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Abstract

In this thesis we study the D-brane physics in the context of Witten's cubic string
field theory. We compute first few terms the low energy effective action for the non-
abelian gauge field A, from Witten's action. We show that after the appropriate field
redefinition which relates the string field theory variables to the worldsheet variables
one obtains the correct Born-Infeld terms. We then compute the rolling tachyon so-
lution in the context of string field theory. We show that after the appropriate field
redefinition we obtain the rolling tachyon solution of Sen.
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Chapter 1

Introduction

Modern physics classifies the observed forces of nature into four interactions: elec-

tromagnetic, weak, strong and gravitational. Three of them: electromagnetic, weak

and strong have fully consistent quantum-mechanical description as specific quantum

field theory with SU(3) x SU(2) x U(1) gauge symmetry. This quantum field theory,

describes all three interactions within one framework. Together with specific data

for particle spectra and fundamental constants it describes all observed accelerator

particle physics.

The fourth interaction: gravitation has only classical description. It is also a gauge

theory where the role of the gauge transformations is played by the reparametrizations

of the space time. However, the quantization of gravity has proven to be extremely

difficult problem. In the core of it is the issue of renormalizability of the quantum

theory. When a classical field theory is quantized, say, via path integral methods the

perturbative expansion of the observable quantities, such as scattering amplitudes,

around the non-interacting theory is obtained. In this perturbative expansion indi-

vidual terms are divergent, however for a class of QFT's via a careful and systematic

procedure called renormalization, it was shown that the divergencies can be canceled

out between the individual terms, contributing to each order in perturbation theory.

While weak, strong and electromagnetic interactions have been shown to be renor-

malizable, it was also found that the gravity, beyond the second order in perturbation

theory, is not.



One more attractive physical idea which has been extensively explored is that of

unification. It is known that electromagnetic, weak and strong interactions appear

in the low energy limit of a class of larger quantum field theories with bigger gauge

symmetry group. When going to the low energy limit, this large gauge symmetry

is spontaneously broken and some of the gauge bosons receive masses, with the re-

maining symmetry being SU(3) x SU(2) x U(1) of strong, weak and electromagnetic

forces. The unified description is attractive because it uses less fundamental constants

to specify the theory, and explains the family structure of the particle spectrum.

Probably one of the most challenging physics problems today is that of finding a

unifying theory that would describe all four fundamental forces as one interaction,

where the splitting into apparently different interactions would appear only in the

low energy limit. Although gravitation is not renormalizable, in this context it would

appear in the special regime of a bigger and self consistent theory. In the last 15 years

string theory has become the most prominent candidate for such a theory.

The string theory's basic assumption is that instead of being pointlike objects,

the elementary particles are extended objects - strings. Strings can be open or closed.

While moving in spacetime a string spans a surface called the string worldsheet.

Elementary particles with different quantum numbers appear as various string exci-

tations as we look at strings from large distances. One of the very attractive features

of this point of view is that different particles appear as different excitations of one

fundamental string.

In mid-eighties it was found that in flat spacetime there are five consistent super-

symmetric string theories, which must live in 10-dimensional Minkowski space. All of

these theories are related by various duality transformations, and it is generally as-

sumed, that these are different limits of unique fundamental theory. The connection

to our 4-dimensional world is made via procedure called compactification, where 6 of

the 10 dimensions are assumed to span some compact manifold. Excitation of the

string in the compact direction would require large energies, leaving strings to move

freely in the four spacetime dimensions.

These five string theories are defined in a perturbative fashion, where the spectra



of excited states in noninteracting theory are well defined, and scattering amplitudes

are computed order by order in perturbation theory. All of the five formulations are

related by so called duality transformations - which state that perturbative definition

of one string theory appear in a specific regime of another. It was then assumed that

these five apparently different string theories are perturbative expansions around

different backgrounds of some fundamental underlying theory.

With the research that followed the seminal paper of Polchinski [2] the importance

of D-branes in string theory has been fully realized. D-branes in string theory appear

as localized D + 1 dimensional objects, whose perturbations are described by the

open string degrees of freedom. Open strings are allowed to end on the D-brane only.

Different open string backgrounds correspond to D-branes with different geometry.

From the space time point of view, D-branes are classical solutions to the supergravity

equations of motion.

An important question is to find a theory, which would possess a so called back-

ground independence. Such theory should allow a description of different string

models as different backgrounds specified in terms of some fundamental variable.

Perturbative expansions around these backgrounds would give us the five string the-

ories and their compactifications. Different D-brane configurations would also be

described as open string backgrounds in the fundamental background independent

theory. The best known candidate for the background independent formulation of

string theory is String Field Theory (SFT). While there are SFT formulations for

some of the 10-dimensional supersymmetric string theories, most significant progress

in understanding different string backgrounds using string field theory was achieved

in Witten's cubic string field theory (CSFT) which describes the 26-dimensional open

bosonic string. The lowest state of 26-dimensional bosonic string has negative mass

squared, which is the indication that the theory is unstable. Before the remarkable

paper of Sen [1] it was assumed that the presence of the tachyon presents fundamental

problems with open bosonic string. Witten's cubic string field theory (CSFT) pro-

vided the action which describes the interaction of the tachyonic and all the excited

states. From this action one can compute the effective potential for the tachyonic



state. Ashoke Sen in [1] has made three conjectures about the relationship between

open string vacua with dramatically different geometrical properties:

1. The effective potential for the tachyon has a minimum, furthermore, the energy

difference between the perturbative vacuum and the minimum of the tachyon

potential is exactly the energy of the space-filling 25 dimensional D-brane.

2. In the perturbative expansion around the tachyonic vacuum there are no open

string excitations. The minimum of the tachyonic potential corresponds to the

closed string vacuum where the D-brane has decayed and only closed string

excitations are remaining.

3. The lower dimensional branes should be realized as the soliton configurations

of the tachyon and other string excitations.

These conjectures have been verified by numerical computations in CSFT in [3, 4, 5,

6, 7, 8, 9, 10] as well as in subsequent research (see [11, 12, 13, 14] for reviews of this

work).

Sen's conjectures have made CSFT into an important tool for studying various

string backgrounds. In my work with Washington Taylor and Erasmo Coletti we

have concentrated on two aspects of string field theory. In Chapter 2, following [15]

we describe the calculation of the low energy effective action of the 25-dimensional

D-brane from CSFT. In the low energy limit there are two excitations of the open

bosonic string remaining: the tachyon €, which has negative mass squared and the

massless vector field A, which describes the perturbations of the D-brane. The gauge

field A, takes values from U(n) group. From earlier work analyzing string scattering

amplitudes and string partition function [16, 17, 18] it was known, that the low energy

effective action for the U(1) vector field A, is so called Born-Infeld action

S = M)2 f dx -det (T,, + 21gyMF•,) (1.1)

The lowest term in the power expansion of (1.1) is the usual electromagnetic action.

It has also been assumed that for the U(n) models with n > 2 the resulting action



must be a non-abelian generalization of (1.1). The leading terms in the expansion

of such action were computed by analyzing string scattering amplitudes and, in the

supersymmetric case by the analysis of restrictions imposed by supersymemtry. The

full form of the non-abelian vector field effective action is not known.

The development of SFT provided us with an alternative method of computation

of effective action. In the work of Taylor [19], the first calculation of the vector field

effective action from SFT was done, and it was shown, that in the abelian case, up

to terms of order A2 the action is simply the standard electromagnetic term. Further

progress in the computation of effective action was made with [20] where the method

of computation of Feynman diagrams in string field theory was proposed. Using this

method in [15] we have computed the effective action for abelian and non-abelian

cases as the low energy effective action of string field theory up to terms of the order

A4 . We have also checked by numerical computation that non gauge invariant terms

A" cancel for n > 4.

Probably the most important realization of [15] was that the variables in the

world sheet and string field theory formulations of string theory are not the same,

but rather related by a complicated field redefinition. In the worldsheet formulation

of string theory the vector A, has standard gauge transformation from the start, and

the resulting action is a function of the gauge invariant stress tensor F,, and it's

derivatives.

In SFT, gauge invariance for A, is dictated by the gauge invariance of the string

field theory. After the higher energy excitations are eliminated using the equations of

motion, the gauge invariance for A, becomes rather complicated non-linear transfor-

mation. The field redefinition is required to bring the gauge transformation into the

standard form. Only after this field redefinition is made, do we obtain the Born-Infeld

action in the U(1) case and in the U(n) case it's non-abelian generalization.

Another aspect of D-brane physics we study from string field theory point of

view is the rolling tachyon solution of Sen [22]. The rolling tachyon solution is the

string background which was proven by Sen to be exact solution of string field theory

equations of motion. In Chapter 3 following [21] we solve the CSFT equations of



motion for the rolling tachyon initial condition. The initial condition for the tachyon

(x, t) is specified by the asymptotics ¢(x, t) - et as t -+ -oo. The tachyon field

is assumed to stay constant along the spatial coordinates. The motivation for this

work comes from the works of Sen [22, 23, 24] on the rolling tachyon in worldsheet

formulation of string theory and the work of Moeller and Zwiebach [25] where the

rolling tachyon solution in CSFT was calculated in the level zero truncation (which

basically means that the theory is truncated to include the tachyon field only, all

other fields are forcibly set to zero). In [25] authors have found that the rolling

tachyon solution in the level 0 truncation develops evergrowing oscillations. This

picture is dramatically different from the worldsheet picture, where the worldsheet

tachyon T(t) - et was shown by Sen to be exact solution. Moeller and Zwiebach

conjectured that the situation might get amended by including massive string modes

into consideration. We show in [21] that this is not the case, and in fact the growing

oscillations are present in CSFT rolling tachyon solution even when we include the

massive string modes. The apparent contradiction is resolved by the field redefinition

T(O) which relates the worldsheet tachyon into the CSFT one. We compute the field

redefinition to the leading order in power expansion in ¢ and show that it indeed

maps the rolling solution of Sen into the CSFT rolling solution.



Chapter 2

Abelian and nonabelian vector

field effective actions from string

field theory

2.1 Introduction

Despite major advances in our understanding of nonperturbative features of string

theory and M-theory over the last eight years, we still lack a fundamental nonper-

turbative and background-independent definition of string theory. String field theory

seems to incorporate some features of background independence which are missing in

other approaches to string theory. Recent work, following the conjectures of Sen [1],

has shown that Witten's open bosonic string field theory successfully describes mul-

tiple distinct open string vacua with dramatically different geometrical properties, in

terms of the degrees of freedom of a single theory (see [11, 12, 13, 14] for reviews of

this work). An important feature of string field theory, which allows it to transcend

the usual limitations of local quantum field theories, is its essential nonlocality. String

field theory is a theory which can be defined with reference to a particular background

in terms of an infinite number of space-time fields, with highly nonlocal interactions.

The nonlocality of string field theory is similar in spirit to that of noncommutative



field theories which have been the subject of much recent work [26], but in string

field theory the nonlocality is much more extreme. In order to understand how string

theory encodes a quantum theory of gravity at short distance scales, where geometry

becomes poorly defined, it is clearly essential to achieve a better understanding of the

nonlocal features of string theory.

While string field theory involves an infinite number of space-time fields, most

of these fields have masses on the order of the Planck scale. By integrating out the

massive fields, we arrive at an effective action for a finite number of massless fields.

In the case of a closed string field theory, performing such an integration would give

an effective action for the usual multiplet of gravity/supergravity fields. This action

will, however, have a complicated nonlocal structure which will appear through an

infinite family of higher-derivative terms in the effective action. In the case of the

open string, integrating out the massive fields leads to an action for the massless

gauge field. Again, this action is highly nonlocal and contains an infinite number

of higher-derivative terms. This nonlocal action for the massless gauge field in the

bosonic open string theory is the subject of this chapter. By explicitly integrating

out all massive fields in Witten's open string field theory (including the tachyon), we

arrive at an effective action for the massless open string vector field. We compute

this effective action term-by-term using the level-truncation approximation in string

field theory, which gives us a very accurate approximation to each term in the action.

It is natural to expect that the effective action we compute for the massless vector

field will take the form of the Born-Infeld action, including higher-derivative terms.

Indeed, we show that this is the case, although some care must be taken in mak-

ing this connection. Early work deriving the Born-Infeld action from string theory

[16, 271 used world-sheet methods [17, 18, 18]. More recently, in the context of the

supersymmetric nonabelian gauge field action, other approaches, such as R-symmetry

and the existence of supersymmetric solutions, have been used to constrain the form

of the action (see [28] for a recent discussion and further references). In this work

we take a different approach. We start with string field theory, which is a manifestly

off-shell formalism. Our resulting effective action is therefore also an off-shell action.



This action has a gauge invariance which agrees with the usual Yang-Mills gauge

invariance to leading order, but which has higher-order corrections arising from the

string field star product. A field redefinition analogous to the Seiberg-Witten map

[29, 30] is necessary to get a field which transforms in the usual fashion [31, 32]. We

identify the leading terms in this transformation and show that after performing the

field redefinition our action indeed takes the Born-Infeld form in the abelian theory.

In the nonabelian theory, there is an additional subtlety, which was previously en-

countered in related contexts in [31, 32]. Extra terms appear in the form of the gauge

transformation which cannot be removed by a field redefinition. These additional

terms, however, are trivial and can be dropped, after which the standard form of

gauge invariance can be restored by a field redefinition. This leads to an effective

action in the nonabelian theory which takes the form of the nonabelian Born-Infeld

action plus derivative correction terms.

It may seem surprising that we integrate out the tachyon as well as the fields in

the theory with positive mass squared. This is, however, what is implicitly done in

previous work such as [16, 27] where the Born-Infeld action is derived from bosonic

string theory. The abelian Born-Infeld action can similarly be derived from recent

proposals for the coupled tachyon-vector field action [33, 34, 35, 36] by solving the

equation of motion for the tachyon at the top of the hill. In the supersymmetric theory,

of course, there is no tachyon on a BPS brane, so the supersymmetric Born-Infeld

action should be derivable from a supersymmetric open string field theory by only

integrating out massive fields. Physically, integrating out the tachyon corresponds

to considering fluctuations of the D-brane in stable directions, while the tachyon

stays balanced at the top of its potential hill. While open string loops may give rise

to problems in the effective theory [37], at the classical level the resulting action is

well-defined and provides us with an interesting model in which to understand the

nonlocality of the Born-Infeld action. The classical effective action we derive here

must reproduce all on-shell tree-level scattering amplitudes of massless vector fields

in bosonic open string theory. To find a sensible action which includes quantum

corrections, it is probably necessary to consider the analogue of the calculation in



this chapter in the supersymmetric theory, where there is no closed string tachyon.

The structure of this chapter is as follows: In Section 2 we review the formalism

of string field theory, set notation and make some brief comments regarding the

Born-Infeld action. In Section 3 we introduce the tools needed to calculate terms

in the effective action of the massless fields. Section 4 contains a calculation of the

effective action for all terms in the Yang-Mills action. Section 5 extends the analysis to

include the next terms in the Born-Infeld action in the abelian case and Section 6 does

the same for the nonabelian analogue of the Born-Infeld action. Section 7 contains

concluding remarks. Some useful properties of the Neumann matrices appearing in

the 3-string vertex of Witten's string field theory are included in the Appendix.

2.2 Review of formalism

Subsection 2.2.1 summarizes our notation and the basics of string field theory. In

subsection 2.2.2 we review the method of [20] for computing terms in the effective

action. The last subsection, 2.2.3, contains a brief discussion of the Born-Infeld action.

2.2.1 Basics of string field theory

In this subsection we review the basics of Witten's open string field theory [38].

For further background information see the reviews [39, 40, 41, 13]. The degrees of

freedom of string field theory (SFT) are functionals 4[x(a); c(a), b(a)] of the string

configuration x(#(a) and the ghost and antighost fields c(a) and b(a) on the string

at a fixed time. String functionals can be expressed in terms of string Fock space

states, just as functions in L 2(R) can be expressed as linear combinations of harmonic

oscillator eigenstates. The Fock module of a single string of momentum p is obtained

by the action of the matter, ghost and antighost oscillators on the (ghost number

one) highest weight vector Ip). The action of the raising and lowering oscillators on



Ip) is defined by the creation/annihilation conditions and commutation relations

ap>lIp) = 0, [al, al ] = a,,

p'|k) =k"lk), (2.1)

bn>oIp) = 0, {bm, c-n} = 6m,n,

cn>1 p) = 0.

Hermitian conjugation is defined by ait = a_,, bf = b-s, c = c_,. The single-string

Fock space is then spanned by the set of all vectors IX) = - an,an~ bk2bk ... C12 C C 1p)

with ni, ki < 0 and 1i < 0. String fields of ghost number 1 can be expressed as linear

combinations of such states IX) with equal number of b's and c's, integrated over

momentum.

I) = d26p ((p) + A,(p) aA1 - ia(p)b-lco + Bv(p)a1a-ii +.) Ip). (2.2)

The Fock space vacuum 10) that we use is related to the SL(2, R) invariant vacuum

I1) by 10) = c1 1j). Note that 10) is a Grassmann odd object, so that we should

change the sign of our expression whenever we interchange 10) with a Grassmann odd

variable. The bilinear inner product between the states in the Fock space is defined

by the commutation relations and

(k| co jp) = (27r) 266(k + p). (2.3)

The SFT action can be written as

S = -1 (V21 ), QB)) -(V3 , (, )) (2.4)
2 3

where JVn) E Ht". This action is invariant under the gauge transformation

6l|) = QBIA) + g((4, Aj V3) - (A, Dj V3)) (2.5)



with A a string field gauge parameter at ghost number 0. Explicit oscillator repre-

sentations of (V21 and (V3 1 are given by [42, 43, 44, 45]

(V21 d 26p (p(1)(pj(2) (C()+C(2)) exp (a(') - C - a (2 ) - b( ) - C c (2) - b( ) C(2)

(2.6)
and

3

(V3l = NITJ (d26p (pI)cpi)

x exp a(r) . V a(S) - p()V s ) + (r)Vrrp(r) - b(r) . X7r . C(s) (2.7)

where all inner products denoted by - indicate summation from 1 to oo except in

b -X, where the summation includes the index 0. The contracted Lorentz indices

in a/ and p, are omitted. C,, = (-1)nSn is the BPZ conjugation matrix. The

matrix elements Vj and X, are called Neumann coefficients. Explicit expressions

for the Neumann coefficients and some relevant properties of these coefficients are

summarized in the Appendix. The normalization constant Nf is defined by

1 39/2
A /= exp(- 2 Voro) = 26 3 (2.8)

so that the on-shell three-tachyon amplitude is given by 2g. We use units where

c' = 1.

