therafore, monoplane with flep extanding along inhols lungtin of the wine is a good and preferahls scheng by which the landine distance is improved.

As British Advisory Conmittee Report shows us, 0.2 Z of the chord flep gives better wasute than 0.335 of the chotd flap for any points of view.

No. 6 is also one of the Eood scheacs but some difti-

 ail length of the wing is better than No. 6 whinch is slotted wing with flap.

No. 7 the biplane equiped by reversible pitch propeller gives us a wonderful result which is only 140 feet in landing distance.

It is supposed that much practical and theoretical Woric remins to be done before full possibilites of the reversible pitch propelion can be realised. However, the ralization of the : Svinaible pitch propeller is not unexpected in the nuar futuse with c: without some sactifice for propeller efficiency.

Therefore, we get the firai conclusion that the reversible pitch propelier can irprove the landing cistance mone than eny other scheme.

Tre astoplane with reversible pitch popeller is the best type for minimur landing distance and the monoplane with a flap aiong ail the length of the wing is the next to the former.
-25

> Lii The Best Type of Aevoplene of Mininmun Gettine Avay Listance.

Lt is much more difficult to get the exact determination of the getting away length because the attituae of the machine may chanee during the run and also thrust of the propeller varios during the run.
for every machine therefore is cleary a series of best attitudefor getting away aurilo the mon. Ht any rate, when the machine starts ofi, the equaton of notion becomes

$$
\frac{W a v}{g a t}=11-K_{D}^{2} V^{2} S-\left\langle\left(W-N_{2} S v^{2}\right.\right.
$$

whe motion is the same as that previously employed and T io thrust of the propeller. The frictional coefifcient of the ground is very smell in this cese becaise as soon es the machine starts ofir th skid boes not touch the ground unless the center θ grovity of the machine Is very backward.
herefore we can put as a constant u.v5 which was used as whe fric ional coefficient of the wheels.

10 sclve the equation thrust must be written as some functions
ol velocity ot tho mechin whore this substitution mast nold good tox low speeds.
but urfortunately any vind tumel tests of propeller do上0t show us thour charecristecs at the part of which abscise bopeed divided by nd , is leso thain U.a.

Lnerefore wean not discuss their thrusta durin g the getting
away mun usirg the wind tomel tests of propellers.
the thrust of propeller at rest can be obteined b, Wery
easy experiment, ond the thrust at getting oway speed can be colculated from the winu tumel model experiments.

Foi the usual propeller the thrust at getting away speed is graeter than this of at the rest of the macnine and tho thrusts during the getting away run are cleary between whem. The thruete of propellex aurine the rus can not be able be written bJ some muctions ou speed ot whe machane withous low knowin the canceristics of the propeller at verj speeds. wo it is assumed trat I i~ a const Which exist. betreer the the places of starting ofir anu gettag away and sives the the correct value for getting simej wistance mon we solve the equation.

Then the equation occurs
$\frac{w v d v}{s a l}=I-K_{0} v^{2} v-\mu\left(w-\frac{K}{Z} v^{2}\right.$
or

$$
\frac{w \operatorname{vat}}{0 \quad a l}=I-\mu v-\left(\lambda-\mu i_{<} \sim v^{2}\right.
$$

-------------(5)

Integrate, the limits 1 ie equal to zero at v io equal do zero; I if equalto Lie the getting away distance at v ic equal to Vo ie the setting awn speed ot toe machine.

$$
L=\frac{V_{0}^{2}}{2 g\left(\lambda-\gamma^{\prime}\right)} \quad \ln \frac{T-\mu}{2}
$$

he equation (ti shows us ina jotting away diotence is proportional to the square on detums away sp ea and io about: Proportional tu λ.

Relations between the getting avar distance enid λ a $/{ }^{\prime \prime}$ can be show easily. by applying approximations,

$$
\begin{aligned}
& \text { where } \operatorname{voth} \mu w / \text { - a and } \lambda / / \text { are } \\
& \text { small values: }
\end{aligned}
$$

Or

$$
I=\frac{V_{0}^{2}}{2 g}\left\{W / T+\frac{W^{2}}{2 T^{2}}(\lambda+\mu)\right\}
$$

runce the gettin n_{s} away distance varies as square of the sutting awey speed，it is ver，efticient to reduce that noeed but in this case of setting eway the reduction of becallse ．．．．．．－ wat speed wiil i troduce the dangerous accident anyaero－ pıaie becomes unstable under certain limit or the speed miile tais limit is not so conciderably low．

8．Kough Calculadion of Getting away

Distance of Usual type of Aercplane． н⿱䒑土 aercplane of 400 brake horse power．Iiberty engine ； Lus cotal weight is $45001 b s$ and stalling speed is 40 miles pur hour；the propeller of 17 of Doctor Durand is 9.5 fee i＋i its diameter ；will be used for calculation of the getting： Li： By distance． ＋u will be assumed that as soon as the machine starts of ve propeller tinrust line becomes in the level，and total wag to lift ratio $1 / 7$ ie $1 / 7=0.14$ ． $\therefore t$ the conditions of

$$
\begin{aligned}
& \left\{\begin{array}{l}
\text { speed } \\
\text { revolution }
\end{array} 40 \mathrm{~m} . \mathrm{ph}=5 \mathrm{c} .6\right. \text { feet per second. } \\
& \text { \{revolution of the "propeller }=1570 \mathrm{r} . \mathrm{pm} \\
& \text { 三 } 26.2 \mathrm{zr} \text {.p.s. }
\end{aligned}
$$

une propeller No 27 type of Doc．Durand has the tollowins
properties which were shown on we Fig. 5 previousty.

