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Abstract

Let Wa be an affine Weyl group with a set S, of simple reflections and parameter set
{c, I s E Sa). We study Kazhdan-Lusztig polynomials and cells for the cases that
not all parameters are equal.

Denote by 7W the generic Hecke algebra corresponding to (Wa, Sa) and {c, I s E S,}.
We show the existence of a canonical basis for a certain W-module Mo. The coeffi-
cients of the basis elements are generically inverses of the Kazhdan-Lusztig polyno-
mials. We establish a formula for Kazhdan-Lusztig polynomials in terms of certain
alcove polynomials. We also obtain a formula involving an analogue of Kostant's
partition function.

We explicitly describe the lowest generalized two-sided cell. We find reduced ex-
pressions for its elements, provide a geometric interpretation of this cell, and we give
a description in terms of a numerical function a on Wa. We also prove that the
lowest generalized two-sided cell consists of at most IWoI generalized left cells where
Wo denotes the finite Weyl group corresponding to Wa. For parameters coming from
graph automorphisms, we show that this bound is exact. For these parameters we
also characterize all generalized left cells.
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INTRODUCTION

The concept of cells for an arbitrary Coxeter system (W, S) was introduced by

Kazhdan and Lusztig in [10]. They defined left, right, and two-sided cells. The

definition involves a canonical basis of the generic Hecke algebra Wi of W. The coef-

ficients of the canonical basis elements with respect to a standard basis of 7- are the

Kazhdan-Lusztig polynomials.

Cells in Coxeter groups have been intensively studied. They are important because

they give rise to representations of 7. For example, if W is the finite Weyl group

of type A,, r E N, the representations attached to the left cells of W are all the

irreducible representations of 'W, and similarly for right cells.

In [16], Lusztig extends the concept of cells to Coxeter systems (W, S) equipped

with a parameter set {c, EN Is E S} such that c, = c8, if s and s' are conjugate.

We refer to these cells as generalized left, right and two-sided cells. If all parameters

c, are equal, we get the same cells as before.

Generalized cells give rise to representations of the generic Hecke algebra corre-

sponding to (W, S) and parameter set {c, I s E S}. If W is a finite resp. affine Weyl

group the representation theory of corresponding Hecke algebras is very relevant for

the representation theory of reductive groups over finite resp. p-adic fields.

In this thesis, we are mostly concerned with Hecke algebras corresponding to affine

Weyl groups. Let W, be the affine Weyl group with a set S, of simple reflections

and parameter set {c, I s E S)}. Denote by W7 the corresponding Hecke algebra over

the ring A = Z[v, v- 1 ] where v is an indeterminate. Let Wo be the finite Weyl group

corresponding to Wa.

For equal parameters, the cells in Wa have been explicitly described for type Ar, r E

N (see [27], [17]), rank 2, 3 (see [18], [2], [6]), and types B 4, C4, b 4 (see [29], [30], [5]),

and a lot of important results are obtained in [18] - [21]. In particular, Lusztig shows

that the two-sided cells of Wa are in bijective correspondence with the unipotent

conjugacy classes in a simple algebraic group over C of type dual to that of Wo.

Several problems regarding Kazhdan-Lusztig polynomials and cells arise for arbi-

trary parameters but have only been solved for equal parameters. In this thesis, we

solve some of these problems for unequal parameters.

The following is an outline of the contents of this thesis.

Chapter 1 contains background material on affine Weyl groups and affine Hecke

algebras. In particular, the affine Weyl group W, is realized as a group of affine

motions of a Euclidean space V as well as in terms of certain alcoves in V. Let X be

this set of alcoves.



In Chapter 2, we consider a certain W-module Mo. Generalizing [14], we prove the
existence of an A-basis {Dc I C E X} whose characterization is similar to the charac-
terization of the canonical basis for W7. We show that the coefficients of the elements

Dc, C E X, expressed with respect to X are generically inverses of the Kazhdan-

Lusztig polynomials and that they can be calculated by a finite induction. We obtain
patterns which generalize Jantzen's generic decomposition patterns for Weyl modules
of a simply connected almost simple algebraic group over an algebraically closed field

of prime characteristic p (for p large).