2.2.2 Calculation of effective action

String field theory can be thought of as a (nonlocal) field theory of the infinite number

of fields that appear as coefficients in the oscillator expansion (2.2). In this chapter,

we are interested in integrating out all massive fields at tree level. This can be done

using standard perturbative field theory methods. Recently an efficient method of

performing sums over intermediate particles in Feynman graphs was proposed in [20].

We briefly review this approach here; an alternative approach to such computations



has been studied recently in [46].

In this chapter, while we include the massless auxiliary field a appearing in the

expansion (2.2) as an external state in Feynman diagrams, all the massive fields we

integrate out are contained in the Feynman-Siegel gauge string field satisfying

bojD) = 0, (2.9)

This means that intermediate states in the tree diagrams we consider do not have

a co in their oscillator expansion. For such states, the propagator can be written in

terms of a Schwinger parameter r as

-bo = bo dr e-TLo, (2.10)

In string field theory, the Schwinger parameters can be interpreted as moduli for the

Riemann surface associated with a given diagram [47, 48, 49, 41, 50].

In field theory one computes amplitudes by contracting vertices with external

states and propagators. Using the quadratic and cubic vertices (2.6), (2.7) and the

propagator (2.10) we can do same in string field theory. To write down the contri-

bution to the effective action arising from a particular Feynman graph we include a

vertex (V31 E R*3 for each vertex of the graph and a vertex JV2) for each internal

edge. The propagator (2.10) can be incorporated into the quadratic vertex through 1

IP) = - dr e'OP2) 1V2 . (2.13)

1Consider the tachyon propagator as an example. We contract colpl) and colp2) with (PI to get

(PI coIpI)colp2 ) = - dre'(1 P + 2) - 2) (2.11)
o p2 _1

This formula assumes that both momenta are incoming. Setting pi = -p2 = p and using the metric
with (-, +, +, ..., +) signature we have

1 1
= (2.12)

p2 + m2 i t p2 a_ im 2

thus (2.11) is indeed the correct propagator for the scalar particle of mass m 2 = -1.



where in the modified vertex IV2 (·)) the ghost zero modes co are canceled by the bo

in (2.10) and the matrix Cmn is replaced by

Cmn (T) = e-m~(-1)mmsmn (2.14)

With these conventions, any term in the effective action can be computed by con-

tracting the three-vertices from the corresponding Feynman diagram on the left with

factors of jP) and low-energy fields on the right (or vice-versa, with IV3)'s on the right

and (Pl's on the left). Because the resulting expression integrates out all Feynman-

Siegel gauge fields along interior edges, we must remove the contribution from the

intermediate massless vector field by hand when we are computing the effective ac-

tion for the massless fields. Note that in [20], a slightly different method was used

from that just described; there the propagator was incorporated into the three-vertex

rather than the two-vertex. Both methods are equivalent; we use the method just

described for convenience.

States of the form

exp A -at + at -S -at p) (2.15)

are called squeezed states. The vertex IV3) and the propagator IP) are (linear com-

binations of) squeezed states and thus are readily amenable to computations. The

inner product of two squeezed states is given by [51]

1 1
(01 exp( a + a -a Sa)exp( at +-at V at)0)

2 2

= Det(1 - S . V) - 1/2 exp [A. (1 - V -S)-1 -M
1 1

+ A-(1-V S)-.V-A + 1.S. (1 - V-S) -'p] (2.16)
2 2



and (neglecting ghost zero-modes)

(01 exp(b - Ab- c - b- S -c) exp(bt Pb + Pc ct + bt " V-ct)10)

= Det(1 - S.V)exp[-kc- (1 - V S)- Pb - , c- (1 - S- V) - 1' b

+Ac.(1-V-S) - '1. V - Ab + / .S.(1-V . S ) - 1  b] . (2.17)

Using these expressions, the combination of three-vertices and propagators associated

with any Feynman diagram can be simply rewritten as an integral over modular

(Schwinger) parameters of a closed form expression in terms of the infinite matrices

Vnm, Xnm, Onm(r). The schematic form of these integrals is

j=-1 Det(1 - Cy)13

x ((0)3v-2i exp at -S -at+p .at + bt .U ct + p. - ct + bt .Pb (2.18)

where C, AX, V are matrices with blocks of the form C, X, V arranged according to

the combinatorial structure of the diagram. The matrix C and the squeezed state

coefficients S, U, p, Pb, pc depend implicitly on the modular parameters -r.

2.2.3 The effective vector field action and Born-Infeld

In this subsection we describe how the effective action for the vector field is determined

from SFT, and we discuss the Born-Infeld action [52] which describes the leading terms

in this effective action. For a more detailed review of the Born-Infeld action, see [53]

As discussed in subsection 2.1, the string field theory action is a space-time action

for an infinite set of fields, including the massless fields A,(x) and a(x). This action

has a very large gauge symmetry, given by (2.5). We wish to compute an effective

action for A,(x) which has a single gauge invariance, corresponding at leading order

to the usual Yang-Mills gauge invariance. We compute this effective action in several

steps. First, we use Feynman-Siegel gauge (2.9) for all massive fields in the theory.

This leaves a single gauge invariance, under which A, and a have linear components



in their gauge transformation rules. This partial gauge fixing is described more pre-

cisely in section 2.5.2. Following this partial gauge fixing, all massive fields in the

theory, including the tachyon, can be integrated out using the method described in

the previous subsection, giving an effective action

S[A,(x), a(x)] (2.19)

depending on A, and a. We can then further integrate out the field a, which has no

kinetic term, to derive the desired effective action

S[A,(x)] . (2.20)

The action (2.20) still has a gauge invariance, which at leading order agrees with the

Yang-Mills gauge invariance

5A,(x) = 8,A(x) - igyM[A,,(x), A(x)] + ... (2.21)

The problem of computing the effective action for the massless gauge field in open

string theory is an old problem, and has been addressed in many other ways in past

literature. Most methods used in the past for calculating the effective vector field

action have used world-sheet methods. While the string field theory approach we use

here has the advantage that it is a completely off-shell formalism, as just discussed the

resulting action has a nonstandard gauge invariance [32]. In world-sheet approaches

to this computation, the vector field has the standard gauge transformation rule

(2.21) with no further corrections. A general theorem [54] states that there are no

deformations of the Yang-Mills gauge invariance which cannot be taken to the usual

Yang-Mills gauge invariance by a field redefinition. In accord with this theorem, we

identify in this chapter field redefinitions which take the massless vector field A, in

the SFT effective action (2.20) to a gauge field A, with the usual gauge invariance.

We write the resulting action as

S[Ai,(x)]. (2.22)



This action, written in terms of a conventional gauge field, can be compared to

previous results on the effective action for the open string massless vector field.

Because the mass-shell condition for the vector field A,(p) in Fourier space is

p2 = 0, we can perform a sensible expansion of the action (2.20) as a double expansion

in p and A. We write this expansion as

oo OO

S[A,] = Si (2.23)
n=2 k=O

where Sql contains the contribution from all terms of the form OkAn. A similar

expansion can be done for S, and we similarly denote by S4A, the sum of the terms

in S of the form ckamAn .

Because the action S[A] is a function of a gauge field with conventional gauge

transformation rules, this action can be written in a gauge invariant fashion; i.e. in

terms of the gauge covariant derivative D^, = 0, - igyM[A, .1 and the field strength

F,,,. For the abelian theory, D, is just a,, and there is a natural double expansion of

S in terms of p and F. It was shown in [16, 27] that in the abelian theory the set of

terms in S which depend only on PF, with no additional factors of p (i.e., the terms

in §S[) take the Born-Infeld form (dropping hats)

SBI = 1(2gy2 f dx det (, + 27rgyMF,,,) (2.24)

where

F,t, = 8j,A, - 0,Aj, (2.25)

is the gauge-invariant field strength. Using log (det M) = tr (log(M)) we can expand

in F to get

SB = - J dx ( (27rgyM) 2 FvF
2"(27rgyM)2 -1) 4

8 (2\g ya4 FFFF( F"v) -- .) - (2.26)



We expect that after the appropriate field redefinition, the result we calculate from

string field theory for the effective vector field action (2.20) should contain as a leading

part at each power of A terms of the form (2.26), as well as higher-derivative terms

of the form On+kAn with k > 0. We show in section 5 that this is indeed the case.

The nonabelian theory is more complicated. In the nonabelian theory we must

include covariant derivatives, whose commutators mix with field strengths through

relations such as

[D,, D,]FA, = [Fv, F ,] . (2.27)

In this case, there is no systematic double expansion in powers of D and F. It

was pointed out by Tseytlin in [56] that when F is taken to be constant, and both

commutators [F, F] and covariant derivatives of field strengths DF are taken to be

negligible, the nonabelian structure of the theory is irrelevant. In this case, the

action reduces to the Born-Infeld form (2.24), where the ordering ambiguity arising

from the matrix nature of the field strength F is resolved by the symmetrized trace

(STr) prescription whereby all possible orderings of the F's are averaged over. While

this observation is correct, it seems that the symmetrized trace formulation of the

nonabelian Born-Infeld action misses much of the important physics of the full vector

field effective action. In particular, this simplification of the action gives the wrong

spectrum around certain background fields, including those which are T-dual to simple

intersecting brane configurations [57, 58, 59, 60]. It seems that the only systematic

way to deal with the nonabelian vector field action is to include all terms of order F"

at once, counting D at order F1 /2 . The first few terms in the nonabelian vector field

action for the bosonic theory were computed in [61, 62, 63]. The terms in the action

up to F4 are given by

Snonabelian = - -Tr F2 + Tr (F3 ) + (21gy8 )2 STr

(2.28)
In section 6, we show that the effective action we derive from string field theory agrees

with (2.28) up to order F3 after the appropriate field redefinition .



2.3 Computing the effective action

In this section we develop some tools for calculating low-order terms in the effective

action for the massless fields by integrating out all massive fields. Section 2.3.1

describes a general approach to computing the generating functions for terms in the

effective action and gives explicit expressions for the generating functions of cubic

and quartic terms. Section 2.3.2 contains a general derivation of the quartic terms in

the effective action for the massless fields. Section 2.3.3 describes the method we use

to numerically approximate the coefficients in the action.

2.3.1 Generating functions for terms in the effective action

A convenient way of calculating SFT diagrams is to first compute the off-shell ampli-

tude with generic external coherent states

(G) = exp (Jm,,aa - b-mJbm + Jcmc-m) Ip) (2.29)

where the index m runs from 1 to oo00 in J, and Jc and from 0 to oo in Jcm.

Let QM (pi, Ji, ,JJ, ,Ji; 1 < i < M) be the sum of all connected tree-level diagrams

with M external states jIG). nM is a generating function for all tree-level off-shell

M-point amplitudes and can be used to calculate all terms we are interested in in

the effective action. Suppose that we are interested in a term in the effective action

whose j'th field (iQ...,,N(p) is associated with the Fock space state

JJ a'mbkn Cl, p). (2.30)
m,n,q

We can obtain the associated off-shell amplitude by acting on QM with the corre-

sponding differential operator for each j

Jdpo (p) J a a 19(2.31)
m,n,q aJltmIe m bin tk c aJlq

and setting J , I J, and Jj to 0. Thus, all the terms in the effective action which we



are interested in can be obtained from 0QM.

When we calculate a certain diagram with external states IG') by applying for-

mulae (2.16) and (2.17) for inner products of coherent and squeezed states the result

has the general form

Nprop

QM= (ZP) 1 -.j(p, r)
f=1

x exp A ) - PiAj (r)J + Pii\ (T)pj + ghosts . (2.32)

A remarkable feature is that (2.32) depends on the sources Jj, J~7, i only through

the exponent of a quadratic form. Wick's theorem is helpful in writing the derivatives

of the exponential in an efficient way. Indeed, the theorem basically reads

M

exp 2J -a n = Sum over all contraction products (2.33)
i=1 n JA=0

where the sum is taken over all pairwise contractions, with the contraction between

(n, i) and (m, j) carrying the factor Anm.

Note that RM includes contributions from all the intermediate fields in Feynman-

Siegel gauge. To compute the effective action for A, we must project out the contri-

bution from intermediate A,'s.

Three-point generating function

Here we illustrate the idea sketched above with the simple example of the three-point

generating function. This generating function provides us with an efficient method

of computing the coefficients of the SFT action and the SFT gauge transformation.

Plugging IG') , 1 < i < 3 into the cubic vertex (2.7) and using (2.16), (2.17) to

evaluate the inner products we find

Kg ( r 1 r e Vop - rpVo, J + r rrs V, - j r. b . (2.34)Q3- a3 - "op(2 000. + 2J•V J, . (2.34)



As an illustration of how this generating function can be used consider the three-

tachyon term in the effective action. The external tachyon state is f dp¢ (p)lp). The

three-tachyon vertex is obtained from (2.34) by simple integration over momenta and

setting the sources to 0. No differentiations are necessary in this case. The three-

tachyon term in the action is then

- (V3 10, , ) = - 6(Z p) dpr.o(p,) exp pr Voo=p) ' g dx <(x)3
3 3 r (

(2.35)

where

(x) = exp (- Vo1o) (2.36)

For on-shell tachyons, a2¢(x) = -O(x), so that we have

S(V31 , , ) =- AreV• dx(x) dx (x). (2.37)
3 (2.37)

The normalization constant cancels so that the on-shell three-tachyon amplitude is

just 2g, in agreement with conventions used here and in [64].

Four-point generating function

Now let us consider the generating function for all quartic off-shell amplitudes (see

Figure 2-1). The amplitude Q4 after contracting all indices can be written as

4 2 j dT er(1-(pl+p2)2 ) (' 1R(1,2))IR(3,4)) (2.38)

where

IR(i,j))(k) -= (Ge (G I V3)(ij k). (2.39)

35



Applying (2.16), (2.17) to the inner products in (2.39) we get

IR(1, 2)) = exp( pU"p"- K~O + J~ UIn3J A

+ a~ U (3) + (JU•3 _ - PO ac (3) - a mXa•

-+ b-nX3a -- Xa3 c - bmXnC) ci )CO I-P1 - P2).

Here a, 3 E 1, 2 and

UT8 (=V,',S Vor' - "

Vrmn

(2.40)

(2.41)

Using (2.16), (2.17) one more time to evaluate the inner products in (2.38) we obtain

4 jrg2
-4 = a 2  pi)

i

S Det
dre' Det

1 - 2)13
(1 _- V2 13

1 1 mito'n
x exp 2P'Q o" - P" Qo"n + 2

Here i,j E 1, 2, 3, 4. the matrices V and X are defined by

- Jcm Q n )

mn = e-2 Vmne-i Xmn = e- 7Xmne-&2 (2.43)

The matrices Qii and Qij are defined through the tilded matrices Q'i and Q~3
-M _ • -j m - en--Q-r

Qwn = es Q 2e-n - a d r t ro e-u

where the tilded matrices Q and Q are defined through V, U, X

0a,3 CTc,3 VU30 P + Uoa
1 - rV2

( 1i V2- -••
C a'

)mn

+ i- 12 '

1 -f2

(2.44)

(2.45)

(2.42)

Vnr - V'n3
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Figure 2-1: Twists T, T' and reflection R are symmetries of the amplitude.

with a, 3 E 1, 2; a', ' E 3,4. The matrix U includes zero modes while V does not,

so one has to understand UV in (2.45) as a product of U, where the first column is

dropped, and f. Similarly VU is the product of V and U with the first row of U

omitted.

The matrices Qi3 are not all independent for different i and j. The four-point

amplitude is invariant under the twist transformation of either of the two vertices

as well as under the interchange of the two (see Figure 2-1). In addition the whole

block matrix QMn has been defined in such a way that it is symmetric under the

simultaneous exchange of i with j and m with n. Algebraically, we can use properties

(A.7a, A.7b, A.7c) of Neumann coefficients to show that the matrices Q'J satisfy

(QQr)T = a, CQa PC = Q3-a 3-0 Qa = Qac+ 2 3+2

(Q oP')T = QP',a', CQ 'P'C = Q7-' 7-0, Qa'/' = Qa'-2 ,'-2a (2.46)

(Qaa')T = Qa'a, CQ&aC = Q3-a 7-a' Qaa' = Qa+2 a'-2

The analogous relations are satisfied by ghost matrices Q.

Note that we still have some freedom in the definition of the zero modes of the

matter matrices Q. Due to the momentum conserving delta function we can add to

the exponent in the integrand of (2.42) any expression proportional to E pi. To fix

this freedom we require that after the addition of such a term the new matrices Q

satisfy Qo = Qon = 0. This gives

-ij 1 1_Qoo = Qo 0 _ n = 0n - 0 n. (2.47)



and Q, = Q, for m, n > 0. The addition of any term proportional to E pi corre-

sponds in coordinate space to the addition of a total derivative. In coordinate space

we have essentially integrated by parts the terms ,9O•0, ...,n (x) and a"j 011 ... ... (x)

thus fixing the freedom of integration by parts.