$$
\begin{aligned}
& \left\{\begin{array}{l}
\mathrm{V} / \mathrm{LD}=0.235 \\
Q=5.05 \\
\mathrm{~T}=6.9
\end{array}\right. \\
& \text { whe torque }=\frac{5.05 \times 9.510 .0761}{1000}=1320 \mathrm{Ibs} \mathrm{It} .
\end{aligned}
$$

chrust 1 will be used ais i500 los. during the run , because - ne thmast is a liftle lesi at the begoing part of the gev $1 n_{5}$ awy run. The getting away distance of the machine is coi vulated in the above rough asumptions.

The req. distance is equal to

or LSTO105147
or 230 feet
zuvfeet is the setting away distance of the mechane using whe some assumption..
un the above computation L5U lbs. may be a little too oreath as the mean valu= of the thrust during the getting wway run, but this is little important for the purpose of compering the t_{y} pes and findingontine best $t_{i j}$ pe of the machime of minimumgeting away distace.

9 The Ge ting Away Distance of The Otner Types oi Aeroplanes.
(a)The Getting Away distance of (a) Type of thonoplane which can be separated into Biplane.
ia) type of monoplane which can be separated into biplane reduces the gettino away speed about 20% winile total dras so lift ratio is little difficrent compered with anusual wype of the aeroplane.

Hherefore the gettiny away aistance were conciderably reduced if (a) type of monoplane ex could get away as a b biplane . But it can not be realized because not only the mechanlcs for to separate monoplane into biplane is Vory difficul bin itself,but such small speed tenas
whe machine tounstable.
(a) type of monoplane is not worthy to be concidered in his problem.
(b) The Getting Away Distance of slotted Wing Aeroplane.
slottad winj monoplane cái reduce the getting away speed about 20% in $1 t s$ value but drag to lift ratio becomes wore than 15 which willbe seen from the previous figure.

$$
\begin{aligned}
\text { Th The req. distance } & =\frac{40 \times 2.3}{04(0.2-0.05)} \log \frac{15 \cup v-v .95 \times 4500}{1500-0.3 \times 4500} \\
& =160 \text { Ie.t. }
\end{aligned}
$$

whe distance ie conciderably short, but asla; tupe of mono wonoplane great cutting ofi the setting away speed introduce an untable condition.
(We can expect that ral type of monoplane's settine awa. a wistauce is shorter than iev feet.l
(c) K.A.F.LS monoplane with Flap

Fis is tending all The Lengtin. at getting awayspeed)

In this case spercent - decreasing oi fettine away spead cuts off the distance but nte increasisg of e drag to lifi retio elongates the distance with graet aeal, because dras tolift id increased to 0.25 which will be seed from the figure

The req. distance is

$$
\begin{aligned}
& \frac{53.2 \mathrm{~A} 2 \cdot 3}{64 \cdot j .25-.001} \log \frac{1500-2 \alpha 0}{\operatorname{lo+50}-0.251550 j} \\
& \text { or } 268 f e e t .
\end{aligned}
$$

R.A.F. 9monpiane of slotied $m i=g$ with flap gives about the same length of getting away distace.

The si distance 01 setting away uiscussed on this pargeg (c) iv greater than that ox usual type ot aeroplane.
(d) The Gettin: Away Distance of The

Usual Typeo of Aeroplane Liquiped by Vari able Pitcn Propeller.

By variable pitch propeller, we can get the greater thrust at the low speed oi the mochine, because best ancle of attack ca be used for tine bledes atrinich lift to arift ratiois vij great aid revolution mustbe increased with a conciderable amount, but tarust is propo-
rtional: to -suare of number of revolution.
Kough estimation of increasing oithe thrust with will be tried which a variabie pitch propeller cair makes. whe thrust of a propeller is oiven by

$$
\begin{aligned}
& \text { integration of ldI.cos } \phi-\alpha D . \sin \phi \\
& \text { where dL and dy are liftt force ana drag of } \\
& \text { the element of whe bledes; } \phi \text { is the ansle of } \\
& \text { - } 1 \text { speedot tine machine }
\end{aligned}
$$

Lut for the range of very slow speed of the machine as uurong ine getting away rui the angle is very small and we cail put (dL.cos $\phi-d y$. sin ϕ) the eloment thrust as only uI。

 assumptions as the previousliy applied, ie all the area of wepropeller blad:s were assembled at two third of the radius We keew already that tinis: assumption hold good because

It checked pretty well.
How this assembled area is inclined tu the plane or
\ldots rotation at about 20 degrees in u-sual propel er ,
waking the safe side ko degrees will be $\lambda^{\text {tile }}$ inclination
of the area of the blades.
the lift coefficient of propellermbace-aerofoil has 0.56
in absolute units when the mean of the several aerofoils inBritish Adivissary Commitee Report are taken. at ic degrees of angle attack while lift to drag ratio is less than 5 in the average.