In Chapter 3, we prove formulas involving Kazhdan-Lusztig polynomials, their

inverses, and alcove polynomials. (Alcove polynomials generically equal Kazhdan-

Lusztig polynomials.) This generalizes work by Kato and Andersen ([9] and [1]).

The main statement is a formula which expresses Kazhdan-Lusztig polynomials for
dominant elements in terms of alcove polynomials. We also find a way to express

certain Kazhdan-Lusztig polynomials in terms of an analogue of Kostant's partition

function.

Chapter 4 deals with generalized cells. We first consider the lowest generalized two-

sided cell. This cell contains nearly all elements of Wa. We give different descriptions,
and show that this cell consists of at most IWoI generalized left cells. (References for

the equal parameter case are given in Chapter 4.) We then study the case that the

parameters cs, s E Sa, come from a graph automorphism. In this situation, the co-

efficients of the Kazhdan-Lusztig polynomials and of the structure constants of the

canonical basis of W can be interpreted in terms of intersection cohomology sheaves.

We derive a characterization of all generalized left cells. This characterization implies

that there are only finitely many generalized left cells. We also show that for pa-

rameters coming from a graph automorphism, the lowest generalized two-sided cell

consists of exactly IWo| generalized left cells. The results in this chapter partially

answer questions raised in [31].

1. PRELIMINARIES

In this chapter, we collect some basic material about affine Weyl groups and affine

Hecke algebras which will be needed later on. The exposition follows [9], [14] and

[31]. For more details and proofs, we refer to these publications.

1.1. The affine Weyl group. Let V be a Euclidean space of finite dimension r > 1.

Let ) C V be an irreducible root system of rank r and ( C V* the dual root system.

We denote the coroot corresponding to a 4E by &, and we write (x, y) for the value

of y E V* at x E V.



Let Q be the root lattice and P the weight lattice. The Weyl group Wo of 4 acts

on Q and P (on the left), so we can form the semidirect products

Wa = Wo Q

and

W = Wo N P.

The group Wa is the affine Weyl group of type 4, and Wa is the extended affine Weyl

group associated to a simply connected, simple algebraic group G (over C) of root

system D. When A E P is regarded as an element of Wa, we will also write p\ instead

of A. The reflection in Wo along the hyperplane orthogonal to a E 0 will be denoted

by s,.

Geometrically, Wa can be described as follows. (We will not distinguish between V

and the underlying affine space.) Fix a set of positive roots D+ C 4, and let II C 0+

be the set of simple roots. For a E D+ and n E Z, we define a hyperplane

Ha,n = {x E V I (x, ) = n}

and write Ca,n = CH.,n for the reflection along Ha,n. Let ao E D+ be such that &o
def

is the highest coroot in 4. Mapping s, a E H, to Oa,o and so = P•osao to aUo,1
establishes an isomorphism from Wa to the group Q generated by ao,O, a E H, and

0T"o,1.

Denote the set of simple reflections in Wo by So. The group W, is a Coxeter group

with generating set Sa = So U {so}.

The extended affine Weyl group Wa can be written as the semidirect product N • Wa

where N is the normalizer of S, in Wa.

We also need the following realization of W, (cf. [14]). Let

-= {Ha,n Ia E +, n E Z},

and let X be the set of connected components of V - UHE. H. The elements of X

are called alcoves. The group Q acts on the set of faces of alcoves, and we denote the

set of QI-orbits by S,,. If f is a face contained in the orbit t E S , we say f is of type

t. For A E X and t E S,, there is a unique alcove tA E X, tA $ A, such that tA

shares with A its face of type t. The involutions at : A '-+ tA on X for t E S" generate

a group W'. There is an isomorphism from Wa to W,, which can be described as

follows. Let

A + = {x E V (x, 6) > 0 for all a E II, (x, &o) < 1}.



For s = sa, a E H, resp. s = so, the hyperplane Ha,o resp. H,0,1 contains a unique
face of A + , whose orbit in S, we denote by t,. The isomorphism sends s E S, to the
involution at,.

