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Abstract

Our ability to image extended underwater scenes is severely limited by attenuation and
backscatter. Generating a composite view from multiple overlapping images is usually the
most practical and flexible way around this limitation. In this thesis we look at the gen-
eral constraints associated with imaging from underwater vehicles for scientific applications
- low overlap, non-uniform lighting and unstructured motion - and present a methodol-
ogy for dealing with these constraints toward a solution of the problem of large area 3D
reconstruction.

Our approach assumes navigation data is available to constrain the structure from mo-
tion problem. We take a hierarchical approach where the temporal image sequence is broken
into subsequences that are processed into 3D reconstructions independently. These submaps
are then registered to infer their overall layout in a global frame. From this point a bundle
adjustment refines camera and structure estimates.

We demonstrate the utility of our techniques using real data obtained during a SeaBED
AUV coral reef survey. Test tank results with ground truth are also presented to validate
the methodology.

Thesis Supervisor: Hanumant Singh
Title: Associate Scientist, WHOI
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Chapter 1

Introduction

1.1 Motivation

Optical imaging of the ocean floor offers scientists high level of detail and ease of inter-

pretation. However, light underwater suffers from significant attenuation and backscatter,

limiting the practical coverage of a single image to only a few square meters. For many

scientific surveys, however, the area of interest is large, and can only be covered by hun-

dreds or thousands of images acquired from a robotic vehicle or towed sled. Such surveys

are required to study hydrothermal vents and spreading ridges in geology [130], ancient

shipwrecks and settlements in archeology [4] [5], forensic studies of modern shipwrecks and

airplane accidents [46] [79], and surveys of benthic ecosystems and species in biology [113]

[32] [100] [111].

Generating a composite view by exploiting the redundancy in multiple overlapping im-

ages is usually the most practical and flexible way around this limitation. Recent years have

seen significant advances in mosaicing [103] [102] [110] [71] [16] and full 3D reconstruction

[25] [69] [95] [124] though most of these results are land based and do not address issues

particular to underwater imaging.

The attenuation lengths (a drop by a 1/e factor in intensity) in water for the visible

spectrum range from 5 m (red) to 25 m (blue-green) make the use of ambient lighting prac-

tical only for the first few tens of meters of depth. Thus most deep ocean vehicles carry out

optical imaging surveys using their own light source. Apart from casting shadows that move
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(a) (b)

(c)

Figure 1-1: Sample images from AUV surveys. The strong falloff in lighting is typical of energy-
limited vehicles. (a) Image from a boulder pile in Stellwagen Banks acquired with the SeaBED

AUV. (b) Coral reef survey performed by the SeaBED. (c) Lava flow imaged by the Autonomous

Benthic Explorer (ABE).
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(a) (b)

Figure 1-2: A pair of images taken at different altitudes (a) 3.5 m and (b) 9.5 m. Light

absorption and backscatter limit the altitude from which images can be acquired. Covering

an area of interest may require hundreds or thousands of images.

across the scene as the vehicle moves, power and/or size limitations lead to lighting patterns

that are far from uniform (Figure 1-1). Also with the advent of autonomous underwater

vehicles (AUVs) for imaging surveys [130] [111] additional constraints are imposed by their

limited energy budgets. AUV surveys are typically performed with strobed light sources

rather than continuous lighting, and acquire low overlap imagery in order to preserve power

and cover greater distances. Optical imaging from towed sleds can yield imagery with low or

uncontrolled overlap, since cable dynamics can induce significant changes in camera position

and orientation from frame to frame [46].

High dynamic range cameras are more robust to variable lighting (in terms of extracting

and matching features between dark and bright areas). Image processing techniques such

as adaptive histogram equalization [135] and specification [22] can partially compensate

nonuniform lighting pattern to yield visually appealing images, though their effect on image

registration (and similarity measures) is little understood. High power Light Emitting

Diodes (LEDs) hold out the promise of efficient lighting through an array of LEDs that

control beam pattern and spectral content [23]. Image processing techniques using multiple

view points and/or lighting sources have the potential to reduce the effects of backscatter

[62] and to exploit shadows to improve matching [98]. Such advances should eventually

have a positive impact on underwater optical imaging. This thesis assumes that in its
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most general form, generating composite views underwater implies imagery acquired with

low to moderate overlap, terrain relief, non-uniform lighting and unstructured surveys.

Underwater mosaicing, although used successfully in some applications, imposes strong

restrictions on scene geometry [36] [91]. Natural scenes are not necessarily planar and light

attenuation limits the distance from which the scene can be imaged, such that parallax

will be noticeable. As conditions deviate from the planar scene assumption, degradation

and errors are often hard to quantify and understand, even though blending can produce

a visually appealing representation that hides many inconsistencies. Ultimately, with large

induced parallax, matching might fail or the transformed images become obviously distorted

(Figure 1-3). In addition, actual measurements such as lengths and areas are desirable for

scene features that span multiple images. Mosaicing cannot provide accurate metrology

as is necessary to account for the scene relief when estimating camera poses and feature

locations.

Figure 1-3: Example of the inability of mosaicing (under the assumption of planarity) to account

for significant structure. The site of intereset is a Phoenician shipwreck composed of approximately

300 identical amphorae in a central mound that slopes of toward the edges. The 3D structure of the

mound causes the amphorae to appear of different sizes when mosaiced.

Underwater vehicles are performing optical surveys of areas with significant structure

[131] [111] [5]. There is also a growing interest in generating accurate and self-consistent

composite views for measurement purposes and for tracking change through time [9]. There

have been some efforts at 3D reconstructions [82] but they remain limited to small areas or

artificial environments.

Prior to the work proposed herein, there was no practical, robust, and repeatable way
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of generating a reconstruction from underwater that combines hundreds to thousands of

images acquired with moderate overlap, poor lighting, and possibly in an unstructured

fashion. This thesis demonstrates large-area underwater 3D reconstruction by addressing

all these issues with an effective image registration technique in a local to global framework.

1.2 Context

This thesis brings together aspects of underwater vehicle technology and of structure from

motion. While the following chapters focus on the details of our approach, this chapter

briefly reviews some background and context.

1.2.1 Underwater Imaging

In comparison to air and space, water is fairly opaque to light. The typical absorption

and scattering lengths are on the order of a few meters [761, usually much less than the

dimensions of the area to be imaged optically. There has been significant interest in un-

derstanding the behavior of light underwater, starting with Duntley's work [20] which col-

lected over twenty years of experimental data concerning attenuation, scattering, radiance

and irradiance as a function of wavelength, depth and water masses for both sunlight and

collimated light. The unscattered residual radiant power Pr at distance r is given by

Pr = Poe-ar (1.1)

where Po is the flux of the beam at the source. The spectral volume attenuation coefficient

a has units of natural log per unit length and is frequency dependent. It is usually easier to

visualize the attenuation length 1/a at which ~ 63% of a beam of light has been attenuated.

Light underwater is attenuated significantly through two main processes - absorption and

scattering - such that a = a + s, where a is the volume absorption coefficient and s is the

total volume scattering coefficient. Absorption represents mainly the conversion of photon

energy into heat and is a wavelength dependent phenomenon. In pure water the maximum

attenuation lengths are on the order of 28 meters for wavelengths of 480 nm (blue-green)

while the red end of the visible spectrum has attenuation lengths of 3-5 meters. Scattering
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is mostly independent of wavelength since it is produced mainly by particles that are large

relative to the wavelength. For clear ocean water, scattering represents at most 60% of the

attenuation (for blue-green light). For other wavelengths absorption plays a predominant

role. In practice attenuation varies with location and depth, since changes in temperature,

salinity, and biological activity significantly affect the properties of the medium.

Underwater optical imaging systems are significantly limited by the properties of the

medium. Recent advances in hardware and image processing have allowed some improve-

ments. Jaffe [50] [51] classified underwater imaging systems in terms of their effective range,

camera to light separation and factor limiting the range. In general, configurations associ-

ated with a camera and a light-source nearby can acquire images at ranges of 1-2 attenuation

lengths, limited by backscatter. By increasing camera to light separation the common vol-

ume of water between the field of view and the illumination source is reduced, reducing

backscatter and extending the effective range to 2-3 attenuation lengths. Beyond that it is

necessary to use more advanced systems that can sample more finely in time (range gated

light pulses) or in space (synchronous scans). These approaches tend to be limited in power

or contrast.

Even without attenuation the illumination toward the edges of an image drops by the

fourth power of the off-axis angle 0 [72]. This effect can be broken down into three con-

tributing factors: Spherical spreading of a light from a point source increases the area in

proportion to the square of the distance and the radiance diminishes in inverse proportion.

Since the range at the off-axis angle 0 is 1/ cos # greater than to the center, the radiance is

reduced by a cos 2 # factor. An additional factor of cos # comes from the foreshortening of

the circular lens aperture as seen from 0 off-axis. And the final cos # factor comes from the

oblique angle at which off-axis rays strike the focal plane (Lambert's law). For example, for

a 450 field of view lens, the illumination at the edge is reduced to 25% of the value at the

center.

1.2.2 Vehicles

Underwater vehicles serve multiple purposes including surveying for scientific, commercial

and military purposes, sample collection, underwater construction and inspection. Vehicles
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act as a sensor platform that brings the sensors within range for measurements of the ocean

floor or water column. Manned vehicles such as Alvin, the MIRs, Nautilus and Shinkai

carry humans to ocean depths and allow for direct observation and manipulation. Their

mission duration is limited by life support systems and energy. An Unmanned vehicle

can be tethered to the surface (usually to a ship) as a remotely operated vehicle (ROV) or

untethered as an autonomous underwater vehicle (AUV). ROVs such as JASON II, Ventana

and ROPOS are both powered and controlled from the surface. They offer fine positioning

and the capability to manipulate their surroundings. As a sensing platform they are stable

and can carry a large suite of sensors and lights since power is provided externally. They are

best suited to work on areas of a few tens to hundreds of square meters since covering larger

areas requires the support ship to move. AUVs such as ABE, Seabed, REMUS, Odyssey,

FAU Explorer, Hugin, tend to be specifically designed as sensing platforms for surveys.

They cover larger distances and follow fairly simple survey patterns, either sampling the

water column or moving over the bottom while sensing (including cameras). They are

limited by the energy they can carry in their batteries, which usually limits the power that

goes into lighting.

This thesis uses data gathered with the WHOI's Seabed AUV, which was designed

specifically for optical imaging of the ocean floor. Seabed is described in more detail in

1.2.4.

1.2.3 Navigation

The ability to estimate pose (position and orientation) underwater is critical in many tasks

performed by underwater vehicles. Since electromagnetic waves do not penetrate beyond

a few meters it is not possible to rely on fixes from a Global Positioning System (GPS)

receiver. It is possible, however, to use sound in water to estimate position as well as a

host of other navigation sensors such as inertial sensors, depth sensors, heading references,

magnetometers, tilt sensors, and velocity logs.

For deployments where repeatability is important or where bounded error estimates

are required regardless of deployment length, it is usually necessary to use an acoustic

positioning system [74]. These systems can be classified according to the size of the baseline
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relative to wavelength. Long baseline (LBL) systems require deploying transponders at a

scale comparable to the survey area. The travel times from the vehicle transponder to the

LBL net are measured and the position of the vehicle can then be triangulated based on

the (known) transponder positions. Ultra Short Baseline (USBL) and Short Baseline (SBL)

systems are used primarily to track a vehicle (with an array mounted on the ship) or to

home the vehicle onto a beacon (with an array mounted on the vehicle).

Often it is inconvenient to deploy an LBL net, and navigation must be dead-reckoned.

Precise velocity measurements relative to the bottom are available from an acoustic Doppler

Velocity Log (DVL) and Acoustic Doppler Current Profilers (ADCP) [99]. These instru-

ments measure velocity along several acoustic beams based on the Doppler shift caused

from backscatter elements in the water column and sea-floor. The velocities along the

beams are expressed as sensor frame velocities. The conversion to world frame velocities

requires rotating the velocities using orientation information and then integrating them to

produce position estimates. Though navigation estimates produced by such systems tend

to drift, the noise is normally very small and the drift is mostly due to unmodeled biases

and heading errors.

Another enabling class of sensors comprises precise depth sensors based on the oscilla-

tions of a crystal subject to pressure. This helps constrain LBL solutions and can be merged

into the DVL estimates.

1.2.4 The Seabed AUV

The Seabed AUV acquired the field data used in this thesis (Figure 1-4).The vehicle was

designed for underwater imaging in mind. Seabed is capable of maneuvering at slow speed

and passively stable in pitch and roll. The vehicles specifications are summarized in Table

1.1. The data used in this thesis was collected by Seabed using survey patterns prepro-

grammed as a mission and executed in dead-reckoning mode (xy position from integrating

velocities of the DVL).

28



main electronics
flotation ,d flotation

camera -f
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Figure 1-4: (top) The Seabed vehicle in the
the vehicle with and without shells.

Bermuda 2002 cruise. (bottom) CAD views showing

1.3 An overview of related work

We briefly present the context for this thesis in the fields of computer vision, mobile robotics

and underwater mosaicing. Throughout the dissertation these and other references will be

discussed in detail as the need arises.

1.3.1 Structure from Motion (SFM)

Given a scene viewed by a moving camera (or multiple cameras), structure from motion

(SFM) attempts to recover the scene structure and the camera poses from the multiple views

of the scene. The last decade has seen significant advances in the theoretical and practical

understanding of multi-view geometry (for comprehensive treatments see the textbooks by

Hartley and Zisserman [39] and Faugeras and Long [25]) which has led to several successful
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Vehicle

Navigation

Optical Imaging

Acoustic Imaging

Other Sensors

Depth rating
Size
Mass
Maximum Speed
Batteries
Propulsion
Attitude+Heading
Depth
Velocity
Angular rates
Altitude
Camera
Lighting
Separation
Sidescan sonar
Pencilbeam sonar
CTD

Table 1.1: Summary

2000 meters
2.0 m (L) x 1.5 m (H) x 1.5 m (W)
200 kg
1.2 m/s
2 kWh Li-ion pack
four 150 W brushless DC thrusters
Tilt t0.50, Compass 20
Paroscientific pressure sensor, 0.01%
RDI Navigator ADCP 1 - 2mm/s
Crossbow 3-axis gyro
RDI Navigator
Pixelfly 12bit 1280x 1024 color or BW CCD
one 200 Ws strobe
Im between camera and light
MST 300 kHz (300 m depth rating)
Imagenex 881 675 kHz
Seabird 37SBI

of the Seabed AUV specifications.

implementations of vision-based reconstructions. Vision systems can produce a wealth of

measurements relative to other sensors. One challenging issue is to reliably relate two images

that view the same scene. A key development has been the adoption of robust estimation

techniques such as Random Sample Consensus (RANSAC) [28] that can automatically

classify data points into inliers and outliers based on their ability to explain the rest of

the data. Recently, several feature descriptors suitable for wide-baseline matching [127] [73]

[7] [68] have enabled SFM solutions to challenging image sets and are relevant to underwater

applications.

Beardsley et al. [8] introduced a practical sequential structure from motion algorithm

that has served as inspiration for many later improvements. Pollefeys demonstrated a

complete system for SFM recovery from video sequences [93] and Fitzgibbon and Zisserman

[29] addressed loop closure and error drift by dividing the input sequence of images into

short subsequences, in a local to global framework.

The optimal SFM solution attempts to solve for all camera poses and all 3D features

simultaneously. Given the nonlinear projection of 3D features into image measurements,

this problem is solved as a large nonlinear minimization known as bundle adjustment [126].

The SFM problem is sparse in the sense that each measurement (projection of a 3D feature

point onto an imaging plane) depends only on a 3D feature point and on the camera viewing

30



it. This sparsity can be exploited to significantly reduce computational complexity.

Typically, SFM does not rely on motion information to produce estimates of structure

and motion. While concentrating on the potential of image-based reconstructions, pure

SFM will suffer from loss of scale (due to projection) and is prone to ambiguities that are

not always resolved by image data alone [121].

1.3.2 Simultaneous Localization and Mapping (SLAM)

SLAM seeks to recover an estimate of the environment (map) and robot motion by use of

both sensors (such as laser rangefinders and sonars) and motion instruments (inertial units,

heading references, odometry, GPS receivers, etc) [114] [27]. SLAM should run in realtime

on robots, which suggests a recursive filtering approach. Most direct implementations rely

on the Kalman Filter as a framework for estimating the state of the robot and the envi-

ronment [114]. Limitations in the scalability of the representation of state and uncertainty

have lead to approximations and alternative representations such as submaps and hierar-

chical methods [14] [3], covariance intersection [54], particle filters [77], and sparse extended

information filters [119].

Typically features in the environment are sensed with both range and bearing informa-

tion, though bearing or range only SLAM [19][83] and vision based SLAM [18] have recently

drawn some attention.

1.3.3 Underwater Mosaicing

Vision-based navigation and station keeping close to the sea-floor [30] [31] [81] [36] has

served as a motivation for underwater mosaicing. A limited form of global alignment is

considered in [30] [31] through the 2D topology of image positions and a 'smoothing' stage

to distribute errors in the placement of images in the mosaic. Real-time constraints force

the homographies that relate overlapping imagery to be pure translations, sufficient for

local navigation but inadequate for an accurate rendition of the sea-floor. Registration is

based on matching borders of zones with different textures. Underwater imaging implies

changing lighting conditions that destroy the brightness constancy constraint (BCC), which

is the key assumption in most direct (intensity based) registration methods [42]. In [81]
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a modified BCC approximates light attenuation underwater but this method has not been

proved for low overlap imagery and for unstructured terrain.

Gracias and Santos-Victor [36] presented a global alignment solution for underwater

mosaicing with excellent results for video-based imagery over an area of approximately 50

m2 . At video rates the relatively slow speed of underwater vehicles yields high overlap,

narrow baseline imagery. This simplifies the matching stage by assuming that translation is

the dominant motion between consecutive frames (correlation is used to match feature points

described by a window of fixed size). Even though their global mosaic is constructed with

a subset of images with significant inter-image motion, the feature matching is performed

with high overlap (the homography between two images with low overlap is calculated as

the composition of video rate homographies). It is not clear how this technique would fare

when only low overlap imagery is available. In addition, their method does not account

for lens distortion, which can have a significant impact at larger scales. Given that the

main objective of these approaches is vision-based navigation, distortions in the mosaic

are not critical as long as the vehicle is able to register its current view to the mosaic.

Pizarro and Singh [91] addressed the large-area mosaicing problem with low overlap under

the assumption of planarity. In the presence of 3D structure unavoidable distortions occur.

Mosaicing assumes constraints on camera motion or scenery to merge several images into

a single view, effectively increasing the camera field of view without sacrificing resolution.

The key assumption for a distortion free mosaic is that the images come from an ideal camera

(with compensated lens distortion) rotating around its projection center, or that the scene

is planar [116] [25]. In either case, camera motion will not induce parallax; therefore no 3D

effects are involved and the transformation between views can then be correctly described

by a 2D homography. These assumptions often do not hold in underwater applications since

light attenuation and backscatter rule out the traditional land-based approach of acquiring

distant, nearly orthographic imagery. Underwater mosaics of scenes exhibiting significant

3D structure do not satisfy the assumptions for mosaicing and usually contain obvious

distortions.
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1.3.4 Underwater 3D Reconstruction

In contrast to mosaicing, the information from multiple underwater views can be used to

extract structure and motion estimates using ideas from SFM and photogrammetry [112].

We propose that when dealing with a translating camera over non-planar surfaces, recov-

ering 3D structure is the proper approach to providing a composite global view of an area

of interest. The same challenges seen in mosaicing underwater apply to SFM underwater

with the added requirement that scene points must be imaged at least twice to produce

a roughly uniform distribution of reconstructed feature points through triangulation (50%

overlap in the temporal image sequence). These techniques are considerably more complex

than mosaicing: even for land-based applications (with high overlap, structured motion and

uniform lighting) consistency at large scales can not be guaranteed unless other sensors are

available. Some promising work has gone into 3D image reconstruction underwater [80]

using a stereo-rig with high overlap imagery in a controlled environment.

1.3.5 Relation to thesis

Underwater vehicle technology is advancing at a rapid pace. Although it is possible to

rely on external references for positioning (such as triangulation by long baseline acoustic

networks) there is a growing interest in performing surveys without positioning networks,

in order to simplify deployments, enable fast exploration and reduce costs. Currently these

surveys are performed by dead reckoning, which can result in deviations from the intended

survey due to accumulated errors and small biases. This thesis focuses on generating a 3D

reconstruction from imagery and navigation data acquired during a dead reckoned survey.

We assume that all data is available and that we can use batch processing techniques. The

temporal sequence is used as an ordering device and to extract relative pose information

between successive cameras. Our algorithm constructs an initial guess of the layout of

cameras and structure that can be optimized to best explain the image and instrument-based

measurements. The general problem of mapping and localizing a robot can be addressed in

a Simultaneous Mapping and Localization (SLAM) framework where the vehicle improves

upon dead-reckonned estimates by sensing the environment and estimating both its pose

and the state of the environment. The focus of SLAM is to enable robots to operate in an
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initially unknown environment, which leads to real-time requirements and recursive filtering

implementations. Although this thesis uses some SLAM concepts, it concentrates on basic

challenges facing the realization of robust underwater SFM algorithms.

1.4 Thesis Statement

Robust wide-baseline, feature-based relative pose approaches combined with local-to-global

mapping techniques that use navigation information can recover scene structure and camera

pose from a large set of underwater images, and provide uncertainty estimates for structure

and motion.