Un the other hand at; 3 degrees of angle of attack, mean Lift coefficient is J. z (while lift to r ara. ratio is sraeter than 17 in every aerofoil examined in irrational Hhyical Labolatory, taking the safe side 16 will be used us the ratio.
if a variable pitch propeller is used when getting away and the best angle of incidence 3 degrees is utilized for wine propeller blades.

Then at the same revolution the thrusts and the torques of the two sind of propellers cain be compered as follows

$$
\begin{aligned}
& \frac{\text { Thrust of varia. type }}{\text { Thrust of usual type }}=\frac{0.20}{0.56}=0.5
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{0.28 / 16+.28 \times \phi}{0.56 / 5 \cdot+.56 \times \phi}=\frac{0.28,16+.28 \times .052}{0.56 / 5+.56 \times .052}=\frac{1}{5.2} \quad \text { at }\left\{\begin{array}{l}
\text { same rev. } \\
\phi=3^{\circ} \times \frac{1}{57.3}=0.052
\end{array}\right.
\end{aligned}
$$

therefore revilutons of the two kind of propeller are given in their ratio when the same power of engine is used $\frac{\text { Rev. or varia type }}{\text { nev. of usual type }}=($ cube root of 5.2$)=1.73$ at Same power. finally thrust ratio of the two is given by

$$
\frac{\text { Thrust of varia. type }}{\text { Thrust of usual type }}=0.5 \text { square of } 173=1.50
$$

where the same power of engine and the same propeller, but variable pitch and sized pitch type are compered.
when a variable pitch propeller is used, the thrust can be Hereased : 5% during the getting away run. Li l real variable pitch propeller, the increasing of the
thrust at low speed may not be so much as 50%, becuase $73 \% \therefore$ of increasing in its revolutions will break the propeller . But it is a clear matter that the incieasing \mathbf{F} percentage of the thrust vhen variable pitch propeller is used is greater than 20% beccupe ${ }^{\prime}$ bending monucut is decreased while Centrigulgal force is incueazed. when the increasing ampuntis assumed only 15% of an usual ojpe of propeller, the getting away distance is calculated us 187 feet which is short enough.

10 Conclusion for Best lype ot
Sinimum Getting Away Distance.
q
Whe tuetion oi the lengith of setting away ofieres less uifficulties in commertial flying, since for getting away where can be abetter selection of groung. It is clear that we distance of landing is more important in commertial Llyins than that $c \pm$ getting away distance.

1 Lecreasing o- eetting̈ away speed is one of the most effective methode to get short getting away distance, but it is not sood sheme for the practical application. (a) type of moxoplane Gives very short distance but this t_{j} pe may never be used for reaucing the getting a ang distance.
Slotted wing type of aeroplane is only one good iype it
in many types ofwhich can reduce the getting away speed.

2 Variable pitch propeller reduces the length of gettig away run very well without cutting oif the speed. Therefore the aeroplane equiped by a variabie pitch. propeller is the best type of aeroplane for minimum distance of fetting away run.

I/ concluision for beisi typa of minimudimaidinu

- Reversible pitch propeller (including the variable pitch) gives minimum distance of the landing and also minimum getting away winile all practical codi tion s are satisfactory.

2 Variable wing area reduces the landins distance , but it is not good for practical reasons ; this acheme gives very short gettins away distance, but not sood for ine same reasons.

3 Variable camber of wing:
(a) Slotued wing gives a little better lading : length than an usual type of aeroplane ; aind the gettins awcy distance is pretty short, but variable pitch propeller is better tian on account ot the of the pracured rezsona.
 Winê reduces the distance very well ; but has the very bad gettine away iistance.

 ANAY DIOTAMCL WHILU AIE THM PHACTACAL CUNDISIONS ARE

Aditional Worls:

```
    Gontents Pages
jandiag nuti of the Biplane
Of Y o vlottad Lamaley Pages
Wine ---------------------4u
Distance of urliding anc
ilatteningout ---.-.-.-.-.--------43
```

Landing Hui Distance of 6 Dotted
Fandley Paces Wine Biplane
With 6 slotted R.A.F LE wing the lift coefficient reaches the abnormal value of 1.90 in absolute unit et 46 degree of incidence while the coefficient of A.A.F. IS has the value 0.530 at staling angle of incidencelt degree.

As already mensioned, the handy Pages slotted monoplane can be applied to biplane calculation as the ural type of wins.

Extra weight of equipment for 6 slotted inendey Pages wing may be estimated under the total wing weight. Take the extra weight as the total weight of R.A.E. biplane win..

$$
\begin{aligned}
& W_{6}=2 W \\
& W_{6}=1.15 W \\
& \mathrm{v}_{6}=\text { the landing speed of the plane } \\
& 1.15 W=4 K_{6} \rho V_{6}^{2} A \\
& =1.15 \text { w } i=V_{0}^{2} A \\
& \text { where } 4 \text { i- correction or the } \\
& \text { biplane effect } \\
& V_{\sigma}^{2}=1.1 \frac{.500}{1.00} V_{B}^{2} \\
& =0.3 \perp 6 V_{0}^{2} \\
& \text { Therefore } V_{b}=0.06 i V_{0}=22.3 \mathrm{~m} . \mathrm{p.h}=63 \text { feet per se }
\end{aligned}
$$