Identifying Wa with Q yields an action of Wa on V and thereby on X, which we
consider as a right action. We also identify W, with WI from now on and write the
action of Wa on X resulting from this identification on the left. The two actions of
W, on X can be seen to commute and to be simply transitive.

We fix parameters c8 E N for s E Sa such that c, = ct whenever s and t are

conjugate in W,.

Lemma 1.1.1. Let H be a hyperplane in F, and suppose H supports faces of types

s,t E Sa. Then s and t are conjugate in Wa.

Proof. The assumptions imply that there are alcoves A, A' E X such that sA =

AaH and tA' = A'o-H. Because of the transitivity of the left action of Wa on X, we

can find an element w E Wa such that A' = wA. We have

twA = tA' = A'0H = wAaH = wsA,

and hence tw = ws, i.e. s and t are conjugate via w.

As a consequence of this lemma, we can associate a parameter cH E N to H E F

where CH = cs if H supports a face of type s.

For a 0-dimensional facet A of an alcove, we define

m(A)- E CH,
HE., H3A

and we call A a special point if m(A) is maximal. Note that, in general, the set of
0-dimensional facets of alcoves contains P as a proper subset.

Let T C V be the set of all special points. If all parameters are equal, the notion

of special points coincides with the notion in [14], so T = P and m(A) = |4ý+| for

A E T. The next lemma will enable us to determine T in all cases.

Let F be the Coxeter graph of (Wa, Sa), and identify the set of vertices of F with

Sa. If r is of type Ai or CO, r 2 2, there is a unique nontrivial automorphism - on P.

Lemma 1.1.2. Let H, H' be parallel hyperplanes in F and let s, s' E Sa. If H sup-
ports a face of type s and H' supports a face of type s', we either have

(i) P is of type At or CO, r > 2, and {s, s'} = {so, sg} or

(ii) s and s' are conjugate in Wa.



Proof. Suppose (i) does not hold (and s $I s'). W.l.o.g. we can assume that there

exists an element t E Sa such that (st)3 = id.

Let A be an alcove having its face of type s on H, and let H" be the hyperplane

containing the face of A of type t. Then H" intersects H and hence H' at an angle

3±, which implies H"oaHa,,,, = H'. Therefore, H' supports a face of type t, and

s' 1 t by Lemma 1.1.1. Since (sts)s(sts) = t, we have s - t. Thus s' • s.

Throughout this paper, we refer to the situation in which the Coxeter graph F is

of type A1 or C,, r > 2, and c,o0  co0, as Case 1 and all other situations as Case 2.

In Case 1, let Ar be the fundamental weight such that P is generated by Q and Ar.

Claim 1.1.3. We have T = Q or T = Ar + Q in Case 1 and T = P in Case 2.

We first notice that if A is a special point and p E Q, the point A + p = Ap, is a

special point as well.

Next, since according to the definition of the weight lattice, P consists of all points

A E V that lie in the intersection of II)+ hyperplanes in .F, we have T C P.

Now suppose we are in Case 1 and F is of type Cr. (For the following data about

roots and weights see e.g. [4], Ch. VI.) Take an orthonormal basis {el,..., er} of V
and write ai = ei - ei+l, 1 < i < r - 1, and a, = er for the simple roots in II. Then
Ar = (al + 22 +... + rar) = 1(e +...- +er) and ao = a1 + + ar = el. Hence

(Ar, )o) = 1, i.e. Ar E H 0o,1. More generally, we have Ar E Ha,i for all short roots

a E (+. Since each H,,1, a E 4+, a short, supports a face of type so, we conclude

T = Q if c,o < ci0 and T = Ar + Q if c,o > ci 0. (The case F of type Al follows by a

simpler computation.)
In Case 2, parallel hyperplanes have the same parameter, so the special points are

the same as in [14].

For the remainder of this paper, we assume that in Case 1 we have c,o < c~o, so
T = Q. (We can always make this true by labeling the simple reflections accordingly.)

We define

WA = Wo W < T.

The right action of Wa on X naturally extends to a right action of Wa on X.