1.4.1 Objectives

The basic thesis objective is to enable large area 3D reconstruction from underwater im-

agery acquired with robotic vehicles. More precisely, given a sequence of calibrated and

lens distortion-compensated images acquired from a robotic vehicle, we seek techniques to

generate a 3D reconstruction using a sound theoretical foundation that can

" reliably extract and match features from underwater imagery,

" use navigation and sensor data to aid and constrain the reconstruction,

" generate motion and structure estimates that are globally consistent,

" provide uncertainty estimates for motion and structure,

" scale to hundreds or thousands of images and larger areas,

* employ largely automatic processing, and

" yield additional benefits such as providing calibration information for other vehicle

instruments.

1.4.2 Contributions

The main contributions of this thesis are:
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" This is the first demonstration of large area 3D reconstructions of underwater envi-

ronments. This thesis demonstrates the integration of several techniques in computer

vision and SLAM to provide reliable estimates of large underwater scenes.

" We present a robust two view and three view egomotion estimation method for cali-

brated and instrumented imaging platforms. At the core of the structure from motion

algorithm is a robust essential matrix estimation and resection that takes advantage

of camera calibration and pose sensors to constrain matching, to provide priors for

optimization of pose and structure, and to disambiguate vision-based estimates.

* We validated our results and approach with ground truth for pose and structure.

Large scale results are self-consistent, and are shown to be close to ground truth

where it is available.

" We also present a compensation procedure for sensor bias. Our methodology relies

on self-consistency in the reconstruction to identify and compensate for sensor bias.

1.4.3 Assumptions and Restrictions

This thesis is grounded within current oceanographic AUV technology. This implies several

assumptions and restrictions that shaped our choices and priorities throughout this work:

" Simple camera and lighting configuration. We assume an imaging configuration of

one calibrated monochrome camera and one light source. The field of view (FOV) is

limited to approximately 450 due to attenuation and lighting. We assume lighting can

vary significantly for power-limited surveys and thus require a similarity measure that

is robust to changes in lighting. This lighting assumption was relaxed for daytime

shallow water surveys (significant ambient light) and for the tank tests where two

lights minimized the effect of shadows.

" Calibrated camera. This allows us to work with normalized coordinates and to define

the Essential matrix (5 DOF) rather than the Fundamental Matrix (7 DOF). When

imaging a planar scene the fundamental matrix has infinite solutions and therefore
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cannot guide the correspondence search. The essential matrix has only up to three

possible solutions in the case of a planar scene, simplifying the decision process.

" Calibrated imaging platform. Position and angular offsets of navigation sensors are

known well enough that their measurements provide a useful prior to the image match-

ing stage. For instance, an initial essential matrix (and associated uncertainty) can be

estimated from navigation and attitude data (and their uncertainty). This translates

into a search along an epipolar band for correspondences. Prior knowledge of scene

depth limits the search to a segment of the band. The navigation-based prior can also

constrain refinements of pose and structure when used in maximum a posteriori esti-

mation, in particular providing scale information that would otherwise be lost by the

image formation process. In addition pose priors are used to disambiguate situations

where multiple structure and motion solutions explain the imagery.

* Large Area Survey. A set of images that covers an area of hundreds of square me-

ters. Given the limitations of optical imaging underwater (attenuation, backscatter,

lighting, FOV) this translates into a set of hundreds to thousands of images.

" Unstructured Survey. A large area survey is typically performed as a 'mow the lawn'

pattern in the horizontal plane. While surveying the vehicle controls its depth to keep

an approximately constant distance from the bottom. A survey consists of a sequence

of overlapping images acquired along multiple parallel tracklines. Image overlap along

a trackline is set by the camera FOV, vehicle altitude, speed, and strobe rate. This

overlap has to be at least 50% in order to have image features in more than one image

and therefore allow triangulation. Overlap between parallel tracklines is set by camera

FOV, vehicle altitude, and navigation precision. Overlap between tracklines only has

to be sufficient to recognize corresponding points, in practice 10-20%. A structured

survey presents two distinct matching situations:

- Along trackline. In temporally adjacent images a feature should be matched with

angular displacements of approximately 200 (less than half the FOV). Similarity-

based matching can provide enough correct putative matches for robust estima-

tion (using some form of RANSAC). Navigation data and scene structure can
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act as rough priors to constrain possible matches.

- Across tracklines. Spatially but not temporally adjacent images can present

matching features with changes in viewpoint almost up to the FOV (400 ap-

proximately). Relative pose uncertainty can be significantly larger than in the

temporal sequence and it is necessary to propose putative matches under wide

baseline conditions and significant lighting changes.

However, dead-reckoned navigation often results in surveys in which the actual tra-

jectory is far from the preprogrammed pattern (i.e., an unstructured survey). The

reconstruction algorithm must be able to recognize loop closures and overlapping sec-

tions even if these are not initially suggested by the navigation estimates.

1.4.4 Outline of Methods

Our methodology (Figure 1-5) takes a local-to-global approach inspired by mosaicing [47]

and the work of Fitzgibbon and Zisserman [29], and Zhang and Shan [134] but takes advan-

tage of navigation and attitude information. Local subsequences are derived independently,

then registered in a global frame for bundle adjustment. Our approach seems more suitable

than pure sequential methods [8] because in an underwater survey each 3D feature appears

only in a few images making the global solution more like a series of weakly correlated local

solutions.

The core of the algorithm is a robust estimator of relative pose from a pair and triplets

of images. Prior pose uncertainty and scene depth constrain possible correspondences, and

affine invariant descriptors propose putative matches that are then refined into inliers and

outliers using a six-point algorithm for essential matrix estimation.

We generate local structure, the submap, by using sequential methods on the temporal

sequence. We show that it is computationally advantageous to keep submap sizes limited

to a bounded number of features.

To initialize bundle adjustment we require an estimate of the global poses of the cameras

(by determining the global poses of the submaps). The problem is cast as a graph, where

nodes in the graph correspond to submap local coordinate frames and edges in the graph

correspond to the relative transformation between submap frames. Most of the work is
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Figure 1-5: Flowchart of structure and motion recovery from underwater imagery. An image
sequence is processed into short submaps of structure and motion aided by navigation information.
Submaps are then matched to infer and refine additional spatial constraints (such as loop closures
and parallel tracklines). An initial guess of poses and structure in a global frame is then used to
perform a final bundle adjustment.

N
Propose Edges Ed~tsE? --- Estimiate tNodei

Y

Verify Edge

Figure 1-6: Consistent estimates of nodes (the submap frames in a global reference frame) depend
on establishing additional edges between nodes. These can be proposed and verified entirely in
'relative space' based on the composition of edges before calculating the node frames.

done using relative transformations, delaying the representation of poses in a global frame

(Figure 1-6). This is similar to the Atlas framework [13] and offers increased robustness by

avoiding an early commitment to a particular topology.

We frame global pose estimation as an optimization problem, where we determine the

poses that best explain all the relative pose measurements and are close to the navigation.

New edges are proposed by using the accumulated uncertainty over multiple paths to decide

which edge to verify next.
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1.5 Dissertation Structure

The rest of this dissertation presents the theory, methods, results and validation of the

thesis. The following chapters cover feature extraction and description (Chapter 2), robust

two view relative pose estimation (Chapter 3), submap generation (Chapter 4), topology

exploration and local to global registration (Chapter 5). The last part of the thesis (Chapter

6) presents results from a coral reef survey. This framework is validated by tank experiments

with ground truth. Finally (chapter 7) we offer concluding thoughts and suggestions for

future work.
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Chapter 2

Image matching based on similarity

2.1 Overview

Identifying common scene elements in two or more images forms the basis of many computer

vision tasks such as object recognition, tracking, pose estimation and structure recovery [33].

The image of a scene is dependent on the pose of the camera (Appendix A) and multiple

images of the same scene can provide information on the relative motion of the camera as

well as of the scene structure. Image registration attempts to bring images into alignment

by identifying common elements and yielding a transformation that maps an image (or parts

of it) onto another image. Images can be related to each other by utilizing the entire image

(direct methods) or by concentrating on specific regions that hold information (feature

based methods).

Direct methods [10] [49] align images based on discrepancies in overall intensities, as-

suming that some form of the Brightness Constancy Constraint (BCC) [42] holds. Direct

methods are unsuitable to underwater applications because of moving, non-uniform lighting

effects and moving shadows.

Feature-based methods [38] [107] abstract regions of interest into projections of geo-

metric entities such as points and lines which can then be matched across images. Such

approaches provide a greater degree of robustness to occlusion, changes in illumination and

effects associated with large parallax [122]. In addition, structure and motion estimates can

be formulated relatively simply from the projection of geometric features, which leads to
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Figure 2-1: Overview of the feature extraction process

efficient robust estimation algorithms. Feature-based methods require matching features to

relate images. Typically interest points are detected and the image region around the point

is used to describe the feature under the assumption that the same interest point viewed

in another image will lie within a similar neighborhood. Matching in narrow baseline ap-

plications is traditionally performed with an intensity-based similarity measure between

fixed-shape window image patches centered around feature points. In its simplest and

most common form the description of the feature point is the image patch around it, and

the similarity measure is usually some variant of the sum of squared differences or cross-

correlation[8]. This approach is effective when inter-image motion is small relative to the

depth of the scene.

Under more general imaging conditions, changes in view point will result in the neigh-

borhood boundaries deforming under perspective projection (e.g. a circle in one image will

appear as an ellipse in another). In wide-baseline situations the local image deformations

cannot be realistically approximated by translation, rotation and scaling. These changes

to feature appearance can often be modeled locally as affine transformations. Matching

features in the presence of such changes requires compensating for the motion (with prior

knowledge) or using a description and similarity measure that is invariant to such transfor-

mations. Our approach uses a mixture of compensation and invariance to represent features,

by using attitude sensor data to compensate for changes in orientation and extracting fea-

tures in an affine invariant manner (Figure 2-1).

Our approach to relating images has four distinct stages:

* Feature detection. We relate images using a feature-based approach under wide-

baseline imaging conditions with changing illumination and unknown scene structure.

A modified Harris corner detector [38] yields interest points by selecting local maxima
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of the smaller eigenvalue of the second moment matrix.

" Feature extraction. We determine a neighborhood around each interest point that is

invariant to affine geometric transformations using a modified version of the method

proposed by Tuytelaars [127]. In essence, we sample the image neighborhood along

lines radiating from the interest point. For each line we select the extrema of an affine

invariant function (maximum difference in intensities between the interest point and

points along the ray). The set of these maximal points defines the boundary of a

region that can be extracted under affine geometric transformations. This region is

approximated with an elliptical neighborhood which is then mapped onto the unit

circle. To increase discriminating power, a second neighborhood twice as large as the

first is also mapped onto a unit circle. These circular patches are normalized for affine

photometric invariance (demeaned and normalized by their energy content so that

linear changes in the intensity values do not affect the normalized appearance of a

patch).

* Feature description. Moment-based descriptors [75] have shown promise in describing

image regions for matching purposes. We chose to use Zernike moments as descriptors

as they are compact (generated from an orthogonal complex polynomials) and highly

discriminating [60]. Typical applications use only the magnitude of Zernike moments

as this provides rotational invariance, but we pre-compensate for orientation using

attitude sensors, and can therefore utilize the full complex moments.

" Feature matching. We derive the proper weighting of the Zernike moments such that

the dot product of the vector of weighted moments approximates the correlation score

for the original patches (warped into a disc).

2.2 Matching requirements

A typical survey configuration for SFM uses a downward-looking camera from an approxi-

mately level platform with a field of view of - 450; for images acquired along the temporal

sequence feature points have to be imaged at least twice for two view reconstruction or three
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Figure 2-2: Range of viewing angles for an image patch (light gray) given the camera field of view

(a).

times for resection. This implies image overlap of at least 50% and 67% respectively (Fig-

ure 2-2). Under these conditions image-based reconstruction falls somewhere in between

the extremes of narrow-baseline and general wide-baseline. For a field of view of 450, the

view point to a surface patch will change by 22.50 and 15* for temporally adjacent images

which is close to the breakdown point of reliable matching based on correlation windows

( 2.6). To match images that are not temporally adjacent (e.g. images across tracklines),

the worst case scenario implies that the view point to the surface patch will change by 45'.

This requires detecting and extracting features in a manner robust to view point changes.

We note that utilizing full affine invariants, even though appropriate, comes at the price of

added computational cost and lower stability.

2.3 Interest points

Describing features in a way that is invariant to expected geometric and photometric vari-

ations is important for successful matching. Even more important perhaps is the ability to

localize a consistent set of interest points in two overlapping images. We choose to detect

features with a modified version of the Harris interest point detector [38] since it has been

shown to be effective in detecting the same interest point in the presence of rotation and

moderate scale changes [107]. Figure 2-3 shows a typical set of Harris feature points for an

overlapping pair of images.

Interest points are determined from the second moment matrix, describing the curvature
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of the autocorrelation function in the neighborhood of a point x :

L L(x; U) L2L,(x; aD)
A (X, UI, UD) = Dg(oi) * 22

LxLy(x; O'D) y (;OrD)

where * is a convolution operator, ai is the integration scale, OD the derivative scale,

g(u) the Gaussian of standard deviation o-, and L the image I smoothed by a Gaussian,

such that Lx represents a smoothed derivative:

a
Lx(x; OD) = --- 9 (D) * 1(x) (2.2)

The second moment matrix offers a description of local image structure at a given scale

- an interest point or a corner point will have a p with two positive eigenvalues (significant

changes in intensity in any direction); an ideal edge will present one positive and one zero

eigenvalue while a perfectly uniform area will have two zero eigenvalues.

The o and OD define the scale at which features are extracted. A characteristic scale

can be associated with features by processing with multiple values of a and looking for the

extrema of the scale-function (such as the Laplacian of Gaussian) [107] [631. For our appli-

cation we assume that vehicles control their altitude to be approximately constant. Thus

the same feature should be observed at roughly the same scale and a multi-scale approach

is not necessary. To summarize, our approach extracts regions in an affine invariant manner

which offers robustness to modest scale changes.

2.4 Feature Extraction

In order to match interest points based on their appearance, we extract the neighborhood

around the interest point as the feature. For narrow baseline applications a region of fixed

size is extracted around an interest point and a similarity based measure (e.g. correlation)

is used to compare features. This is acceptable because the shape of the region does not

change significantly between similar viewpoints.

For wide baseline situations, in which the view point changes noticeably, the shape of

the neighborhood around an interest point will also change projectively and it becomes
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Figure 2-3: Two overlapping images and the Harris interest points for 0.1 = 4 and UD = 2. 2000
interest points detected per image. To have a roughly uniform distribution the image is subdivided
into 25 non overlapping regions (a 5 x 5 grid) and in each region the 80 interest points with highest
curvature are selected.

important to extract the neighborhood in a manner that is invariant (or neraly invariant)

with respect to the viewpoint.

In recent years several approaches have been proposed to invariant feature extraction.

Some are specifically tailored for planar surfaces [97] [118]. These are not particularly

useful for unstructured natural terrain. Baumberg [7] showed a practical approach that

iteratively modifies the shape of the region to make the second moment matrix isotropic.

Several modifications have been proposed to this idea [73] that optimize over closely coupled

parameters of scale, shape and localization.

Matas [68] proposed the use of extremal regions, which are connected regions that have

a persistent boundary when varying an intensity threshold (e.g. regions with a border or in

which the intensity is significantly different than the surrounding intensities). This method

extracts regions independently of interest points and is particularly suitable for images with

multiple, distinct objects and high contrast.

Tuytelaars and Van Gool [127] proposed finding the region border by detecting the

extrema of an affine invariant function along rays emanating from points of local extremum

of intensity. They use these samples along the border to fit an ellipse that defines the region

to be extracted.

The approaches proposed by Matas and by Tuytelaars have some similarities, though

Matas' method can yield more complex regions, and the Tuytelaars method can distinguish
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Figure 2-4: Steps in determining an affine invariant region. From left to right, boundary points
determined along rays, an ellipse approximates the boundary points using the method of moments,
and the elliptical region is mapped onto a unit disc.

regions with less contrast.

2.4.1 Tuytelaars's affine invariant neighborhood

We determine a neighborhood around each interest point that is invariant to affine geometric

transformations using a modified version of the method proposed by Tuytelaars [127] [128]

(Figure 2-4). The original method defines an affine invariant region around an intensity

extreme point by determining affine invariant points along rays radiating from the intensity

extremum. The boundary point associated with a ray corresponds to the extremum of an

affine invariant function that can be related to the presence of a boundary (Figure 2-5 and

2-6). The boundary points along the rays rinvariant(O) are given by

rinvariant(0) = arg, max If(r, 0) - fo1 (2.3)

where fo is the extremum of intensity and f(r, 0) are the image values considered in

polar coordinates. This region is extracted in an affine invariant manner in the sense that

an affine transformation will 'stretch' the individual rays but the boundary points should

remain recognizable since points that form a ray remain in a ray when affinely transformed

(by definition an affine transformation preserves colinearity and we assume that the any

translation is accounted for by keeping track of the interest point).

For natural scenes few interest points correspond to sharp corners of planar surfaces.

Instead they are generally blob-like features at different scales. By using rays radiating

from the interest point instead of an intensity extremum, the matching procedure is sim-

plified since the feature is well localized. In essence, we sample the neighborhood along
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Figure 2-5: Affine invariant regions extracted using a modified version of the method proposed by
Tuytelaars. Only regions that are found in correspondence are shown.

lines radiating from the interest point. Our current implementation uses a radius of 25

pixels and samples every 6 degrees (for a total of 60 lines). For each line the boundary

point corresponds to the maximum difference in intensities between the intensity extremum

nearest to the interest point and points along the ray.

The set of maximal points is approximated with an elliptical neighborhood by using the

method of moments where the samples along the boundary are placed on an ellipse that

has the same second moment matrix as the original samples. This elliptical region is then

mapped onto the unit circle W. In practice the polar representation used to determine the

boundary is resampled so that the boundary points have the same radius instead of applying

a 2D affine transformation to the region. The canonical form of the region is stored as a

polar representation with resampled radii. This representation is particularly convenient

when the description of the region is based on Zernike moments since the basis functions

are presented more compactly in polar form ( 2.5.1).

The sampling along the ray provides robustness to changes in scale, since the boundary

point should still be detectable as long as it falls within the search radius. Tuytelaars and

Van Gool [127] suggest that the actual ellipse used be twice the size of the one derived

in this manner. This increases the discriminating power by including image information

outside the region. However, this comes at a cost since there is a greater chance that the

appearance of the expanded ellipse might change significantly due to non-planarity.

To obtain some robustness to changes in lighting, prior to calculating descriptors of the
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Figure 2-6: Detail of some of the extracted regions in Figure 2-5. The actual border samples are
connected with red lines. The elliptical region that approximates the border samples is shown in
green.

patch W the resampled intensities f(x, y) are de-meaned and normalized by the energy

content over the patch:

(f(x, y) - fw)
N (f (x, y)) = X1Y (2.4)

N ~ ix (f(x + i, y + j) - fw)2

where fw is the mean of f(x, y) over the patch W. The normalized patch satisfies

N(f(x, y)) = N(af(x, y) + b) (2.5)

effectively providing invariance to affine changes in intensity. Figure 2-6 illustrates several

matches despite significant lighting changes between extracted regions.

2.4.2 Orientation normalization

The navigation instruments provide attitude information that can simplify the description

and matching of features. For example, normalized correlation as a feature point similarity

metric fails in the presence of modest rotations (more than a few degrees) between an image

pair I and I'. It is possible to use descriptors that are invariant to rotations at the price

of less discrimination. However, knowledge of 3D orientation for camera frames c and c'

in a fixed reference frame w allows for normalization of orientation viewpoint effects via a

49



0 radiW on unit disc

r.4.

Figure 2-7: An example of a feature and its normalized polar representation (angle vs radius).

homography.

The infinite homography, H,, defined as [39]

HK, = K - ' - K- (2.6)

where bR is the orthonormal rotation matrix from frame b to frame a and K is the camera

calibration matrix (A.1), warps an image taken from camera orientation a into an image

taken from camera orientation b. This warp is exact and independent of scene structure;

there is no scene induced parallax between viewpoints a and b, because a and b share the

same projective center.

Given 3D camera rotation matrices 'R and cR generated from vehicle orientation mea-

surements, we can warp images I and I' each into a canonical viewpoint coordinate frame

oriented parallel with frame w (e.g. the warped images correspond to a camera coordinate

frame x, y, z oriented with North, East, Down).

2.5 Feature Description

Instead of directly comparing intensities of the affine-invariant image patches, we transform

the patches into a compact descriptor vector. By describing patches with small vectors the

cost of comparing patches and the storage requirements are significantly reduced. Typically

a patch will have 0(1000) pixels while a descriptor vector will have one or two orders of
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magnitude fewer terms. High frequency terms are not captured by the low order coefficients

which provides a representation with some robustness to noise.

Image patches have been described by differential [106] [105] and moment invariants

[117] [48]. Differential invariants are constructed from combinations of intensity derivatives

that are constant to some geometric and radiometric transformations such as translation,

rotation, scaling and affine brightness changes. Moment invariants can be constructed

from nonlinear combinations of geometric moments (the projection of the image patch

f(x, y) onto the basis set of monomials xPyq ). Since the basis set for this projection is

not orthogonal, these invariant moments contain redundant information and have a limited

ability to represent an image in the presence of noise. Orthogonal moments based on

orthogonal polynomials such as Zernike moments have been shown to be invariant to some

linear operations, have superior reconstruction capabilities in the presence of noise, and low

redundancy compared to other moment representations [117] [58] [60].

2.5.1 Zernike Moments

Zernike moments are derived from Zernike polynomials, which form an orthogonal basis

over the interior of the unit circle, i.e. x 2 + y 2 
- 1 [58]. If we denote the set of polynomials

of order n and repetition m by Vnm(x, y), then since these polynomials are complex, and

their form is usually expressed as:

Vnm(x, y) = Vnm(p, 0) = Rnm(p)ejmo (2.7)

with n a positive or zero integer, m an integer such that n - Iml is even, and Iml <; n.