To summarize, we have rewritten Q4 in terms of Q's as

4 • 6( ) P) dre' Det (1 V2)1 3

2 , - (1 V 1(, 48
x exp -p Pi Q )ooP' - p', n • ~ (2.48)

There are only three independent matrices Q. For later use we find it convenient to

denote the independent Q's by A = Q12, B = Q13 , C = Q 14. Then the matrix Qimn-

can be written as

0 Amn Bmn Cmn

Q% (- 1)m+nAmn 0 (-l)m+Cmn (-1)m +nBmn (2.49)

Bmn Cmn 0 Amn

(-j)m+nCmn (-1)m+nBmn (-1)mm+Amn 0

In the next section we derive off-shell amplitudes for the massless fields by differen-

tiating 4.- The generating function Q24 defined in (2.48) and supplemented with the

definition of the matrices V, X, Q, Q given in (2.41), (2.43), (2.44), (2.45), (2.47)

and (2.49) provides us with all information about the four-point tree-level off-shell

amplitudes.

2.3.2 Effective action for massless fields

In this subsection we compute explicit expressions for the general quartic off-shell

amplitudes of the massless fields, including derivatives to all orders. Our notation for

the massless fields is, as in (2.2),

Imassiess) = /ddp (A,(p)a"_ - ia(p)b_1co) Ip). (2.50)



External states with A, and a in the k'th Fock space are inserted using

DA,k = dpA(p) and Da,k = i dpa(p) a~ k
D11d jk= k -=0 - Jk•k -=0

(2.51)

We can compute all quartic terms in the effective action S[A,, a] by computing quartic

off-shell amplitudes for the massless fields by acting on Q4 with DA and Dc. First

consider the quartic term with four external A's. The relevant off-shell amplitude

is given by 1I41 DA,i 2 4 where Q4 is given in (2.48) and DA1i is given in (2.51).

Performing the differentiations we get

SA4 = 1 A/ 2  p (p 2 +p 3 + p 4) A"( (p)A 2 ( 2)A 3 (p3)A 4(p4)2

xj dre Det 1 -( 2 (1 13 z% +4 4 + 4 eXp pjQj pw). (2.52)

Here I4 A, 24A4, Z 4 are defined by

24 1 2 3 4 3 2 .
i  2

4 (2
3

53

TA = 4 11 1Q2ll Q0ikPki2 2i3i4ii ij1
ii fi

4 S1 Q~ QZ2Qj41 p pap (.4
= ,10 = #10o10 10•lP2Pa4•

Other amplitudes with a's and A's all have the same pattern as (2.52). The amplitude

with one a and three A's is obtained by replacing A,q (p"l) in formula (2.52) with

ia(p 1) and the sum of wOA'2 '4 with the sum of

IZa1A 3  1 QiriIiii3 k
-- 2 : •,01 "11 •10 /-'i4 i2Ai 3

ii oij

_T3 = 1 k I
A3 6 01 •10 1g0 •Pl0 L'2 3PA3-(2.4 "



The amplitude with two A's and two a's is obtained by replacing A,, (p'1)A,,2 (p 2)

with -a(pil)a(pi2) and the sum of tA' 4  with the sum of

- 2A lil Q2i2 _ Qi1i2 Q 2i1 )Q3i4

I 2 A 2 - Z( lilQlQi2i2 _ Qili2Qi2i1)Qi3kQi41Pk (2.55)-- A 4 E Q 01 - •01 •01 /'s10 •10 A/PA3J,4

ii#ij

It is straightforward to write down the analogous expressions for the terms of order

a'A and a'. However, as we shall see later, it is possible to extract all the information

about the coefficients in the expansion of the effective action for A, in powers of field

strength up to F 4 from the terms of order A4 , A 3 a, and A2a2.

The off-shell amplitudes (2.52), (2.53), (2.54) and (2.55) include contributions

from the intermediate gauge field. To compute the quartic terms in the effective

action we must subtract, if nonzero, the amplitude with intermediate A,. In the

case of the abelian theory this amplitude vanishes due to the twist symmetry. In the

nonabelian case, however, the amplitude with intermediate A, is nonzero. The level

truncation method in the next section makes it easy to subtract this contribution at

the stage of numerical computation.

As in (2.23), we expand the effective action in powers of p. As an example of a

particular term appearing in this expansion, let us consider the space-time indepen-

dent (zero-derivative) term of (2.52). In the abelian case there is only one such term:

APA A,A " . The coefficient of this term is

7 jy =! fg2 deT' Det (1- )1 3  (A2
1 

+ B 2
1  C 2

1 ) (2.56)

where the matrices A, B and C are those in (2.49). In the nonabelian case there are

two terms, Tr (AAA A,A") and Tr (AA,AAA"), which differ in the order of gauge

fields. The coefficients of these terms are obtained by keeping A21 + C21 and B21

terms in (2.56) respectively.



2.3.3 Level truncation

Formula (2.56) and analogous formulae for the coefficients of other terms in the ef-

fective action contain integrals over complicated functions of infinite-dimensional ma-

trices. Even after truncating the matrices to finite size, these integrals are rather

difficult to compute. To get numerical values for the terms in the effective action, we

need a good method for approximately evaluating integrals of the form (2.56). In this

subsection we describe the method we use to approximate these integrals. For the

four-point functions, which are the main focus of the computations in this chapter,

the method we use is equivalent to truncating the summation over intermediate fields

at finite field level. Because the computation is carried out in the oscillator formalism,

however, the complexity of the computation only grows polynomially in the field level

cutoff.

Tree diagrams with four external fields have a single internal propagator with

Schwinger parameter r. It is convenient to do a change of variables

o = e- . (2.57)

We then truncate all matrices to size L x L and expand the integrand in powers of a

up to O.M - 2 , dropping all terms of higher order in a. We denote this approximation

scheme by {L, M}. The an term of the series contains the contribution from all

intermediate fields at level k = n + 2, so in this approximation scheme we are keeping

all oscillators aA<L in the string field expansion, and all intermediate particles in

the diagram of mass m2 < M - 1. We will use the approximation scheme {L, L}

throughout this chapter. This approximation really imposes only one restriction-

the limit on the mass of the intermediate particle. It is perhaps useful to compare the

approximation scheme we are using here with those used in previous work on related

problems. In [20] analogous integrals were computed by numerical integration. This

corresponds to {L, oo} truncation. In earlier papers on level truncation in string field

theory, such as [3, 4, 5] and many others, the (L, M) truncation scheme was used, in

which fields of mass up to L - 1 and interaction vertices with total mass of fields in



the vertex up to M - 3 are kept. Our {L, L} truncation scheme is equivalent to the

(L, L + 2) truncation scheme by that definition.

To explicitly see how the a expansion works let us write the expansion in a of a

generic integrand and take the integral term by term

S00
c(p UE n ci O (2.58)

n=O n=O P

Here p = PI +P2 = p3 ±P4 is the intermediate momentum. This is the expansion of the

amplitude into poles corresponding to the contributions of (open string) intermediate

particles of fixed level. We can clearly see that dropping higher powers of a in the

expansion means dropping the contribution of very massive particles. We also see that

to subtract the contribution from the intermediate fields A, and a we can simply omit

the term cl(p)aP2- 1 in (2.58).

While the Taylor expansion of the integrand might seem difficult, it is in fact

quite straightforward. We notice that Vr", and X'" are both of order a. Therefore

we can simply expand the integrand in powers of matrices V and Xk. For example,

the determinant of the matter Neumann coefficients is

Det(1 - V2) - 13 = exp (-13 Tr Log(1 - V2)) . (2.59)

Looking again at (2.52) we notice that the only matrix series' that we will need are

Log(1 - 12) for the determinant (and the analogue for X) and 1/(1 - V2) for Qi .

Computation of these series is straightforward.

It is also easy to estimate how computation time grows with L and M. The

most time consuming part of the Taylor expansion in a is the matrix multiplication.

Recall that V is an L x L matrix whose coefficients are proportional to an at leading

order. Elements of ýVk are polynomials in a with M terms. To construct a series ao +

alV- +-- - + aMVM + O(auM+1) we need M matrix multiplications Vk -V. Each matrix

multiplication consists of L3 multiplications of its elements. Each multiplication of the

elements has on the average M/2 multiplications of monomials. The total complexity



therefore grows as L3M2 .

The method just described allows us to compute approximate coefficients in the

effective action at any particular finite level of truncation. In [20], it was found

empirically that the level truncation calculation gives approximate results for finite

on-shell and off-shell amplitudes with errors which go as a power series in 1/L. Based

on this observation, we can perform a least-squares fit on a finite set of level truncation

data for a particular term in the effective action to attain a highly accurate estimate

of the coefficient of that term. We use this method to compute coefficients of terms in

the effective action which are quartic in A throughout the remainder of this chapter.

2.4 The Yang-Mills action

In this section we assemble the Yang-Mills action, picking the appropriate terms from

the two, three and four-point Green functions. We write the Yang-Mills action as

SyM = d ddxTr- (- A,,Av + -A,8 AL

+ igyM9,A,[AL, A] + 4gy,[A,,Avj[AL, A"]). (2.60)

In section 2.4.1 we consider the quadratic terms of the Yang-Mills action. In section

2.4.2 consider the cubic terms and identify the Yang-Mills coupling constant gyM in

terms of the SFT (three tachyon) coupling constant g. This provides us with the

expected value for the quartic term. In section 2.4.3 we present the results of a

numerical calculation of the (space-time independent) quartic terms and verify that

we indeed get the Yang-Mills action.

2.4.1 Quadratic terms

The quadratic term in the action for massless fields, calculated from (2.4), and (2.6)

is

A2=J dX Tr (-_ 9,A, A" - a2 + /a aAf). (2.61)

SA2 f dx~r(2 O' •O' v a ~



Completing the square in a and integrating the term (OA) 2 by parts we obtain

SA 2  ]AddxTr a, aA + A1,A,, aA - B2 (2.62)

where we denote

B = a - 1dAP. (2.63)

Eliminating a using the leading-order equation of motion, B = 0, leads to the

quadratic terms in (2.60). Subleading terms in the equation of motion for a lead

to higher-order terms in the effective action, to which we return in the following

sections.

2.4.2 Cubic terms

The cubic terms in the action for the massless fields are obtained by differentiating

(2.34). The terms cubic in A are given by

SA- 3 g dPi6p ) Tr ( A,(p)A(P2)Ap(P3)) exp( ,prV Vp )
i 3

x ((n vApr"Vr1V32 + "-AprvVT2r2/13 + • "LPprAVo3 Vj 2)

+ p'"VT1ps V2pt Vol). (2.64)

To compare with the Yang-Mills action we perform a Fourier transform and use the

properties of the Neumann coefficients to combine similar terms. We then get

9As = -iANg Jdx T (V1112Vo (aAi4iM, Av])
±+31- V,,2) A \A,]u ) + A (2.65)

where, following the notation introduced in (2.36), we have

1
A, = exp(-_ V0012 )A,. (2.66)

44



To reproduce the cubic terms in the Yang-Mills action, we are interested in the

terms in (2.65) of order dA3 . The remaining terms and the terms coming from the

expansion of the exponential of derivatives contribute to higher-order terms in the

effective action, which we discuss later. The cubic terms in the action involving the

a field are

[o,,g,&]), (X.67)
SAa2 = -igV (XJ) dxTr(At [ia&]), (2.67)

SA2a = so3 = 0.

SA2a vanishes because X0J1 = 0, and Sa3 is zero because [a, a] = 0. After a is

eliminated using its equation of motion, (2.67) first contributes terms at order 3A3 .

The first line of (2.65) contributes to the cubic piece of the F 2 term. Substituting

the explicit values of the Neumann coefficients:

V01 = - log(27/16), VA2 = 16/27, (2.68)

V012 = -2v'/3v', X0 = 4/(3V3).

we write the lowest-derivative term of (2.65) as

S - (2.69)
SA3 = i ddxTr(i1,A[ALAv]). (2.69)

We can now predict the value of the quartic amplitude at zero momentum. From

(2.60) and (2.69) we see that the Yang-Mills constant is related to the SFT coupling

constant by
1

gYM = g. (2.70)

This is the same relation between the gauge boson and tachyon couplings as the one

given in formula (6.5.14) of Polchinski [64]. We expect the nonderivative part of the

quartic term in the effective action to add to the quadratic and cubic terms to form



the full Yang-Mills action, so that

A4 = 4gyM[A, Av2. (2.71)

2.4.3 Quartic terms

As we have just seen, to get the full Yang-Mills action the quartic terms in the effective

action at p = 0 must take the form (2.71). We write the nonderivative part of the

SFT quartic effective action as

SA = g2 J dx (7 Tr(A0A)2 + P7 Tr[AA2). (2.72)

We can use the method described in section 2.3.3 to numerically approximate the

coefficients y+ and 7y in level truncation. In the limit L -+ oo we expect that -7 -- 0

and that 7- -- g9M/g 2 = 1/2. As follows from formula (2.56) and the comment

below it ye are given by:

1 ( 1 _ f2 27+ -N 2  erdr Det (A2 + BI 1)

7= f2 2 e'dr Det ((.-V 13 B21. (2.73)

We have calculated these integrals including contributions from the first 100 levels.

We have found that as the level L increases the coefficients -y+ and 7y indeed converge

to their expected values 2. The leading term in the deviation decays as 1/L as

expected. Figure 2-2 shows the graphs of 7y(L) vs L. Table 2.1 explicitly lists the

results from the first 10 levels. At level 100 we get y+ = 0.0037, 7- = 0.4992 which is

within 0.5% of the expected values. One can improve precision even more by doing

a least-squares fit of 7y(L) with an expansion in powers of 1/L with indeterminate

coefficients. The contributions to -y from the even and odd level fields are oscillatory.

Thus, the fit for only even or only odd levels works much better. The least-squares

2We were recently informed of an analytic proof of this result in SFT, which will appear in [65]
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Figure 2-2: Deviation of the coefficients of quartic terms in the effective action from the expected
values, as a function of the level of truncation L. The coefficient Y+ is shown with crosses and
y_ - 1/2 is shown with stars. The curves given by fitting with a power series in 1/L are graphed in
both cases.

Level y+(n) y7-(n) 7-_(n) -
0 -0.844 0 -0.500
2 -0.200 0.592 0.092
3 -0.200 0.417 -0.083
4 -0.097 0.504 0.004
5 -0.097 0.468 -0.032
6 -0.063 0.495 -0.005
7 -0.063 0.483 -0.017
8 -0.047 0.494 -0.006
9 -0.047 0.487 -0.013
10 -0.037 0.494 -0.006

Table 2.1: Coefficients of the constant quartic terms in the action for the first 10 levels.



fit for the last 25 even levels gives

0.35807 0.0091 1.6 15
y+(L) -5.10-8 L +L2  L_L L2 T3 + 4

1 0.0795838 0.1212 1.02 1.24
r_(L) - - 2.- 10-s - + +  +'" . (2.74)2 L L2 L3  L4

We see that when L -- oo the fitted values of -y± are in agreement with the Yang-Mills

quartic term to 7 digits of precision 3.

The calculations we have described so far provide convincing evidence that the

SFT effective action for A, reproduces the nonabelian Yang-Mills action. This is en-

couraging in several respects. First, it shows that our method of computing Feynman

diagrams in SFT is working well. Second, the agreement with on-shell calculations is

another direct confirmation that cubic SFT provides a correct off-shell generalization

of bosonic string theory. Third, it encourages us to extend these calculations further

to get more information about the full effective action of A,.

2.5 The abelian Born-Infeld action

In this section we consider the abelian theory, and compute terms in the effective

action which go beyond the leading Yang-Mills action computed in the previous sec-

tion. As discussed in Section 2.3, we expect that the effective vector field theory

computed from string field theory should be equivalent under a field redefinition to a

theory whose leading terms at each order in A take the Born-Infeld form (2.26). In

this section we give evidence that this is indeed the case. In the abelian theory, the

terms at order A3 vanish identically, so the quartic terms are the first ones of interest

beyond the quadratic Yang-Mills action. In subsection 2.5.1 we use our results on

the general quartic term from 2.3.2 to explicitly compute the terms in the effective

action at order D2A4 . We find that these terms are nonvanishing. We find, however,

3Note that in [19], an earlier attempt was made to calculate the coefficients -Yi from SFT. The
results in that paper are incorrect; the error made there was that odd-level fields, which do not
contribute in the abelian action due to twist symmetry, were neglected. As these fields do contribute
in the nonabelian theory, the result for -y_ obtained in [19) had the wrong numerical value. Our
calculation here automatically includes odd-level fields, and reproduces correctly the expected value.



that the gauge invariance of the effective action constrains the terms at this order to

live on a one-parameter family of terms related through field redefinitions, and that

the terms we find are generated from the Yang-Mills terms F2 with an appropriate

field redefinition. We discuss general issues of field redefinition and gauge invariance

in subsection 2.5.2; this discussion gives us a framework with which to analyze more

complicated terms in the effective action. In subsection 2.5.3 we analyze terms of the

form 04A 4, and show that these terms indeed take the form predicted by the Born-

Infeld action after the appropriate field redefinition. In subsection 2.5.4 we consider

higher-order terms with no derivatives, and give evidence that terms of order (A -A)"

vanish up to n = 5 in the string field theory effective action.