We need some more notation. If w E W, has a reduced expression w = s1s2 ... Sn,

si E S, for 1 < i < n, we set

m(w)= Zc,1
i=1



which is independent of the chosen reduced expression. (This follows from the fact

that any two reduced expressions for w can be transformed into each other by a

sequence of braid relations. See e.g. [4], Ch. IV.) We remark that the length function

I on Wa and the function m on Wa extend to functions on Wa via l(nw) = l(w) and

m(nw) = m(w) for n E N and w E Wa.

Let WA, A E T, be the stabilizer of the set of alcoves containing A in their closure

with respect to the left action of Wa. (The definition of Wo is consistent.) It can be

shown that this group is a maximal parabolic subgroup of Wa and that m(w,\) = m(A)

for the longest element wA E WA.

A hyperplane H = H,,, e F divides V - H into the two parts

VjH= {x E V I (x,&)> n}

and

VH = {x E V I (x,&) < n}.

For A E T, a quarter with vertex A is a connected component of

V - U H.
HET, H3A

Hyperplanes which are adjacent to a quarter C are called walls of C. The quarter

HE., H•A

will be denoted by C+ , and A + is the unique alcove in C+ such that A lies in the

closure A+ . Set A- = WAA +, and let C- be the quarter with vertex A containing A-.
For A = 0, we also write C+, A+ etc. Let VA E W, be such that A+vA = A-.

Let TF* be the set of hyperplanes H E .F such that H is a wall of C+ for some

A E T. The connected components of V - UHE7* H will be called boxes. We denote

by HA the box containing A+ for A E T.

To an alcove A E X, we associate the subset L(A) of Sa containing all s E Sa such

that, if H E T is the hyperplane supporting the face of type s of A, then A C VH+ ,

sA c VH.

We define two integers d(A, B) and c(A, B) for A, B E X. Consider the set of

hyperplanes H E .F separating A from B. For each such hyperplane, we set eH = 1
if A C VH , BC Vj+ and EH = -1 if A C V + , B C V.H. The integer d(A, B) is the

sum of all FH, and c(A, B) is the sum of all eHCH.

A length function on X is a function S :X -+ Z such that

d(A, B) = 6(B) - 6(A)



for all A, B X. Similarly, we call a function • : X -+ Z a weighted length function

on X if it satisfies

c(A, B) = y(B) - y(A)

for all A, B E X.

We have the following partial order on X (cf. [14]). For A, B E X, we say A < B if

there exists a sequence A = Ao, A 1,... , A = B of alcoves such that d(Ai_ 1, Ai) = 1

and Ai = AilUH, for some Hi E T for all 1 < i < n.

1.2. The affine Hecke algebra. Let A = Z[v, v-1] be the ring of Laurent poly-

nomials in an indeterminate v, and set A+ = Z[v]. The generic Hecke algebra 7-

of Wa with parameters c, s E Sa, can be defined as a free A-module with basis

{T, I w E W,} and relations

(T, - v2c+)(T, + 1) = 0
for s E Sa and

TW TW = TWW'
for w, w' E Wa with l(w) + l(w') = l(ww'). We denote by - the subalgebra of 7-

generated by T, for s E S,. Note that in Case 1, the algebras 7- and 71 coincide.

We have

Ts1 = -2cT + v-2c - 1

for s E S, and

for n E N, which implies the invertibility of all elements Tw, w e W, resp. w E W',

in 7- resp. W.
Let :3- -- 7 be the unique involutive automorphism sending v to v-1 and T, to

T-,, IW Wa.
For w E Wa, there exists a unique element C*, E R such that Cw = v-2m(w)C* and

C *= S PW TV
y<w

where the degree of P,,, E A+ is smaller than m(w) - m(y) for y < w and P,,, = 1.

(This is proven in [16] for w E Wa. The extension to Wa is straightforward.)

The polynomials P,,, for y, w E Wa are the Kazhdan-Lusztig polynomials. It is

easily seen that the elements C*, for w E Wa form an A-basis for 71.

Let M be the free A-module on X. There is a unique 7N-module structure on M

such that

TA sA if s_ L(A),
v2csA + (v 2cs - 1)A if s C L(A)



for A E X and s E Sa (comp. [31]).