We've also defined polar coordinates p = v/x2 + y 2 , 0 = arctan(y/x). Note Vn*m(p, 0) =

Vn,-m(p, 0).

The radial polynomial Rnm(p) is real and of degree n > 0, with no power of p less than

Iml.

Rnm(P) = ) im - s) (n-2s (2.8)
E= s!( ~lm _ s)!(n-~Ils~(28

_ko ( 2 r i 2

The Zernike moment of order n with repetition m corresponding to the projection of an
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image function f(x, y) (in the unit circle) is given by:

n + j1
Anm = -

7rf fX2 y2(
f(x, y) Vn*m(x, y) dx dy .

Note that Anm is complex and A*m = An,-m. In the case of a discrete image f[x, y] the

moments can be approximated as

(2.10)Anm = n + I If[, y1Vn*m(, y) , x2 + y2 <1.

x y

The orthogonality relation for Vnm permits reconstruction of an image from its Zernike

moments.

J 1
2+y2 <1

V,(x, y)Vp*q(x, y) dx dy = 7 npmq
n + 1

(2.11)

so that

00

f(x,y) Z AnmVnm(x, y), X 2 +y 2 <1
n=O m

(2.12)

The magnitude of Zernike moments are rotationally invariant, i.e. corresponding Zernike

coefficients of two image patches that differ only by a rotation have the same magnitude,

and their phase difference is related to the angle of rotation. For two images that differ by

a rotation 0

g(r, G) = f(r, 0 + 0) , (2.13)

their Zernike moments are related by

Anm(g)= Anm(f)e"imo (2.14)

Note that the recovery of the rotation angle using moments with Iml = 1 is non-trivial

[59] because any rotation a, ( g(r, 0) = f(r, 0 + #) ) of the form

27rk
m
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will produce the phase difference m# between Anm(f) and Anm(g).

In a related context, Badra et al. [2] calculate Zernike moments for a disk around

matching points and determines rotation and scaling factors that relate the images directly

from the relationship between Zernike moments. The scaling relationship between moments

is only approximate and is shown to hold for the images they consider. Translation is dealt

with by using phase correlation once images are corrected for rotation and scaling.

2.5.2 Similarity measure

A vector of moments can be used directly as the descriptor for an image feature. Similarity

between features can then be expressed as a distance between vectors. The problem with

this approach is that the distances between vectors of moments do not necessarily have an

obvious meaning. Using training data it is possible to derive a distance metric [106] [7]

but this requires relearning the metric if the training set no longer represents the imagery.

Instead, we determine that the cross-correlation between image patches can be expressed

conveniently by weighted Zernike moments and form a feature descriptor from appropriately

weighted moments.

We express the cross correlation between image patches f and g in terms of their mo-

ments

S(f, g) J xy f(X y)g(x, y) dx dy (2.16)

J jZZ nm< f Anm( )m(X, Y) ApqY(A)Vq(xy) dx dy (2.17)
2+2in m p q

E Anm(f)Apq(g) J / Vnm(X, y) Vpq(X, y) dx dy (2.18)
n m p q x2

+y
2 <1

Anm(f)A*m(g) + (2.19)
n m

where * denotes the complex conjugate.

This result suggests that we construct a vector of descriptors from all Zernike moments

up to order n and repetition m by concatenating the coefficients 1Anm for all considered

n and m into a vector s. We can then define the similarity score df,g (based on Zernike

moments of up to order n and repetition m) for the preliminary match as

53



Figure 2-8: Distribution of self-similarity scores for multiple image patches. The similarity measure
based on weighted Zernike moments only approximates the cross-correlation score. From left to right:
n=12, n=16, n=20. The self-similarity score should be unity. With more terms the distribution is
tighter and closer to unity.

df,g = s(f)' - s~) + 1 Anm(f) - t A~nm(g) (2.20)
nm

To obtain the exact correlation score requires evaluating an infinite sum. In practice only

a few coefficients suffice to approximate image patches reasonably well. Figures 2-10 and 2-

12 show that the reconstruction quality improves as the order (in) is increased from 8 to 24.

The quality of the reconstruction depends on the number of terms used and the frequency

content of the image patch. For smoothly varying patches fewer coefficients are sufficient

for a close approximation. To determine the number of coefficients required we conducted a

simple test based on the self-similarity of the descriptors for multiple (over 18000) patches

from typical imagery. Since such a measure should approximate the autocorrelation we

expect the values to be close to unity. Figure 2-8 shows the distributions of self-similarity

scores for n = 12, 16, 20.

In addition, to test the performance of the descriptors for other values of correlation

score we generated a synthetic sequence of image patches where each image is a small

random perturbation of the previous one. This yields patches that are highly correlated

with nearby patches in the sequence but uncorrelated with those that are distant. The

true correlation score between patches is shown in plot (a) of Figure 2-9. The rest are

the similarity scores based on the descriptor vectors. The same information is summarized

as curves of similarity score versus true correlation for different order of descriptors in

Figure 2-10. A sample patch, its polar representation and the polar reconstructions for
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different orders of coefficients are shown in Figures 2-11 and 2-12. The frequency content of

the synthetic patches was adjusted so that the autocorrelation scores approximated those

observed in typical underwater imagery. Overall, we chose to use all moments up to order

n = 16 as a compromise between quality of approximation and compactness.

A 51-pixel diameter patch requires multiplying 2041 (7rD 2/4) pixel values in the disc to

calculate the correlation directly while the similarity measure that approximates the cross

correlation requires multiplying 153 (n < 16 and all valid repetitions m) weighted moments.

2.6 Performance evaluation

To evaluate the performance of our method, the affine invariant region extraction and

moment-based descriptor was compared to a fixed-window correlation-based match on a

sequence of underwater imagery. We conducted our test for a diverse range of baseline

magnitudes by matching each of 67 images to the next six images in a test sequence (for a

total of 351 two view matches). The details of the robust two view matching technique we

used are described in the next chapter. We used it here as a means to compare similarity-

based measures over many correspondences by determining which proposed matches are

consistent with the epipolar geometry.

Navigation sensors provide an image-independent estimate of baseline magnitude It

and altitude z, which allows us to formulate a normalized baseline magnitude |tf/z. This

is the relevant quantity for induced parallax and allows us to plot the number of correct

matches against a growing baseline (Figure 2-13). In addition, for pairs that could be

matched reliably and for which the camera pose could be calculated accurately, the change

in viewing angle to a feature can be calculated from the camera poses and from the rays in

correspondence (Figure 2-14).

The fixed-window feature method failed to match 122 of the 351 pairs, typically for

large baselines. This can be seen in Figure 2-13 for normalized baseline magnitudes above

0.45. The affine-invariant regions failed on only 44 pairs, with the degradation in matching

performance for increasing baseline far more gradual (2-14) for the shape-adaptive regions.

This can also be seen in the 2D histograms of the ratio of inliers to proposed matches as a
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Figure 2-10: Similarity score vs. actual correlation score for varying number of coefficients. The
approximation improves as more terms are added, in particular for high correlations.
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Figure 2-11: Sample image patch for which correlation and similarity scores are calculated.
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Figure 2-13: Inliers for a fixed window (blue) and shape-adapting window (green) versus normalized
baseline magnitude. The vertical lines connecting the corresponding two view match under fixed
window and shape-adapting window are colored according to which region provides more inliers.
The affine-invariant region outperforms the fixed window as the baseline increases. As the baseline
increases there is less overlap and the total number of inliers should decrease linearly even for perfect
matching (under assumptions of pure translation and uniformly distributed features). The dotted
lines show the expected trend for an image with 1200, 1000 and 800 features assuming a field of
view of 34.5' which is the FOV of the SeaBED camera in the direction of motion. There are some
inliers beyond the point where overlap would be possible. This is probably due to heading changes
and also to the normalized baseline being only an approximation (based on navigation sensors, and
ignoring any relief on the ocean floor).
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Figure 2-14: For the matches classified as inliers it is possible to calculate the viewing angle change
between cameras viewing the feature. For all matches, across all pairs in the trial, we show the
number of inliers as a function of viewing angle. For narrow-baseline conditions (angles of 100 or
less) both regions behave similarly. For larger viewing angles the affine invariant region (green)
outperforms the fixed window method (blue).

function of baseline magnitude in Figure 2-15.
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Figure 2-15: (Left) The distribution of the ratio of inliers to proposed matches against baseline
magnitude for the 351 test pairs under fixed-window matching. For narrow baseline most proposals
are inliers but for large enough baseline this abruptly changes to a low ratio. (Right) For the
affine-invariant region, the degradation is gradual and inliers are detected for wider baselines.
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Chapter 3

Relative Pose Estimation

3.1 Overview

Robust simultaneous estimation of the two view relation [28] lies at the core of most success-

ful structure and motion algorithms. Recent efforts have focused mainly on the uncalibrated

case with no prior knowledge of pose [94], resulting in greater applicability of these tech-

niques as well as a greater understanding of the underlying problem. However, in practice

it is often the case that robotic vehicles carry calibrated cameras as well as pose sensors [1]

[17]. In this chapter we seek to exploit prior pose knowledge to simplify and improve the

reliability of the components used in estimating relative pose from images.

A 'standard' feature-based framework for relative pose estimation comprises three main

components: correspondence proposal, robust two-view relation estimation with outlier

rejection, and final pose refinement. This chapter presents an equivalent framework for in-

strumented and calibrated platforms where two view matching forms the core of a structure

and motion estimation algorithm.

Following [90) we use prior pose knowledge to limit the search for correspondences to

regions consistent with the camera motion (and its uncertainty). The constrained search

increases the reliability of our feature matching stage, which is particularly important when

dealing with wide-baseline imagery where inter-image motion may be large. We also intro-

duce a new six-point algorithm used within the context of RANSAC to robustly estimate

the essential matrix [24] and a consistent set of correspondences. We take advantage of
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calibration to directly estimate the essential matrix rather than the fundamental matrix

since the latter cannot be estimated from planar scenes [121]. Our solution to the essential

matrix is simpler than the minimal five point solutions [45] [125] and, unlike the linear

6-point solution [89], it does not fail in the presence of planar scenes. In parallel, Nister

developed an efficient solution to the minimal five-point case [85]. The complexity of his

algorithm is similar to ours, though because it uses the minimal set of points there are ten

possible consistent motions which his algorithm must then chose among.

The first part of this chapter reviews a correspondence search procedure based on prior

pose knowledge in a calibrated camera system. Using a pose and calibration dependent two-

view point transfer model, we carry forward the uncertainty in our pose and calibration to

expand this point transfer to a region. This region is then used to restrict the interest point

matching to a set of candidate correspondences.

The second part of this chapter describes an essential matrix estimation algorithm that is

used to determine inliers and outliers in a RANSAC framework. By enforcing the constraints

specific to an essential matrix, it is possible to solve utilizing six point correspondences. The

solution uses the singular value decomposition (SVD) of a system of four equations followed

by the solution of a sixth degree polynomial.

3.1.1 Assumptions

The assumptions under which we formulate our solution include

" Wide baseline imaging conditions. Image overlap from 50% to 67% with changes in

viewing angle of 150 to 45'.

" A prior on relative pose must be available. We assume that the vehicle navigation

system produces an estimate of the vehicle trajectory and that it is possible to extract

relative pose and its uncertainty from the trajectory.

" Calibrated camera and sensor frames. The connection between pose priors and interest

point locations is established through camera calibration and knowledge of sensor

frames relative to the vehicle frame. This transforms pixel coordinates into euclidean

rays that can be rotated and translated.

62



3.2 Pose restricted correspondence search

Narrow-baseline vision systems usually constrain the search for correspondences to small

windows around interest points. The underlying assumption is that inter-image point mo-

tion is small and that it is sufficient to search in a new frame in a small area centered

around the (transformed) position of the interest point in the previous frame. These heuris-

tically restricted searches can fail in the wide-baseline case, where the apparent motion of

interest points can be comparable to the size of the image, or where relief is significant.

Wide-baseline systems based exclusively on imagery rely heavily on feature descriptors that

are sufficiently discriminating to be able to propose matches even when compared to all

other features in the image. Several semi-local constraints and consistency checks can be

applied [118] [128] if the descriptor provides information on a local reference frame. These

approaches tend to fail in scenes with repetitive structure or when the temporal sequence

has low overlap.

In the case of a calibrated and instrumented imaging platform, uncertain relative pose

information is available to restrict the search for correspondences along regions consistent

with the pose prior. Prior pose knowledge relaxes the demands on the complexity of the

feature descriptor since the descriptor is no longer required to be unique globally, rather

only in a local sense.

Putative matches thus derived can be separated into inliers and outliers based on consis-

tency with a motion model. For uncalibrated systems and a general scene, the fundamental

matrix encodes the motion in a form that is convenient for robust estimation. Camera cal-

ibration constrains the fundamental matrix into the essential matrix. While more complex

to estimate directly, the essential matrix offers advantages over the fundamental matrix

since it can be determined even in the case of planar scenes.

3.2.1 Point Transfer Mapping

The point transfer mapping parametrized by pose and calibration parameters, and depen-

dent on scene depth provides a physically meaningful framework to limit correspondence

search. To place this in context we briefly review the approach used in [90] [21]. We assume
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Figure 3-1: Overview of our approach to relative pose estimation from instrumented and cali-
brated platforms. Unshaded blocks represent additional information compared to the uninstru-
mented/uncalibrated case. Given two images, we detect features using the Harris interest point
detector. For each feature we then determine search regions in the other image from sensor based
pose and depth information. Putative matches are identified based on similarity and constrained
by regions. We then use RANSAC and the proposed 6-point algorithm to robustly estimate the
essential matrix which is then decomposed into its proper motion parameters. The pose is then
refined by minimizing the reprojection error over all matches considered inliers.

projective camera matrices P = K[I | 0] and P' = K[R It], where K is the matrix of intrinsic

camera parameters [39],

as S uo1

K= 0 y voJ

0 0 1

where ax is the focal length in pixel widths, ay is the focal length in pixel heights, (uo, vo)

is the coordinate of the principle point in pixels, and s is the skew in pixel shape. R is

the [3 x 3] orthonormal rotation matrix from camera frame implied in P to the reference

frame used by P' parameterized by XYz convention Euler angles 8 = [4, 0, ] T (roll, pitch,
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heading) [34], and t is the [3 x 1] translation vector from the frame of P' to P as represented

in frame of P'.

Given an interest point with pixel coordinates (u, v) in image I, we define its vector rep-

resentation u = [u, v]T, as well as its normalized homogeneous representation u = [uT, 1]T.

Likewise we define a vector of the imaged scene point as X = [X, Y, Z]T and its normalized

homogeneous representation X = [XT, 1]T and note that equality in expressions involving

homogeneous vectors is implicitly defined up to scale.

The two view point transfer is then given by [90] [39]

, KRK-u+Kt/Z
U = RTKl ZZ(3.1)

where RT is the third row of R and t, is the component of t along the z axis.

When the depth of the scene point Z is known in the frame of camera P, then (3.1)

describes the exact two-view point transfer mapping. However, if we let Z vary, (3.1) traces

out the corresponding epipolar line in I'.

3.2.2 Point Transfer Mapping with Uncertainty

The point transfer mapping given in (3.1) can be viewed as a function of a 12 element

measurement vector 4 [21]. The measurement vector 4 is composed from elements of the

calibration matrix denoted in vector form as k = [ax, ay, s, uo, vo]T; the six measured pose

quantities obtained from the navigation sensors on the underwater vehicle; and the scene

depth Z as measured in the frame of P.

- = [kT,ET, tT, Z]T (3.2)

4 is uncertain and we assume that it is described by a probability distribution. For

modeling purposes we represent 4' by the first two moments of the distribution 4 = E[4']

and E = E[44bT] - E[4]E[4]T. Defining f(4b; u) to be the non-homogeneous point

transfer mapping given in (3.1), then to first order we can approximate the mean and
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covariance of u' as

f' f(T; U) (3.3)

EU ~ J(3.4)

where J is the [2 x 12] Jacobian matrix of f(4; u) with respect to 4 evaluated at T.

If 4' is Gaussian, then to first order the distribution on u' will also be Gaussian with

the given statistics in (3.3) and (3.4). The Gaussian model allows us to generate a bounded

search region in I' when trying to constrain possible correspondences for u.

(u' - j')T E1-,(U' -/ ') = k2 (3.5)

defines an ellipse in (u', v') space and k 2 follows a X2 distribution.

In the case where no knowledge of Z is available, by picking any finite value for Z and

letting -z be very large, we recover a search band around the prior pose measured epipolar

line in I' whose width corresponds to the uncertainty in the other elements of 4 (Figure

3-2). In the case where knowledge of average scene depth exists, such as from an altimeter

on an underwater vehicle, and constraints on the minimum and maximum distance to the

scene can be imposed, then Zvg and an appropriate oz can be chosen to limit the search

to a segment of the epipolar line.

So far we have described how to associate a region to the uncertain transfer of a point

from I to I'. We can perform the transfer in the opposite direction by swapping u with

u' and replacing R with RT, t with -RTt and Z with Z' in (3.1). By intersecting the

possible correspondences from I to I' and from I' to I we form a set of possible bidirectional

correspondences consistent with the relative pose and its uncertainty. We can express this

as

Sj.., =- Sj-., n Sj.--1 (3.6 )

Where S is the set of possible correspondences and the subindex shows in which direction

the pose constraint is used. In practice, we choose I as the image with fewer interest points
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Figure 3-2: Transfer of four feature points from the left image to the right image based on a
pose prior and depth information. A sampling of epipolar lines is included as a visual reference.
These epipolar lines are based on the pose prior and only approximate the true epipolar lines. The
99% confidence ellipses show that increasing the scene depth uncertainty (by doubling the standard
deviation of the scene depth) grows the possible correspondences along the epipolar lines.

and then determine possible correspondences in I' according to <b and E . Fewer transfers

are performed overall if only these possible interest points in I' are transferred back to I.

This procedure can be represented as

S-= StI-+,),I (3.7)

Figure 3-3 illustrates the 99% confidence level pose restricted correspondence search

regions for a pair of underwater images. A sampling of interest points and sensor instanti-

ated epipolar lines are shown in the top image; their associated candidate correspondence

search regions are shown in the bottom image. The search regions are determined using an

altimeter measurement of the average scene depth and setting Uz to 0.75 meters. Figure

3-4 shows the pose restricted correspondence matrix for the image pair. Note that the set

of possible correspondences has been reduced from a full matrix, to a sparse matrix. The

resulting candidate set is 50 times smaller than the set of all possible matches.
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Figure 3-3: Prior pose restricted correspondence search on a pair of underwater coral reef images.
(top) Interest points are shown in blue. A sampling of interest points (yellow) are transferred to
the right image. (bottom) The 99% confidence regions for the transferred points based on the pose
prior and depth standard deviation of 0.75m. The candidate interest points that fall within these
regions are highlighted in yellow.

3.3 Essential Matrix estimation

Relative pose from calibrated cameras is a 5 DOF problem (3 DOF for rotation and 2

DOF for direction of motion between cameras), because of loss of scale. Minimal five-point

algorithms [45] [125] [26] tend to be ill-posed, have complex implementations, and can present

up to 20 solutions that then have to be tested. In this section we present a method that

uses six point matches to determine relative motion using the essential matrix.

The [3 x 3] essential matrix E encodes the relative motion between two cameras [39]. In

terms of the motion parameters it has the following form

E = [t]xR. (3.8)

where [t] x is the skew symmetric matrix based on t such that [t] x a = t x a. The essential

matrix E can be considered as a special case of the fundamental matrix, satisfying the

following relationship:

x'T Ex = 0 (3.9)

where x = [X, y, 1]T and X' = [X', y', 1]T are normalized image point correspondences (i.e.
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Figure 3-4: Candidate correspondence matrix for the image pair shown in Figure 3-3. Nearly 2000
interest points were selected in each image. Without any prior pose knowledge this matrix would
be full (almost 4 million elements). Pose restricted search regions reduce the correspondence matrix
to this sparse form (91,016 elements).

x = K- 1 u and x' = K-1u'). As a fundamental matrix, E has a null determinant and because

of calibration it has two equal singular values. Consider

E =4
eli

e21

e31

e12 e13

e22 e23

e32 e 3 3

(3.10)

and define e = [e11, e 12 , e13 , e21 , e 22 , e23, e31, e32, e33] T  as

(3.9) can be written as

x X X / I y' / y x y 1 e = 0

its vector representation. Then

(3.11)

With a set of n point matches (xi, yi) - (x', y ) we can form a linear system of the form

Ae = Onxl (3.12)
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where A =

X I1 Iy1  X, YiX1 YiY1 y, X1 Y1 1

(3.13)

xnXn Xnyn xnXn ynyn y' Xn yn 1

For n = 8 and non-critical motion and point configurations, we have the classic 8-point

algorithm [64] which solves for the e that satisfies (3.12). With n = 7 we can find e as

the linear combination of the two generators of the right null space of A and impose the

det(E) = 0 constraint. However when the (xi, yi) are coplanar the rank of A drops to 6, and

the 8 and 7-point algorithms can no longer be used [89]. With n = 6 point matches, A will

have rank 6 and e will be a linear combination of the generators of the right null space of

A determined by SVD, i.e. e = aei + be2 + ce3 or in matrix form

E = aE1 + bE 2 + cE3  (3.14)

Homogeneity of the equations implies that E is determined only up to scale, and therefore

can be expressed in terms of two parameters

E = aE1 f+E 2 + E3 . (3.15)

The values of a and 3 must be determined such that E is an essential matrix. A [3 x 3]

matrix is an essential matrix (one null and two equal singular values) if and only if it satisfies

the Demazure constraint [24]

EETE - trace(EET)E = 0 (3.16)

By replacing E in (3.16) with (3.15) we generate a system of 9 homogeneous polynomial

equations of degree 3 in a and 3. This can be considered a homogeneous linear system

in the terms a3 , a20, a2 , a 2 , a,3, a, 03, 32, 3, 1. With 9 linear equations and 9 unknowns

it is possible to solve uniquely for the vector of unknowns and therefore obtain E. This

technique is known as the 6-point linear algorithm [88]. Notice that this approach will
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satisfy the Demazure constraint only approximately since there is no guarantee that the

relationship between different powers of a and f will be preserved.