-41-
The value of lift to drag ratio of 6 slotted wing is not given but we can estimated lift to drag retio is 5 from the figuee wich shows L to D retio of the 3 slotted and γ slotted.

$$
\text { Wherefore } \begin{aligned}
\mathrm{K}_{D} & =\frac{1.96}{5}+\frac{0.009}{4} \\
& =0.41 \\
\lambda_{6} & =0.41 / 1.96=0.209
\end{aligned}
$$

Whe landing rundistance

$$
=\frac{33 \times 2.3}{6 \pm(0.209-0.12)} \quad \log _{e} \frac{0.200}{0.12}
$$

$$
=106 \text { feet }
$$

It sems that the above computation ie not correctin the practical case because 45 degree of incidence is too muca inclined to be kept during the landing run.

When the machine ladu with 45 degree of incidence the body mus be inclined to the ground over than 10 desree and as soon as the skid touches the ground the machine rotates rather rapidiy about the skid untif the under carriadges touch the ground while the machine is runnine.

Therefore the both the lift end draf coefincients becomes less than those 0 at 45 deree of incidence.

$$
-42-
$$

The experiments of Haindey Pages winces show us that when the number of slotis is increased the velue of I to D ratio $i s f l a t t e n e d$ at greater angle oi incideces than 10 degree.

And their maximum difiterence is only "one" at the range of large angle of incidence. While the body resistance is pretty small quantity in this case, and the body resisaance has little influence. tipen the landine distance.

The ditference 1 of Ito D ratio makes onl" $-\mathcal{j}$ percent difference of landing distance.(If we take I to \dot{y} ratio as 6 in its value then we get 117 feet as the landing distance. 1 At any rate the landiñ distance of this type can be estimated as a little over tan 100 feet.

The landiug of this type may be pretty difficult but not impossibly difficult beceuse the controability is very bad at such small. speed.

$-43-$

The Distance of piving and Flattening out.

When an aeroplane lands, the aeroplane acrosses the auge of the aerodrome at height in wich is sufficient wight to give clearance over the trees end buildings. sud then the plane glides with constant speed or dives ith variable speeds to the neisht rio.

150 feet may be high enough for in in usual; and IIois rather arbitrary, because H_{0} is depending upon the performance of the machine and also the pilot.

The heavy and higin speed machine is needed to be Lettened out at hísher position, and lignt and slow speeu wachine is contrary to the former one.

If \because flatterino out the machine is done gracually which is a usual and better than suddenly flattenins out, Wen the path of the aeroplane ie curved from the straigno +ined gliding dovn or divine path.

The curved path may be some what different from a vircle but i can be assumed as a circle while th. ventirpedal force is created by increasing the lift voefticient of the aeroplane aue to increasing the ungle of incidence of the wines.

$$
-\quad--44--
$$

The machine slides or dives with the path inclined to the horizontal frow A to B wile the engine is $s t_{-}-$ ottled down near to shut off.

At B the pilot begines to flatten out his machine until the machine touches the ground at which the machine has a little vertical speed, especially a skilful pilot let his machine almost no vertical speed when his machine touches the ground.

Vertical speed is negtegible small when compared with the horizontal speed, consequently the path is tan gential at C to the ground.

Therefore

$$
O C=U B=E=\text { radius }
$$

angle $\mathrm{BOC} \equiv \theta$ the enc ie between the path anil horizontal.

$$
\begin{aligned}
& R=\operatorname{Rccs} \theta_{0} \equiv n_{0} \\
& \text { nim io } 2 \sin ^{2} \frac{\theta_{0}}{2} \\
& \text { horizontal distance of }-\mathrm{BC}=\mathrm{BD}=\mathrm{msin} \theta_{0} \\
& =\operatorname{Hicot}_{2} 0
\end{aligned}
$$

The horizontal distance is only function of θ_{0} when H_{0} is given.

Deeper diving angle gives the shorter horizonteal distance ofaiving , but tine deeper diving creates the greater speed at B and hence the speed of the machine a. C may not be decreased to the stalling speed of the machine which is most important factor oI the landing Tuning distance. The large gliding angle outs distances shout horizontal distances of gliding and flattening out, bu: increases the running distance when the height of H_{0} is given.

If $\left\{\begin{array}{l}\theta_{0}=30^{\circ} \\ \text { ii } \equiv 50 \text { feet } \\ \prime \prime\end{array}\right.$

$$
\begin{aligned}
& \text { Then } \\
& K=\frac{\pi}{2 \sin \frac{\theta_{0}}{2}}=\frac{\pi-134}{-46} \\
& \frac{\pi}{2}=\text { distance } B C=\frac{\pi}{57.3}=314 \text { feet } \\
& \text { horiz. distance } B C=80 c o t 15^{\circ}=300 \text { feet }
\end{aligned}
$$

assuming the angle of incidence is not so much different
from the normal one and taking the drag coefficient is drag
Gout the same and is changed by only speed; the speed at E vain be obtained as follows.