For A E T, we set

eC= = AeM
AEX,A3~

and denote by MA the W7--submodule of M generated by eA. (See Remark 2.3.2 for a

motivation of this definition.) The 7--submodule of M generated by all elements eA
will be called M'.

Let T + = T n C+ be the set of dominant weights in T. For A E T, we choose an
element ,u T + such that A + , E T + and set

TA = TAx+,T 1 .

This is a well-defined element in 7- (cf. [22]). For w E Wa of the form w = xpA,
x E Wo, A E T, we set

Proposition 1.2.1. (comp. [9], Proposition 1.10)

(i) The set {(T w E Wa} is an A-basis for W.

(ii) The map 4 : W -+ M sending f E 'H to f(A-) E M is an 7-module isomor-

phism. (Consider - as a left 'k-module.)

For the proof, we refer the reader to the proof of Proposition 1.10 in loc. cit. The

generalization of the arguments used there is straightforward.

We remark that 4-1 sends A-w to TT, for w E Wa.

In loc. cit., Kato introduces the generic length function g : W -+ Z as follows. Let

ht : Q -+ Z be the linear function satisfying ht(a) = 1 for all a• II. This function

uniquely extends to a linear function ht : P --+ Z. The generic length function is

given by

g(xpA) = 1(x) + 2ht(A)

for x E Wo, A E P. Kato shows that this function satisfies

g(w) = d(A-, A-w)

for w E Wa.

Similarly, let ht : T -+ -Z be the linear function satisfying ht(a) -co for a HI.

We set

h(xpA) = m(x) + 2ht(A)

for x E Wo, A E T. Arguments analogous to the ones in loc. cit. then show that

h(w) = c(A-, A-w)



for w E Wa. We call the function h : Wa -+ Z the generic weighted length function.

The restriction of h to T will again be denoted by h. Note that h : T -+ Z is linear.

For A E T, we set

TX = v-h(A)TJ.

(As shown in [22], the sets {T, A I w E Wo, A E T} and {TATi I w E Wo, A E T} are

A-bases of W'; for equal parameters, the elements TA were introduced by Bernstein.)

2. A CANONICAL BASIS FOR Mo

The main result of this chapter is Theorem 2.3.1, which generalizes the main theo-

rem of [14] to unequal parameters c8, s E Sa. We follow the proof in loc. cit. Sections

2.1 and 2.2 deal with those parts of the proof whose generalization is not straight-

forward. Section 2.3 also contains the generalization of several other statements in

loc. cit.

2.1. Intertwining operators. Our main goal in this section is to define an element

08 E Endn(MO) for w E Wa. We do this in Proposition 2.1.3.

For A E T, we set

d\ = Tn(p,)- (Z T) T\,
xEWo

where n(w) for w E W, denotes the element in N such that n(w)-lw E Wa. The

elements d\ lie in 7W (cf. [9] for equal parameters; the general case is completely

analogous). Also, the arguments in loc. cit. show that 0(d\) = ex.

The W-submodule of W generated by all elements dx will be called -°o. We first

define an element E, E End(-(Wo) for w E Wa. For equal parameters, this has been
done in loc. cit.

We extend the definition of the automorphism ~ by saying that ~ is the identity on

the Coxeter graph F (and on So) whenever F is not of type A1 or C,. For a E HII and

s = s, the corresponding simple reflection, we define

3 = T,(1 - T-2a) - T-a(VC+C' - vc8' - • + 1 - v2ca E .

This relates to the element I, in loc. cit. as follows. Suppose s E So with c, = cj.

Then

I3 = IS(1 + T§ a)

where

I, = T,(1 - Ti-) + 1 - v2c,



Proposition 2.1.1. For A E T and s E So, we have

T Is = IsTL

Proof. Let U be the set of coroots in Case 1 and the set of coweights in Case 2.
Since (T, U, 4, $, II) is a root system, as defined in [22], Proposition 3.6 in loc. cit.
implies the stated identity.