2.5.1 Terms of the form 02A4

In the abelian theory, all terms in the Born-Infeld action have the same number of

fields and derivatives. If we assume that the effective action for A, calculated in SFT

directly matches the Born-Infeld action (plus higher-order derivative corrections) we

would expect the 9
2A 4 terms in the expansion of the effective action to vanish. The

most general form of the quartic terms with two derivatives is parameterized as 4

A4 = g2 f d26 (c1 AAOA,aOGA + c2AcA,,A8AOA + c3AAA,,,AA'

+ c4AA,,"Aa"AO + csAA,Av,A,aOO"A" A + c6AA •aA"AO,A" ). (2.75)

When a is eliminated from the massless effective action 9 using the equation of

motion, we might then expect that all coefficients cn in the resulting action (2.75)

should vanish. Let us now compute these terms explicitly. From (2.62) and (2.67)

we see that the equation of motion for a in the effective theory of the massless fields

4Recall that in section 2.3.1 we fixed the integration by parts freedom by integrating by parts all
terms with 8 2AA and a -A. Formula (2.75) gives the most general combination of terms with four
A's and two derivatives that do not have 92AA and 0 -A.



reads (in the abelian theory)

a = I A, + O((A, a) 3). (2.76)

The coefficients cl,..., c6 thus get contributions from the two-derivative term of

(2.52), the one-derivative term of (2.54) and the zero-derivative term of (2.55). We

first consider the contribution from the four-gauge boson amplitude (2.52). All the

expressions for these contributions, which we denote (6Ci)A4, are of the form

1 1 -[2

(sCi)A4 = 2  dTe' Det (- 13 P2A4,i(A, B, C). (2.77)

Here P82A4,i are polynomials in the elements of the matrices A, B and C which were

defined in (2.49). It is straightforward to derive expressions for the polynomials Pa2A4,i

from (2.52) and (2.53), so we just give the result here

Pa2A4,1 = -2(A 1 Aoo + B11Boo + C~lCoo),

Pa2A4,2 = -2(A 2(Boo + Coo) + B~l(Aoo + Coo) + C 1(Aoo + Boo)),

Pa2A4,3 = 2(A 11(B ~ + C10 ) - B 11(Ao + C+ C) C 1(A / + B2 )), (2.78)

Pa2A4,4 = 4(AnAlo(Bio + C10) - BnBio(Aio + Clo) + C11Cmo(Amo + B10)),

Pa2A4,5 = 4(A 11B 10 oCo - B,1A 1oClo + C11A 1loB1 ),

Pa2A4,6 = 2(A1 Ao0 - B11B o + C11,Co).

The terms in the effective action S which contain a's and contribute to S[A] at order

02A 4 can similarly be computed from (2.54) and are given by (2.55)

A3 2A2 = 2 d26x(laAAA,1"A + ao2 9aAAA, 'A + U3a2AA) (2.79)



where the coefficients ai are given by

PaA3,1 = 4Q• (AIl(BIo + Ci) - B 1 (Alo + Clo) + C11(BIo + Alo)),

P%6A3,2 = 4Q (AI Alo - BlBio + CjiClo) (2.80)

P2A2 = 2((Ql)2 _ -2- ( ( Q,) 2 )Bll + ((Q11)2 -_ (Q1) 2) C.

Computation of the integrals up to level 100 and using a least-squares fit gives us

(6 c•)A4 , -2.1513026,

(6C2)A4 X -4.3026050,

(6C3)A4 M -2.0134501,

(6c4)A4

(6C5)A4

( 6C6)A4

0.9132288,

-2.0134501,

1.4633393,

al -0.4673613,

a2 ~ 0.2171165,

as • 1.6829758.

Elimination of a with (2.76) gives

cl P -2.1513026,

c2 M -4.302605,

C3 ; 0,

c4 M 4.302605,

c 5  0,

c6 2.1513026.

These coefficients are not zero, so that the SFT effective action does not reproduce the

abelian Born-Infeld action in a straightforward manner. Thus, we need to consider a

field redefinition to put the effective action into the usual Born-Infeld form. To under-

stand how this field redefinition works, it is useful to study the gauge transformation

in the effective theory. Without directly computing this gauge transformation, we

can write the general form that the transformation must take; the leading terms can

be parameterized as

6A, = 1,A + gyM( 1A2 0j A + , 2AO,8Au'A

+ (3A,,"A,A + q4A, .-AA + ý5AA,A"'A) + O(03 A 2A). (2.83)

The action (2.75) must be invariant under this gauge transformation. This gauge

(2.81)

(2.82)



invariance imposes a number of a priori restrictions on the coefficients ci, Q. When we

vary the F2 term in the effective action (2.60) the nonlinear part of (2.83) generates

03 A•A terms. Gauge invariance requires that these terms cancel the terms arising

from the linear gauge transformation of the 92A4 terms in (2.75). This cancellation

gives homogeneous linear equations for the parameters ci and q. The general solution

of these equations depends on one free parameter y:

C1 = -C6 - -7, •1 = -7•

c2 = -C= -27, '5 = -27, (2.84)

C3 = C5 = 0, Q2 -= 3 = -4 = 0.

The coefficients c, calculated above satisfy these relations to 7 digits of precision.

From the numerical values of the Ci's, we find

-7 2.1513026 + 0.0000005. (2.85)

We have thus found that the 92A 4 terms in the effective vector field action derived

from SFT lie on a one-parameter family of possible combinations of terms which have a

gauge invariance of the desired form. We can identify the degree of freedom associated

with this parameter as arising from the existence of a family of field transformations

with nontrivial terms at order A3

A, = A, + g2 7A2A,, (2.86)

A = A.

We can use this field redefinition to relate a field A with the standard gauge trans-

formation 5A, = aA to a field A transforming under (2.83) with q and y satisfying



(2.84). Indeed, plugging this change of variables into

6A, = OA, (2.87)

SBI = dxF2 + (9( 3).

gives (2.83) and (2.75) with ci, q satisfying (2.84).

We have thus found that nonvanishing a
2A4 terms arise in the vector field effective

action derived from SFT, but that these terms can be removed by a field redefinition.

We would like to emphasize that the logic of this subsection relies upon using the fact

that the effective vector field theory has a gauge invariance. The existence of this

invariance constrains the action sufficiently that we can identify a field redefinition

that puts the gauge transformation into standard form, without knowing in advance

the explicit form of the gauge invariance in the effective theory. Knowing the field

redefinition, however, in turn allows us to identify this gauge invariance explicitly.

This interplay between field redefinitions and gauge invariance plays a key role in

understanding higher-order terms in the effective action, which we explore further in

the following subsection.

2.5.2 Gauge invariance and field redefinitions

In this subsection we discuss some aspects of the ideas of gauge invariance and field

redefinitions in more detail. In the previous subsection, we determined a piece of the

field redefinition relating the vector field A in the effective action derived from string

field theory to the gauge field A in the Born-Infeld action by using the existence of

a gauge invariance in the effective theory. The rationale for the existence of the field

transformation from A to A can be understood based on the general theorem of the

rigidity of the Yang-Mills gauge transformation [54, 55]. This theorem states that any

deformation of the Yang-Mills gauge invariance can be mapped to the standard gauge

invariance through a field redefinition. At the classical level this field redefinition can



be expressed as

Al, = A,(A),

S= A(A, A). (2.88)

This theorem explains, for example, why noncommutative Yang-Mills theory, which

has a complicated gauge invariance involving the noncommutative star product, can

be mapped through the Seiberg-Witten map (field redefinition) to a gauge theory

written in terms of a gauge field with standard transformation rules [29, 66]. Since

in string field theory the parameter a' (which we have set to unity) parameterizes

the deformation of the standard gauge transformation of A,, the theorem states that

some field redefinition exists which takes the effective vector field theory arising from

SFT to a theory which can be written in terms of the field strength F,, and covariant

derivative D, of a gauge field A, with the standard transformation rule5 .

There are two ways in which we can make use of this theorem. Given the explicit

expression for the effective action from SFT, one can assume that such a transforma-

tion exists, write the most general covariant action at the order of interest, and find a

field redefinition which takes this to the effective action computed in SFT. Applying

this approach, for example, to the 82A4 terms discussed in the previous subsection,

we would start with the covariant action F2, multiplied by an unknown overall co-

efficient (, write the field redefinition (2.86) in terms of the unknown 7, plug in the

field redefinition, and match with the effective action (2.75), which would allow us to

fix -y and ( = -1/4.

A more direct approach can be used when we have an explicit expression for the

gauge invariance of the effective theory. In this case we can simply try to construct

a field redefinition which relates this invariance to the usual Yang-Mills gauge in-

variance. When finding the field redefinition relating the deformed and undeformed

theories, however, a further subtlety arises, which was previously encountered in re-

lated situations [31, 32]. Namely, there exists for any theory a class of trivial gauge

"In odd dimensions there would also be a possibility of Chern-Simons terms



invariances. Consider a theory with fields 0i and action S(¢i). This theory has trivial

gauge transformations of the form

6S
6b0 = P, j (2.89)

where .ij = -tji. Indeed, the variation of the action under this transformation is

6S = P-j--- = 0. These transformations are called trivial because they do not cor-

respond to a constraint in the Hamiltonian picture. The conserved charges associated

with trivial transformations are identically zero. In comparing the gauge invariance

of the effective action S[A] to that of the Born-Infeld action, we need to keep in mind

the possibility that the gauge invariances are not necessarily simply related by a field

redefinition, but that the invariance of the effective theory may include additional

terms of the form (2.89). In considering this possibility, we can make use of a theo-

rem (theorem 3.1 of [67]), which states that under suitable regularity assumptions on

the functions 1S any gauge transformation that vanishes on shell can be written in

the form (2.89). Thus, when identifying the field redefinition transforming the effec-

tive vector field A to the gauge field A, we allow for the possible addition of trivial

terms.

The benefit of the first method described above for determining the field redefi-

nition is that we do not need to know the explicit form of the gauge transformation.

Once the field redefinition is known we can find the gauge transformation law in the

effective theory of A, up to trivial terms by plugging the field redefinition into the

standard gauge transformation law of A,. In the explicit example of 02 A4 terms

considered in the previous subsection we determined that the gauge transformation

of the vector field A, is given by

6A, = 0,A - g2My(A2,X A - 2AA,8A"A) (2.90)

plus possible trivial terms which we did not consider. We have found the numerical

value of 7 in (2.85). If we had been able to directly compute this gauge transformation

law, finding the field redefinition (2.86) would have been trivial. Unfortunately, as



we shall see in a moment, the procedure for computing the higher-order terms in the

gauge invariance of the effective theory is complicated to implement, which makes

the second method less practical in general for determining the field redefinition. We

can, however, at least compute the terms in the gauge invariance which are of order

AA directly from the definition (2.5). Thus, for these terms the second method just

outlined for computing the field redefinition can be used. We use this method in

section 2.6.1 to compute the field redefinition including terms at order dA 2 and 92A

in the nonabelian theory.

Let us note that the field redefinition that makes the gauge transformation stan-

dard is not unique. There is a class of field redefinitions that preserves the gauge

structure and mass-shell condition

A' = A, + T,(F ) + D1  ,(A),

A'= A + 6((A,)). (2.91)

In this field redefinition T,(F) depends on A,, only through the covariant field strength

and its covariant derivatives. The term ( is a trivial (pure gauge) field redefinition,

which is essentially a gauge transformation with parameter ((A). The resulting am-

biguity in the effective Lagrangian has a field theory interpretation based on the

equivalence theorem [68]. According to this theorem, different Lagrangians give the

same S-matrix elements if they are related by a change of variables in which both

fields have the same gauge variation and satisfy the same mass-shell condition.

Let us now describe briefly how the different forms of gauge invariance arise in the

world-sheet and string field theory approaches to computing the vector field action.

We primarily carry out this discussion in the context of the abelian theory, although

similar arguments can be made in the nonabelian case. In a world-sheet sigma model

calculation one introduces the boundary interaction term

I dX"
At dT . (2.92)

dT



This term is explicitly invariant under

A, - A, + , A. (2.93)

Provided that one can find a systematic method of calculation that respects this

gauge invariance, the resulting effective action will possess this gauge invariance as

well. This is the reason calculations such as those in [16, 27] give an effective action

with the usual gauge invariance.

In the cubic SFT calculation, on the other hand, the gauge invariance is much more

complicated. The original theory has an infinite number of gauge invariances, given by

(2.5). We have fixed all but one of these gauge symmetries; the remaining symmetry

comes from a gauge transformation that may change the field a, but which keeps all

other auxiliary fields at zero. A direct construction of this gauge transformation in

the effective theory of A, is rather complicated, but can be described perturbatively

in three steps:

1. Make an SFT gauge transformation (in the full theory with an infinite number

of fields) with the parameter

IA') = .A(x)b-10). (2.94)

This gauge transformation transforms a and A, as

6A, = aZ + igyM(. .),

6a = 2 02A + igYM(" " ), (2.95)

and transforms all fields in the theory in a computable fashion.

2. The gauge transformation IA') takes us away from the gauge slice we have fixed

by generating fields associated with states containing co at all higher levels.

We now have to make a second gauge transformation with a parameter IA"(A))

that will restore our gauge of choice. The order of magnitude of the auxiliary



fields we have generated at higher levels is O(gA4). Therefore IA"(A)) is of

order gA4I. Since we already used the gauge parameter at level zero, we will

choose IA") to have nonvanishing components only for massive modes. Then

this gauge transformation does not change the massless fields linearly, so the

contribution to the gauge transformation at the massless level will be of order

O(g2 A 2). The gauge transformation generated by IA"(A)) can be computed as

a perturbative expansion in g. Combining this with our original gauge transfor-

mation generated by IA') gives us a new gauge transformation which transforms

the massless fields linearly according to (2.95), but which also keeps us in our

chosen gauge slice.

3. In the third step we eliminate all the fields besides A, using the classical equa-

tions of motion. The SFT equations of motion are

QBI4) = -g(D, '1V3). (2.96)

The BRST operator preserves the level of fields; therefore, the solutions for

massive fields and a in terms of A, will be of the form

,,...,··n = O(gA2), (2.97)

a = a A + O(gA2) (2.98)

where I,..., is a generic massive field. Using these EOM to eliminate the

massive fields and a in the gauge transformation of A, will give terms of order

O(g2A2).

To summarize, the gauge transformation in the effective theory for A, is of the

form

6A, = aA + Rt,(A, A), (2.99)

where R, is a specific function of A and A at order g2A 2A, which can in principle be



computed using the method just described. In the nonabelian theory, there will also

be terms at order gAA arising directly from the original gauge transformation IA);

these terms are less complicated and can be computed directly from the cubic string

field vertex.

In this subsection, we have discussed two approaches to computing the field re-

definition which takes us from the effective action S[A] to a covariant action written

in terms of the gauge field A, which should have the form of the Born-Infeld action

plus derivative corrections. In the following sections we use these two approaches to

check that various higher-order terms in the SFT effective action indeed agree with

known terms in the Born-Infeld action, in both the abelian and nonabelian theories.

2.5.3 Terms of the form 04A4

The goal of this subsection is to verify that after an appropriate field redefinition

the 04A 4 terms in the abelian effective action derived from SFT transform into the

F4 _(2)2 terms of the Born-Infeld action (including the correct constant factor of

(27rgyM) 2/8). To demonstrate this, we use the first method discussed in the previous

subsection. Since the total number of 84A4 terms is large we restrict attention to a

subset of terms: namely those terms where indices on derivatives are all contracted

together. These terms are independent from other terms at the same order in the

effective action. By virtue of the equations of motion (2.76) the diagrams with a do

not contribute to these terms. This significant simplification is the reason why we

choose to concentrate on these terms. Although we only compute a subset of the

possible terms in the effective action, however, we find that these terms are sufficient

to fix both coefficients in the Born-Infeld action at order F4 .

The terms we are interested in have the general form

S4)A4= g 2 d26x(d (O~,AA•, • )2 + d20Axa8A•,•A,,AO

+ d3Aa8,OA ,AoA" vAO + d4Am,A) A,•8•AA "

+ d5A A AA8,A,aO""A +d6A8,A,,AvAA,A" "AO'). (2.100)



The coefficients for these terms in the effective action are given by

d 1 j2 de' eDet (1- X2 ) (4) (A, B, C) (2.101)
2 o (1 - V2) 13

with

(4)= = AAo + B 1 Bo0 + C2 2 C+o,

2 (4)= P4)= A 1 (Bo + C20) + B 12 (Aio + C o) + cf (A 0o + BOo)

P3(4) = 4A2 Aoo (Boo + Coo) + 4B ,Boo (Aoo + Coo) + 4C lCoo (Aoo + Boo), (2.102)

4( 4 ) = 4ABooCoo + 4B 1 AooCoo + 4CAooBoo.

Computation of the integrals gives us

dl = d5 ý 3.14707539, d3 4 18.51562023,

d2 = d6 2.96365920, d4 M 0.99251621. (2.103)

To match these coefficients with the BI action we need to write the general field

redefinition to order a
2A3 (again, keeping only terms with all derivatives contracted)

A, = A, + g2 (A 2A,, + a•A4A, 2Aa + a 2A2 
2A,2

+ a 3A,•8A•,8 AA + a 4AaxA,OXAA ). (2.104)

Using the general theorem quoted in the previous subsection, we know that there is a

field redefinition relating the action containing the terms (2.100) to a covariant action

written in terms of a conventional field strength F. The coefficients of F2 and F 3 are

already fixed, so the most generic action up to F 4 is

Tr J dx (- 2 + g2 (aP4 + b(F2)2) + O(O6)). (2.105)

We plug the change of variables (2.104) into this equation and collect d 4A4 terms



with derivatives contracted together:

g2 j( d26x (( 3 + 4b)(AAO"A +)2

+ (al + 2a 2 - a 4 + 2a)OAAO,,A O"A,'"AO

+ (4a, + 4a 2 - 2a 3 - a 4 )A8,X,AAa ,A, A CAYA '

+ (2al + 2a 2 - a4)AA•~,,A A,aya" "A

+ a 2AAAAdavAA,O'"A'AT +± alAAODp A A,AA8AO').

(2.106)

The assumption that (2.100) can be written as (2.106) translates into a system of

linear equations for a, b and al,.. . a 4 with the right hand side given by d,. .. d6.