$$
\frac{w d u}{8 d t}=\operatorname{Vsin} 30^{\circ}-\frac{A u^{2}}{}
$$

$$
\text { put }\left\{\begin{array}{l}
\lambda=\frac{\text { total resistance }}{W} \\
V_{0}=\text { normal speed }
\end{array}\right.
$$

or

$$
\begin{aligned}
\frac{W u d u}{d d l} & =W \sin 30^{\circ}-n_{0} A u^{2} \\
& =W \sin 00-\lambda w u^{2} / V_{0}^{2}
\end{aligned}
$$

Integrate the above equation using the limites

$$
u=u \text { at } I=I_{2} \text { and } u=V_{0} a t I=0
$$

$$
\begin{aligned}
& \frac{V_{0}^{2}}{z_{0} \lambda} \log g_{e} \frac{\sin 30^{\circ}-\lambda}{\sin 30^{\circ}-\lambda u^{2} / V_{0}^{2}}=I_{2} \\
& \text { or } \frac{\sin 30^{\circ}-\lambda}{\sin 30^{\circ}-\lambda u^{2} V_{0}^{2}}=e^{\operatorname{ig} \lambda I_{2} / V_{0}^{2}}=
\end{aligned}
$$

or

$$
\left(\frac{u}{v}\right)^{2}=\sin 30^{\circ}-\frac{\sin 30^{\circ}-\lambda}{\epsilon^{25} \lambda I_{2} / V_{0}^{2}}
$$

By substituting $\lambda=1 / 6 \quad 1=314$ feet ar $V=90=132$ mph pct per xci
$u / V_{0}=1.14$
If we take 3^{0} as the normal angle of incidence, then we angle of incidence of K.A.F.i5 biplane is 2° at B which is calculated from the diffence of lift coefficient by using the +flowing formula

$$
\begin{aligned}
W \cos & =K_{L}^{\prime} 4 A V_{0}^{2} \cos \theta_{0} \\
& =K_{2} L A\left(V_{0}^{2} \lambda 1.14\right)^{2}
\end{aligned}
$$

where χ_{L} is the it coefficient at 3 auricle of incidence,位is the angle of inciadeice at .B.

$$
K_{2}^{\prime} / L_{L}=\frac{0.066}{1.32}=.66
$$

From the above equation we $\mathfrak{E s e t} \mathbb{z}^{0}$ as a the angle of incidence co B.
-48°
Centripetal force for the circular motion is

$$
\begin{aligned}
& =1.2 W
\end{aligned}
$$

Therrefore the load due to lift during the flattening ut at the given conditions is a little over than $2 W$. Any aeroplane is strong enough to be loaded by $2 W$. From the above calculation we get following cesults

$$
\left\{\begin{array}{l}
u=\text { l.ls } V_{0} \text { atB } \\
\text { load due to lift }=2.2 W \\
\text { angle of incidence atB }=2
\end{array}\right.
$$

Now we have to calculate hou much speed oi the machint
can be reduced at C by flattening ouv. R.A.F.I5 usual type will be applied at firit ior computation of the speed atC.
(a) the Speed of E.A.E Biplane
after Flattening out.
The equation of motion along the path during flattening
out becomes

$$
\frac{W d u}{b d t} \equiv W \sin \theta_{-}\left(G_{b} A+b W / u^{2}\right.
$$

$$
\text { where }\left\{\begin{array}{l}
\theta \text { is the angle between the path } \\
\text { and horizontal } \\
C_{D} \text { is drab coefficient of wings } \\
\text { bu }^{2} \text { is body resistance }
\end{array}\right.
$$

$$
\text { or } \frac{W d u}{S d t}=W \sin \theta-\left\{\frac{c_{D}}{K_{L} V_{0}^{2}}+b / u^{2}\right\}
$$

$$
\text { where } \quad\left\{\begin{array}{l}
\text { Acis the life coefficient of } \\
\text { the wings at the normal angle } \\
\text { of incidence } \\
\text { Vo is the normal speed }
\end{array}\right.
$$

or

If we assume the inclination of the path is linear -unctionof the length of the patio, then

$$
\theta=30^{\circ}\left(1-\frac{l}{314}\right)
$$

$$
\begin{aligned}
& \frac{u d u}{d I}=\sin \theta-\left(b+\frac{C_{D}}{K_{L} V_{0}^{2}}\right) u^{2} \\
& \left\{\begin{array}{lll}
\theta=30 & \text { at } B \text { il } l=0 \\
\theta=0 & \text { at } C & l=l_{2}=3 / 4
\end{array}\right. \text {,ut }
\end{aligned}
$$

where 314 feet is the total length of the path: when $H_{0}=80$ feet and diving angle is 30° at the bejging of flattening out.

In the above equation K_{L} and V_{0} are known and constants und elso b can be assumed as a constant approximatery; But C_{D} the drag coefficient of the wings is changed by angle ui incidence, therefore it is necessary that the dragcoefficieiit C_{D} is written bjfuction ot angle of incidence or the Iengtia of the path.

We can see easily that the drag coefficient Gurve of K.A.F.N wing between 2 and 14 desrees of inciaence which is the useful range for this calculation, is represented by a kind of exponential function.

$$
C_{D}=\alpha e^{\beta x}
$$

Where $\left\{\begin{array}{l}\alpha \text { ad } \beta \text { are consttanti } \\ x \text { i~ angle of incidence between } 2 \\ \text { andi4 degrees. }\end{array}\right.$

The drag coetiicient can be represented by

$$
C_{D}=0.0000194 e^{0.146 x}
$$

The constants 0.0000194 and 0.146 have not been obtained by least square methode, but they hold pretty good between the anoles 2^{0} to 14°.