Let a E H, s = s,. In loc. cit., Lusztig defines an element

(Ta) =(v+c - 1)(Ta ViC-C + 1)
T2c- 1

which lies in the quotient field of the A-submodule of 7- generated by the elements
TA for A E Q. (Note the similarity between g(a) and the function c, in [26], p. 98,
which is used in order to construct intertwining operators between the principal series

representations of W-1; also, see [25], p. 51.)
In terms of g(a), we can express I, as

i, = (T, + 1 - 9(a))(1 - T-2_a).

We define

9(a) = (T-ovC,+C3 - 1)(T-o'vCB-c + 1)
and denote by 0(a) E End(H-(W) right multiplication with g(a).

To s E So, we associate an i-endomorphism O, of -W, which maps f E 7- to

S,(f) = f1,.

Lemma 2.1.2. Let a EII, s = sa, and A E T. Then

s ((T, + 1)pA) = -vh(A-I )O(a)((Ts + 1)§TA.).

Proof. Using Proposition 2.1.1, we calculate

e),((T, + 1)TA)

= (T, + 1)§Ais

Svh(AA"s)(T + l)1 Ts

= vh(A-A)(Ts + 1)(v 2Cs(1 - T2a) - T-..(c( +c - vc' -Ic) + 1 - v2c )§,JS

= -h(A-A)(T, + 1)(i-2av2c c + T- -a c(v' +  - vc - C) -c )t
= -vh(IA-As)(T 8 + 1) (Q)iP,

= -vh(A-\s)O(a)((T, + 1)Lxs),

which is what we claimed.



We deduce from this lemma that

0,(dA) = -vh(A-As) (a)d,.
Thus O• induces an 7--endomorphism on 7o, for which we write •, as well. Since

G(a) is an injective endomorphism on W (and on 7-o), we can define

O, = -~(E1)-'e, E EndH(WOt).

If w = s1 . sn E Wo with si E So, 1 < i < n, we set O, = Osn, Os, E Endu(f°o).

Now take an arbitrary element w = xpA, x E Wo, A E Q, in Wa. Right mul-

tiplication with Tx yields an element OA in End(-(Wo) (and in End.(7-H)). We let

O, = O - Ox and thereby obtain an element in Endw(7-o°), which satisfies

O,(dA) = Vh(A-Aw)dAW

for A E T.

Proposition 2.1.3. (comp. [14], Proposition 2.8) For any w E Wa, there is a unique

H-linear isomorphism 0, of MO such that

,l(eA) = vc(A
+ ,A+)e

for any A G T.

Proof. We have

~O,- 1(eA) = 0O,(dA)
Svh(A-Aw)¢(dAw)

= vc(A- ,A-)ew

c(A+ ,A+)
- VC(Aw A A)ew,

and the map O8 = , Ow- 1 has the desired properties. The uniqueness is clear.

Note the equality O0,, = O~,, for w, w' E W,.

There are further maps introduced in [14], which we will need later on. Let q = v2

Replacing q by the appropriate qCs, s E Sa, and J, a length function, by -y, a weighted

length function, will prove the following statements in this section.

Lemma 2.1.4. (comp. [14], Lemma 2.10) For A E T, the map , : M -4 M defined

by

(PA ( CAA) = CAAva,
AEX AEX

CA G A for A E X, is W-antilinear.



Theorem 2.1.5. (comp. [14], Theorem 2.12) Let 7 be a weighted length function on

X.
(i) There is a unique i--antilinear map 0, : Mo -+ MO such that

I,(e ) = v-2(A)e

for all A E T.

(ii) The map (, is an involution.

(iii) If 7' = y + n, n E Z, is another weighted length function on X we have 4, =
v-2n / .1

Corollary 2.1.6. (comp. [14], Corollary 2.13) Let A C T and 7A be the weighted

length function satisfying 7'(A + ) = 0. Then (, (m) = A (m) for all m E MA.

2.2. Some estimates. We now generalize the degree estimates in [14], Section 4.

We achieve this by means of a more detailed analysis of the arguments in loc. cit.

Fix a special point A. If A is an alcove such that A E A and if y E Wa is such that

y(A + ) C C+ , we write

T,(A)= 7rA,Y B (E M).
BEX

Proposition 2.2.1. (comp. [14], Proposition 4.2) Let A and y be as above.