This system is non-degenerate and has a unique solution

a1 = d6 a 2.9636592,

a 2 = d5  3.1470754,

1
a 3 = -(-d 3 + d4 + 2d 5 + 2d 6) ? -2.6508174,2

a 4 = -d 4 + 2d 5 + 2d 6  11.2289530, (2.107)

1
a = -(d2 - d4 + d6) 2.4674011,

2

b = -(2dl - d3 + d4 + 2d 5) a -0.6168503.
8

This determines the coefficients a and b in the effective action (2.105) to 8 digits of

precision. These values agree precisely with those that we expect from the Born-Infeld

action, which are given by

7r 
2

a = 2.4674011,

7r
2

b -- - -0.6168502. (2.108)

Thus, we see that after a field redefinition, the effective vector theory derived from

string field theory agrees with Born-Infeld to order F 4 , and correctly fixes the coeffi-



cients of both terms at that order. This calculation could in principle be continued

to compute higher-derivative corrections to the Born-Infeld action of the form 9
6A 4

and higher, but we do not pursue such calculations further here.

Note that, assuming we know that the Born-Infeld action takes the form

SBI = -T d dx det (rl" + T Fi"). (2.109)

with undetermined D-brane tension, we can fix T = 1/(27ra'gyM)2 from the coeffi-

cients at F2 and F4 . We may thus think of the calculations done so far as providing

another way to determine the D-brane tension from SFT.

2.5.4 Terms of the form A2n

In the preceding discussion we have focused on terms in the effective action which

are at most quartic in the vector field A,. It is clearly of interest to extend this

discussion to terms of higher order in A. A complete analysis of higher-order terms,

including all momentum dependence, involves considerable additional computation.

We have initiated analysis of higher-order terms by considering the simplest class of

such terms: those with no momentum dependence. As for the quartic terms of the

form (AtA,) 2 discussed in Section 4.2, we expect that all terms in the effective action

of the form

(A"AA,) n (2.110)

should vanish identically when all diagrams are considered. In this subsection we

consider terms of the form (2.110). We find good numerical evidence that these

terms indeed vanish, up to terms of the form A10 .

In Section 4.2 we found strong numerical evidence that the term (2.110) vanishes

for n = 2 by showing that the coefficient y+ in (2.72) approaches 0 in the level-

truncation approximation. This A 4 term involves only one possible diagram. As n

increases, the number of diagrams involved in computing A 2
, increases exponentially,

and the complexity of each diagram also increases, so that the primary method used



in this chapter becomes difficult to implement. To study the terms (2.110) we have

used a somewhat different method, in which we directly truncate the theory by only

including fields up to a fixed total oscillator level, and then computing the cubic terms

for each of the fields below the desired level. This was the original method of level

truncation used in [3] to compute the tachyon 4-point function, and in later work

[4, 5] on level truncation on the problem of tachyon condensation. As discussed in

Section 3.3, the method we are using for explicitly calculating the quartic terms in

the action involves truncating on the level of the intermediate state in the 4-point

diagram, so that the two methods give the same answers. While level truncation on

oscillators is very efficient for computing low-order diagrams at high level, however,

level truncation on fields is more efficient for computing high-order diagrams at low

level.

In [5], a recursive approach was used to calculate coefficients of 0'" in the effective

tachyon potential from string field theory using level truncation on fields. Given a

cubic potential

V = dj •i j •+ g9tijk ¢iVy jk (2.111)
i,j,k

for a finite number of fields i, i = 1,..., N at p = 0, the effective action for a = 01

when all other fields are integrated out is given by

Veff (a) jvlangn (2.112)
n=2

where vi represents the summation over all graphs with n external a edges and a

single external Vi', with no internal a's. The v's satisfy the recursion relations

i 3 i6
3n-1

S =jkl (2.113)
m= 1
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where d j is the inverse matrix to dij and

i , i = 1 and n > 1

vn otherwise

has been defined to project out internal a edges.

We have used these relations to compute the effective action for AA at p = 0. We

computed all quadratic and cubic interactions between fields up to level 8 associated

with states which are scalars in 25 of the space-time dimensions and which include an

arbitrary number of matter oscillators a2_-. Plugging the resulting quadratic and cubic

coefficients into the recursion relations (2.113) allows us to compute the coefficients

c2n = v,_n-1/2n in the effective action for the gauge field A,

-c2ngn(A A,)n (2.115)
n=l

for small values of n . We have computed these coefficients up to n = 7 at different

levels of field truncation up to L = 8. The results of this computation are given in

Table 2.2 up to n = 5, including the predicted value at L = oo from a 1/L fit to the

data at levels 2, 4, 6 and 8. The results in Table 2.2 indicate that, as expected, all

Level c4  c6  c8  cdo
2 0.200 1.883 6.954 28.65
4 0.097 1.029 6.542 37.49
6 0.063 0.689 5.287 37.62
8 0.046 0.517 4.325 34.18

oo 0.001 0.014 -0.229 1.959

Table 2.2: Coefficients of A2n at various levels of truncation

coefficients c2n will vanish when the level is taken to infinity. The initial contribution

at level 2 is canceled to within 0.6% for terms A4 , within 0.8% for terms A 6, within

4% for terms A8, and within 7% for terms A"1 . It is an impressive success of the

level-truncation method that for c 0o, the cancellation predicted by the 1/L expansion

is so good, given that the coefficients computed in level truncation increase until level



L = 8. We have also computed the coefficients for larger values of n, but for n > 5

the numerics are less compelling. Indeed, the approximations to the coefficients c12

and beyond continue to grow up to level 8. We expect that a good prediction of the

cancellation of these higher-order terms would require going to higher level.

The results found here indicate that the method of level truncation in string field

theory seems robust enough to correctly compute higher-order terms in the vector

field effective action. Computing terms with derivatives at order A6 and beyond

would require some additional work, but it seems that a reasonably efficient computer

program should be able to do quite well at computing these terms, even to fairly high

powers of A.

2.6 The nonabelian Born-Infeld action

We now consider the theory with a nonabelian gauge group. As we discussed in

section 2.2.3, the first term beyond the Yang-Mills action in the nonabelian analogue

of the Born-Infeld action has the form Tr F3 . As in the previous section, we expect

that a field redefinition is necessary to get this term from the effective nonabelian

vector field theory derived from SFT. In this section we compute the terms in the

effective vector field theory to orders 8 3A3 and &2 A4 , and we verify that after a field

redefinition these terms reproduce the corresponding pieces of the F3 term, with the

correct coefficients. In section 2.6.1 we analyze 3 A3 terms, and in subsection 2.6.2

we consider the 9 2A 4 terms.

2.6.1 03A3 terms

In section 2.4.2 we showed that the terms of the form &A3 in the nonabelian SFT

effective action for A contribute to the P 2 term after a field redefinition. We now

consider terms at order 93A 3. Recall from (2.65) and (2.67) that the full effective



action for a and A at this order is given by

SA3 [A,•] = igyM dx Tr (- ( tADj •taA - 0,A1 A•AA v, )

- A,[A, A"] + 2 [A A9 A],]O"A + A" [0,&; &]) (2.116)

where A, = exp(- Vo2 01 2 )A,, and similarly for &. After eliminating a using (2.61)

and (2.116) and integrating by parts to remove terms containing OA, we find that the

complete set of terms at order O3A3 is given by

SMa[A]A3 = g9YM J dx Tr(3 (0AAP8,AA"OA - OA OAAOaA)

2 00 A,, [AP, A"] + 01,A,[O2A I , A ] + O,Av [All, 02A])). (2.117)

Note that unlike the quartic terms in A, our expressions for these terms are exact.

Let us now consider the possible terms that we can get after the field redefinition

to the field A with standard gauge transformation rules. Following the analysis of

[63], we write the most general covariant action to order F3 (keeping D at order F1 / 2

as discussed above)

14 + igYMaF" + XDb,F~" DF,,± + O(F 4 ), (2.118)

where

Dp = 0-, - i9gy[A,,- ]. (2.119)

The action (2.118) is not invariant under field redefinitions which keep the gauge

invariance unchanged. Under the field redefinition

A' = A, + vD F6. (2.120)



we have

a/ = a,

= x -v. (2.121)

Thus, the coefficient a is defined unambiguously, while X can be set to any chosen

value by a field redefinition.

Just as we have an exact formula for the cubic terms in the SFT action, we can

also compute the gauge transformation rule exactly to quadratic order in A using

(2.5). After some calculation, we find that the gauge variation for A, to order A2 A is

given by (before integrating out a)

6A, = OA - igyM([A,, A] - [,A, ,Y"A], + [A", 9,,aLA],+

1 11[iB, A]* - I[B7 A],) . (2.122)
- ,v -

where B = a - -8~ ,Al' as in section (2.4.1). The commutators are taken with respect

to the product

f (x) * g(x) = f (x)e-VYIo (62 +'8-+-g2) g(x). (2.123)

The equation of motion for a at leading order is simply B = 0. Eliminating a we

therefore have

5A, = 9,1A - igyM ([A,,, A] + , ,A + [A", ,+,,A],). (2.124)

We are interested in considering the terms at order 92AA in this gauge variation.

Recall that in section 2.5.2 we observed that the gauge transformation may include

extra trivial terms which vanish on shell. Since the leading term in the equation of

motion for A arises at order 02A, it is possible that (2.124) may contain a term of

the form

6A, = p [A, 02A/, - a,O - A] + O(AA 2) (2.125)



in addition to a part which can be transformed into the standard nonabelian gauge

variation through a field redefinition. Thus, we wish to consider the one-parameter

family of gauge transformations

6A = •xA - igyM([A , A] - V0 1o[ 2A, 7A]

-Vo10 [,At, "X] - Vo101[A,,m2] + p [ a2A, - ,. -A] + O(AA 2, aO4A)), (2.126)

where p is an as-yet undetermined constant. We now need to show, following the

second method discussed in subsection 2.5.2, that there exists a field redefinition which

takes a field A with action (2.117) and a gauge transformation of the form (2.126) to

a gauge field A with an action of the form (2.118) and the standard nonabelian gauge

transformation rule.

The leading terms in the field redefinition can be parameterized as

A, = A, + vl, O.- A + v2a 2 Am + igyM(V3[A,, ,,A'] + v4[A., 8. A] + v5[&oA, A']),

A = A + v6 0a2 + igyM(v 7 [ -A, A] + vs[A, d A]). (2.127)

The coefficient vl can be chosen arbitrarily through a gauge transformation, so we

simply choose vl = -v 2 . The requirement that the RHS of (2.127) varied with (2.126)

and rewritten in terms of A, A gives the standard transformation law for A, A up to

terms of order O(ýA 2) gives a system of linear equations with solutions depending

on one free parameter v.

v2 = -Y1 = v, p = V01d,

V3 =1 V = 00v3=1-2.V0o+v, v =0,

V4 = -VYoo + v, V7 = Voo, (2.128)

V 5 = - Voo + 2v, v8 = 2 Vdoo

It is easy to see that the parameter v generates the field redefinition (2.120). For



simplicity, we set v = 0. The field redefinition is then given by

A, = .A, - igyM(( o1o - 1)[Ac,, , A"] + Vo1' [A, " - A] + vll[,A1 , A]) . (2.129)

We can now plug in the field redefinition (2.129) into the action (2.118) and compare

with the O3A3 term in the SFT effective action (2.117). We find agreement when the

coefficients in (2.118) are given by

2
a = 3I X = 0. (2.130)

Thus, we have shown that the terms of order 0 3A 3 in the effective nonabelian vector

field action derived from SFT are in complete agreement with the first nontrivial term

in the nonabelian analogue of the Born-Infeld theory, including the overall constant.

Note that while the coefficient of a agrees with that in (2.28), the condition X = 0

followed directly from our choice v = 0; other choices of v would lead to other values

of X, which would be equivalent under the field redefinition (2.120).

2.6.2 0 2A4 terms

In the abelian theory, the 82A4 terms disappear after the field redefinition. In the

nonabelian case, however, the term proportional to F3 contains terms of the form

12A 4 . In this subsection, we show that these terms are correctly reproduced by

string field theory after the appropriate field redefinition. Just as in section 2.5.3,

for simplicity we shall concentrate on the &2A4 terms where the Lorentz indices on

derivatives are contracted together.

The terms of interest in the effective nonabelian vector field action can be written

in the form

S[ =- g21 d26 x (1•,AA"A ,A' " + f2,A,AA'A"A, + f3 A"D A AA,O'Av

+ f 4OAp•A11A,Av + fsh A,O'A,AMA" + f 6IA,APA" UAAv) (2.131)



where the coefficients fi will be determined below. The coefficients of the terms in

the field redefinition which are linear and quadratic in A were fixed in the previous

subsection. The relevant terms in the field redefinition for computing the terms we

are interested in here are generic terms of order A3 with no derivatives, as well as

those from (2.129) that do not have ,,'s contracted with A,,'s. Keeping only these

terms we can parametrize the field redefinition as

A,= A,, + igy(l - 2 )[A,, 8a,A'] +ggM (piAA,,A " + p2 A2A, +p 3A,,A 2). (2.132)

In the abelian case this formula reduces to (2.86) with P1 + P2 + p3 = 2-y. Plugging

this field redefinition into the action

S[A,] = Tr -P2 + YM 3+ O(F4)) (2.133)

and collecting 02 A4 terms with indices on derivatives contracted together we get

gY dx [(V0- 1 -1- p3 ),AA""AA O'A " - (p2 + P3 + V00 )O,AAtA,aO"A

+ ( - 1 - p2)A,O"A'AA, a"A - (p2 + P3)d~A,dA~AAvA"

+ (2 - 2p1),A,a,AA A v - pi0,AA,aO"A]Av, . (2.134)

Comparing (2.134) and (2.131) we can write the unknown coefficients in the field

redefinition in terms of the f,'s through

P1 = -f6, P2 = P3 -f4 (2.135)

We also find a set of constraints on the fi's which we expect the values computed

from the SFT calculation to satisfy, namely

1 1f f4 = -1 + f2 - f4 = - Vo ,  f5 - 2f 6 = 2. (2.136)2 h2 f



On the string field theory side the coefficients f, are given by

fi= -I /2 dre' Det (1 V Pa2A4,(A, B, C)2 Jo 121
(2.137)

where, in complete analogy with the previous examples, the polynomials Pa2A4,i de-

rived from (2.52) and (2.53) have the form

P)2A4,1 = -2(A21Bo + C21Bo0),

Pa2A4,2 -4(A 1C 0 0 + C 1Aoo),

PF2A4,3 -2 (A21Boo + C21 Bo0 ),

Pa 2A4,4

Pa2A4,5

Pa2A4,6

Numerical computation of the integrals gives

fl, -2.2827697,

f2 1 -1.5190433,

f3 - -2.2827697,

f4 -2.0422916,

fs5 -2.5206270,

f6 -2.2603135.

As one can easily check, the relations (2.136) are satisfied with high accuracy. This

verifies that the a
2A4 terms we have computed in the effective vector field action are

in agreement with the f3P term in the nonabelian analogue of the Born-Infeld action.

2.7 Conclusions

In this chapter we have computed the effective action for the massless open string

vector field by integrating out all other fields in Witten's cubic open bosonic string

field theory. We have calculated the leading terms in the off-shell action S[A] for the

massless vector field A,, which we have transformed using a field redefinition into an

action S[A] for a gauge field A which transforms under the standard gauge transfor-

mation rules. For the abelian theory, we have shown that the resulting action agrees

with the Born-Infeld action to order F4, and that zero-momentum terms vanish to

= -4(A ,Aoo + C2Coo),

= -4B21 (Aoo00 + Coo),

= -4B 1 Bo0 0 .

(2.138)

(2.139)



order A 10 . For the nonabelian theory, we have shown agreement with the nonabelian

effective vector field action previously computed by world-sheet methods to order F3 .

These results demonstrate that string field theory provides a systematic approach to

computing the effective action for massless string fields. In principle, the calculation

in this chapter could be continued to determine higher-derivative corrections to the

abelian Born-Infeld action and higher-order terms in the nonabelian theory.

As we have seen in this chapter, comparing the string field theory effective action

to the effective gauge theory action computed using world-sheet methods is com-

plicated by the fact that the fields defined in SFT are related through a nontrivial

field redefinition to the fields defined through world-sheet methods. In particular,

the massless vector field in SFT has a nonstandard gauge invariance, which is only

related to the usual Yang-Mills gauge invariance through a complicated field redef-

inition. This is a similar situation to that encountered in noncommutative gauge

theories, where the gauge field in the noncommutative theory-whose gauge transfor-

mation rule is nonstandard and involves the noncommutative star product-is related

to a gauge field with conventional transformation rules through the Seiberg-Witten

map. In the case of noncommutative Yang-Mills theories, the structure of the field

redefinition is closely related to the structure of the gauge-invariant observables of the

theory, which in that case are given by open Wilson lines [69]. A related construc-

tion recently appeared in [70], where a field redefinition was used to construct matrix

objects transforming naturally under the D4-brane gauge field in a matrix theory of

DO-branes and D4-branes. An important outstanding problem in string field theory

is to attain a better understanding of the observables of the theory (some progress

in this direction was made in [71, 72]). It seems likely that the problem of finding

the field redefinition between SFT and world-sheet fields is related to the problem of

understanding the proper observables for open string field theory.

While we have focused in this chapter on calculations in the bosonic theory, it

would be even more interesting to carry out analogous calculations in the super-

symmetric theory. There are currently several candidates for an open superstring

field theory, including the Berkovits approach [73] and the (modified) cubic Witten



approach [74, 75, 76]. (See [77] for further references and a comparison of these ap-

proaches.) In the abelian case, a superstring calculation should again reproduce the

Born-Infeld action, including all higher-derivative terms. In the nonabelian case, it

should be possible to compute all the terms in the nonabelian effective action. Much

recent work has focused on this nonabelian action, and at this point the action is con-

strained up to order F 6 [28]. It would be very interesting if some systematic insight

into the form of this action could be gained from SFT.

The analysis in this chapter also has an interesting analogue in the closed string

context. Just as the Yang-Mills theory describing a massless gauge field can be ex-

tended to a full stringy effective action involving the Born-Infeld action plus derivative

corrections, in the closed string context the Einstein theory of gravity becomes ex-

tended to a stringy effective action containing higher order terms in the curvature.