We have to change x the angle of incidence wo the length of the path.

$$
\begin{aligned}
C_{D} & =0.0000194 e^{0.146 x} \\
& =0.0000194 e^{0.292+0.003601} \\
& =c_{1} e^{c_{2}+\frac{1}{2}}
\end{aligned}
$$

Now the equation of motion during flattening out becomes

$$
\left.\frac{u d u}{r d l}=\sin \left\{30^{\circ} 1 i-\ell / 314\right)\right\}-\left(b+\frac{c_{1} e^{c_{2}+c_{3} i}}{K V}\right)^{u^{2}}
$$

 put, $\left\{\begin{array}{l}0.50=a_{1} \\ 0 . j 01 \bar{Z}=a_{2} \\ u^{2}=U\end{array}\right.$

$$
\frac{d U}{2 g} \quad\left(b+\frac{c_{1} e^{c_{2}+c_{j} 1}}{K V} U d=(a-a l \mid d I\right.
$$

This is a Bernoulis equation which can be integrated using the integrating factor of

$$
\begin{array}{r}
e^{\int 2 g\left\{b+\frac{c_{1} e^{c_{2}} g_{1}}{\mathcal{K V}_{2}^{2}}\right\} d I} \\
\text { or } \quad e^{2 g\left(b I+\frac{c_{1} e^{c_{2}+c_{3} I}}{c_{2}+V_{0}^{2}}\right)}
\end{array}
$$

When the equation becomes

$$
\begin{aligned}
& =\left\{e^{2 g\left(b 1+\frac{c_{1}^{c} e^{c}+c l}{c_{3} k_{L} D_{0}^{d}}\right.}\right\}\left(a,-a_{2} l\right) d l
\end{aligned}
$$

The left had side of the above equation is
the exact differential which can be integrated directly
but the right hand side can not bo integrated directly.
If we can expand $e^{c_{1}+c l} a s$ a series of $\left(c_{2}+c_{j} I\right)$ then the
rind hand side can be integrated but unfortmatery

$$
e^{c_{2}+c l} \text { lat } 1=354=e^{-53-05} \text { and the series is not }
$$

converged when it is expanded

Unless we express $C_{D} b y$ some other functions of 1 The equatica of motionauring the flattening out can not be integrated．
C_{D} will be expanded by quadratic equation of angle of incidence ie by（ $\left.a+b x+c x^{2}\right)$ where a, b andcare cons va nts aiu x is a variable represending angle of incidece in desrees．

We can finid constants a, b, c using the least square me thode．

The result is shown as follows．

$$
C=0.000011 \quad 0.0000065 x \quad 0.00000050 x
$$

Tine computation

$$
\begin{aligned}
& \begin{array}{cc}
\text { at } & 0^{\circ} \\
" 1 & z^{0} \\
" & 4^{\circ} \\
" & 0^{\circ} \\
" & 10^{\circ} \\
" & 12^{0} \\
" & 14^{\circ}
\end{array} \\
& \text { ソ.0000194 = a } \\
& 0.0 \cup \cup+240=a+2 b+4 c \\
& \text { ง. ソงンロ351 =a+4bT16c } \\
& \text { ง. ソソ0065b =a+cb+36c } \\
& 0.000000=a+10 b+100 c \\
& \text { 0.000109 }=a+12 b+144 c \\
& 0.000109=a+14 b+190 c
\end{aligned}
$$

From the above equations we can fet the following

$$
-54-
$$

3 normal equations

$$
\left\{\begin{array}{l}
0.00052 i=0 a+566 b+600 c \\
0.0052 i=56 a+600 b+6770 c \\
0.0597=600 a+6720 b+27=000 c
\end{array}\right.
$$

Solving the above equations simaltaneusly, :.e obtaine

$$
\begin{aligned}
& a=0.000011 \\
& b=0.0000065 \\
& c=0.00000056
\end{aligned}
$$

Therefore

$$
C_{D}=0.00001+0.0000056 x+0.00000036 x^{2}
$$

u_{0} is expressed $b_{y} q u a d$ aticequation with pre ty presice. Since the coefficient of x^{2} is very small and has a little =ffect on C_{ν}, the tem can be neytected with about the wame presice if we aded e little correction on the coeffLcient of x.

$$
C_{D}=0.00001++\cup .0 \cup 0 \cup 060 \mathrm{x}
$$

will be usea as the equation which can be writtenasa functicn of lengthof the path

$$
\begin{aligned}
\mathrm{C}= & \left.0.0000+1+0.000060 \mathrm{q} 2+\frac{(14-2) l}{314}\right\} \\
= & 0.0000240+0.0000006 l \\
& p u t\left\{\begin{array}{l}
0.0000210=\mathrm{I}_{1} \\
0.00000020=\mathrm{I}_{2}
\end{array}\right.
\end{aligned}
$$

$$
-55-
$$

the equation of motion then becomes

$$
\begin{aligned}
& \frac{u d u}{\sigma \bar{d} I}=\left(a_{1}-\frac{\left.a_{2}\right]}{\square}\right)-\left(b+\frac{f_{1}+f_{2} \eta}{i_{2} V_{0}^{2}}\right) u^{2} \\
& \text { put } U=u^{2} \\
& d U+251 b+\frac{f_{1}+\frac{f_{2}}{}}{\sum_{2} V_{0}^{2}}, U d 1=25\left(a_{1}-\frac{a l}{2}\right) d 1
\end{aligned}
$$