3.3.1 Planar Scenes and Failure of the Linear 6-Point Algorithm

The linear six-point algorithm fails in cases where all of the 3D points lie in a plane. In

such a case system A will still have rank 6, but the system defined by (3.16) will now

drop to rank 4 rather than 9, because the linear dependence between 3D points introduces

additional relations [89]. This result significantly reduces the applicability of the linear

6-point algorithm in practical situations. It could be used in a model selection framework

[121] [96], but we seek a simpler approach.

3.3.2 A Six-Point Algorithm Robust to Planar Scenes

The Hofmann-Wellenhof method for six points [88] uses the constraints

EETEET - -trace(EET)EET = 0 (3.17)
2

and det(E) = 0 on the six homogeneous linear equations represented in A. It results in a

system of 7 polynomial equations of degree 4 in a and 3. Manipulating these equations

produces a system of two polynomial equations of degrees 8 and 9 in 13. The common

solutions of these two polynomials allows one to solve for a and then subsequently E.

The basic idea behind our method is to use only 4 equations from the Demazure con-

straint and solve the resulting system of polynomials of degree 3. By always using a system

of rank 4 we will find a solution even in the presence of planar scenes. We show that by

manipulating this system we can generate a polynomial of degree 6 in 6, and then solve for

a.

Consider four equations from the Demazure constraint in terms of a 3 , a2 0, a 2, a 2 ,

a3, a, 03, 0 2 , 13, 1. To pick four equations, we perform SVD on the 9 equations of the

Demazure constraint and then select the four right singular vectors associated with the
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largest singular values. Performing Gauss-Seidel elimination on the four equations we have

a3 a2/ a2  a 2  aO a 3 a0 2 3 1

1 - - . - - -

(3.18)1

1

1

Here a blank represents zero and '.' represents some

This system can be represented as

a2 01+ la + 3

a20. + Ce~h + 13,:

ae +00 :

value not eliminated by Gauss-Seidel.

(3.19)

(3.20)

(3.21)

(3.22)

where the /3n represents an nth degree polynomial in /3 and the subscript p is an identifier

for one of 11 distinct polynomials. By multiplying the second equation (3.20) by (30 and

the third equation (3.21) by 0', then subtracting we obtain

( - /3ihN) + Of # - 33 =1 0 . (3.23)

Notice that the above expression no longer depends on a2. Defining /82 = /13#/ - Oh and

Ot = 3 00 - /5 /3O, together with the fourth equation (3.22), we have

a/3 +/f = 0

a02 +3 = 0

(3.24)

(3.25)

Cross multiplying by the polynomials of degree two 0? and 0 , and subtracting we obtain

a single polynomial equation of degree six

/32- 3 2 0 (3.26)
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We solve this polynomial and use the real roots to solve for a using (3.22). For each

real pair (a, f) we calculate the corresponding essential matrix according to (3.15). The

proposed six-point algorithm will produce up to six possibly valid essential matrices.

Using synthetic data sets (generated for both planar and non-planar scenes) and random

relative motion, we have determined that one of the essential matrices produced by this

six-point algorithm always corresponds to the true camera motion for perfect (noise free)

measurements. We have also observed that for perfect measurements of points in a planar

configuration, the proposed six-point algorithm always produces two essential matrices, one

which corresponds to the true essential matrix, and one which corresponds to the (incorrect)

output of the linear six-point algorithm.

3.4 Robust Essential Matrix Estimation

The following two statements must hold for the proposed six-point algorithm to be useful in

the context of estimating the essential matrix from a large set of putative correspondences.

First, we must be able to select the correct solution from up to six essential matrices.

Second, the quality of the solution must degrade gracefully in the presence of measurement

noise.

we select a solution with a RANSAC approach, testing the solutions against the entire

correspondence set and selecting the one with the most inliers. We determine inliers based

on the reprojection error using implicit triangulation [57] which is more efficient than the

solution based on a sixth-degree polynomial [39].

To test how the performance of this algorithm degrades in the presence of noise, we

performed 1000 trials with randomly generated scenes and motions. For each trial the es-

sential matrices computed by the six-point algorithm were decomposed into their respective

rotation and translation representation. The essential matrix with rotation and translation

that was closest (minimum error) to the true motion was selected. In order to summarize

results in one quantity, we define a pose error measure as the sum of (1) the angle of rotation

between the true rotation matrix R and the estimated R using the axis-angle representation

[87], and (2) the angle between the translation direction vectors. These trials were then
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repeated with different levels of noise added to the pixel coordinates.

Figure 3-5 shows the minimum, median, and maximum error for increasing pixel noise

variance for a scene with points in a general configuration. The top figure shows results

of the linear 6-point algorithm while the bottom figure shows results from the proposed

6-point algorithm. Notice that for perfect measurements (i.e. zero noise) both algorithms

produce the correct essential matrix. Figure 3-6 plots the same curves for a test where for

each trial the 3D points were in a planar configuration of random orientation. Notice that

the linear 6-point algorithm fails even for perfect measurements.

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
pixel noise std dev

2

U
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

pixel noise std dev

Figure 3-5: Noise test with general scenes. The minimum, median, and maximum pose error
(defined as the sum of the rotation error and the angular error of the baseline direction vector)
over 1000 trials, plotted against noise variance. (top) Linear 6-point algorithm, (bottom) proposed
6-point algorithm.

Even though the proposed 6-point algorithm degrades in the presence of noise, Figures

3-5 and 3-6 show that a large number of estimates will be close to the true motion. This

suggests that the algorithm can be used effectively in a RANSAC context where it is rea-

sonable to expect that there will be point combinations yielding an essential matrix close

to the true one and will explain a large fraction of the correctly matched points.
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Figure 3-6: Noise test with planar scenes. The minimum, median, and maximum pose error (defined
as the sum of the rotation error and the angular error of the baseline direction vector) over 1000
trials, plotted against noise variance. (top) Linear 6-point algorithm, (bottom) proposed 6-point
algorithm. The failure of the linear 6-point algorithm for planar scenes can be seen in the high
errors even in the absence of noise.

3.4.1 Two view critical configurations

Planar or nearly planar scenes are frequently encountered in surveys of the ocean floor. For

the uncalibrated case there is a three degree of freedom ambiguity in the parametrization of

the solution that generates a continuum of fundamental matrices consistent with the data.

In the case of a calibrated camera, two views of an unknown plane will have at most two

valid essential matrices [65]. The ambiguity can be resolved by requiring all points to be

in front of both cameras except in the case where all points are closer to one camera than

the other. This situation can happen when the vehicle motion has a significant component

toward or away from the bottom.

Planar scenes are a particular case where scene points and the camera centers fall on a

ruled quadric [66] [55]. In the general case of ruled quadrics there will be up to a three-fold

ambiguity in motion and structure for the uncalibrated case. For the calibrated case the
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number of interpretations is two. Each interpretation will place the scene points and camera

centers on distinct ruled quadrics. A dense set of points (hundreds) from a natural scene

is unlikely to fall on a ruled quadric, but in cases of low overlap (tens of points) this could

happen. In section 3.5 we use the motion prior from navigation instruments to disambiguate

image-based solutions.

3.4.2 Reprojection Error

Given a set of nin measured correspondences Si,, {u +-+ u' }, under the assumption of

isotropic Gaussian noise corrupting the interest point locations, it can be shown [39] that the

MLE for the fundamental matrix F = K--TEK minimizes the sum of squared reprojection

errors:

D(F, ,')= Zd(ui, fi') 2 + d(u', f6,) 2  (3.27)

where d(., -) represents the Euclidean distance and ij and n'i are the estimated ideal

correspondences (i.e., before corruption with Gaussian noise) that exactly satisfy _iFi.

The reprojection errors are used to rank the quality of the essential matrices proposed in

the RANSAC loop. The number of inliers for a proposed essential matrix is determined by

the number of correspondences with reprojection errors below a threshold t. This threshold

is set based on the expected noise in feature locations and with some testing on actual im-

ages. Calculating the reprojection error requires triangulating the ideal feature points with

algorithms such as Hartley and Sturm's optimal triangulation method [40] which requires

solving sixth degree polynomials. Torr and Zisserman show [123] that the optimally cor-

rected correspondences proposed by Kanatani [56] are equivalent to iterating the Sampson

approximation [39] and yield a close approximation to the MLE estimate obtained by the

optimal triangulation method. The ideal correspondences are calculated as [56]
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I'TFu-
u- --i - EoF Tu' (3.28)

uTFEoFTu' + ujTFTEoFuj -2

U'TFu.nX = U' - --EoFu. (3.29)
- u'TFEoFTuj' + uTFTEoFuj -

(3.30)

where Eo = diag(1, 1, 0) is the assumed covariance for homogeneous coordinates. We ap-

proximate the reprojections from triangulation by letting u <- u and u' <- fn' and iterating

until i'Fft = 0 is sufficiently satisfied. Usually one or two iterations are enough.

3.4.3 From the essential matrix to motion estimates

The essential matrix that best explains the data according to RANSAC is decomposed into

a rotation and translation according to the following result from [39].

Assume that the first camera P = [I10] and the second camera is P' = [Riti. We seek to

determine P' or equivalently R and t given E = [t] x R. Let

0 1 0

W -1 0 0 (3.31)

0 0 1

and assume that the SVD decomposition of E is, up to scale, E ~ Udiag(1, 1, 0)VT, then

the translation is given, up to scale, by t ~ U[0, 0, 1]T = U 3 and the rotation matrix R is

Ra = UWVT or Rb = UWTVT. Under the assumption of unit baseline magnitude, there is

a four-fold ambiguity in P':

P' = [RaIU 3] or [RaI - U 3] or [RbIU3] or [RbI - U3] (3.32)

One of these choices corresponds to the true relative pose. The others correspond to a

reversal in baseline direction, a rotation of 180' around the line connecting both cameras

('twisted pair'), and the twisted pair with a reversed baseline. To determine which is the

correct solution we check that triangulated points are in front of both cameras.

77



3.4.4 Outlier Rejection (RANSAC)

To eliminate outliers (correspondences inconsistent with the motion model) an essential ma-

trix between the two images is estimated using RANdom SAmple Consensus (RANSAC)

[28]. The basic steps for outlier rejection based on RANSAC are augmented to include

checking for physically realizable point configurations. The added robustness comes at the

expense of additional computation, though this is incurred only when a proposed essen-

tial matrix seems superior to the current 'best' estimate. To be physically realizable, a

configuration of points and relative pose must:

" place all points in front of both cameras (cheirality constraint) [39],

" the scene points lie only a few meters in front of the camera. This constraint can be

invoked due to the strong attenuation of light underwater. As described in 1.2.1 the

attenuation lengths underwater for the visible spectrum are in the range of 5-25 m,

and

" the points must not lie between both cameras (the baseline cannot go through the

surface implied by the scene points). The ocean floor is a 'solid surface' and both

cameras must be on the same side of it.

Enforcing these constraints resolves many cases of ambiguities but does not resolve all

ambiguous pairs. It is important to bear in mind that during the RANSAC stage we are

mainly interested in determining matches that are consistent with an essential matrix. If the

inliers support two or three distinct interpretations this is not a problem at the RANSAC

stage. It only becomes an issue when determining and refining the final motion estimate.

The steps for the robust estimation of the essential matrix are:

" Start with the set S of potential correspondences (based on similarity), the set of

inliers Si, = 0 and the number of inliers nin = 0.

" Repeat for N trials :

- Randomly select a set p of six matches from the potential correspondences.
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- Calculate E(p) the essential matrix implied by the subset. There can be one to

six essential matrices. For each essential matrix:

* Calculate the reprojection error d for all putative matches through the tri-

angulation procedure described in 3.4.2.

* Determine Sin(p), the set of inliers according to E(p), as the set of matches

with d < t pixels. The number of inliers according to E(p) is nin(p).

* If nin(p) > nin apply the cheirality, light attenuation and 'solid surface'

constraints:

- Explicitly triangulate Sj,(p).

- Reduce Sin(p) and nin(p) to the correspondences that are in front of

both cameras, are only a few meters away, and that are not between

cameras.

If nin(p) > nin then nin +- nin(p) and Sin <- Sin(p)

The RANSAC algorithm produces an E that best explains most of the data (in the

sense that the reprojection errors are less than the threshold t). Under the assumption that

2D features are localized with a standard deviation of o, the distance squared between the

measured and the estimated 2D feature location follows a X2 distribution. The cumulative

chi-squared distribution F2 (t2 ) = f 2 x2(x) dx includes 99% of the inliers for t2 = 9.2102

or t = 3.03a. In practice we assume or = 1 and our results are not overly sensitive to t.

The number of iterations, N, is calculated adaptively based on the current estimate of the

fraction of outliers [39]. Figure 3-7 shows the resulting image-based points considered inliers

by RANSAC. The epipolar geometry in the figure is a refinement by maximum a posteriori

estimation from the RANSAC inliers (Section 3.5). Figure 3-8 illustrates the triangulated

correspondences and the cameras in the frame of the first camera.

3.5 Final motion estimate

The previous section recognizes that the output of the RANSAC stage is a set of inliers

associated with one of possibly several interpretations of motion. The six point algorithm
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Figure 3-7: Epipolar geometry and correspondences. The given image pair illustrates the MAP
refined image-based epipolar geometry. RANSAC determined 398 consistent inliers designated 'x',
from the putative set of 405 matches. The rejected outliers are designated 'o'.

can be used with more than six points and in fact we use it with all inliers to generate

possible essential matrices.

To disambiguate the motion we must rely on additional information. Three possible

approaches are:

" Keep track of multiple hypothesis and decide on a particular motion based on consis-

tency of motion and structure over several frames.

* Select the relative pose encoded in the essential matrix that is closest to the relative

pose prior from navigation sensors.

" If there are scene points in common between three images, use resection to determine

the camera pose relative to the existing structure.

We choose to use a combination of the second and third approaches since they do not

delay the decision and they tend to be simpler. If there are common scene points between

three or more views we use resection to generate an initial guess to relative pose. This will be

discussed in more detail in the next chapter in the context of building sequential submaps.

If there is not enough overlap for resection and we have multiple interpretations for the es-

sential matrix, we choose the relative pose closest to the navigation prior. More specifically,

the image-based relative pose with the smallest Mahalanobis distance I Ipi - Pnav Irnav ,
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Figure 3-8: Triangulated inliers for the pair in figure 3-7. Coordinates in meters, in the reference
frame of the first camera.(left) 3D feature locations. (right) Interpolated surface, colorcoded by
depth from the first camera. The camera frames are shown as a blue,black and yellow frame (x,yz)
connected by the baseline (red).

based on Enav the covariance of the prior is selected as the initial guess.

IlPi - PnavIl=nat, (P - Pnav) -v (P1 - Pnav) (3.33)

where pi = [tT, O(Ri)T]T are the translation and orientation parameters (as Euler

angles) for the ith Essential matrix, and Pnav is the similarly defined relative pose from

the navigation sensors. Since relative pose is recovered only up to scale from images, the

baseline magnitude is normalized to unit length and the covariance is constrained to be

zero in the direction of motion. The baseline of the image-based solution is then scaled

according to the projection of the prior baseline:

t= tf ti ti (3.34)
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3.5.1 Bundle Adjustment

The final relative pose estimate is based on a bundle adjustment of pose and 2D feature

locations. From Bayes rule we have

p(xz) c p(zjx)p(x) (3.35)

which in terms of parameter estimation can be interpreted as posterior distribution p(xlz)

of a vector of parameters (associated to a model) x given observations z is proportional to

the likelihood of the data given the parameters p(zlx) and the prior p(x). The maximum a

posteriori (MAP) estimate x* maximizes the total posterior probability of the model given

the observations and prior knowledge. If the prior is assumed to be uniform, then we have a

maximum likelihood estimate (MLE) that selects the model for which the probability of the

observed data is highest. From the point of view of estimation the distinction between MLE

and MAP is nonexistent since the prior knowledge can be considered an additional obser-

vation. We choose to refer to MLE estimation when using only image-based measurements

and MAP estimation when including navigation sensor measurements, though in practice

the navigation information is included as additional observations.

We assume conditionally independent measurements. The MLE estimate is then

x* =argmaxfQp(zilx) (3.36)

For image-based measurements z = u given the relative pose and structure x = [pT, XT]T

the measurements can be considered to have Gaussian distributions centered around the

true reprojections

p(ulx) oc e[u-4(x)]T[u-4(x) (3.37)

Taking the negative loglikelihood we express the MLE problem as a minimization of the

cost function

[u - 4(x)]T [u - (x)] (3.38)

Since the measurements are assumed to be independent the measurement covariance is

82



diagonal and the cost function can be expressed as

I - O(pC, X,)1 2  (3.39)

where 'ui is the measurement on camera c for feature i, and pc is the relative pose estimate

from imagery and Xi the estimate of the position of the ith 3D feature point.

For MAP estimation the pose sensors provide a relative pose prior. The initial guess

close to the nav-based pose together with the extra cost term that penalizes large deviations

from the nav-prior provide a robust two-view relative pose estimate. The cost function being

minimized then takes the form

S -,)2 - X + -pn||a (3.40)

with the additional term accounting for the relative pose prior, which have the form of

a Mahalanobis distance similar to (3.33) with p, the relative pose vector estimate from

imagery.

3.5.2 Robust estimation

The minimization of squared residuals is optimal in the maximum likelihood sense for zero

mean Gaussian noise. While this is considered a good approximation for the reprojection

error of true correspondences, there are situations in which the noise does not satisfy the

Gaussian assumption. Mismatches can lead to incorrect correspondences with large repro-

jection errors. In some cases specular reflections or shadows can degrade localization of a

feature to the point that the measurement model does not describe the observed errors.

These issues are particularly relevant in the multi-view case where data association errors

lead to errors that are not obvious in the two view case.

A Gaussian noise model has a distribution with small tails, reflecting that large errors

are unlikely. But in practice large errors occur more often than the Gaussian distribution

suggests. When this is ignored (and noise is assumed Gaussian) the minimization of squared

residuals is strongly affected by outliers.
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Least squares minimizes

ELS(X) = (ri(x)).41)

where ri(x) is the weighted residual for the ith measurement.

M-estimators [133] reduce the sensitivity to outliers by replacing the r? with a p(ri) that

grows more slowly for large ri while remaining symmetric, positive definite and having a

minimum at zero.

Em(x) = p(ri(x)) (3.42)

Several choices of p(r) have been proposed. The Cauchy M-estimator [126] weighs the

residuals in a manner that assumes a Cauchy distribution rather than a Gaussian, which

allows for a larger proportion of large errors

c2
pc(r) - log(1 + (r/c)2 ) (3.43)

We use this estimator in all bundle adjustment calculations throughout this thesis. The

soft outlier threshold c = 2.3849 achieves 95% asymptotic efficiency on the standard normal

distribution [133].

84



Chapter 4

Submap Generation

4.1 Overview

Generating a 3D reconstruction from an extended sequence of images, where each image

views only a small fraction of the whole scene, requires additional considerations compared

to the two view case. As we advance through the sequence generating structure and motion

estimates that are locally consistent, the solution will drift at larger scales. Estimates

will be strongly correlated locally but weakly correlated at greater distances [134] because

image-based constraints are fundamentally local. If the camera trajectory revisits parts of

the scene it is possible to establish additional constraints on the camera poses as long as the

data association problem is addressed (recognizing part of the scene as having been visited

before). This requires a reliable way of matching images or sections of reconstruction that

are not temporally adjacent as well as a mechanism to infer proximity of views that are not

temporally adjacent (to avoid exhaustively checking all possible image pairs).

Purely sequential methods are simple and temporally consistent but have limited ability

to correct for drift since the covariance between camera poses is not stored permanently [8]

[52] [134]. Other incremental methods explicitly keep representations that allow for error

distribution over the complete trajectory but only at the expense of complexity that grows

quadratically with the number of features and views [71]. Incremental methods are usually

implemented as recursive filters (e.g.,some form of EKF) in real-time applications or as

approximate initializations for small scale bundle adjustment (assuming small drift).
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Our objective is to perform a bundle adjustment over a large sequence of images with

trajectories that potentially close multiple loops. While the temporal sequence offers an

ordering of the imagery, the processing should not be constrained to a temporal order

only. While batch solutions based on factorization [120] [92] [115] recover all camera poses

and structure simultaneously they tend to have restrictions on the imaging model and

typically expect all features to be viewed in all images, which is clearly not applicable

to underwater surveys. Also, factorization methods do not address the data association

problem of recognizing trajectories that revisit parts of the scene. In addition, a sequential

method offers the opportunity to recognize mismatches and some degree of robustness to

outliers (which negatively impact factorization methods).

The reconstruction process along a temporal sequence can be viewed as occurring at

multiple scales, each scale possessing unique advantages. While the temporal sequence is

formed by processing individual image pairs this scale is not the best to determine additional

spatial relationships. Subsequences contain information on 3D structure where structure

and motion remain significantly correlated. At this larger scale it is easier to recognize that

we are revisiting an area since it considers multiple images, with multiple views of interest

points and estimates of their location. This is the approach taken to submap matching in

the next chapter.