Some terms in this action have been computed, but they are not yet understood in the

same systematic sense as the abelian Born-Infeld theory. A tree-level computation in

closed string field theory would give an effective action for the multiplet of massless

closed string fields, which should in principle be mapped by a field redefinition to the

Einstein action plus higher-curvature terms [31]. Lessons learned about the nonlo-

cal structure of the effective vector field theory discussed in this chapter may have

interesting generalizations to these nonlocal extensions of standard gravity theories.

Another direction in which it would be interesting to extend this work is to carry

out an explicit computation of the effective action for the tachyon in an unstable

brane background, or for the combined tachyon-vector field effective action. Some

progress on the latter problem was made in [32]. Because the mass-shell condition

for the tachyon is p2 = 1, it does not seem to make any sense to consider an effective

action for the tachyon field, analogous to the Born-Infeld action, where terms of higher

order in p are dropped. Indeed, it can be shown that when higher-derivative terms are

dropped, any two actions for the tachyon which keep only terms k m•+k, m > 0, can

be made perturbatively equivalent under a field redefinition (which may, however,

have a finite radius of convergence in p). Nonetheless, a proposal for an effective



tachyon + vector field action of the form

S = V det(l, + F,, + p, 00v ) (2.140)

was given in [34, 35, 36] (see also [33]). Quite a bit of recent work has focused on

this form of effective action (see [78] for a recent summary with further references),

and there seem to be many special properties for this action with particular forms of

the potential function V(O). It would be very interesting to explicitly construct the

tachyon-vector action using the methods of this chapter. A particularly compelling

question related to this action is that of closed string radiation during the tachyon

decay process. In order to understand this radiation process, it is necessary to un-

derstand back-reaction on the decaying D-brane [791, which in the open string limit

corresponds to the computation of loop diagrams. Recent work [37] indicates that

for the superstring, SFT loop diagrams on an unstable Dp-brane with p < 7 should

be finite, so that it should be possible to include loop corrections in the effective

tachyon action in such a theory. The resulting effective theory should shed light on

the question of closed string radiation from a decaying D-brane.

Ultimately, however, it seems that the most important questions which may be

addressed using the type of effective field theory computed in this chapter have to do

with the nonlocal nature of string theory. The full effective action for the massless

fields on a D-brane, given by the Born-Infeld action plus derivative corrections, or by

the nonabelian vector theory on multiple D-branes, has a highly nonlocal structure.

Such nonlocal actions are very difficult to make sense of from the point of view of

conventional quantum field theory. Nonetheless, there is important structure hidden

in the nonlocality of open string theory. For example, the instability associated with

contact interactions between two parts of a D-brane world-volume which are separated

on the D-brane but coincident in space-time is very difficult to understand from the

point of view of the nonlocal theory on the D-brane, but is implicitly contained in

the classical nonlocal D-brane action. At a more abstract level, we expect that in any

truly background-independent description of quantum gravity, space-time geometry



and topology will be an emergent phenomenon, not manifest in any fundamental

formulation of the theory. A nongeometric formulation of the theory is probably

necessary for addressing questions of cosmology and for understanding very early

universe physics before the Planck time. It seems very important to develop new

tools for grappling with such issues, and it may be that string field theory may

play an important role in developments in this direction. In particular, the way in

which conventional gauge theory and the nonlocal structure of the D-brane action

is encoded in the less geometric variables of open string field theory may serve as a

useful analogue for theories in which space-time geometry and topology emerge from

a nongeometric underlying theory.





Chapter 3

Taming the Tachyon

in Cubic String Field Theory

3.1 Introduction

The tachyon of the open bosonic string has played an important role in recent years

in the development of string field theory as a background-independent formulation

of string theory. Following Sen's conjectures regarding this tachyon [1], significant

progress has been made towards demonstrating that both the unstable vacuum con-

taining the tachyon and the "true" vacuum where the tachyon has condensed are

well-defined states in Witten's cubic open string field theory (CSFT) [38]. This is

important evidence that string field theory is capable of describing multiple distinct

vacuum, configurations using a single set of degrees of freedom, as one would expect

for a background-independent formulation of the theory. Some of the work in this

area is reviewed in [80, 81].

An important aspect of the open string tachyon which is not yet fully understood,

however, is the dynamical process through which the tachyon rolls from the unstable

vacuum to the stable vacuum. A review of previous work on this problem is given

in [81]. Computations using CFT, boundary states, RG flow analysis and boundary

string field theory (BSFT) [82, 83, 84, 85] show that the tachyon should monotoni-

cally roll towards the true vacuum, but should not arrive at the true vacuum in finite



time [22]-[90]. In BSFT variables, where the tachyon T goes to T -- oc in the stable

vacuum, the time-dependence of the tachyon field goes as T(t) = et. This dynamics is

intuitively fairly transparent, and follows from the fact that et is a marginal boundary

operator [91, 92, 93, 22, 90]. Other approaches to understanding the rolling tachyon

from a variety of viewpoints including DBI-type actions [94]-[96], S-branes and time-

like Liouville theory [97]-[101], matrix models [102]-[107], and fermionic boundary

CFT [108] lead to a similar picture of the time dynamics of the tachyon.

In CSFT, on the other hand, the rolling tachyon dynamics appears much more

complicated. In [25], Moeller and Zwiebach used level truncation to analyze the time

dependence of the tachyon. They found that at low levels of truncation, the tachyon

rolls well past the minimum of the potential, then turns around and begins to oscillate

with ever increasing amplitude. It was further argued by Fujita and Hata in [109]

that such oscillations are a natural consequence of the form of the CSFT equations of

motion, which include an exponential of time derivatives acting on the tachyon field.

These two apparently completely different pictures of the tachyon dynamics raise

an obvious puzzle. Which picture is correct? Does the tachyon converge monotoni-

cally to the true vacuum, or does it undergo wild oscillations? Is there a problem with

the BSFT approach? Does the CSFT analysis break down for some reason such as a

branch point singularity at a finite value of t? Does the dynamics in CSFT behave

better when higher-level states are included? Is CSFT an incomplete formulation of

the theory?

In this chapter we resolve this puzzle. We carry out a systematic level-truncation

analysis of the tachyon dynamics for a particular solution in CSFT. We compute

the trajectory 0(t) as a power series in et at various levels of truncation. We show

that indeed the dynamics in CSFT has wild oscillations. We find, however, that the

trajectory Q(t) is well-defined in the sense that increasing both the level of truncation

in CSFT and the number of terms retained in the power series in et leads to a

convergent value of q(t) for any fixed t, at least below an upper bound t < tb associated

with the limit of our computational ability.

We reconcile this apparent discrepancy with the results of BSFT by demonstrating



that a field redefinition which takes the CSFT action to the BSFT action also maps

the wildly oscillating CSFT solution to the well-behaved BSFT exponential solution.

This qualitative change in behavior through the field redefinition is possible because

the field redefinition relating the tachyon in the two formulations is nonlocal and

includes terms with arbitrarily many time derivatives. Such field redefinitions are

generically expected to be necessary when relating the background-independent CSFT

degrees of freedom to variables appropriate for a particular background [31]. A similar

field redefinition involving higher derivatives was shown in [43] to be necessary to

relate the massless vector field A, of CSFT on a D-brane with the usual gauge field

A, appearing in the Yang-Mills and Born-Infeld actions. Other approaches to the

rolling tachyon using CSFT appear in [110]-[113]; related approaches which have been

studied include p-adic SFT [114, 115], open-closed SFT [116], and vacuum string field

theory [117, 118]. Closed string production during the rolling process is described in

[119, 120, 121].

The chapter is organized as follows. Section 3.2 describes the general approach

that we use to find the rolling tachyon solution and gives the leading order terms in

the solution explicitly. Section 3.3 describes the results of numerically solving the

equations of motion in level-truncated CSFT. Section 3.4 is dedicated to finding the

leading terms in the field redefinition that relates the effective tachyon actions in

Boundary and Cubic String Field Theory. Section 3.5 contains conclusions and a

discussion of our results. Some technical details regarding our methods of calculation

are relegated to Appendices.

As this the research described in this chapter was being completed the paper [122]

appeared, which treats the same system, although without considering massive fields.

The analysis of [122] is carried out using analytic methods which give an approximate

rolling tachyon solution when all fields other than the tachyon are neglected. The

solution in their paper shares some qualitative features with our results-in particular,

they find a solution which has similar behavior for negative time, and their solution

also rolls past the naive minimum of the tachyon potential. Their solution has a cusp

at t = 0 where the solution has a discontinuous first derivative; we believe that their



solution breaks down at this point, but that their solution is good for t < 0 and that

the analytic methods they use in deriving their results are of interest and may help

in understanding the dynamics of the system.

3.2 Solving the CSFT equations of motion

We are interested in finding a solution to the complete open string field theory equa-

tions of motion. The full CSFT action contains an infinite number of fields, coupled

through cubic terms which contain exponentials of derivatives (see [80] for a detailed

review). Thus, we have a nonlocal action in which it is difficult to make sense of an

initial value problem (see [123, 124, 125, 126] for some discussion of such equations

with infinite time derivatives).

Nonetheless, we can systematically develop a solution valid for all times by assum-

ing that as t --+ -oo the solution approaches the perturbative vacuum at 4 = 0. In

this limit the equation of motion is the free equation for the tachyon field q(t) = 0(t),

with solution 0(t) = cet. For t < 0, we can perform a perturbative expansion in

the small parameter et. The computations carried out in this chapter indicate that

this power series indeed seems convergent for all t. A related approach was taken in

[25, 109], where an expansion in cosh t was proposed. This allows a one-parameter

family of solutions with k(0) = 0, but is more technically involved due to the more

complicated structure of cosh nt compared with ent. We restrict attention here to the

simplest case of solutions which can be expanded in et, but we expect that a more

general class of solutions can be constructed using this approach. Note that in most

previous work on this problem, solutions have been constructed using Wick rotation

of periodic solutions; in this chapter we work directly with the real solution which is

a sum of exponentials.

The infinite number of fields of CSFT represents an additional complication. We

can, however, systematically integrate out any finite set of fields to arrive at an

effective action for the tachyon field which we can then solve using the method just

described. We do this using the level-truncation approximation to CSFT including



fields up to a fixed level. We find that the resulting trajectory 0(t) converges well for

fixed t as the level of truncation is increased.

We thus compute the solution 0(t) with the desired behavior et as t -+ -oc in

two steps. In the first step, described in subsection 3.2.1, we compute the tachyon

effective action, eliminating all the other modes using equations of motion. Some

technical details of this calculation are relegated to Appendix A. In the second step,

described in subsection 3.2.2, we write down the equation of motion for the effective

theory and solve it perturbatively in powers of et.

3.2.1 Computing the effective action

We are interested in a spatially homogeneous rolling tachyon solution. One can

compute such a solution by solving the equations of motion for the infinite family

of string fields with all the spatial derivatives set to 0. Labeling string fields 4i, the

cubic string field theory equations of motion (in the Feynman-Siegel gauge) take the

schematic form

(0t - mi)4~(t) - g e (a+a~lac /(O, cs) 0j(S)Qk(U)I:Sut (3.1)

where all possible pairs of fields appear on the RHS. The coefficients Cijk multiplying

each term may contain a finite order polynomial in the derivatives 80, 0,. Plugging

in the Ansatz 0(t) = Vp0 (t) = et + "-" - with all other fields vanishing at order et it is

clear that we can systematically solve the equations for all fields order by order in et.

This is one way of systematically solving order by order for 0(t).

We will find it convenient to think of the perturbative solution for 0(t) in terms

of an effective action S[0] which arises by integrating out all the massive string fields

at tree level. Perturbatively, we can solve the equations of motion (3.1) for all fields

except ¢ = 4o as power series in ¢, by recursively plugging in the equations of motion

for all fields except ¢ on the RHS until all that remains is a perturbative expansion

in terms of 0(t) and its derivatives. We have used two approaches to compute the

effective action S[0]. One approach is to explicitly use the equations (3.1) for all



fields up to a fixed level. This approach is useful for generating terms to high powers

in g but becomes unwieldy for fields at high levels. The second approach we use is

to compute the effective action as a diagrammatic sum using the level truncation on

oscillator method developed in [20]. This approach is useful for calculating low-order

terms in the effective potential where high-level fields are included. Some details of

the oscillator approach are described in Appendix A.

The leading terms in the tachyon action are the quadratic and cubic terms coming

directly from the CSFT action

( -1)0(t))+ (3.2)S[0] = 0 dt (t) (-at2 + 1) (t) - g (o o(3.2)

where

V10 = -log (3.3)

is the Neumann coefficient for the three tachyon vertex.

Integrating out the massive fields at tree level gives rise to higher-order terms

g214, ... with even more complicated derivative structures. The resulting effective

action can be written in terms of the (temporal) Fourier modes O(w) of 0(t) as

S[0] = ! dw (21")n( Z Wi FT (Wl,. .,Wn)O(W 1) ... O(Wn) (3.4)
n i= i

where the functions •SFT(wl, .. ., wn) determine the derivative structure of the terms

at order gn-20n. The quadratic and cubic terms following from (3.2) are

SFT l, W2)= (1 -WW2), (3.5)

3 (W1, w2, W3) = -2 e- (2+2+ +3) (3.6)

One way to obtain the approximate classical effective action for the tachyon field

is to use the equations of motion for a few low level massive fields to eliminate these

fields explicitly from the action. The higher level massive fields are set to zero (level

truncation).



As an example, we now explicitly compute the quartic term in the effective action

(3.4) in the level 2 truncation. In the case of CSFT for a single D-brane the combined

level of fields coupled by a cubic interaction must be even. For example, there is no

vertex coupling two tachyons (level zero) with the gauge boson (level 1). It follows

that there are no tree level Feynman diagrams with all external tachyons and internal

fields of odd level. Thus, in calculating the tachyonic effective action we may set

odd level fields to 0. Fixing Feynman-Siegel gauge, the only fields involved are the

tachyon 0 and three level 2 massive fields with m2 = 1: 3, B, and B,,,. The terms

in the action contributing to the four-tachyon term in the effective action are

1 J dt 8 1(0.2 + 1) ( B2+ - Bt,(Ot2 + 1)B"+

/ dta 1 $2B~ + a2 (kq5totb - DOt$t)B 0 0 + a3q 2/ + a422t3B4 (3.7)

where f = evo•o(P-l)f. Other interaction terms involving level 2 fields, for example

03 or ,BmB o, would contribute to the effective action at higher powers of 0. The

coefficients al, ... a4 are real numbers and can be expressed via the appropriate

matter and ghost Neumann coefficients,

V1 - 0.130946, a2 = x/(Vo) 2 ~ 0.419026,al. -- --- •

a3 = X" - 0.407407, a4 = -6V0122 0.628539. (3.8)

Following the procedure described above we write down the equations of motion

for the massive fields, and plug them into (3.7). We then obtain a quartic term in

the tachyonic effective action,

2e g 4 exp (- Vo W + l w2 + W3W4])
92 - 111(27dwj)0(w)6( (wW) 1 W2

i=1 1 - (wl + bw2)
2

(b 1 + b2 w 2 (W 2 - w 1 ) + b3 Ww 4(w2 2 - wi)(W 4 - w 3 ) + b4 U 2W 4), (3.9)



where we have denoted

1
b5 = 2(13(V/1

1
1 )2 - (X )2), b2 - ll(Vo2

b3 = (V012 )4 ,  b4 = 18(V22 2. (3.10)

We have explicitly computed the terms to order 7' in the effective tachyon action in

the L = 2 truncation. One can in principle continue the procedure further, increasing

both the level of truncation and the powers of 0 in the effective action. Explicit

calculation, however, becomes laborious as we take into account more and more string

field components; the oscillator method [20], described in the appendix C is more

efficient for high-level computations. In the next section we proceed to find the

solution of the equations of motion from the effective tachyon action.

3.2.2 Solving the equations of motion in the effective theory

We now outline the process for solving the tachyon equation of motion for the effective

theory, and we compute the first perturbative corrections to the free solution. The

variation of the effective action (3.4) gives equations of the form

00

(at2 _ 1)0= -Egn-1Kn(), ... ,1) (3.11)
n=2

where the nonlinear terms of order on are denoted by Kn. The specific form of the

Kn follow by differentiating (3.4) with respect to 0(t). The functions E, appearing in

(3.4), and thus the corresponding Kn~1 's can in principle be explicitly computed for

arbitrary n at any finite level of truncation using the method described in the previous

subsection. An alternate approach which is more efficient for computing Kn at small

n but large truncation level is reviewed in Appendix A. In general, independently

of the method used to compute it, K, will be a complicated momentum-dependent

function of its arguments.

The solution of the linearized equations of motion which satisfies the boundary

condition 0 -- 0 as t -+ -oc is 0(t) = clet. As discussed above, we wish to use



perturbation theory to find a rolling solution which is defined by this asymptotic

condition as t -- -oc. Note that this asymptotic form places a condition on all

derivatives of 0 in the limit t - -oc, as appropriate for a solution of an equation

with an unbounded number of time derivatives. If we now assume that the full

solution can be computed by solving (3.11) using perturbation theory, at least in

some region t < tmx, it can be easily seen that the successive corrections to the

asymptotic solution 0 1(t) = clet are of the form 0,(t) = cnent. In other words, to

solve the equations of motion using perturbation theory we expand 0(g, t) in powers

of g

0(9, t) -= 1(t) + g9 2 (t) + g2 03 (t) ... (3.12)

where

O,(t) = coent . (3.13)

As we will see, our assumption leads to a power series which seems to be convergent

for all t and all g. Note that since g"ent = en(t+log(g)), the coupling constant can be

set to 1 by translating the time variable and rescaling 0, so convergence for fixed g

and all t implies convergence for all t and for all g. Plugging (3.12) into (3.11) we

find

(a2 - 1)k (n2 - 1)cent =  K ( K(mi,, m2,...,~,p). (3.14)
p mi+m2+...mp=n

These equations allow us to solve for cn>l iteratively in n. Having solved the equations

for c2 ,. . . , C-1 we can plug them in via (3.13) on the right hand side of (3.14) to

determine cn.