This is a Belnaulis equation which can be integrated using the integrating factor.

$$
\begin{aligned}
& \text { di } \left.u e^{2 G i b l}+\frac{f I+\frac{f l^{2} / 2}{K}}{K V_{0}^{2}}\right) \\
& =2\left(a_{1}-\frac{a_{2}}{2}\right) e^{2 g\left(b 1+\frac{f 1+\frac{f^{2} 1 / 2}{2}}{\bar{K} V}\right)} \\
& \text { gl }
\end{aligned}
$$

Un the above equation the left hand side is exact diff ential aid exponential of the right hand side can be expanded in the series --which is integrated easily
 assuming the body resistance is(W/Le) at normal speed
of 90 mph - $\quad-56-$
By integrating after applying the expantionof exponential the equation of motion becomes as follows. $\left.U e^{2 S\left(b l+\frac{\frac{f}{1} I+\frac{f}{2} l^{2} / 2}{K V}\right.}\right)$

Substitute the limites

$$
\left\{\begin{array}{l}
1=31 \vdots \\
u=u
\end{array}\right.
$$

$$
\begin{aligned}
u & =\frac{\nabla^{2}-7530}{\left(e^{0.2 \div 4}\right)}=\frac{23000-7530}{1.27} \\
& =23200
\end{aligned}
$$

Therefore $u=152$ feet per second after flattening out.

$$
-57-
$$

(b) Gliding and Fiattening Distance
of R.A.H. 15 Biplane.
The above calculation suggests us that when an aeroplare is flattening out from height of about lou feat to the grounk after diving with a great inclined angle to the horizontal direction, its speed after flattening out is still very higher than its stalling speed. Therefore it is clear that total landin distance (including gliding , flattening out, and landing run distancel is made shorter when an aeroplane glides at great angle of incidence mbut at less angle of incidence corresponding to the stalling speca. cosequentry with a little larfer speed than the stalling̈ speed.

If an aeroplane glides at a larse andle of incidence but a little less than the stalling ansle of incidence then total dras coefficient is not so much changed and we can use an average value of coefficients.

If we can use a costent value as the dras coefficient , then the equation of motion can be integrated very easily and result is more simple. Equations of motion during flattening out are
w udu

$$
\left\{\begin{array}{lc}
\frac{d i}{b i l}=\theta W-\frac{K A u^{2}}{D} & \text { alone the path } \\
W u^{2} d \theta & \text { perpendicular the path }
\end{array}\right.
$$

$$
-58-
$$

where, $\left\{\begin{array}{l}u \text { is the speed ; } \theta \text { is the angle of } \\ \text { flight path to the horizontal at any } \\ \text { instant. }\end{array}\right.$
It is covenient to use a subsidery speed V defined by $W=\frac{k}{L} A V^{2}$
Finally we assume as shown on the front page that a mean value of $K_{L} 4$ and i_{D} may be used, and cosequetry
a mean value of λ may be used fir the drag to lift ratio
Then the two equations are vriten

$$
\left\{\begin{array}{l}
\frac{u d u}{d l}=g\left(\theta-\lambda \frac{u^{2}}{v^{2}}\right) \\
\left.\frac{u^{2} d \theta}{d l}=+\delta 1 I-\frac{u^{2}}{V^{2}}\right)
\end{array}\right.
$$

Eliminate V from these equations

$$
u \frac{d u}{d l}-\lambda u^{2} \frac{\dot{d} \theta}{d I}=g(\theta-\lambda)
$$

or :udu $\bar{\sigma} u^{2} d \theta=s 1 \theta-\lambda 1 d l$
As before the angle of the inclination of the path to
the horizontal is assumed that it... is defined by

$$
\theta=\theta_{0}\left(i-\frac{1}{1_{2}}\right)
$$

Therefore $d \theta=-\theta_{0} d \hat{l} / L_{2}$

$$
\begin{gathered}
u d u+\frac{\lambda \theta_{0} u^{2}}{l_{2}} d l=g(\theta-\lambda) d l \\
\sigma_{r} \quad d u^{2}+\frac{2 \lambda \theta_{0} u^{2}}{l_{2}} d l=g\left(\theta_{0}\left(1-\frac{l}{l_{2}}\right)-\lambda\right\} d l
\end{gathered}
$$

Using the in egrati ag factor

$$
e^{\frac{2 \lambda \theta_{0} l}{l_{2}}}\left\{d u^{2}+\frac{2 \lambda \theta_{0} u^{2}}{l_{2}} d l\right)=e^{\frac{2 \lambda \theta_{0} l}{l_{2}}} 2 g\left\{\theta_{0}\left(1-\frac{l}{l_{2}}\right)-\lambda\right\} d l
$$