Several approaches to SFM and Simultaneous Localization and Mapping (SLAM) are

inspired by local to global or hierarchical methods. Fitzgibbon and Zisserman [29] presented

a technique based on triplets of images as the subsequence that allow for the distribution

of errors associated with loop closing. They do not discuss, however, how to recognize

loop closures. The Atlas framework addresses loop closures for autonomous mapping [13].

Nister [84] refined the approach by adaptively selecting the images in the triplet to improve

reconstruction.

4.1.1 Assumptions

Our assumptions in generating submaps include

* A navigation-based pose prior is available. The prior is useful in providing scale and

regularization in MAP bundle adjustment of pairs and triplets of images as well as
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Figure 4-1: Overview of approach to submap generation. The image sequence is processed incre-
mentally. Two view matching proposes putative matches between images j and k. Resection of

the pose of k is attempted if some of the correspondences in j have already been matched to the

previous image i (there is structure defined by i and j). If the resection is reliable (based on at
least 15 points) the triplet i, j, k is bundle adjusted. If there are enough points for resection or there
aren't enough inliers, the relative pose is estimated by the two view relative pose procedure of the

previous chapter. The new camera pose and structure are then incorporated into the submap. New
views are added onto the same submap until the number of 3D features exceeds n3Dmax,,, (we use

1500-2000 features). At this point the map is bundle adjusted and closed. A new map is initialized

with 50% overlap (using the second half of the image sequence).

the complete submap.

SThe sequence is mostly unbroken. If temporally adjacent images can not be related

we can close the submap and start a new one. The transformation between submaps

is determined by the navigation prior.

We propose to use a local to global approach that uses the pose sensors to constrain the

camera locations. This chapter concentrates on the submap generation, which corresponds

to a local reconstruction based on growing sub-sequences from robust two view matching

and resection.
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4.2 Resection

A sequence of images can be processed pair-wise using the two view motion estimation.

Scale depends exclusively on the estimated baseline magnitude from navigation sensors. In

addition, navigation estimates are crucial in resolving ambiguous solutions in the two view

case. However, if enough overlap is present to have at least three views of the same structure

it is possible to determine the pose of camera k relative to the structure from views i and

j. In this case scale is inherited from the triangulated structure. In the uncalibrated case

the trifocal tensor can be estimated robustly from proposed correspondences across three

images [39]. Though generally effective this approach does not lend itself well to using prior

pose information to constrain matches and tends to be more sensitive to critical surfaces.

By establishing putative correspondences between images j and k using the procedure

described in 3.2.1 we can then establish putative correspondences between image features

in k and the 3D structure associated with the image features of j. Minimal sets of these

correspondences are used in a RANSAC loop to determine the pose of k by resection.

A proposed resection is evaluated in the RANSAC loop by reprojecting the putatively

corresponding structure onto the resected camera. Structure points with a reprojection

error below a threshold t are considered inliers. Figure 4-2 illustrates the process by which

a submap grows by relying on common features and existing features.

We use a modified version of Fischler and Bolles method for resection [28]. The basic ap-

proach consists of selecting a triplet of structure points and their corresponding projections

on the camera to be resected. Since the camera is calibrated, the images of the structure

points correspond to euclidean rays going through the center of projection, the actual 3D

point and its image. Their method first determines the length of the rays from the cam-

era projection center to the 3D points (legs of the tetrahedron). Figure 4-3 illustrates the

geometry of the problem.

This can be expressed using the cosine rule in a system of three quadratic equations

relating the distances between 3D points Rab, Rac, Rbc, the angles between rays (or be-

tween 3D points, as measured from the camera), 6ab, 0ac, bc and the length of the rays (the

unknowns) a, b, c:
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Figure 4-2: Illustration of growth of a submap based on resection. Images (a) and (b) have corre-

sponding features marked by green dots. The structure and motion implied by those correspondences

is illustrated in (d) with units in meters. Images (b) and (c) have correspondences marked by red

circles. The features viewed by the three images are marked by both a green dot and a concentric

red circle. (e) These features are used in resection to initialize the pose of the third camera. (f)

Then the additional correspondences between (b) and (c) are triangulated and the poses refined.
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Figure 4-3: Resection geometry. Tetrahedron formed by the camera projection center (top) and

three feature points (represented by small spheres at the base of the pyramid). From an image

and known correspondences it is possible to measure the angles 9 ab, 0ac, bc between features. The

feature locations are known so distances Rab, Ra,, Rbc are known. We seek to determine the lengths

a, b, c of the rays to the features.

R2b = a2 + b2 - 2ab cos(Oab) (4.1)

c = a2 + c2 - 2ac cos(0ac) (4.2)

R = b2 + c 2 - 2bc cos(bc ) (4.3)

It can be shown that this system has at most four possible solutions. Each solution is

included as a possible model in the RANSAC loop (the assumption, which works well in

practice, is that other data points can disambiguate the motion). In [28] these solutions are

found by reducing the system into a quartic polynomial in one unknown corresponding to

the ratio of the two legs of the tetrahedron x = b/a . This equation can be solved directly

which then allows solving for the actual legs. The resection isn't complete at this stage since

determining the length of the rays from resection is equivalent of expressing the position of

the 3D points in the reference frame defined by the camera. To resect the camera, i.e. to

place the camera in the reference frame of the structure, we register the structure in the
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Figure 4-4: Stages of registration source points (dark) to target points (light gray) using Horn's
algorithm. From left to right: translation of points to common origin (centroids), alignment of
corresponding rays (from centroid to points), adjustment of scale, to yield a final configuration.
Adapted from [1].

camera reference frame kX to the structure in the original frame 'X using Horn's absolute

orientation algorithm [43], described briefly in the next section.

4.2.1 Absolute orientation

The goal is to find the similarity transformation (translation, rotation and scale) that aligns

the source 3D points 'Xi in the reference frame of the camera onto the tXi corresponding

points on the target camera t. The process can be understood as a sequence of transforma-

tions illustrated for a 2D case in figure 4-4. The sequence of steps are:

1. Translate to a common origin (defined by the centroids).

N
5xi = EXk

k

S i _ sxi - si,

Ntxi = 1tX
k

ti = tXi - tXis

2. Rotate S)i so that the rays from the origin to the source points align with the cor-

responding ray of the target point tki . The rotation is determined by using SVD

of the cross covariance matrix of the rays after translation to the common origin [44]

[129].
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3. Compute scale so that the overall magnitude of rays is the same

c= I=X%1 (4.6)

4. Translate the rotated and scaled source points to the frame of the target.

The resulting transformation sequence that maps the source points onto the target points

is thus

X =c - Tt- (X-")+ =c- - X+ -c- (X)(4.7)

By defining t = - c (6X) and R = the transformation can be expressed as:

X = c -R . 8X + t. (4.8)

During resection the rays from the camera are scaled to be consistent with the scale implied

by the structure. Therefore, for perfect data c = 1. Given noise in measurements and

uncertainty in the structure we expect c ~ 1.

4.2.2 Robust Resection

The resection approach described in 4.2 is at the core of a RANSAC loop applied to the

the proposed correspondences between 2D features in the view to be resected and already

existing 3D features. We have one constraint we can easily enforce at this stage: the scale, c,

implied by the pose must be nearly unity. If this is not the case it is not necessary to check

reprojection errors. The steps for the robust estimation of the pose of the view relative to

the structure and the correct correspondences are:

" Start with the set S of potential correspondences between 2D features and 3D struc-

ture, the set of inliers Si, = 0 and the number of inliers ni = 0.

" Repeat for N trials :

- Randomly select a 3 point subset p from the potential correspondences.
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- Calculate P(p) = IcRIt] the pose of the camera implied by the tetrahedron formed

by subset ( 4.2). There can be up to four solutions. For each solution, if (0.9 <

c < 1.1):

* Calculate the reprojection errors d for all putative matches by projecting the

structure onto the proposed camera.

* Determine Si,(p), the set of inliers according to P(p), as the set of matches

with d < t pixels. The number of inliers according to P(p) is nin(p).

* If nin (p) > nin then nin <- nin(p) and Sin -- Sin (p)

The RANSAC algorithm produces a pose that best explains most of the data in the

sense that the reprojections errors are less than the threshold t. Under the assumption that

2D features are localized with a standard deviation of a, the distance squared between the

measured and the estimated 2D feature location follows a x2 distribution. The cumulative

chi-squared distribution F2 (t2 ) = fo xr(x) dx includes 99% of the inliers for t2  9.21a 2 or

t = 3.03a. In practice we assume a = 1 and have observed that the results are not overly

sensitive to t. The number of iterations N is calculated adaptively based on the current

estimate of the fraction of outliers [39], typically being tens or hundreds of iterations.

We use a simple count of points in common between three views (typically 15 points) to

determine if resection is not possible or deemed unreliable (i.e. not enough common points,

or not enough inliers exist between the three views). In either case we switch to the two-

view relative pose estimation to incorporate the latest view onto the submap. Figure 4-1

illustrates this decision process.

4.3 Local Bundle Adjustment

The resection stage produces the approximate pose of the camera that is most consistent

with the proposed correspondences between image points and 3D structure. To refine the

pose we turn to Zhang and Shan's local bundle adjustment method [134] for inspiration.

This is a variant of sequential methods that is shown to approximate the optimal global

bundle adjusted solution for sequences of images with short feature tracks while significantly

reducing computational costs. The approach considers the bundle adjustment problem of
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the latest three views while reducing the free parameters to the latest camera pose and the

feature points it views. It takes advantage of points seen in the three views as well as those

in the last two views. Though efficient, this technique does not handle uncertainty in a con-

sistent fashion. By considering the first two cameras of the triplet fixed, the uncertainty of

the estimates (third camera and structure) are expressed relative to a frame fixed implicitly

by the relative pose of the first two cameras (including scale). In the context of maximum

a posteriori estimation we have prior information of the relative pose between the first and

second camera as well as between the second and third cameras. We choose to fix the origin

on the frame of the first camera and leave the second and third cameras to be adjusted. In

essence we solve the MAP estimate of the trifocal tensor as a way to produce an estimate

of the latest pose and the uncertainty in pose and structure.

Given three views 0, 1, 2 and the measured (noisy) correspondences between the views

{ui , i +-+ 2ui }, and the correspondences between pairs of views {I ++ 2U, }, {u, + 2U, },
{ ui -'m }, under the assumption of isotropic Gaussian noise corrupting the interest point

locations, it can be shown that the MLE for the the poses and structure minimizes the sum

of squared reprojection errors:

2

E E d(i, ca) 2  + + d(uji, j) 2 + S d(uk, %k) 2 + d(cui, %1) 2 (4.9)
C=0 i c=1,2 j c=0,2 k c=O,1 1

where d(., .) represents the Euclidean distance, im are the estimated ideal correspondences

(i.e., before corruption with Gaussian noise) for camera c, and m the index into the corre-

spondence set. The role of the structure is implicit in (4.9). More explicitly, we have that

the projection of a 3D point Xi onto a camera c with pose pc is %i:

%i -- O(PC, Xi) (4.10)
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Using the camera projection (4.10) we expand (3.27)

2 N012 N12

min I: E ISi - 4(pc, X)1 2 + 1 1: -- (pe, Xj)|12
P1,P2,Xi}XA',Xk},X1} c=O i=1 c=1,2 j=1

N0 2  
No1

+ E E II|Sk - OO(pe, Xk)11 2 + E Ilei - (pc, X1)11 2 (4.11)
c=0,2 k=1 c=O,1 1=1

The MAP estimate adds cost terms based on relative pose prior (from pose sensors)

similar to the ones used in the relative pose MAP estimation, which biases the solution to

the scale implied by the navigation sensors.

I|eoll,..a + I|e12 |II|na (4.12)

where using the composition notation from Smith, Self and Cheeseman [114] the discrepancy

between vision and navigation-based relative pose is given by

= eki 3 e xnav = e D3 *i e x,"n (4.13)

and the weighted error is

||eijllF,,,, = E,-Jlei (4.14)

where Eij corresponds to the estimated covariance of eij propagated from the covariance of

T3

4.4 Submap size

We have proposed using reconstructions of subsequences as the basic unit from which to

derive the network of images and feature points for a final global adjustment. An important

issue in this approach is setting the size of submaps. There are multiple implications and

trade-offs that merit consideration. Processing the temporal sequence can be assumed to

have a fixed cost per image (two view or resection). We advocate performing a bundle

adjustment over all views and feature points in a submap at the time of its closure. This

guarantees that self consistent maps should improve matching. We use the local bundle

95



adjusted sequence as an initial guess for a proper bundle adjustment. As described in the

next chapter, once the image sequence has been processed into submaps these are matched

to find any additional constraints on the network of submaps (and therefore images). The

size (or number) of submaps affects the complexity of multiple bundle adjustments, the

reliability of matching submaps, and the complexity of the resulting network of submaps.

We discuss these points and suggest that it suffices to close submaps based on the number

of features they contain. Our current implementation can perform bundle adjustment and

submap matching in a few seconds for submaps with fewer than 2000 3D features; there is

a rapid increase in runtime for larger submaps. Thus we choose to create submaps with at

least three images and limit the number of 3D features in each submap to be 1500-2000.

4.4.1 Bundle adjustment complexity

Each step in a sparse bundle adjustment of N features and M views has complexity O((N+

M)M 2 ), linear in N and cubic in M associated with the inversion of the sparse normal

equations [71]. If we break down the problem into S submaps with no overlap and perform

bundle adjustment on each submap individually each bundle adjustment is of complexity

O((1/S)(N + M)(M/S)2 ) assuming that the features and views are evenly distributed in

each submap. The complexity for the total sequence (the bundle adjustment of S submaps)

is 0((N+M)M 2 ). Therefore, S smaller bundle adjustments reduces the overall complexity

in proportion to S2. In the presence of overlap between submaps, the complexity grows

linearly with the overlap fraction v. We can show this by defining the actual number of

submaps as Sv = S/(1 - v), the complexity of processing one submap does not change

but the overall complexity is ( ( N+M )M
2

. This result suggests that, if a sequence

is to be split into submaps and each submap bundle adjusted, then there are significant

computational savings to be had by using smaller maps.

4.4.2 Uncertainty in Structure and Motion

An incremental reconstruction can drift relative to the 'true' structure because the imaging

process relates only features that are spatially close to each other (local correlation). The

longer the sequence used in the submap, the greater the possible deviation from the 'true'
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geometry. If submaps are to be registered as sets of 3D points related by a similarity

transformation it is necessary to consider the effect of drift on the reconstruction. Actual

drift can be quantified if ground truth is available. In general this is not the case, and we

choose to use the estimate of covariance in 3D feature positions as an indication of possible

drift.

Geometrical quantities (such as 3D structure) derived from multiple camera measure-

ments are expressed in a reference frame (including scale) that can be freely chosen. This

gauge freedom, or coordinate frame ambiguity, is inherent to the imaging process. Im-

age projections do not depend on the chosen gauge while reconstructed results in different

gauges are equivalent modulo the gauge [70] since they produce the same projections regard-

less of the reference frame. However, the choice of reference frame will affect the apparent

covariance of structure and motion [78][126]. We note that normally the reference frame is

defined in the reconstructed space of structure and motion (for example, coincident with

the frame of the first camera). Since all reconstructed quantities are uncertain the frame

is also uncertain yet the elements used to define the frame appear perfectly known. For

example, if the frame is fixed to the first camera, the uncertainty of the first camera relative

to this frame will be zero (since the two frames are coincident) while other reconstructed

quantities may appear to have increased uncertainty.

Our local bundle adjustment procedure fixes part of the gauge (scale) implicitly through

the relative pose prior provided by navigation sensors. The reference frame origin and

orientation is coincident with the first camera.

The covariance of poses are calculated from the sparse bundle adjustment by the block

inversion of the approximate Information matrix (jT J). The covariance of pose is expressed

relative to the frame fixed to the first camera with scale implied by the navigation-based

relative pose priors (zero gauge freedoms). This is convenient as camera pose uncertainty

is expressed relative to the first camera, illustrating the trend towards higher uncertainties

with number of images as illustrated in Figure 4-6. Since the succeeding submap is initialized

using one of the cameras of the current submap, this representation also provides a direct

estimate of the relative transformation and uncertainty between the current submap and

its neighbor.
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For registration purposes the uncertainty of reconstructed 3D points should reflect the

quality of the triangulation rather than an arbitrary choice of reference frame. Points that

are triangulated more precisely should be weighed more when registering a set of points.

We choose to express the uncertainty of 3D points with six gauge freedoms (orientation and

translation). This is achieved by simply eliminating the rows in the Jacobian corresponding

to the equations that fix the origin to the first camera before calculating the covariance

of the poses and structure by using the pseudo inverse (keeping the six smallest singular

values as zeros) [78].

4.4.3 Submap Matching and Network Complexity

To propose putative matches based on similarity between submaps i and j takes time

O(NiNj) where Ni and Nj are the number of features in each submap. Since Ni = O(Nj)

we realize that registering submaps by similarity is O(Nf) = 0((N/S) 2 ). But this has to be

considered in the context of the number of matches that have to be performed. Matching

all submaps to all submaps is O(S 2 ) which would imply that the lower costs of matching

smaller maps are offset by the need to match more maps. But for a sparse network where

most nodes have edges to a few adjacent nodes, as in a survey with a moving vehicle, we can

expect that O(S) edges exist and that a reasonable matching technique will also perform

O(S) matches. The overall complexity of matching for the sparse network case is O(N 2/S)
which also suggests using more (smaller) submaps will save effort at the submap matching

stage. In terms of reliability of matching, matching smaller maps reduces the chances of

false positives by requiring less descriminating ability from similarity-based descriptors.

An indirect way of studying this issue is to generate submaps and register them according

to the procedure described in the next chapter. Given feature points in correspondence the

registration quality can be recalculated using a starting from a small subset and growing

along the submap to include all correspondences. If submaps represent a true rigid body

reconstruction of the environment, the average registration error of considered points should

be roughly constant regardless of the number of points used. If the submaps tend to

distort at larger scales the registration quality should degrade as more of the submaps are

brought into alignment. The results of figure 4-7 suggest that submaps remain rigid for
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Figure 4-5: Two views of the MAP bundle adjustment of an example of an incremental reconstruc-

tion consisting of 12 images and close to 3000 points. Cameras are represented as reference frames

(X,Y,Z axis as blue,black,yellow). The temporal sequence is from left to right. Temporally adjacent

frames are connected by a red line. Spatially adjacent frames (determined through resection) are

linked in green. (Top) The dots represent the estimated position of 3D points in the reference frame

defined by the first camera. (Bottom) For ease of interpretation, a surface has been fit through the

points using a Delaunay triangulation. The surface is color-coded according to the Z coordinate.
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Figure 4-6: (a) Absolute value of the correlation coefficient (normalized covariance) for a large
submap (3000 features). Every six rows (or columns) correspond to the pose parameters of a camera
(4, 0, V), x, y, z). The first camera is fixed which produces zero covariance. (b) The element by element
square root of the absolute covariance matrix. The weak coupling between the first images and the
last images is apparent. From (b) it is clear that the highest uncertainty is associated with xy.

practical sizes. For typical data and sensors of this application it appears that the increase

in complexity is far more significant than drift in determining the size of submaps. In

addition, more submaps offer more degrees of freedom or 'hinges' on which to distribute

error when closing a loop. This should provide a better initialization for the final bundle

adjustment.

4.5 Submap Closing

Once a submap contains enough 3D features it is closed and a new submap is started. The

structure associated with the most recent half of the cameras in the map being closed is

used to start the new submap. There is a trade-off between the number of submaps and

improving the chances of matching across tracklines. In practice, an overlap of around 30%

to 50% provides a good balance between the number of maps and improved matching.

We perform a final bundle adjustment using all poses and prior pose information on the

submap before closing it. A sparse bundle adjustment adjustment routine [39] [126] is used

to minimize the cost function
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Figure 4-7: Registration error (RMS) between multiple submap pairs as a function of number of

features used. (a) For a sequence of images the maximum submap size was set to 1200 features. Each

track is associated with a submap pair and illustrates the evolution of the RMS registration error as

the set of features considered increases from those implied by the first pair of images in the submap

to all corresponding features. (b) The evolution for the same image sequence with maximum submap

size of 3000 features. There are fewer and longer tracks since there are fewer submaps (and each

submap is larger). If submaps correspond to rigid bodies then these curves should be approximately

flat. If submaps are close to rigid bodies for small scales and 'drift' for larger scales the general

trend should be for an increase in RMS error as more features are considered.

E E I Ui - <(Pc, X,)1 2 +I ec,c+1||.,
C i

(4.15)

where p, is the pose estimate from imagery for the cth camera, ec,+ is the residual

vector between the relative pose estimate from navigation sensors and imagery (4.13), and

Xi the estimate of the position of the ith 3D feature point.

This is the same procedure used on the triplets (after resection) but considers all views.

The initial guess is provided by the incremental submap.

The relative pose between the new submap and the previous submap corresponds to the

pose (in the reference frame of the submap being closed) of the camera that becomes the

origin of the new submap.
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Chapter 5

Global representation

5.1 Overview

The submap generation stage of the previous chapter yields a sequence of overlapping

submaps and estimates of the relative transformations between adjacent submaps. In order

to produce a final, consistent bundle adjusted representation of the structure it is necessary

to place submaps in a common global frame. It is also important to recognize instances

of the same 3D points in multiple submaps (due to parallel tracklines or loop closures) so

that they are reconstructed only once in the final representation. This chapter discusses the

refinement of spatial relationships between submaps before attempting to produce a global

reconstruction.