As an example, let us consider the first correction 2 (t) = C2e2t to the linearized

solution 01(t) = ciet. The equation of motion at quadratic order arising from K 2 is

(2 -V-1e--) elVl01(a-1)0)2. (3.15)



Plugging in 41 = cl et, 02 = C2 e 2t we find

c2(at2 - 1)e2t = - 0 (eV (,-) (3.16)

and therefore

c2 = -- V e20v0°C. (3.17)

If we normalize cl = 1 then the solution to order e2t is

(t= et e2 +... . (3.18)
243

The quartic interaction term in the effective action would contribute to coefficients

cnent with n > 3 with the leading order contribution being c3est. From equation

(3.14) we have
-3t

3 = (2c 2K 2(et, e2t) + K3(et, et, et)) . (3.19)

where K3 is obtained by differentiating (3.9) with respect to 0(t). The two summands

in (3.19) represent contributions from the cubic and quartic terms in the effective

action. The numerical values of these contributions are

(JC3)cubic - 0.0021385, ( 6 C3)quartic = 0.0000492826. (3.20)

It is perhaps surprising that the contribution to c3 from the quartic term in the

effective action is merely 0.2% of the contribution from the cubic term. Adding the

contributions we get the rolling solution to second order in perturbation theory in

level 2 truncation

e(t) et - 0.152059e 2t + 0.002187 e3t + .... (3.21)

In this section we have explicitly demonstrated our procedure for the calculation of

the rolling tachyon solution. We considered the CSFT action truncated to fields with

level less or equal than two and computed the first two corrections to the solution of



the linearized equations of motion. The next section is dedicated to the more detailed

numerical analysis of the rolling tachyon solution.

3.3 Numerical results

In this section we describe the results of using the level-truncated effective action S[O]

to compute approximate perturbative solutions to the equation of motion through

(3.14). We are testing the convergence of the solution in two respects. In subsection

3.3.1 we check that the solution converges nicely at fixed t when we take into account

successively higher powers of ¢ in a perturbative expansion of the effective action

while keeping the truncation level fixed at L = 2. In subsection 3.3.2 we check that

the solution converges well for fixed t when we keep the order of perturbation theory

fixed while increasing the truncation level.

3.3.1 Convergence of perturbation theory at L = 2

The equation (3.14) allows us to find the successive perturbative contributions to the

solution of the equations of motion, given an explicit expression for the terms in the

effective action. The solution takes the form

(t) = cne"•t  (3.22)
n

Since all the derivatives of eOt are straightforward to compute, as in (3.17), we can

replace these derivatives in any operator through f(&t)ent - f(n)ent. This manipu-

lation is justified as long as f is regular at n.

We have computed the functions ECSFT and the resulting K,_l's by solving the

equations of motion up to n = 7 and integrating out all fields at truncation level

L = 2 as described in subsection 2.1. We have used these Kn's to compute the

resulting approximate coefficients cn, with n < 6. To compute the coefficient c, one

needs the effective tachyon action computed to order n +1; higher terms in the action

contribute only to higher order coefficients. The L = 2 approximation to the solution



f(c (t))

t

Figure 3-1: The solution q(t) including the first two turnaround points, including fields up to level
L = 2. The solid line graphs the approximation 0(t) = et + c2 e2t. The long dashed line graphs
0(t) = et + c2e 2t + c3e

3t. The approximate solutions computed up to e4t, e5t and e6t are very close in
this range of t and are all represented in the short dashed line. One can see that after going through
the first turnaround point with coordinates (t, 0(t)) - (1.27, 1.8) the solution decreases, reaching the
second turnaround at around (t, 0(t)) - (3.9, -81). The function f(q(t)) = sign(€(t)) log(1 + I(t)l)
is graphed to show both turnaround points clearly on the same scale.



for the tachyon field is

64 e2 t
(t) et  - + 0.002187 et243 3

3.9258 10 - 6 e4 t + 4.9407 10- 10 e5 t + 6.3227 10-12 e6 t. (3.23)

Plotting the result we observe that for small enough t the term et dominates and the

solution decays as et at -oc. Then, as t grows, the second term in (3.23) becomes

important. The solution turns around and 0(t) becomes negative, with the major

contribution coming from e2t. Then the next mode, e3t becomes dominating and so

on. The solution 0(t) around the first two turnaround points is shown on the figure

3-1. Note that the trajectory passes through the minimum of the static potential,

which is at 4 ~ 0.545 [127, 5], well before the first turnaround point.
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Figure 3-2: First turnaround point for the solution in L = 2 truncation scheme. The large plot
shows the approximations with 03 (the gray line), ¢4 (black solid), and ¢5 (dashed lines) terms in the
action taken into account. The smaller plot zooms in on the approximations with 04 and ¢5 terms
taken into account. The corrections from higher powers of 0 are very small and the corresponding
plots are indistinguishable from the one of the 05 approximation.

the first 2 turnaround points are quite accurately determined by taking into account

1.28 "-•• 1.34

1.728

1.726

1.724

· · r · r · I I I I I 1 · · I I 1 I · ·

· I I · 1 · I I I I I · · I · I I I

-



-20

-40

-60

-80

Figure 3-3: Second turnaround point for the solution in L = 2 truncation scheme. The gray line
on the large plot shows the solution computed with the effective action including terms up to 4.
The black solid and dashed lines represent higher order corrections. On the small plot the solid line
includes 0' corrections, the dotted line includes corrections from the 06 term and the dashed line
takes into account the ¢7 term.

the effective action terms up to '5. The inclusion of the higher order terms in the

action changes the position of the first 2 turnaround points only slightly. Figures 3-2

and 3-3 illustrate the dependence of the position of the first two turnaround points

on the powers of ¢ included in effective action. We interpret these results as strong

evidence that, at least for the effective action at truncation level L = 2, the solution

(3.22) is given by a perturbative series in et which converges at least as far as the

second turnaround point, and plausibly for all, t.

3.3.2 Convergence of level truncation

From the results of the previous subsection, we have confidence that the first two

points where the tachyon trajectory turns around are well determined by the 04 and

05 terms in the effective action. To check whether these oscillations are truly part

of a well-defined trajectory in the full CSFT, we must check to make sure that the

turnaround points are stable as our level of truncation is increased and the terms



in the effective action are computed more precisely. From previous experience with

level truncated calculations of the static effective tachyon potential and the vector

field effective action [5, 20, 43], where coefficients in the effective action generically

converge well, with errors of order 1/L at truncation level L, we expect that the full

tachyon effective action will also converge well and will lead to convergent values of

c, within a factor of order 1 of the L = 2 results computed explicitly.

We have computed the ¢4 term in the effective action at levels of truncation up

to L = 16. The results of this computation for the approximate trajectory 0(t) are

shown in Figure 3-4, which demonstrates the behavior of the first turnaround point

as we include higher level fields. This computation shows that the first turnaround

point is already determined to within less than 1% by the level L = 2 truncation.

This turnaround point is also in close agreement with the computations of [25].1 We

take this computation as giving strong evidence that this turnaround point is real.

We expect from analogy with other level truncation computations of effective actions

and potentials that the other terms in the effective action considered here will also

generally converge well. Combining the explicit result for the ¢4 term at high levels

of truncation with the computation of the previous subsection, we have (to us) con-

vincing evidence that the perturbative expansion ent for the rolling tachyon solution

is valid well past the first turnaround point, and that the level truncation procedure

converges to a trajectory containing this turnaround point. Extrapolating the results

of this computation, we believe that the qualitative phenomenon of wild oscillations

revealed by the level L = 2 computation is a correct feature of the time-dependent

tachyon trajectory in CSFT, and that more precise calculations at higher level will

only shift the positions of the turnaround points mildly, leaving the qualitative be-

havior intact. It is interesting to compare the behavior of the perturbative expansion

of this time-dependent tachyon solution with a perturbative expansion of the effec-

tive tachyon potential V(¢). As found in [5], the power series expansion for V(¢)

fails to converge beyond 141 - 0.1 due to a branch point singularity at negative ¢

1Barton Zwiebach has pointed out that the position of the first turnaround point for the cosh(nt)
solution of [25] is very close to the first turnaround point of the e ' t solution which we have computed
here, and that comparing results with two terms in the expansion gives agreement to within 1%.
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Figure 3-4: The figure shows the convergence of the solution around the first turnaround point
as we increase the truncation level. Bottom to top the graphs represent the approximate solutions
computed with the effective action computed up to 04 and truncation level increasing in steps of 2
from L = 2 to L = 16. We observe that the turnaround point is determined to a very high precision
already at the level 2. Similar behavior is observed for the second turnaround point.

where the Feynman-Siegel gauge choice breaks down [128]. Although the potential

can be continued for positive ¢ past the radius of convergence using the method of

Pad6 approximants [129], another branch point associated with the breakdown of

Feynman-Siegel gauge is encountered at a positive 4 just past the minimum near

¢ - 0.545. Because of these branch points, the expansion for the effective poten-

tial is badly behaved past these points; unlike the time-dependent solution we have

studied here, there is no sense in which the potential V(¢) converges for a general

fixed value of €. While we initially thought that the wild oscillations of the low-level

computation of the tachyon trajectory 0(t) might indicate a similar breakdown of the

perturbative expansion, our results at higher levels seem to give conclusive evidence

that this is not the case. This suggests that the Feynman-Siegel gauge choice is valid

in the region of field space containing the trajectory 0(t) for all t even though the

corresponding static ¢ lies outside the region of gauge validity.



3.4 Taming the tachyon with a field redefinition

Now that we have confirmed that CSFT gives a well-defined but highly oscillatory

time-dependent solution, we want to understand the physics of this solution. Al-

though the oscillations seem quite unnatural from the point of view of familiar theo-

ries with only quadratic kinetic terms and a potential, the story is much more subtle

in CSFT due to the higher-derivative terms in the action. For example, while the

tachyon field apparently2 rolls into a region with V(b) > V(0) = 0, the energy of the

perturbative rolling tachyon solution we have found is conserved, as we have verified

by a perturbative calculation of the energy including arbitrary derivative terms, along

the lines of similar calculations in [25].

To understand the apparently odd behavior of the rolling tachyon in CSFT, it is

useful to consider a related story. In [43] we computed the effective action for the

massless vector field on a D-brane in CSFT by integrating out the massive fields. The

resulting action did not take the expected form of a Born-Infeld action, but included

various extra terms with higher derivatives which appeared because the degrees of

freedom natural to CSFT are not the natural degrees of freedom expected for the

CFT on a D-brane, but are related to those degrees of freedom by a complicated

field redefinition with arbitrary derivative terms. In principle, we expect such a field

redefinition to be necessary any time one wishes to compare string field theory compu-

tations (or any other background-independent formulation) with CFT computations

in any particular background. The necessity for considering such field redefinitions

was previously discussed in [31, 130].

Thus, to compare the complicated time-dependent trajectory we have found for

CSFT with the marginal et perturbation of the boundary CFT found in [22, 23], we

must relate the degrees of freedom of BSFT and CSFT through a field redefinition

which can include arbitrary derivative terms. Given an explicit form S[T] for the

BSFT effective tachyon action which admits a solution T(t) = et, we can construct a
2This is suggested by the effective tachyon potential at low levels of truncation, which is well-

defined into the region where V(O) > 0; due to a breakdown of Feynman-Siegel gauge at large
constant positive 6 at higher levels of truncation, as mentioned at the end of Section 3, the static
potential is not well-defined in the region of 0 encountered by the rolling solution in this gauge.



perturbative field redefinition 0(t) = '(T(t)) which maps the BSFT effective action

S[T] to the CSFT effective tachyon action S[O]. Since such a field redefinition must

map a solution of the field equations in one picture to a solution in the other picture, it

follows that this map takes the BSFT solution T(t) = et to the perturbative solution

0(t) of the CSFT effective action. In this section we use an explicit formulation of the

BSFT effective action to compute the leading terms of the field redefinition relating

the effective field theories for T(O), the tachyon field in boundary string field theory

and 0, the tachyon in cubic string field theory. This computation shows in a concrete

example how the complicated dynamics we have found for the tachyon in CSFT maps

to the simple dynamics of BSFT associated with the marginal deformation et.

In our explicit computations, we use the effective tachyonic action of BSFT com-

puted up to cubic order in [131]; another approach to computing the BSFT action

which may apply more generally was developed in [132]. As we have just discussed,

we expect that a similar field redefinition can be constructed for any BSFT effective

tachyon action. The BSFT action is determined via the partition function for the

boundary SFT and the tachyon's beta function. Thus the particular form of the

action depends on the renormalization scheme for the boundary CFT. The BSFT

tachyon T we use here is, therefore, the renormalized tachyon with the renormaliza-

tion scheme of [131]. We now proceed to construct a perturbative field redefinition

relating the CSFT and BSFT effective actions. We then will check explicitly that

the field redefinition maps the rolling tachyon solution T(t) = et to the leading terms

in the perturbative solution 0(t) = et - 64 t 2+ which we have computed in24-3 . w e v o d

the previous section. The fact that the field redefinition is nonsingular at T = et is

consistent with the Ansatz E n cnent for the rolling tachyon solution in CSFT.

In parallel with (3.4) we write the action for the boundary tachyon T as

= n-2 f n
S[T] = r(2-x dws)6( wi) S 1WI, n)T(W1)... T(w,,) (3.24)

n i= i

where the functions E •T(W, . . ., wn) define the derivative structure of the term of



n'th power in T. The kernel for the quadratic terms is

BSFTw Fr(2 - 2wiW2)
s 1 = 2 ( - wiw 2) (3.25)

where I is the Euler gamma function. Denoting al = - W2W3 , a2 = -W 1W3, a3

-w 2 w3 the kernel for the cubic term can be written as

BISFT(W 1 W2, W2 ) = 2(1 + a,1 a2 + a 3)I(Wl, w2, w3) + J(W1, w2, w3) (3.26)

where functions I(ai, a2, a3) and J(ai, a2, a3) are defined by

S(1 + al + a2 + a 3 )F(1 + 2al)r(1 + 2a 2)F(1 + 2a 3)
aaa) (1 + al)r(1 + a2)F(1 + a3)F(1 + al + a2)F(1 + a1  + a3)F(1 + a2 - a3)'

a3) (1 + 2a1)F(2 + 2a2 + 2a3) cyclic. (3.27)
J(a=, a2, a3)= + cyclic. (3.27)F2(1 + al)F2(1 + a2 + a3 )

We are interested in the field redefinition that relates S[T] with the CSFT action

S[0] given in (3.4), (3.5), (3.6). A generic time-dependent field redefinition can be

written in momentum space as

O(w) dw26(Wl - w2 )fl(Wl, w2)T(w2 )+

Sdw 2 w3 f 2(l, 2, w 3)T(w2)T(w3)(WI - W2 W3) + ... . (3.28)

Note that adding to f2 a term antisymmetric under exchange of w2 and W 3 does not

change the field redefinition. Thus, we can choose f2 to be symmetric under w2 +-+ w3.

The! requirement that this field redefinition maps the CSFT action to the BSFT

action,

S[c(T)] = S[T], (3.29)

imposes conditions on the functions f (wl,..., wjil). In order to match the quadratic

terms, fi must satisfy the equation

1BSFT l, w2) - f (w1, wl) 2fl (w2 CSFT( 1, w 2) 0. (3.30)



In this equation the approximate sign means that the left hand side becomes equal to

the right hand side when inserted into f dwl dw2 a(W1 + W2)1(Wl)O(w 2) for arbitrary

O(w).3 Solving equation (3.30) we find

1 1(2 + 2w2)
fi(w, w) = fi(w) = w 2 ( (3.31)

The analogous equation for f2 is

1 1BSFT ) 1
- 3 (W1, W 2, - f (W1) f(w2)fi( -3 CSFT(W1i 2 3 )_.

3 3

fi(Wl)f2(-W1, W2, W3) 2 CSFT( W1 W1). (3.32)

In constructing a consistent perturbative field redefinition, we further require that

the field redefinition must map the mass-shell states correctly, by keeping the mass-

shell component of any O(w) intact. In other words the mass-shell component of the

Fourier expansion of O(t) should not be affected by the higher-order terms f2, etc.

This translates to a restriction on f2

f2 (-wl, W2, w 3)I 2=-1 = 0. (3.33)

This constraint is crucial for the field redefinition to correctly relate the on-shell

scattering amplitudes for T with those for 0. It also ensures that the solution of the

classical equations of motion for T maps to the solution of the equations of motion

for 0.

Equation (3.32) can be simplified by making a substitution

f2 (-_1,w2, 3) = (3.34)

SFT(w , W2W 3)fi (l)-- CSFT(Wl,W2,w 3)fi(w2)fl(w3)ý7SFT(_ ,
3When matching the quadratic terms this condition implies strict equality since both E2's are

symmetric, but in general the condition is less restrictive. Considering a discrete analogue, it
is easy to see that the equation MklCkCl = 0 is equivalent to Mkl + Mik = 0. Similarly, the
equation MIC,1k .. ,k .  c = 0 is equivalent to the sum over permutations a on n elements
Ea M(.1.....) = 0.



giving a simple equation for A 2(w1, w2 , w3)

1
A 2(w1, w 2, w 3) I -.

3 (3.35)

Thus, we would now like to find a function A(wi, w2, w 3) on the momentum conser-

vation hyperplane -wl + w2 + w3 = 0, symmetric (by choice) under the exchange of

w2 and w3 and satisfying

A2 (W W2, w2 3) + A2(W 2, w3, wl) A 2(w3, W1, W2) = 1, (3.36)

with the constraint4

A 2(W 1,W2, W3) w2=_1 =-0. (3.37)

It is sufficient for our needs here to consider a discrete case, where wl, w2, w3 are

(imaginary) integers. Indeed, as we are expanding in powers of et, we are restricting

attention to fields expressed in modes with w = in. It is easy to check that the

discretized form of A given by

A(wl, w2, W3)

1
3,

0,

1

1
3,

1

wl,2,3 -±i

wl = +i

2 =i, W1,3 i or w3 = i, W1, 2  ± i

w = -2i, W2,3 = i r 1 = 2i, 2,3 = -i

wi 0, w2 = -w3=

is a solution to (3.36), (3.37). Of course, to define a consistent field redefinition for the

complete field theory for all functions 0 on t E (-oo, oo) we would need to construct

4One can check that the prescription used here is correct on a simple example. The simplest
example is a polynomial system with a finite number of degrees of freedom and no time dependence.
For a system with time-dependence, consider mapping the action of the harmonic oscillator to the
action of an anharmonic oscillator with a cubic potential term -5 3. With the choice of A that
preserves the mass-shell modes one gets a field redefinition that correctly maps the solution of the
harmonic oscillator ei t to the perturbative solution of the anharmonic oscillator eit - Ae2it + ....