Interating

$$
\begin{aligned}
& e^{\frac{2 x \theta_{0} l}{l_{2}}} \mu^{2}=\frac{2 g e^{\frac{2 \lambda \theta_{0} l}{l_{2}}\left(\theta_{0}-\lambda\right)}}{\frac{2 \lambda \theta_{0} l}{l_{2}}}-2 g\left(e^{\frac{2 \lambda \theta_{0} l}{l_{2}} l} l_{2}\right. \\
& l_{2} l \\
&=\quad-2 g \frac{\theta_{0} l l^{\frac{2 \lambda \theta_{0} l}{l_{2}}}}{l_{2}\left(\frac{2 \lambda \theta_{0}}{l_{2}}\right)}+2 g \frac{\theta_{0} e^{\frac{2 \lambda \theta_{0} l}{l_{2}}}}{l_{2}\left(\frac{2 \lambda \theta_{0} l_{2}}{l_{2}}\right)^{2}}
\end{aligned}
$$

Applying the limitis
$\left(u u_{0}\right.$ at $\left.I_{1} I_{2}\right)$ and $\left(u_{1} u_{0}\right.$ at $\left.I=0\right)$

$$
\begin{aligned}
u_{2}^{2 \lambda \theta_{0}} \mu_{0} & =2 g\left\{\frac{\left(\theta_{0}-\lambda\right)\left(e^{2 \lambda \theta_{0}}\right.}{2 \lambda \theta_{0}} l_{2}^{2 \lambda \theta_{0}}-\frac{l_{2} l^{2 \lambda}}{2 \lambda}+\frac{\theta_{0} l_{2}\left(e^{2}-1\right)}{\left(2 \lambda \theta_{0}\right)^{2}}\right\} \\
& =2 g\left\{\frac{\left(\theta_{0}-\lambda\right) 2 \lambda \theta_{0} l_{2}}{2 \lambda \theta_{0}}-\frac{l_{2}\left(1+2 \lambda \theta_{0}\right)}{2 \lambda}+\frac{\theta_{2} l_{2}}{2 \lambda}\right\} \\
& =2 g\left\{\left(\theta_{0}-\lambda\right) l_{2}-\theta_{0} l_{2}\right) \\
& =-2 g \lambda l_{2}
\end{aligned}
$$

or
$u\left(i+2 \lambda\left(\theta_{0}\right)-u_{0}=-\dot{\sim}{ }_{5} \lambda I_{2}\right.$

Therfore

$$
\frac{1}{2}=\frac{u_{0}^{2}-u^{2}\left(1+2 \lambda \theta_{0}\right)}{2 g \lambda}
$$

The height of flattening out iz

$$
\begin{aligned}
& n=\int_{2} u l \times \tan ^{-1} \theta=\int \theta d=\theta_{0}\left(l-\mathbb{l}^{2} / \bar{l} l_{2}\right) \\
&=(1 / 2) H_{2} \theta_{0} \ldots-(B)
\end{aligned}
$$

From the equations(A) and (B) the length of the path and the heicht of fiattening out can be required when an aeroplane glides at greate angle of incidence and cosequentry with a small inclination of the path to the horizontal.

The speed iu is a little larger than the stallin_{0} speed and the speed u is the stalling speed with which the acroplane lands on the ground.
K.A.i. 15 biplane which was used for celculation of landine mun distance has the properties at h the stalling angle of incidence as shown below.

$$
0.197=0.2
$$

$$
\text { stalling speed }=40 \mathrm{~m} \cdot \mathrm{p} \cdot \mathrm{in}
$$

If the aeroplane glides down at 10 degree of incidence at which the macnine has $39.5 \mathrm{~m} . \mathrm{p} \cdot \mathrm{il}$. as the speed

$$
-61-
$$

and O. Le as the drag to limit ratio.
Then

$$
\begin{aligned}
& u_{0}=5 c .6 \text { feet per soc. } \\
& u=87.4 \text { feet per sec. } \\
& \text { the inclination of the path at the } \\
& \text { begging of lattening out }=\text { tan. } 18 \\
& =10 \text { degree }=0.18 \text { in radiŭn } \\
& \quad \% 0.19
\end{aligned}
$$

The required distance in

The required height for flattening out h
$=120.10300=27$ feet
If the R.A.FlS biplane glides with LU degre of incidene from the edge of tine aerodrome at which the machind is 100 feet height from the ground, and then flattening out from the height of 27 feet to the proud

$$
-62-
$$

the total landing distance is requird as follows.
The total landing distance
$=$ gliding distance + fiattenius ot t distance
landing run distance
$=410$ feet +300 feet +320 feet
$=1030$ feet

The Total Landing Distance of The aeroplane with Flaps doz of the chord of monoplane l

The monoplane with flaps winch is ajusted 30 degree, to the chord at the stalling speed 53.5 feet per sec. has the $d a s$ to lift ratio of -am at stalling speed. If the aeroplane glides at 10 dire of incidence, then its aged is expected as 6 feet per sec. and drag to lift ratio a little larger than 0.25.

Applying the formulae (A) and (B), we get

$$
\begin{aligned}
& \begin{aligned}
& \frac{1}{2}=\frac{4350-i+j}{16} \\
&=70 \text { feet } \\
& h=9.7 \text { feet } \\
& \text { The total landing distance } \\
&=360 \text { feet +70 feet + 250 feet } \\
&=690 \text { feet }
\end{aligned}
\end{aligned}
$$