The problem of transitioning between local and global representations is related to the

one confronted by local to global mapping and localization approaches [14],[3] in which

a robot explores and maps without an explicit global map. The global, self consistent

map is established only in post-processing. This thesis assumes that an underwater vehicle

performs a preprogrammed survey relying on uncertain navigation. While sufficient to

process data temporally (as in the previous chapter) the overall uncertainty in navigation

motivates using redundancy at local levels (i.e., overlap) to form a globally consistent set

of poses.

The spatial relationships we know (between temporally adjacent submaps) and the ones

we seek (between spatially adjacent but temporally non-adjacent submaps) can be ab-
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Figure 5-1: Placing nodes (Gray circles) in a globally consistent frame. From relative transforma-

tions (black links) in a temporal sequence (a), to proposing and verifying new additional links (b)
to a network with nodes consistent with the relative transformations (c).

stracted into a graph, where each submap reference frame corresponds to a node and each

edge corresponds to a coordinate frame transformation between submaps. More precisely,

the submaps and transformations can be represented as a graph G = (V, S) with V = {V}

the set of vertices and E {E= J}{j represents the set of edges. A directed link between

nodes Vi and V is denoted by Eij. Figure 5-1 illustrates these concepts.

The set of nodes that link to node V is given by S(V) = {V e VIEij c E}. Each node

Vi has an uncertain frame or pose xi associated to it and each edge Eij has an uncertain

relative transformation xij associated to it. Such topological representations are common

in the SLAM community [61] [104].

In terms of the graph, generating a global representation from submaps can be broken

into three distinct processes:

" Edge proposal ( 5.3). Discover potentially new edges starting with only the temporal

links 5 initial = {E12, E23, . .. , EN-1,N}-

* Edge validation ( 5.2). Check the proposed edges against the known data or con-

straints (for example, map-matching).

" Node estimation ( 5.4). Generate globally consistent estimates of the frames associ-

ated with V.

We assume that edge validation is computationally intensive, and that it is therefore

desirable to propose only edges which are likely to be valid. Otherwise, we could simply

propose that all nodes are connected to all nodes and verify which of all possible O(N 2 )
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Figure 5-2: Consistent estimates of nodes (the submap frames in a global reference frame) depend

on establishing additional links between nodes. (a) These can be proposed and verified entirely in

'relative space' based on the composition of links before calculating the node frames. (b) Alterna-

tively, the node estimates can be refined as new links are proposed and verified, and used to propose

new edges.

edges exist.

The proposal of probable edges requires some knowledge of the node positions such

as their means and covariances. This suggests a 'global space' approach that interleaves

edge proposal (and validation) with node estimation. In essence, the node estimates are

generated from the temporal sequence and updated as new links are discovered (figure 5-2

b).

Node estimation is computationally intensive as nodes must be placed in a global frame

while satisfying all the spatial relationships implied by the edges. Addition of a new edge can

dramatically alter the placement of some nodes (for example, in the case of loop closures)

and can be subject to convergence to local minima.

Further reflection leads to the realization that edge proposal is essentially a local problem

- by definition, submaps overlap only if the acquiring cameras were close by. Composition

of transformations implied by edges allows us to position an individual submap relative to
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any other submaps. Approaches that operate in 'relative space', such as Atlas[12], exploit

the fact that it is not necessary to maintain a consistent global representation to propose

new edges. That is, it may often be sufficient in many applications to use a 'reasonable'

path between nodes, such as the shortest path under a distance or uncertainty measure,

instead of attempting to fuse information. This offers significant computational savings

compared to global solutions that attempt to update the node estimates.

There are some suboptimal (in the sense of the use of uncertainty) approaches that

straddle this definition. Sharp [109] generates node estimates by enforcing cycle consistency.

This requires keeping track of all cycles and distributing error in a manner that does not use

uncertainty optimally. Covariance intersection (CI) [54] operates in global space but nodes

are updated without constructing a full covariance representation. CI is often criticized for

producing very conservative estimates of uncertainty. This, on its own, is not a significant

problem when using nodes for initializing a bundle adjustment. However, we have observed

that high uncertainty nodes gain little from precise relative measurements. This is typical

of networks where there is uncertainty in the overall orientation and position of the network

and suggests that CI alone cannot solve our problem.

This chapter discusses the use of the transformations between submaps to place submaps

in a global frame, as well as a procedure to propose and verify additional spatial relationships

between submaps. Regardless of how links are proposed, either by a local (such as shortest

path) or global approach (covariance intersection) links are verified in the same fashion.

5.1.1 Assumptions

The underlying assumption in this approach is that uncertainty in the frames and transfor-

mation (nodes and edges respectively) can be characterized adequately to allow proposing

additional edges (submaps with common features). This implies that if overlap does exist

between submaps the uncertainty in their relative position should suggest the overlap.
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5.2 Edge Validation

Establishing additional edges between submaps implies determining the transformation that

maps common 3D points in the reference of one submap to the other. Using submaps

to match 'across track' (or spatially adjacent but temporally discontinuous) views offers

significant advantages over two view matching:

" Matching images with knowledge of structure offers a stronger constraint than epipolar

geometry (no loss of scale).

* Matching sequences of images typically increases the number of matching features

in low overlap situations (e.g. parallel tracklines). Individual image pairs with low

overlap might fail to match or match unreliably (too few feature points).

" Since each 3D point in a submap is imaged at least twice, there is redundancy in

the appearance of 3D points that can be exploited when matching features across

submaps.

We assume that submaps are internally consistent, given that each is bundle adjusted

before being closed. The scale of each submap is derived from the multiple baseline mea-

surements from the navigation system. Because the vehicle acquired the imagery using the

same set of instruments we expect that all submaps will have approximately the same scale.

Registering two sets of 3D points with unknown correspondences is traditionally per-

formed with Iterative Closest Point (ICP) techniques [11] [132]. In its strictest sense, ICP

is only a refinement of the transformation between two sets of 3D points that are already

relatively well aligned and in which all points in one set have a match in the other. ICP

variants [101] extend the domain of applicability but remain unreliable when the initial

guess is poor, when there is low overlap (i.e. a small fraction of common points) between

the sets of 3D points or when there is low variability in the 3D structure. In practice, ICP

is most successful with dense data sets (typically laser scanned) while the submap matching

problem we confront involves relatively sparse sets of points.

One way of improving the robustness and range of applicability of ICP-type algorithms

is to associate descriptors with the 3D features. The additional information provided by
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the descriptors makes the correspondence proposal less dependent on the initial alignment

of the data sets. Some descriptors are based on the local geometry around a feature such

as curvature and oriented points [37] or spinmaps [53]. Other sensing modalities can also

provide descriptors, such as image patches or color [35].

While the sparse set of 3D points contained in the submaps do not consistently offer

discriminating structure, the very fact that they exist as 3D points implies that their appear-

ance in multiple views is characteristic enough to effectively establish correspondences (and

be reconstructed by the SFM algorithm). We extend the feature description and similarity

based matching between images to matching submaps by relying on the appearance of 3D

points to propose corresponding features between submaps. The average of the descriptors

of the 2D neighborhoods in all views (i.e., observations) is used as the appearance of the

3D point. The underlying assumption is that a similarity measure which was effective to

match 3D points along track will also be effective when matching across submaps. This

requires descriptors that are robust to lighting changes, or scenes in which lighting does not

change significantly between submaps.

5.2.1 3D Feature Descriptors

For similarity-based matching purposes, we propose to describe a 3D feature by the average

of all acquired 2D views of the neighborhood around the feature. We assume that for each

view the neighborhood is represented in a canonical frame as described in Chapter 2 (i.e.

an affine invariant region mapped onto a circle with orientation known to a few degrees

from navigation).

Given an image patch formed by averaging N image patches f(x, y) = } N fk(x, y)

(all in the canonical frame), with the moments for each patch fk

A~k) -n + I
A(k)nm = 11 (X, Y)XV*m(X Y) d dy (5.1)

The moments for the average patch are given by
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n + 1(52
Anm = _ I "' n 1 , , f(x, Y)Vn m(X, y) dx dy (5.2)

7 Jj _ - f(x Y)) Vn*m(XY)dody (5.3)

n 1 (5.4)

N 7r Jf2+y2<1 XIY n X )d y
N

N kZ A(k)nm. (5.5)
k

Due to superposition and linearity the moment of an average image patch corresponds

to the average of the moments. Thus for a 3D feature X viewed by N cameras, with an

extracted 2D region fk from the kIh camera, and associated feature descriptor s (fk) ( 2.5.2)

we construct a descriptor for the 3D feature as the average of all 2D descriptors:

s (Xi) = ni s (fi) (5.6)
k=1

5.2.2 Similarity measure

Putative 3D feature correspondences between different submaps are proposed based upon

similarity of descriptors. The measure of 2.5.2 (which approximates the cross correlation

between patches in the invariant frame) is used to propose matches. No pose prior is used

in this case given that the relative transformation between temporally distant submaps can

be very uncertain due to the drift inherent in the dead-reckoned navigation and in the

sequential structure from motion.

Since submap sizes are limited to less than 2000 feature points, matching all 3D fea-

ture points against all other feature points presents a similar computational cost to that

associated with matching two images.
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Figure 5-3: Improved matching through use of submaps. Each column contains images from a
different submap (the images on the left are from the first trackline of the survey, the images on the
right are from the second trackline and rotated 1800 to facilitate comparison). It is difficult to reliably
find corresponding features between any pair of images across the columns. But when columns are
considered as a whole (i.e., as submaps) it is easier to find common features and to reliably estimate
the transformation between submaps. Corresponding features found through submap matching are
shown as 'x'. 3D features are color-coded consistently across all images.
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Figure 5-4: Views of the registered submaps that contain the images in figure 5-3. The blue dots

correspond to the 3D features of the submap on the first trackline of the survey (i.e. the images

on the left column of figure 5-3). The green dots correspond to features in a submap on the second

trackline of the survey (i.e. images in the right column in figure 5-3).
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Figure 5-5: Multiple views of a 3D feature:(left column) the image and the feature neighborhood
extracted as described in 2.5.2 and (right column) a detail of around the feature point. The top two
rows correspond to images that belong to a submap on the first trackline of the survey, the bottom
two rows are from a submap from the second trackline.
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Figure 5-6: Similarity scores between descriptors corresponding to different views of the feature of

figure 5-5. The first three entries correspond to views in the first trackline submap, the next five

entries are views of the same feature in the second trackline submap. Similarity is highest along the

diagonal (corresponding to self-similarity, as expected it is close to 1 since the similarity score based

on moments only approximates the correlation between the image patches). Similarity is higher

between views that belong to the same submap (usually above 0.9) than across submaps (less than

0.9). There is also more variability in the scores when matching across submaps. The ninth entry is

the average descriptor of the feature for the first trackline submap and the tenth entry corresponds

to the average descriptor of the feature for the second submap. As expected, the average descriptor

is similar to the descriptors in its own submap. The similarity between the average descriptors (9,10)

and (10,9) (across submaps) is within the range of the individual matches.

5.2.3 3D to 3D matching

Given putative correspondences between 3D points from two submaps, we seek to register

the two sets of 3D points. The goal is to find the similarity transformation (translation,

rotation and scale) that aligns the 3D points 'Xi from source submap s onto 'Xi, the

corresponding points on the target submap t.

5.2.4 Robust outlier rejection

To support robust outlier rejection we utilize RANSAC based on a minimal set of three

points (with Horn's algorithm [44]). This determines the inliers in the putative correspon-

dence set and an initial approximation of the transformation. A second pass is then used

with a limited search range based upon the estimate from the first pass, and typically

produces more proposals and correct matches. The RANSAC loop is modified to include

prior knowledge regarding the transformation scale between submaps. As the scale of the

submaps is derived from the same instruments, registered submaps should have a similarity
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transformation with a scale close to unity. This helps speed up the RANSAC loop by allow-

ing us to only evaluate the support of transformations with scale c such that 0.9 < c < 1.1.

If the scale is out of this range the set of potential correspondences is assumed to have at

least one outlier.

5.2.5 Uncertainty in transformation

For simplicity we ignore the estimated covariance of 3D points (from the submap bundle

adjustment) in the RANSAC loop. In this case the solution from Horn's algorithm is

equivalent to an unweighted least squares. We then use this solution as an initial guess

for a refinement based on the uncertainties of all corresponding structure points, which

corresponds to minimizing the sum of Mahalanobis distances

dk = 'X - I. TXk (5.7)

T* = arg min n d T E-ldk (5.8)
I k

with the covariance of the error approximated by the first order propagation of the covari-

ance of the points being registered

E EtX dk T xdk dk T (5.9)
&k 'Xk &sXk 19sXk

We assume that the estimates of structure points between submaps are uncorrelated, which

is a valid assumption for submaps that do not share any cameras (e.g. across-track submaps).

The covariance of the transformation parameters can be estimated to first order from

the Jacobian of the cost function being minimized in (5.8) evaluated at the optimum.

5.3 Edge proposal

Starting from a temporal sequence we wish to establish additional links between overlapping

submaps (which will lead to establishing additional links between overlapping imagery).

This can be viewed as a refinement of a graph where each node is a submap reference
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frame and each edge (or link) a relative transformation. Since submaps can be linked only

to spatially neighboring submaps, the graph is expected to be sparse. This would require

verifying only O(N) links if the node positions were well known. Yet as links are added

we expect the spatial relationships between nodes to change, possibly requiring additional

link checks. Verifying edges (map matching) is expensive computationally, so our approach

must concentrate effort on likely links by considering uncertainty in the node positions and

by updating node position estimates as links are added.

Possible approaches to estimating links (i.e. transformations between nodes) include

* Estimating relative transformations from current global estimates kik = eGki E ke.

" Estimating relative transformations from composition of relative transformations Xik

Xii ( Xik,-

These are related to the approach used to estimate the current network topology. If esti-

mates of the node poses are maintained in a common, global reference frame then additional

links can be inferred by measuring distances and uncertainties between nodes. Though the

proposal process is simple and is less demanding as more of the topology becomes known

(fewer possible links to consider), maintaining nodes in a common frame requires enforc-

ing consistency among the cycles that may form as additional edges are included in the

graph. It should be noted that while consistency is important before attempting a bundle

adjustment ( 5.4) it is not essential when attempting to establish edges in a sparse graph.

The alternative approach is to remain in relative frame space and use composition of

relative transformations to express the relative transformation between nodes that do not

have a direct link. Because there may be multiple paths between nodes, an approximate

solution is to use a shortest path algorithm such as Dijkstra's. The Atlas framework advo-

cates this approach for map matching [14]. In this case a consistent representation is not

constructed but the proposal process is more complex since it must place nodes relative to

a base node by composition along the shortest path. As more edges become available more

paths must implicitly be considered.
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5.3.1 Estimation of unmeasured links through shortest path

An uncertainty measure can be used as the path length in Djikstra's algorithm to choose

among all paths when generating an estimate of the transformations between submaps.

Starting from a base node a shortest path spanning tree is grown incrementally by choosing

the edge that connects the shortest path tree so far to a candidate node (i.e., a node that

has an edge to the current tree) such that the composed uncertainty to the new node is the

smallest of all possible candidate nodes.

To estimate relative transformations we compose multiple measured transformations

and propagate their uncertainties. This is performed recursively along the possible paths:

I' =(5.10)

Ei,k ij + J,ki,k j,k (5.11)

where k represents an estimate of x.

The determinant of the covariance is an attractive uncertainty measure since it can be

related to the volume of the uncertainty ellipsoid and is invariant under rigid body transfor-

mations [13]. We apply this approach to the six DOF problem of submap transformations.

Since the determinant magnitude is small we prescale by a constant factor before calculating

the determinants.

Dijkstra's algorithm is greedy but can be shown to provide the shortest path to all

nodes when the path length is additive [108]. By using composition to the next node this

assumption is violated and the greedy behavior may not yield the shortest path to all nodes.

Assume two paths A and B offer different estimates to a node. If A composes to the smallest

determinant, then Dijkstra's algorithm will choose that path. But this does not guarantee

that nodes connected to this one will compose to a smaller determinant than B. Abusing

notation, det(A) < det(B) ;* det(A D C) < det(B G C).
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5.3.2 Proposal strategies

After estimating relative transformations between a pair of submaps it is necessary to

determine which submaps are likely to overlap. This depends on several factors such as

camera field of view, altitude, terrain and camera trajectory in each submap. A simple

approach is to calculate the distance and uncertainty between the centroids of the structure

of each submap according to the relative transformation and its uncertainty.

A maximum distance for overlap can be estimated based on the camera field of view and

the altitude of the cameras. We use as maximum distance the horizontal dimension of the

footprint. That is, for overlap calculations we model the submap as a disc with diameter

equal to the width of the footprint. This is a simple and conservative measure since submaps

tend to be longer than their width. A more detailed model could keep track of the corners or

even the convex hull of the submap footprint but this simple model performs satisfactorily.

The proposal stage calculates a 99% confidence interval for the distance between submaps.

If the maximum distance for overlap is within the interval (or greater) then overlap is con-

sidered possible. The most likely link is the one that has the highest proportion of the

confidence interval within the maximum distance for overlap.

By proposing the most likely link within range the graph tends to 'zipper up' nodes,

closing loops last. Alternatively, the least likely link within range of overlap could be verified

first. Because it propose transformations with large uncertainty it relies heavily on being

able to match maps without useful priors. For the same reason there is a lower probability

that the nodes actually do overlap. This results in a low ratio of verified to proposed links.

The proposal and verification steps are repeated until the maximum number of allowable

links is achieved, which is user-defined. A good choice is eight times the number of submaps

which allows on average maps to connect to the previous and next map in the temporal

sequence and up to six other nearby maps.

5.4 Node Estimation: Global poses from relative poses

Our objective is to place nodes in a global frame such that they are consistent with all

the relative measurements (frame transformations). This can be formulated directly as an
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Figure 5-7: Four tracklines taken from the JHU tank data set used to illustrate the link proposal
and verification stage.(a) EKF track of the vehicle with circles marking the vehicle location when
acquiring images. Units are in meters. (b) and (c) Sample images of a bottom with both flat and
'rocky' sections.
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Figure 5-8: Start (a), intermediate (b), (c) and final (d) stages of the link proposal and verification

for four tracklines of the JHU data set (Figure 5-7). The temporal sequence was processed into 14

submaps (labeled at the origin of each submap). The layout of the nodes (submaps reference frames)

by composing transformations according to the shortest path algorithm. Black is the temporal

sequence, gray the shortest path and dashed additional links (not used in the shortest path). The

99% confidence ellipses for the node xy positions are shown in green. Units in meters.
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Figure 5-9: History of verified links color-coded and numbered
(a) Start with only links from the temporal sequence. (b) and
is the final adjacency matrix. Links are 'grown' by connecting
stages correspond to those in Figure 5-8.

according to the order of addition.
(c) are intermediate steps and (d)
closely related submaps first. The
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Figure 5-10: (a) Start, (b),(c) intermediate and (d) final relative transformation uncertainty shown
as the log of the determinant of the uncertainty as calculated by composition along shortest path

for the stages shown in figures 5-8 and 5-9.
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Figure 5-11: Evolution of the number of 3D features that are considered unique. As maps are
matched 3D features that correspond across submaps are fused into one unique 3D feature.
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Figure 5-12: The evolution of verified links plotted against proposed links.
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Figure 5-13: The evolution
terminants of the covariances
compositions.

of the uncertainty in the relative transformations. The sum of de-
plotted against link proposal. Estimated based on the shortest path

30

40

Figure 5-14: The adjacency matrix for (a) submaps and (b) images. Each 3D feature that is
matched between submaps links all images that view that 3D feature. Verified links appear as
white, proposed but not matched links in (a) are shown in black.
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Figure 5-15: The number of matching features between submaps.

optimization problem to yield either a batch nonlinear least squares or a recursive nonlinear

least squares solution [67] [19]. These approaches suffer from requiring to maintain the cross-

covariances between submap frames. Sharp et al [109] have proposed a cycle consistency

approach that operates in relative space but produces consistent global estimates without

having to estimate or store cross-covariances. The graph can be seen as a distributed

network and consistent, conservative global estimates can be generated through fusion by

covariance intersection [104].

5.4.1 Nonlinear weighted least squares

We seek to determine the global poses that best explain all the relative pose measurements

and respect the a priori distribution coming from navigation. By defining a cost function

associated with these discrepancies we can then optimize an initial guess.

We define ei as the disparity pose vector between the composition of the estimates of

global transformations "', 'T and the measured relative transformation '. Throughout

this discussion we use xR to represent an estimate of x. In Smith, Self & Cheeseman's [114]

(SSC) notation, the relative pose vector implied by the estimates of pose is obtained from

a tail-to-tail operation:
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xis = ekwi ( $cw (5.12)

where the transformation/pose parameters are related to the homogeneous transformation

as Xik = p(T). The disparity between the relative pose measurement xii (the MAP estimate

from imagery and navigation) and the relative pose -ij from the tail-to-tail composition of

estimates Rj and ki is the error measure we seek to minimize

eij = ERij @ xij = aij Gki e xij (5.13)

eij can be thought of as the residual transformation in a short cycle formed by the tail-

to-tail estimate of the transformation ekj e ki and the measured transformation by map

matching (or from the temporal sequence) xij. Ideally the residual transformation should

be the identity (corresponding to no rotation and no translation). We use the rotation

vector representation (where the direction of the vector specifies the axis of rotation and the

magnitude of the vector corresponds to the angle of rotation) for the orientation parameters

of the residual transformation [87].

eij = p (-1 I L'i "T) (5.14)

We also define the disparity between the global pose according to navigation and our

estimate of global pose

ej= p ("T-1iUT) (5.15)

or directly in SSC notation:

ei = ekwi E xwi (5.16)

In a similar fashion to [67] we seek a set of global transformations T* of all N submaps

T = {xwi ... XwN} that minimizes this error over all links. We formulate this as a weighted
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non-linear least squares optimization:

T =arg m nZe,, ,eleij + e1TE ei (5.17)
ij i

where Eij corresponds to the estimated covariance of e propagated from the covariance of

xji and Ei corresponds to the estimated covariance of ej propagated from the covariance of

xwi.