Attempting to choose, for example, a completely symmetric A gives rise to an unwanted additional
factor of 1/3.

(3.38)



a continuous function A, satisfying the above conditions. Since this is not crucial for

the development of this chapter we relegate a brief discussion of the construction of

such a function to Appendix C.

Let us make a few comments on the field redefinition.

* While fl(w) is smooth at the mass-shell point due to a cancelation of poles at

w2 = -1, there is a pole at w2 = -3/2 below which the expression under the

square root becomes negative. This means that the field redefinition (3.28) is

only well defined on the subspace T(w) with w2 > -3/2. Within this region

fl(w) is smooth without any zeroes or poles. The mass-shell point, w2 = -1

lies within this region. Related observations were made in [132].

* The function A 2 represents a universal part of f2 and is independent of the

particular properties of the CSFT and BSFT actions. For example to map the

action of a harmonic oscillator to the action of an anharmonic oscillator we

could use the same A.

* The term multiplying A 2(wl, w2, w3) in (3.34) has a number of poles. However it

is non-singular in two important cases. The first case is for spatially dependent

fields with k 2,3 - 1, when the tachyon fields in both frames T(k) and 4(k)

are on mass-shell. At this point the two summands in the numerator of (3.34)

cancel, and there is no pole at this point. The requirement of this cancelation

was used in [131] to fix the normalization of BSFT action.

The second case is the one of the rolling tachyon. In this case T(w2) and T(w3)

are on mass-shell: w2 = w2 = -1, while €(wl) is not: w2 = -4. There is

a potential singularity in the term E"SFT(W1 , w2, W3 ) 1(W1 ) in the numerator.

fi (wi) has a zero at w2 = -4, but the functions I and J in the -BSFT have a

stronger zero resulting in a zero at that point.

Finally, we want to check that the field redefinition maps the rolling tachyon

solution of BSFT into the perturbative solution that we have found in section 3.2.2.

Plugging the rolling solution Tronling(t) = et into the field redefinition and computing



the numerical values we obtain

64 e2t
(t) = et  +-... (3.39)

243 (.)

which exactly reproduces the leading order terms in the perturbative CSFT solution

found in section 3.2. As we include higher powers of 0 in the field redefinition we

should continue to generate the higher power terms e' t in the perturbative solution.

3.5 Discussion

In this chapter we have confirmed and expanded on the earlier results of [25] and

[109], which suggested that in CSFT the rolling tachyon oscillates wildly rather than

converging to the stable vacuum. We have shown that the oscillatory trajectory is

stable when higher-level fields are included and thus correctly represents the dynam-

ics of CSFT. We have found that the energy of this oscillatory solution is conserved.

We have further shown that this dynamics is not in conflict with the more physically

intuitive et dynamics of BSFT by explicitly demonstrating a field redefinition, includ-

ing arbitrary derivative terms, which (perturbatively) maps the CSFT action to the

BSFT action and the oscillatory CSFT solution to the et BSFT solution.

This resolves the outstanding puzzle of the apparently different behavior of the

rolling tachyon in these two descriptions of the theory. On the one hand, this serves as

further validation of the CSFT framework, which has the added virtue of background-

independence, and which has been shown to include disparate vacua at finite points in

field space. On the other hand, the results of this chapter serve as further confirmation

of the complexity of using the degrees of freedom of CSFT to describe even simple

physics. Further insight into the physical properties of the solution we have computed

here, such as an understanding of the pressure of the rolling tachyon field, would

require new insight or substantial computation. As noted in previous work, many

phenomena which are very easy to describe with the degrees of freedom natural to

CFT, such as marginal deformations [133], and the low-energy Yang-Mills/Born-Infeld



dynamics of D-branes [43] are extremely obscure in the variables natural to CSFT.

This is in some sense possibly an unavoidable consequence of attempting to work with

a background-independent theory: the degrees of freedom natural to any particular

background arise in complicated ways from the underlying degrees of freedom of the

background-independent theory. This problem becomes even more acute in the known

formulations of string field theory, which require a canonical choice of background to

expand around, when attempting to describe the physics of a background far from

the original canonical background choice, such as when describing the physics of the

true vacuum using the CSFT defined around the perturbative vacuum [9, 128]. The

complexity of the field redefinitions needed to relate even simple backgrounds such

as the rolling tachyon discussed in this chapter to the natural CFT variables make it

clear that powerful new tools are needed to take string field theory from its current

form to a framework in which relevant physics in a variety of backgrounds can be

clearly computed and interpreted.
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Chapter 4

Conclusions and future directions

String Field Theory has proven to be a useful tool in studying non-perturbative string

phenomena, such as transitions between vacua with different geometrical properties.

In this thesis we have studied the physics of unstable bosonic D25-brane from the

standpoint of string field theory. In particular, we have computed the low energy

effective action for the vector field A, that describes the oscillations of the D25-brane

up to terms of the order of F4 in powers of F, both in abelian and nonabelian cases.

We found that a complicated field redefinition is required to relate the SFT variables

to the worldsheet string variables. We have computed to the leading order the field

redefinition that relates the two pictures. After the field redefinition is performed,

the resulting action agrees with the one computed by worldsheet methods. We have

also computed the rolling tachyon solution in string field theory and related it to the

worldsheet rolling tachyon solution of Sen via the appropriate field redefinition. We

found that although in SFT variables the solution develops growing oscillations, in

worldsheet variables we obtain well behaved rolling tachyon solution of Sen. The re-

cent paper [135] agrees with our calculations in Chapter 3 and extends the comparison

of CSFT and worldsheet approaches to quartic order in 0.

There are several directions to continue and extend the results described in this

thesis. One direction in which the progress would be much desired is to get some

insight on the analytical properties of the field redefinition which relates SFT to the

worldsheet actions. The freedom of making a field redefinition is present in almost
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any problem we can pose in string field theory and analytical grasp on it's properties

would be very helpful for calculating physically useful results from string field theory.

A recent paper [136] contains analysis of restrictions imposed on the field redefinitions

by T-duality in cubic string field theory. It then discusses the classical solutions in

the closed bosonic string field theory.

One of the interesting things to do would be to extend the calculation of effective

action to the supersymmetric case. There are several proposals for the supersymmet-

ric SFT's which include Berkovits quartic SFT [73], the modified Witten's approach

[74, 75, 76], and Zwiebach and Okawa's heterotic string field theory [137]. The Yang-

Mills part of the 10-dimensional D-brane vector field effective action was derived in

the context of Berkovits SFT by Berkovits and Schnabl [65]. It would be very inter-

esting to get more insight on the non-abelian analogue of supersymmetric Born-Infeld

action from string field theory. The difficulty in doing this is in the field redefinition

that relates SFT variables to worldsheet variables. Getting more analytical insight

on the structure of the field redefinition would be very helpful for such analysis.

Another interesting direction of research is to compute the effective action for the

tachyon field and the gauge field combined. It has been argued from the worldsheet

point of view [78] that the combined abelian vector-tachyon effective action is

S = V() V- Det(rl , + F, + ). (4.1)

To verify this result from SFT point of view and get some information on it's non-

abelian analogue is an interesting topic for research.

It would also be interesting to generalize the calculations in this thesis to the closed

string field theory [138], [139] . Just as the electromagnetic action is the leading order

term in the expansion of the Born-Infeld action, the Einstein action is the leading

term in the full non-linear stringy effective action for the gravitational field. It would

be interesting to calculate first few terns in the gravitational effective action from

string field theory. Some progress in this direction was made in [140]. See [136] for

analysis of classical solutions in closed bosonic string field theory.
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Appendix A

Neumann Coefficients

In this Appendix we give explicit expressions for and properties of the Neumann

coefficients that we use throughout this thesis. First we define coefficients An and B,

by the series expansions

( 1/3
1 + iz 1/3

1 - izIt zi)/
= Anzn

n even

= n e n
neven

+i 5 An Zn
n odd

+i BnZn
n odd

(A.1)

(A.2)

In terms of An and Bn we define the coefficients Nr," as follows:Smn

N•r, r

nr• 3(n m)

N(r+1) 6( = m)
am (n & m)

Nr,-(r-1) -nm

1
6(n p m)

(-1) (AnBm ± BnAm)

0

(-1)n+l (AnBm + BnAm)

Vx (AnBm T BnAm)

(-1)n+1(AnBm T- BnAm)

- v/(AnBm + BnAm)

m+n E 2Z, m

m+nE2Z+1

m+n E 2Z, mr

m + n E 2Z + 1

m+n E 2Z, m

m+nE2Z+1
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The coefficients V, are then given by

Vn = .V/ (N;", + N r'-9)

V" = -12 (-1) - k  - (-1)
k=O

V (+1 ) = V,(+2) _ ((_1) + Vrr)

Vo" = (Nr"On + O Nor ])
V -Vn Nr ~

m 7 n, m, n > 0,

n 7 0,

n7170,

n 7 0,

Voror = - ln(27/16).

The analogous expressions for the ghost Neumann coefficients are

Sr, ( +r = 
1

n 3(n ± m)

1 rr+(r+1)nm

±(r-1)
Jnm~

1
6(n m)

1 m
6(n r m)

m+n E 2Z,(-1)n+l(B.Am ± AnBm)

0

(-1)" (BnAm ± AnBm)

- (BnAm:F ABm)

(-1)n(BnAm F AnBm)

f (BnAm ± ABm)

m+n E 2Z+ 1

m+nE2Z, m

m + nE2Z + 1

m+nE 2Z, m74n

m+nE 2Z + 1

Observe that the ghost formulae (A.5) are related to matter ones (A.4a) by Am

-Bm, Bm -+ Am. The ghost Neumann coefficients are expressed via A;N' as

XI = m (nK; + nrK-")

= (-1)AB + (2 ()n-k) - (_l) n

k=O

x x = X -r ((-1)" + Xn) ,
nfl fin

m 7n, m> 0,

-)A n 0,

(A.6a)

(A.6b)

r 4 s,n # 0, (A.6c)

The exponential in the vertex (V31 does not contain Xno, so we have not included an

expression for this coefficient; alternatively, we can simply define this coefficient to
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(A.4d)

(A.4e)

me n
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vanish and include co in the exponential in (V3I.

Now we describe some algebraic properties satisfied by

Ar = CV'", MRn = ,X• . The matrices M and M

cyclicity properties

MAr+ls+l = MrJS M 'r+ l =

(M rs)T = Mrs, (M•rs)T

CMrsC = AMIsr ,  CM C =

This reduces the set of independent matter Neumann matrices

similarly for ghosts. These matrices commute and in addition

Vrs and Xr' . Define

satisfy symmetry and

M '", (A.7a)

M r' ,  (A.7b)

M~ '. (A.7c)

to M"1 1 ,

satisfy

M 12, M 2 1 and

M11 + M12 + Mi2 1 -= 1,

_/1 r12M21 M1ll(M 11 + 1),

.11 + M12 + .421 = -1,

./ 12A421 _ l(11A l 1).

(A.8a)

(A.8b)

These relations imply that there is only one independent Neumann matrix.
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Appendix B

Perturbative computation of

effective tachyon action

We have used two methods to compute the coefficients in the effective action S[O(t)].

The first method, as described in the main text, consists of solving the equations of

motion for each field perturbatively in 4. The second method consists of computing

the effective action by summing diagrams which can be computed using the method of

level truncation on oscillators. This approach is summarized briefly here, and applied

to the computation of the term of order 04 in the effective action.

The classical effective action for the tachyon can be perturbatively computed as a

sum over all tree-level connected Feynman diagrams. A method for computing such

diagrams to high levels of truncation in string field theory was presented in [20], and

used in [43] to compute the effective action for the massless vector field. A review

of this approach is given in [134]. Using this method, the contribution of a given

Feynman diagram with n vertices, n - 1 propagators and n + 2 external fields is given

by an integral of the form

JS = J 1dk-(2)-k() J or? Det 1X)13 ) exp (kiQ'Jky) O(ki) . (kj).
i=1 j=1 3

(B.1)

In this formula V and X are n x n block matrices whose blocks are matter and
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Figure B-1: The first few diagrams contributing to the effective action

ghost Neumann coefficients V"r and X"r of the cubic string field theory vertex. More

precisely

0

Vr 28 2

0

0

.V
In S n

X'1ri i

0

0

0

r282

0

0

(B.2)

.XrSn

When using level truncation V" and X r" become 3L x 3L matrices of real numbers.

The matrix P encodes information about propagators, external states and the graph

structure of the diagram. We define it as

p = K 7TTK. (B.3)
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Here 1P is a block-diagonal matrix of the form

... P(-_l)

0 0

n n

The diagonal blocks P(o-) correspond to propagators. In the level truncation scheme

the block P(a) of )P is the 2L x 2L matrix

P (P) = ( r\,21(a)
P12 (1 0 U) ) (B.5)

where

P12(U) = P21(a)

01

0

0

... O
L

(B.6)

0

The last n + 2 rows and columns of P are filled with zeroes which correspond to

external tachyon states. The matrix K is the block permutation matrix that encodes

1

1 2 3

1 2

4

5

4) 4)

3 45

Figure B-2: To construct the 4 point diagram we label consecutively the edges of vertices on one
hand and propagators and external states on the other. The matrix K corresponds to a permutation
which glues them into one diagram.
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information on the graph structure of the diagram. The corresponding permutation

K connects the external states and propagators to vertices as illustrated for the 4-

point diagram in Figure B-2. The vertices' edges which are labeled 1 through 6 are

connected by permutation to the propagator edges labeled 1 and 2 and the external

points labeled 3, 4, 5 and 6. As we can see a suitable choice of a permutation is

:12 3 4 5 6)-(3 6 1 4 (B.7)

which corresponds to

001000

000001

100000
K = (B.8)

010000

000100

000010

For example, multiplying matrices for the 4-point amplitude we find

VP = (11) 2 , X = (X11)2,  (B.9)

where

Qmn m• mn mn Vmn-

The contribution from the Feynman diagram with 4 external tachyons is given by

[43]

e-3V010 g 2 j 4

2 w0)(27rdwj)O(wj)6( w )
i=1

I da Det ([1 -- (11 )213 )2) 4exp(-wi ij wj ) , (B.11)
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with Q`J defined as

1 - (V11)2

Qi = -_di3 CU3j
1 - (V11)2 0

i,j = 1,2 or i,j = 3, 4, (B.12)

(i = 1,2 and j = 3,4) or (i = 3,4 and j = 1,2)

(B.13)

where Ui is given by

Uij =
V130 - Vi o

OVn O
mn

(B.14)

and C,n, = 6n(-1)". Considering only the contribution coming from level 2 fields,

we have to consider only these Neumann coefficients whose powers and products sum

up to a total oscillator level of 2, i.e. V01o, V 11, V02 and X11 [20]1. Doing so equation

(B.11) simplifies a lot and the integral over the modular parameter reduces to

I do- 1 [(W 2 2 +W3+W4)2 ( w ]
(B.15)

Performing this integral it is easy to get the same result as in formula (3.9).

'If we want to calculate the quartic term in the effective action we have to subtract the contri-
bution from the tachyon in the propagator.
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Appendix C

Construction of A(wl, w2, w3) in the

continuous case

As we have discussed in section 3.4, in order to construct the field redefinition from

BSFT to CSFT that preserves general solutions to the equations of motion we need

a continuous function A(wl, w2, W3), defined on the plane -wl + w2 + w3 = 0 and

satisfying

A2 (W,1 2, w3) + A2(W2, w3,wl) + A2(W3 W1,w2) = 1, (C.1)

and

A2(W1 w, W3) =-1 = 0. (C.2)

Figure C-1 illustrates the construction of the desired function.
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Figure C-1: Construction of a continuous A(wl, w2, w 3 ): The figure shows the plane -w 1 + w2 +
w3 = 0 coincident with the plane of the paper. Dashed lines are the coordinate axes -wl, W2, w3 ,
going at equal angles out of the plane of the paper. The two solid horizontal lines are intersections
of the plane -wl + w 2 + w 3 = 0 with the planes wl = ±i. According to (C.2) the function A is
zero along these lines. Clearly, in this projection the cyclic shift of momenta wi corresponds to a 60
degree rotation. Thus, the condition (C.1) implies that the sum of the values of A over the vertices
of any equilateral triangle centered at the origin is one. Together with the reflection symmetry
w2 + w3 this allows us to fix the value of A at several discrete points. The values are shown on the
figure. The slanted solid lines show the locus of the vertices of equilateral triangles with one vertex
fixed on the lines w? = ±i. The assignment of a value for A on one of the slanted lines defines the
values on the other line, related by 600 rotation. These assignments can be made continuously along
the lines while taking the values 0, 1, and ½ at the symmetrically positioned points. One can then
continuously extend A into the rest of the plane, while maintaining (C.1) by interpolating between
the values of A at the boundaries.
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