An alternative to minimizing the discrepancy between the composition of global poses

is to directly minimize the 3D distances between corresponding points of submaps, though

computationally more intensive because the number of equations is proportional to the

number of corresponding points instead of to the number of measured edges. However,

this reduces the sensitivity to poorly triangulated networks [1] where the error in the frame

transformations might appear small at the expense of large errors in the structure. The

error measure becomes

dijk = -Xk -,T -JXk (5.18)

T* =arg mmn djkITE dijk + e T'ei. (5.19)
ii k i

In cases where the frame-based refinement is unsatisfactory (i.e., the reprojection errors

for the implied camera poses are large or have strong biases) we switch to this cost function.

5.4.2 Fusion through covariance intersection

The problem of generating global pose estimates from multiple relative transformation mea-

surements can be posed as a data fusion problem where the estimates of the node poses

are refined by fusing the current estimate with the composition of a node linked to it and

the relative pose between them. Covariance intersection (CI) [54] is a conservative scheme

that allows fusing two estimates when the cross covariance between them is unknown. This

approximation is attractive because it breaks down the large nonlinear optimization prob-

lem into independent estimates for each node. Schlegel and Kimpke [104] apply CI to node
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estimation in a SLAM context. The basic update rule is

x -+ = CI ( t x ) (5.20)

where xwi e xij expresses the estimate of xwj according to xwi and the edge connecting

them.

In general, for an estimate xa the information matrix Hx. is the inverse of the covariance,

i.e. Hx. = P-1. CI weighs the estimates according to their information content in a convex

combination such that the uncertainty ellipsoid of the fused estimate contains the ellipsoids

from all possible cross-covariances.

HXc = WHx" + (1 - w)HXb (5.21)

xe = Hz~r(wHxaXa + (1 - w)HxbXb) (5.22)

In a network setting the update equation is used over all links and over all nodes until

the estimates and uncertainties converge. Unfortunately fusing estimates based on their

uncertainty in such a conservative fashion can result in estimates that are not strongly

constrained by measurements.

The shortest path algorithm allows for a fast and simple exploration of the topology

of the network. As an initial guess to optimize global transformations, the shortest path

estimate ignores cycles that in some cases might lead the global optimization to a local

minimum. Preliminary tests using CI as a refinement of the shortest path initial guess

suggest that the initial residuals tend to be smaller when using the CI refinement. This

probably stems from CI using all link constraints.

5.4.3 Camera poses from submaps

Once submaps are placed in a global frame it is then possible to place the cameras that

form the submaps in the same global frame. These cameras in the global frame are used as

the initial guess for the bundle adjustment of the complete data set.
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Figure 5-16: Plan view (xy) of the placement of submaps for the four JHU tracklines in a global
frame. (a) features color-coded by submap. (b) The convex hull of the submaps shows high overlap
in the temporal sequence and varying degrees of overlap across track.
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By construction the pose of each camera in a submap is in the frame of the first cam-

era. The transformation from the node to the global frame can be composed with the

transformation of the camera pose to the node origin.

Since temporally adjacent submaps share cameras there is more than one way of mapping

the cameras that are common between submaps. We use the geometric mean [86] of the

pose estimates according to each submap (in the global frame) to obtain an initial guess of

the camera positions.

5.5 Bundle Adjustment

Once camera poses are in the global frame the same sparse bundle adjustment routine used

to close the submaps is used on the entire data set. We obtain the maximum a posteriori

estimate by including cost terms associated with the navigation measurements, as described

in 4.5.
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Figure 5-17: Results from bundle adjustment of the four tracklines from the JHU tank. (a)
Recovered cameras (xy plane). The trajectory is highlighted by red links while additional spatial
links appear as green. Every tenth camera is identified with its place in the temporal sequence. Units
in meters. (b) The 99% confidence ellipses for the xy position according to the bundle adjustment,
assuming that the xy coordinates of the frame are fixed at the first camera. (c) and (d) two views
of the reconstructed terrain with the camera poses and links.
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Chapter 6

Validation and Results

6.1 Approach

The structure from motion problem is solved by gathering data with redundancy (multiple

views), identifying the redundancy (corresponding features in multiple views) and enforcing

consistency between model and data (by minimizing the reprojection error of estimated 3D

points on estimated views). To a limited degree the quality of the reconstruction can be

assessed by the behavior of the residuals [72] with qualitative assessments such as the dis-

tribution and magnitude of reprojection errors reflecting the presence of systematic effects.

The presence of outliers can sometimes be noted in the observation residuals although this

is not always the case since the measurement might not detect certain errors (for example,

a two view mismatch will not have a large error if the incorrect match is along the correct

epipolar line). The precision of the reconstruction is derived from the covariance of the

recovered parameters (pose and structure). But these checks are based on self-consistency

between model and measurements which, by definition, is what we try to optimize in the

SFM solution. Thus they do not provide insight into the quality of the model relative to

the scene.

The underlying goal is to produce an accurate reconstruction, so that the recovered pa-

rameters closely describe the state of the world. This cannot be determined by examining

just the solution since a very consistent (precise) solution might still not be accurate (for

example the scale might be off). For this we must use some form of ground truth. Under-
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water this can be particularly difficult since alternative measurement forms based on sound

are limited in resolution or range. This chapter presents validation of the thesis framework

through a small scale experiment with position and structure ground truth.

Results from a coral reef survey demonstrate the applicability to real world data and

provide an opportunity to discuss some sensor bias and offset corrections based on self

consistency.

6.1.1 Assumptions

* Realistic sensor frame calibrations. Measurements of sensor to vehicle frame transfor-

mation usually have small errors that affect long term navigation estimates.

" Self consistency in the estimated pose and structure can be used to identify and correct

for biases in sensor readings and errors in the transformation from sensor to vehicle

frame.

6.2 Validation: Test Tank

6.2.1 Context

Limited access to the ocean floor makes it particularly difficult to directly validate results

from a survey. To generate a data set with ground truth we used the SeaBED camera system

on the Johns Hopkins University (JHU) Remotely Operated Vehicle (ROV) at the JHU test

tank (Figure 6-1). The JHU ROV carries a similar navigation suite to the SeaBED AUV.

In addition the tank is instrumented with Sharps, a high frequency (300 kHz) acoustic long

baseline positioning system which provides an independent, absolute position estimate with

sub-centimeter accuracy based on triangulating travel time to transponders.

A single light sources attached to a vehicle can cast shadows that alter the appearance

of the scene depending on the heading of the vehicle. This reduces similarity and impacts

our ability to match images and submaps that are not adjacent in the temporal sequence.

Significant improvements may be realized by using two light sources on the vehicle as shown

in figure 6-1(d). For ROVs which have access to essentially unlimited power, such a lighting

configuration could be operationally viable. For AUVs this might require a trade-off in range
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(a) (b)

(c) (d)

Figure 6-1: (a) The JHU ROV on deck. Light booms are visible fore and aft. (b) The JHU test
tank, with the ROV visible on the right. (c) A down-looking view into the tank as it was being

filled. The carpet and rocks are visible.(d) The swimming ROV as seen through a view port. The

dual light configuration reduced cast shadows.
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and mission duration, although the advent of LED based lighting systems may enable such

multiple light-source configurations.

Results from the SFM reconstruction are shown in Figure 6-2. The evolution of the

submap links and the number of common features between submaps and the plane view of

the submap layout are shown in Figure 6-3. The reprojection errors for all measurements

and their distribution are presented in Figure 6-4. Some outliers are apparent in the re-

construction, though their effect is reduced by the Cauchy M-estimator. Figure 6-5 shows

feature tracks of the third submap color-coded according to reprojection error magnitude.

For that submap most features persist between two to five views in a submap that consists

of 10 images.

After surveying with the ROV the tank was drained and the bottom scanned with an

area laser scanner. Several million range and bearing measurements were registered to form

a 3D point cloud of the tank bottom with millimeter accuracy.

6.2.2 Structure ground truth

A team from Cullinan Engineering Co. scanned the tank using a Leica Geosystems -

HDS2500 (serial number P24) laser scanner. The scanner generated five swaths of the tank

bottom from different vantage points along the rim of the tank. The swaths were then

registered aided by reflecting markers positioned on the scene before scanning. The Leica

Cyclone package was used to register a set of more than 3.8 million points to an estimated

accuracy of 1.2 mm. Since ranges were on the order of 5-6 m this is better than the usually

quoted 4 mm accuracy at 50 m. The surface area was approximately 41m 2 resulting, on

average, in 9 range measurements for each cm2 of the bottom.

We initially aligned SFM reconstruction with the laser data by selecting easily recog-

nizable landmarks (Figure 6-6) and then refined through ICP. We note that the carpet

was slightly buoyant underwater and was kept on the bottom by multiple lead weights and

that after the tank was drained the carpet settled under its own weight. We attempted

two registration strategies to overcome the non-rigid transformation between surfaces: us-

ing only points belonging to rocks to register (segmenting by height under the assumption

that the rocks in the scene did not move), and performing ICP based on the points with
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Figure 6-2: Two views of the reconstruction of poses and structure for the JHU tank. The camera

poses are connected by a red line. A Delaunay triangulation interpolates a surface between 3D

feature points. The structure is color-coded according to height. Units are in meters.
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Figure 6-3: (a) Order in which links across track were added to the graph. The 'zipper' effect in
parallel tracklines is apparent as links close in time are established before more distant ones. (b)
The number of matching features between submaps. The closing of the loop can be seen in the
relatively high number of common features between the first and last submaps. (c) The plan view
of the submap origins according to the shortest path algorithm: the temporal sequence (fine black),
the additional links (dot-dashed blue) and the shortest uncertainty path from the origin node (wide
gray).
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Figure 6-4: (Left) The reprojection errors (both x and y coordinates) for all reconstructed features.

Some outliers are present though their effect is reduced by using an m estimator in the bundle

adjustment.(Right) A histogram of the same errors. For visualization purposes 95% of the features
with lowest associated reprojection errors are displayed in the reconstructions of Figure 6-2.

image # (in submap)

Figure 6-5: The feature tracks and the norm of the reprojection error for the third submap.
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registration errors below the median error (under the assumption that at least half the

points remained fixed). Results were very similar for both strategies and we present the

median-based approach since it highlights regions where the carpet moved.

Figures 6-7 and 6-8 indicate that the registration errors are of the order of centimeters

with a 2% change in scale. Though the tank is a relatively small scale reconstruction

problem, these results suggest that the approach is capable of delivering reasonable estimates

of scene structure.

By using points below the median error to calculate the similarity transformation to

register the SFM and laser data we effectively segment the data into two halves, one of

which was allowed to deform while the other was not. It is interesting to note from Figure

6-9 that most of the outliers correspond to the broad carpet waves.

6.3 Results: Bermuda survey

6.3.1 Context

In August 2002 the SeaBED vehicle performed several transects on the Bermuda shelf as

well as some shallow water engineering trials. This section presents results from a shallow

water (20 m approx) area survey programmed with several parallel tracklines for a total

path length of approximately 200 m and intending to cover 200 m2 . Due to very strong swell

and compass bias the actual path deviated significantly from the assumed path. This data

set illustrates the capabilities to infer links in the graph of submaps to yield a consistent

reconstruction.

6.3.2 Single Loop

A section of 62 images where the camera trajectory approximately folds back on itself shows

matching and reconstruction along the temporal sequence and across track. Figure 6-10

presents Delaunay triangulated surfaces trough the reconstructed points and the camera

trajectory. Plan views of the camera trajectory, the links (common 3D features) between

views and the uncertainty in the xy position of the cameras are shown in figure 6-11.

Figure 6-12 shows features points and the convex hull of the submaps. Spatial overlap
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Figure 6-6: (Top) Height map from the SFM reconstruction. Surface based on a Delaunay trian-

gulation. The labeled points were manually selected for the initial alignment with the laser scan.

(Bottom) Height map from the laser scan. The outline of the manually registered SFM reconstruc-

tion is shown in green.
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Figure 6-7: Distance map from SFM 3D points to the laser scan after ICP registration. Areas of

large discrepancies tend to correspond to the carpet being buoyant for the visual survey. An outlier

in the reconstruction produced the large error visible at approximate x=1.4 m,y=0.8 m.
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Figure 6-8: The distribution of minimum distances to the laser scan from each recovered 3D point.

Because of the moving carpet only the points below the median error were used to calculate the

registration transformation. The similarity based registration results in an RMS distance of 3.6 cm.

Scale is recovered to within 2%.
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Figure 6-9: Points below the median error (green) and above (red). Registration parameters where
calculated using points below the median error. By referring to Figure 6-6 outliers tend to group
around the smooth, raised folds of the carpet which clearly do not correspond to the drained carpet
surface.

141

IIMMMI _ - __ Z ;Z; - - = -__ - , _1 - - --------- --- - - - - - , - - - = -0

3



30

25

-2

* -20

-15

10

-10

-1 0 1 2 3 4
X

30

-17

-19 25

-19 -

-20 20

-21

15

-2 10

-4

-6

Y -10

-1 0 1 2 3 0

x

Figure 6-10: Two views of the reconstruction as a surface through the recovered 3D points. The
camera trajectory is also presented as a red line. Strong swell significantly perturbed the vehicle
trajectory yet the consistency of the reconstruction is apparent in the persistent features such as the
sand ripples on the bottom.
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Figure 6-11: (Left) Plan view of the camera trajectory (red) and common features between cameras
(green links). (Right) The 99% confidence ellipses for the xy position of the cameras. Every tenth
camera is numbered on both figures to suggest the temporal sequence.
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Figure 6-12: (Left) Plan view of the features for each submap. (Right) Convex hull of the 3D
features of each submap. The varying degrees of spatial overlap between submaps is apparent in
these figures.

between temporally adjacent submaps is consistent while across track overlap is a function

of the trajectory followed by the vehicle.

6.3.3 Multiple Passes

A section of 169 images demonstrates matching and reconstruction along the temporal

sequence and across track with multiple passes over the same area. Figure 6-16 presents

Delaunay triangulated surfaces through the reconstructed points and the camera trajectory.

Plan views of the camera trajectory, the links (common 3D features) between views and

the uncertainty in the xy position of the cameras are shown in figure 6-17.

Figure 6-18 shows features points and the convex hull of the submaps. Spatial overlap
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Figure 6-13: (a) Order in which links across track were added to the graph. The 'zipper' effect is
apparent as links close in time tend to be established before more distant ones. (b) The number
of matching features between submaps. The closing of the loop can be seen in the relatively high
number of common features between the first and last submaps. (c) The plane view of the submap

origins according to the shortest path algorithm: the temporal sequence (fine black), the additional
links (dot-dashed blue) and the shortest uncertainty path from the origin node (wide gray).

145

I.

I - -,

_51M Wif.

1000

900

.700

400

300

200

100

2

4

30

25

15

10

5

0



1 2 3 4 5 6 -15

X 10

-10 er 5
reprojection MrWo (pixels)

Figure 6-14: (Left) The reprojection errors (both x and y coordinates) for all reconstructed features.
Some outliers are present though their effect is reduced by using an m estimator in the bundle
adjustment.(Right) A histogram of the same errors. For visualization purposes 95% of the features
with lowest associated reprojection errors are displayed in the reconstructions of Figure 6-10.
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Figure 6-15: The reprojection error for submaps 10 (left) and 14 (right) displayed in a feature
versus image number matrix. Most feature tracks persist between two to five images.
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between temporally adjacent submaps is consistent while across track overlap is a function

of the trajectory followed by the vehicle.

6.4 Self Consistency for calibration and corrections

The self-consistency imposed by refining camera poses and 3D structure provides an oppor-

tunity to refine some biases and errors present in vehicle sensors.

6.5 Compass Correction

A compass, such as the TCM2 magneto-inductive electronic compass used on the SeaBED

AUV, is a low cost option for a heading reference in underwater navigation. The magnetic

field around the compass can be affected by ferrous metals distorting the heading measure-

ments. Though these effects can be minimized by hard and soft iron calibration, errors of

a few degrees remain. A 3D reconstruction from imagery has 7 gauge freedoms including

orientation and it is not possible to infer absolute heading from it. However, it is possible to

calculate relative transformations independent of the gauge. We propose using the relative

transformations between cameras of a bundle adjusted reconstruction as measurements to

compare to the relative headings according to the compass measurements.

If we compare the image-based heading to the compass heading we observe that the

difference (headingim - headingnav) has a roughly periodic nature to it (Figure 6-19).

This difference can be thought of as a correction term to be added to the compass

heading to make it consistent. This correction does not guarantee that the compass North

will correspond to true North, it only attempts to make changes in heading consistent

throughout the unit circle. We describe the correction as a truncated Fourier series and

solve for it via linear least squares. Given that the data appears quite noisy we only consider

up to the fifth harmonic.

Ahc(hnav) = aicos(hnav) + bisin(hnav) + a2 cos(2hnav) + b2sin(2hnav) +... (6.1)
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More compactly

5

Ahc(hnav) = ao + Y akcos(k . hnav) + bksin(k - hnav) (6.2)
k=1

Given multiple measurements between heading according to imagery him and the com-

pass hnav we form a system of equations

a0

1 c(hnavi) s(hnavi) c( 2 hnavi) s(2hnavi) ... s(5hnavi) himi - hnavi

1 c(hnav2) s(hnav2) c( 2 hnav2) s(2 hnav2) ... s( 5 hnav2) him2 - hnav2
a 2  =

1 c(hnavN) s(hnavN) c(2 hnavN) s( 2 hnavN) ... s(5 hnavN) . hjmN - hnb2N

b5

(6.3)

and solve for the vector of coefficients [aoaib i ... b5]T. Once the compass correction is

available it is possible to reduce the assumed heading sensor noise in the Kalman filter and

improve inter-image matching. Figure 6-20 shows the effect of compass correction on the

data it was derived from. As expected, the corrected navigation-based trajectory is closer

to the image-based trajectory. Figure 6-21 presents results of applying the correction on

a completely independent data set. The navigation-based trajectory is consistent with the

image-based trajectory once the compass correction is considered.
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Figure 6-16: Two views of the reconstruction as a surface through the recovered 3D points. The

camera trajectory is also presented as a red line. Strong swell significantly perturbed the vehicle

trajectory.
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approximating curve is fit using a truncated Fourier series.
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Figure 6-20: (Top) Plane view of the original navigation-based trajectory. (Middle) Image-based

trajectory after bundle-adjustment. (Bottom) Corrected navigation-based trajectory.
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image-based trajectory (blue uncertainty ellipses). For the corrected case the image-based solution

is within the uncertainty of the navigation. Figures courtesy of Ryan Eustice [21].
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Chapter 7

Conclusions

This thesis has presented a framework for large scale structure from motion from au-

tonomous underwater vehicles. By recognizing the constraints and challenges in underwater

imaging, as well as taking advantage of the additional information provided by navigation

sensors this framework is able to produce corrected paths and 3D ocean floor reconstructions

from real survey data.

7.1 Limitations

Vision-based mapping relies on being able to relate images. Using interest points as features

to match assumes that the scene will provide a sufficient density of such features. While

navigation allows us to relate images that do not overlap, the uncertainty is higher and the

map may contain 'holes'. The data used in this thesis was rich in textures such that the

dreaded 'featureless bottom' did not occur.

Map matching is conservative, meaning that the system tends to miss overlapping

submaps instead of proposing incorrect matches. This is mostly due to matching based

both on appearance and geometry. A missed match leads to repeated features and fewer

constraints on the reconstruction. These errors might not be apparent at all if there is

enough redundancy in matches, or might lead to obvious shifts when the missed link was

one of the few that should have been established. This conservative approach is in evi-

dence in the missed links in the multi-pass Bermuda data set reconstruction (Figure 6-17).
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An improved approach to submap matching would limit the correspondence search between

submaps when the uncertainty of the prior transformation is deemed small enough. Submap

matching could also be reexamined once additional links are established that suggest that

overlap should exist.

Minimization of runtimes was not a priority of this thesis. In fact, our current imple-

mentation runs in Matlab. Runtimes for processing the larger datasets were of the order of

10 hours.

7.2 Future work

7.2.1 Large Scale Autonomous Mapping

This framework explicitly focused on producing an initial guess for bundle adjustment. The

temporal image sequence is considered an ordering device rather than a causal constraint.

For autonomous mapping and localization a real time implementation is needed. Eustice

[21] and others are already working on image based navigation but there are still many open

questions on how to bring together SLAM and underwater imaging, specifically to deliver

data of interest to oceanographers.

7.2.2 Imaging Underwater

This thesis demonstrated 3D reconstructions underwater assuming a simple imaging con-

figuration of a single camera and a single strobe light. Insight gathered in the process

suggests that significant improvements could be realized by designing an imaging configu-

ration specifically for underwater structure from motion. For example, the approach used

in this thesis benefits from having a motion prior from navigation. This could be improved

upon by using two or more cameras with fixed baseline to complement the scale estimates

from the Doppler Velocity Log. In addition, more images would be acquired for the same

amount of energy expended in lighting.

Improvements in imaging sensors and lighting offer the potential of high dynamic range

imagery at video rates under battery power. By narrowing the baseline, matching along the

temporal sequence will be simplified. How to best match images or submaps across track
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remains an open question. Recent results [62] and [98] suggest that more sophisticated

lighting and camera arrangements could play an important part in improving matching by

engineering the lighting and shadows in a scene.

7.2.3 Applications

The ability to use images to measure and come up with estimates of uncertainty will bring

some of the fruits of photogrammetry to underwater archeology such as being able to mea-

sure objects and generate euclidean 'sketches' of an underwater site.

The sparse structure produced so far can lead to dense surface reconstructions through

dense stereo and dense multi-view algorithms. With dense range estimates it should be

possible to correct for range and wavelength-dependent attenuation of light underwater,

improving the quality of the imagery delivered by underwater vehicles.

The self-consistency of the SFM reconstruction could be exploited to fully calibrate the

sensor frames and biases (up to gauge). This would be of great value in establishing self-

consistency in other sensing modalities such as sonar where effective self-similarity measures

are not possible.
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Appendix A

Camera model and Multiple view

geometry

The estimation of structure and camera poses from overlapping imagery can be understood

in the context of image formation and the relationship between views of a scene. We consider

images as the 2D projection of a 3D scene and present a camera model for the process.

A.1 Camera

The pinhole camera model captures the essence of the image formation process. The camera

can be abstracted to a center of projection (the pinhole aperture) and an imaging plane. A

3D object point will be mapped onto the imaging plane along the ray that joins the object

point and the center of projection. The basic principle at work is the collinearity of the

three points that define the ray: the object (3D) point, the center of projection (pinhole

aperture) and the image point.

Consider an euclidean frame with its origin at the center of projection of the camera. X

and Y directions are along the imaging plane and the Z direction is out into the scene. The

imaging plane is at a distance Z = 1 from the center of projection (and parallel to X, Y).

A scene point [X, Y, Z]T will be mapped onto x = X/Z and y = Y/Z by similar triangles.
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X

p

C

Figure A-1: The pinhole camera. The ray from the scene point X to the camera center c intersects

the imaging plane at x. The imaging plane is at a focal length f from the camera center. The

projection of the camera center onto the imaging plane is the principal point p. The ray from c to

p is the optical axis (dashed).

In homogeneous coordinates this can be expressed as

X
X 1 0 0 0

Y
y[ = 0 1 0 0 (A.1)

Z
L 1 J L 0 0 1 0 L 1 J

where the equality holds only up to scale for homogeneous quantities. For compactness

we define the vector representation x = [x, Y]T, as well as its normalized homogeneous rep-

resentation x = [xT, 1]T. Likewise we define a vector of the imaged scene point in cam-

era frame coordinates as X = [X, Y, Z]T and its normalized homogeneous representation

_ = [aT, I]T. We can now express the projection as x = MX.

Intrinsic parameters

At this point the projection has only scaled Euclidean rays to scene points, such that the

rays extend from the projection center to the imaging plane. In practice, the image of

a scene point is reported in a reference frame that does not correspond to the physical

direction of the ray. We assume that image coordinate [u, v]T for a ray [x, y]T is available
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from a CCD or CMOS sensor and that the additional coordinate transformation accounts for

scaling (from a focal length f different than Z = 1 and from the pixel size) and translation

(the origin of the image is usually the top left corner rather than the projection of the

projection center onto the imaging plane), as well as skew in the pixel shape or array. This

affine coordinate frame transformation can be expressed as an upper triangular matrix of

intrinsic parameters, known as the calibration matrix K such that u = Kx. In more detail

U ax S UO X

V = 0 ay VO y

1 0 0 1 1

where ax is the focal length in pixel widths, ay is the focal length in pixel heights, (uo, vo)

is the coordinate of the principle point in pixels, and s is the skew in pixel shape. If K

is known, the camera is considered calibrated. This allows recovering ray directions from

pixel coordinates such that x = K-1u.

Exterior orientation

Scene point coordinates are normally expressed in a different reference frame than the

one used by the camera, in particular if a scene is viewed from multiple cameras. The

projection of a world point 'X onto the camera imaging plane must consider the coordinate

frame transformation from world to camera reference frame.

CX = [ R tcW]UX (A.2)

where %R is the [3 x 3] orthonormal rotation matrix from the world frame to the camera

frame, and See is the translation from the origin of the camera frame to the world frame

as seen in the camera frame.

The image point of a scene point is world coordinate frames is then

u = K[R I'tcw]uX (A.3)

and we define the camera projection matrix as P = K[cR lt,].
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Deviations from the ideal pinhole

In practice, real cameras use lenses that capture more light than a pinhole camera, at the

expense of not exactly satisfying the collinearity constraint. Radial distortion, in which

projected points differ by a radial displacement from the ideal (linearly projected) points

is usually the most significant deviation for short focal lengths. Decentering distortion

introduces both radial and tangential components and is usually associated iwth lenses not

being perfectly aligned. The distorted ray [xd, yd]T can be expressed in terms of the ideal

ray and distortion terms [411:

Xd 1 JXX+ Xt 1(A.4)
Yd y + yr +Yt J

where the radial distortion 6 Xr and JYr terms are approximated by a series expansion

[Xr x(kir2 + k2r
4 + (A.5)

JYr y(kir2 + k2 r4 +...)

with r = /(x - xc) 2 + (y - yc)2 and (xe, yc) the center of radial distortion. Usually two

or three terms are sufficient to account for most of the distortion. Likewise, the tangential

terms Jxt and 6 yt are approximated by

LXt 2pxy + p2(r2 + 2X2) (A.6)

6 yt pi(r2 + 2y2 ) + 2p2xy

These expressions represent the forward distortion model, which is convenient when

attempting to determine the distortion parameters and ideal rays via optimization. To

correct an image it is necessary to apply the inverse distortion model, which can be inverted

locally from the direct model.

Underwater imaging through flat glass plates introduces significant radial distortion due

to refraction from the air-glass interface and the glass-water interface. For practical fields

of view (greater than 200) this effect should not be ignored. This thesis assumes a camera

calibrated in water. We use a variant of the procedure recommended by [41].
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Figure A-2: Two view geometry. The rays xx' and t form the epipolar plane. This plane intersects
the imaging planes in the epipolar lines.

A.2 Multi-view Geometry

The recovery of structure and motion from multiple images relies on tightly coupled pa-

rameters: the scene structure parameters expressed relative to some reference frame, the

camera parameters (internal and external orientation) and the correspondences which as-

sociate scene points to their projections. It is important to understand how views of a

common scene are related.

A.2.1 Two View Geometry

Given an image of a scene point, the collinearity condition implies that the 3D point must lie

on the ray back-projected from the projection center of the camera and through the image

point of the point on the imaging plane. On a second camera viewing the same scene, this

ray will be imaged as a line and the image of the 3D point in the second camera will lie on

that line, known as the epipolar line. The epipolar plane contains the scene point and the

camera centers such that the rays from the camera centers to the scene points and the ray

between camera centers (the baseline vector) all lie in the plane, satisfying the coplanarity

constraint for image points in correspondence (Figure A-2 and A-3).

The epipolar lines are the intersection of the epipolar planes with the imaging planes.
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Figure A-3: Multiple epipolar planes intersect on the baseline t and define the epipoles e and e'
on the imaging planes.

They correspond to the image the ray going from the object point to one camera makes

on the other camera. Multiple epipolar planes (for different scene points) will all contain

the camera centers and the baseline vector joining them. The epipoles are the intersection

of the baseline with the imaging planes and correspond to the image of the one camera's

center on the other view.

In order for the image rays and the baseline vector to be on a plane their triple product

must be null. Assume projective camera matrices P = K[I 10] and P' = K[R It]. The triple

product for a ray x in the first camera, its corresponding ray x' and the baseline t in the

reference frame of the second camera is

xT . (t x Rx) = 0 (A.7)

Where Rx is the rotation of x into the frame of the second camera. We define the

essential matrix E as

E = [t]x R (A.8)

where [t] x is the skew symmetric matrix based on t such that [t] x a = t x a. The essential

matrix encodes the relative pose between two cameras up to scale of the baseline. The
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epipolar constraint is expressed as

XITEx = 0 (A.9)

The elements of the essential matrix can be recovered up to a scale factor from point

correspondences.

In the case of uncalibrated cameras, the epipolar constraint is still valid between pixel

coordinates given that x = K-1u:

x'TEx = u'TK-TEKu (A.10)

The fundamental matrix F = K-TEK then satisfies u'TFu = 0.

Most recent multi view computer vision applications rely on this relationship to calculate

an fundamental matrix from correspondences and given an fundamental matrix, restrict the

search for correspondences.

A.2.2 Triangulation

If camera poses and image points of a scene point are known, it is possible to determine the

location of the scene point by intersecting the rays back-projected from each camera. Linear

triangulation methods are simple but do not minimize a physically meaningful quantity in

the case of noisy measurements. Starting from the collinearity condition xi = PiX =

RiX + ti and taking the cross product x x PiX = 0 or [xi]xRiX = [x]xt; each view of a

3D point provides two independent equations, so that with two views it is possible to solve

for the three unknowns of X.

If the projections are noisy it is possible to solve for the ideal projections that satisfy

the epipolar constraint and intersect [40].

Another possibility is to use the noisy measurements and solve for a 3D point that

minimizes the distance to all rays that should intersect but don't because of noise [15].
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Appendix B

Sensors and Navigation

B. 1 Overview

The imagery collected in optical surveys of the ocean floor presents a challenging application

of traditional structure from motion techniques. Since underwater vehicles are the platform

of choice for deep or extensive surveys the additional instruments on the vehicle can be used

to increase the reliability of the reconstruction process. This chapter describes the basic set

of navigation instruments on an ocean-going AUV, and a recursive filter implementation to

estimate the vehicle trajectory.

B.2 Sensors on robotic underwater vehicles

We used a pose instrumented underwater vehicle with a downward-looking calibrated cam-

era. The vehicle has the basic set of instruments used for scientific surveys. It uses an

acoustic Doppler velocity log (DVL) [99] to measure velocity and altitude relative to the

bottom. Typical speeds are in the order of 0 to lm/s with accuracies in the order of mm/s.

Absolute orientation (in the world frame) is measured to within a few degrees over the

survey area by a magnetic compass and inclinometers. A pressure sensor provides depth

measurements with depth-dependent accuracies on the order of 0.01% which can be consid-

ered as a bounded accuracy. A rate sensor provides angular velocities with accuracies on

the order of 1 /s. Table B.1 summarizes the sensors and their characteristics. The vehicle

167



Variable Instrument Precision Type Range Update Rate
Body Velocities (u, v, w) Bottom-Lock DVL 1 mm/s Proprio 30-200 m Fast: 1-5 Hz
Heading 0 electronic compass 20 Extero 3600 Medium: 1-2 Hz
Roll/Pitch (0, 0) 2-axis tilt sensors 0.50 Extero 200 Medium: 1-2 Hz
Depth (z) Pressure sensor 0.01 m Extero full ocean Medium: 1 Hz
Altitude Altimeter / DVL 0.1 m Extero Varies Varies: 0.1-10 Hz
Angular Rates (p, q, r) 3-axis gyro 10/s Proprio 500 /s Fast: 5-10 Hz

Table B.1: Summary of sensors typically used on oceanographic AUVs.

xy position is estimated from integrating velocities which leads to an unbounded growth in

the uncertainty. Though external references for xy based on triangulation with beacons are

certainly used in oceanography, and the framework we propose can take advantage of it,

we focus on the case where no additional beacons are deployed as this mode of operation

seems particularly suited for fast, low cost exploration with AUVs.

AUVs have limited power budgets that do not allow for continuous lighting with conven-

tional sources (incandescent bulbs). Instead, strobed lighting is used to acquire still images.

For extended surveys, the lowest overlap admissible for the scientific objectives is used since

energy consumption of the strobe is proportional to the number of images acquired.

B.3 Vehicle and sensor frames

Each sensor provides a measurement of pose in a specific frame of reference. We assume this

measurement corresponds to a random variable. For engineering purposes, the measurement

is described by the first two moments (mean and covariance). We wish to estimate the

trajectory of the vehicle given multiple measurements. The trajectory can be thought of as

a time-varying pose. The vehicle state is formed by the pose and additional variables useful

for state propagation.

The local-level frame is a convenient reference frame to describe the vehicle pose. It

corresponds to a right-hand frame positioned at the surface of the ocean (zero depth) with

axes oriented as +X - North, +Y -4East, +Z -- Down. The 6DOF vehicle pose vector
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xe, describes the vehicle frame relative to the local-level frame:

xef = E (B.1)

Where ftev = [x, y, z]T is the position (the vector from local-level origin to vehicle frame

origin as described in the local-level frame) and 3f, = [4, 0, 4 ]T is the orientation repre-

sented by roll, pitch, heading Euler angles [34].

Vehicle motion is represented in a body-fixed frame with a generalized velocity vector V

Ilu
V = (B.2)

Where vu = [u, v, w]T is the vector of body-frame linear velocities and VW = [p, q, r]T is

the body-fixed angular velocity [34].

The linear velocities transformation from body-frame to local-level is given by Iev =

A(8ee)"u where the orthonormal rotation matrix t(Eej) = Rz,4 Ry,oRx,4 follows the zyx-

convention for Euler angles [34].

The angular velocity transformation expressing body frame angular rates as time deriva-

tives of the Euler angles e& = Te(9Ev)vw where Te(8 ev) is more easily described by the

inverse transformation:

0 0
T= + R RkR o 0 I T 1 (8ev)eev (B.3)

0 0

The 6DOF kinematic equations transform the velocities in body-frame to the local-level:

eiev _ (8Ev) 03x3 [ u (B.4)
0&e 0x3 Te (EOe) VW

which can be summarized as:

xet = M(xf')v (B.5)
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B.4 Vehicle trajectory estimation

We propose using an Extended Kalman filter (EKF) [6] to generate estimates of the vehicle

pose based on navigation sensors. Poses derived from instruments were used in the pro-

cess of generating a 3D reconstruction from imagery to constrain searches and regularize

optimizations. The standard Kalman filter formulation requires defining a state vector,

a process model that describes the evolution of the state and an observation model that

relates the state to sensor measurements.

The vehicle state vector as the vehicle pose and generalized velocities

x = (B.6)

Though our principal goal is estimating the vehicle pose at instants when images were

acquired, the velocities aid in propagating the vehicle pose through time, as suggested by

the kinematic equations of the previous section.

We assume the vehicle state evolves according to a process model fv(t) driven by white

noise w(t) - N (0, Q(t)). The sensor measurements are incorporated through a discrete

time observation model hv(tk) in the presence of time-independent additive Gaussian noise

v [tk] ~ N (0, Rk) which is uncorrelated with the process noise, E [wvT].

xv(t) = f, (xV (t), t) + w(t) (B.7)

z [tk] = hv (xv [tk] ,tk) + v [tk] (B.8)

The vehicle state x, and its covariance Pv are estimated using extended Kalman filter (EKF)

equations for the system B.7 with Jacobian of the process model Fv = Xavt",t and

of the observation model Hv = Ohxt ,tk)
OXv tke ps [t]

*The prediction step is given by
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X, = fV (RV (t), t) (B.9)

P,(t) = FvP,(t) + Pv(t)Fv + Q(t) (B.1O)

* while the update step is given by

K P;-HT HvP;-HT +R (B.11)

R+ = :;- + K [[t]- hv(R;- tk)] (B. 12)

P = [I - KHv] P;- [I - KHv]T + KRkKT  (B.13)

B.5 Vehicle process model

An underwater imaging platform has relatively slow dynamics. We choose to approximate

the vehicle dynamics with a constant velocity process model.

'v [ 06x6 M(xev) x&F 06xl (B.14)
L 0 6x6 06x6 J w

where M(xev) encodes the generalized velocity transformation from vehicle to local-level

(B.4), and w, = [w T, wT]T is the process noise that accounts for unmodeled dynamics. The

process model allows us to propagate the state between navigation sensor measurements,

essentially rotating body frame velocities into the local-level. Since the process model is

time varying and nonlinear, the prediction is performed by using a 4th order Runge-Kutta

approximation to integrate the state derivatives.

B.6 Vehicle observation model

We seek to estimate the pose of the vehicle in the local-level frame using multiple sensors.

Navigation sensors can be abstracted into proprioceptive sensors that measure motion of
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the vehicle in the sensor frame and exteroceptive sensors that provide information about

the vehicle pose relative to its environment. Proprioceptive sensors include the Doppler

Velocity Log (DVL), angular rate sensors, accelerometers, wheel encoders, etc. A robot's

change in pose can be estimated by integrating these measurements in the appropriate

reference frame. Exteroceptive sensors include the depth sensor (which measures range to

the surface), the compass (for heading relative to the local magnetic field), and tilt sensors

that provide orientation relative to gravity. Receivers that triangulate ranges from acoustic

beacons and GPS receiver are also exteroceptive sensors.

B.6.1 Proprioceptive Sensors

Proprioceptive sensors provide motion measurements in the sensor frame, which can be

transformed into the vehicle frame by knowledge of the static sensor to vehicle transfor-

mation. Proprioceptive measurements can then be placed in the local-level frame by using

the rigid body transformation implied by the vehicle pose. However, the estimation process

uses the discrepancy between the predicted measurement according to the current state esti-

mate and the actual measurement to correct the state estimate. For proprioceptive sensors

we choose to use the measurement in the sensor frame as the observation which requires

formulating an observation model that transforms the vehicle state into a predicted sensor

reading in the sensor frame.

The coordinate transformation from vehicle to sensor frame can be represented by a

homogeneous transformation:

O = (B.15)
O1x3 I

Since these sensors measure motion the velocities and angular rates in the vehicle frame

are expressed in the sensor frame as

su = (vu + vw x "tvs) (B. 16)

sw =R. (B.17)

where ' = T-1 is a fixed transformation that describes how the sensor is mounted relative
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to the vehicle reference frame.

B.6.2 Exteroceptive Sensors

Exteroceptive sensors express the sensor pose in the sensor local-level frame so. In its general

form the observation model expresses the vehicle to local-level transformation as a sensor to

sensor local-level transformation by use of the static vehicle to sensor transformation and

sensor local-level to (vehicle) local-level transformation. In homogeneous transformation

notation:

-oT = 8 -T - - . "T. (B. 18)

This composition of coordinate frame transformations can also be expressed compactly

using Smith, Self and Cheeseman's notation [114] as

x =sxs x e X (D xs. (B.19)

It is common that the sensor local-level so corresponds to the vehicle local-level f in

which case "T is the identity transformation. This is the case for the depth sensor and the

compass and tilt sensors.

B.6.3 DVL observation model

The observation model for the DVL, which returns velocities du is

du = ("uV + V" x Vt) (B.20)

B.6.4 Rate sensor observation model

The observation equation for the orientation rates from the gyroscope are

9w = R -v. (B.21)
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B.6.5 Depth sensor observation model

In most cases, the sensor provides only partial pose information. For example, the Paro-

scientific depth sensor provides pose information of the z coordinate of the sensor in the

local-level, ezep. This can be extracted from B.18 to yield

ze =I--- i vtvP + ze (B.22)

where *R3 represents the third row of R. This could be expressed in composition notation

as

zep = Z (xev e xvP) (B.23)

as a shorthand for

= Y (B.24)
z z z

- - ep - -jv - - vp

B.6.6 Attitude sensor observation model

We consider the heading and tilt sensors as an attitude module. The observation model for

attitude from compass and tilt sensors, 8E is also a case of partial pose information. From

B.18 we have

(r'9)= R() . JR("a) (B.25)

which can be written using compositions of orientations as

Ofa = (x&o ( Xva) = BO e Ova (B.26)

which is shorthand for

= o (B.27)

- &a - -o va
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B.7 Augmented state for relative pose estimation

The state vector representation of B.6 is convenient for trajectory estimation, and the poses

from the trajectory can be used to form a relative pose prior for matching temporally adja-

cent images. The vehicle state is correlated in time scales of a few seconds since dynamics

tend to be slow and the xy position is derived from integrating velocities from a previous

position. It is appropriate to consider the cross-covariances between two poses when calcu-

lating the uncertainty of the relative pose between them. These cross-covariances are lost

in the simple trajectory estimation case, so we propose using an augmented state vector

that keeps the vehicle pose estimate for the previous camera [21]. This allows calculating

relative pose between temporally adjacent images with full covariance.

Consider that at time ti image Ii is acquired and that the next image Ij is acquired

at time t,. In order to estimate the cross-covariance between states at times ti and tj we

augment the state vector with a delayed state corresponding to the pose of the vehicle when

the image was taken xte (ti) = xvi. For ti < t < tj the augmented state and covariance

matrix are:

[xe(t) Pxe (t) Pxe yV(t) Pxx(t) 1
Xaug(t) v(t) ,Paug(t) = PT (t) P1 ,(t) Pixev(t) (B.28)

x JPTv (t) p (t) Px

At time tj the the next image is acquired and at that point we will have propagated

the covariance of the vehicle state and its covariance with the pose for the previous image.

We have all the pieces needed to calculate the relative pose xsv and its uncertainty PxvVj

using the tail-to-tail transformation xviv = extv, E xevj. The covariance is given by:

P = Je i "xv "ei C JX (B.29)
PT PX

X'evi Xevj e~vj

with the e Je the Jacobian of the tail-to-tail relationship

Oxeie Ox&3 -j O(xv e, xev3 )eie (B.30)
Oe e a xfV'xe) a(xvif, xfo) a(xfes'xtoj)
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Before the filter continues to process new measurements, the relative pose and its un-

certainty are stored and the delayed state x, 1 is replaced with xo3 . The covariance and

cross-covariances are also initialized to the new delayed state. This basically allows for the

estimation to have enough 'memory' to establish relative poses between temporally adjacent

images while estimating a trajectory in a global frame.

The augmentation of the process model is such that the vehicle state continues to evolve

according to the dynamic model f, and the delayed state does not evolve

.aug fV(X(t), t) + W(t) (B.31)

0[6xl]

The sensor observation model only depends on the current vehicle state and not the

delayed state.
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