(i) The coefficient 7AB,y of B E X is zero unless B < y(A), in which case 7r is a

polynomial in q of degree at most c!(B,y(A+)).
(ii) Let c* = min c, and suppose y(A+) C II. If B < y(A), the polynomial 4 has

sESa

degree at most (c(B,y(A)) - c*). If B = y(A), we have 7r, = 1.

(iii) If c(B, y(A+)) is even, the coefficient of q(B(A)) in s non-negative.
1- c(B, (+))-c*) 7B,y

(iv) In part (ii), if c(B, y(A+)) - c* is even, the coefficient of q(c(B,y(A))->') in
A B,y

is non-negative.

In order to prove this proposition, we need the following result, which is Corollary

3.4 in loc. cit.

Lemma 2.2.2. Let A E X and sl, 2, ... , Sk Sa be such that d(A, sk ... s2sS(A)) =

k. For any sequence 1 < i < ... < i, < k, we have sip, si, (A) Sk ... s 2s 1(A).

Proof of Proposition 2.2.1. Let sl,... ,sk Sa. Let I be the collection of all

I = {iZ,... ,i } such that 1 < ii < " - < i,, < k and

Si, . Sil .,_, .. 1s ... .i.. si(A) < sit ... sit- i... . ... ... si(A)



for all t = 1,... ,pi. For I c 1, define

P1

I sij
j=

PI

I, = J(qCij - 1) and

j=1

where the last sum runs over all j, 1 < j < k, such that j ' I and

sjsj--l ,Si2  s sl(A) < sj1 . i2 .". .s 1  si(A).

(In the last expression we omit all si such that i E I and i < j.)
One verifies by induction on k that

Ts, " Ts, (A) = q•'ir I Sk Sip,

IET

We now take a reduced expression Sk ... 81 = y. If S,... ,S Sa O WA are such

that s',.. s'(A) = A+ and d(A, A+ ) = n, we have

d(A, ys'... s'(A)) = d(A, y(A+)) = n + k = 1(ys'n... s').

We conclude with Lemma 2.2.2 that

sk. ... .i.. 1 ... s.(A) < y(A +)

for all I = {i,. . , iP}, 1 < il < ' < iP, < k. Suppose I E 2. We set

B= Sk ...Sip . S... i 2 " Sil . .si(A).

Then

d(A, B) = k- p1 - 2mi

and
k

c(A, B) = c,
i=1

We deduce

c(B, y(A+)) = c(A, y(A+)) - c(A, B)

Csi + c - S c, + Pi + 2rii1
i=1 i= 1

-S cs, + ti + 2rfi.

(,) " si2 ... " s81(A ).

- PI - 2ffIr.

n



In view of (*), it remains to prove

n

i=1

for part (i), and
n

Cs/: - C > • 1

i=1

(under the additional assumption that y(A +) C HA) for part (ii). Parts (iii) and (iv)

then follow.

Let F be the set of directions of hyperplanes in F. We denote the direction of

a hyperplane H E F by i(H). If C is a quarter, the set $(C) is said to contain all
directions i C F such that C C VH for some H T with i(H) = i.

The proof in loc. cit. makes use of the following two facts.

(2.2.3) Let C be the quarter with vertex A containing A. Then

n = I(C)|.

(2.2.4) If C is any quarter and H E F with direction i(H) E Z(C), then

Z(C-H)l < z(c)l.

We will need stronger versions. For i E F, set

ci = max CH,
HEY, i(H)=i

and if J C F7, we write

m() = Ci.

iEJ

Claim 2.2.5. Let C be the quarter with vertex A containing A. We have
n

c- = m(I(C))
j=1

Indeed, let Hj, 1 j < n, be the hyperplane in F separating s>_1 ... s'(A) from, 
1

S ... sI(A). Since s .. s (A) = A' C VIT for all Hj E T, 1 < j < n, we haves 1 n 1  A _
CC V, for all 1 < j < n, i.e. Z(C) = {i(Hj) 1 j < n}. Besides, for each j,
1 < j < n the hyperplane Hj passes through A E T, so ci(H,) = CH3 , and since Hj
supports a face of type s' G Wo, the assertion follows.

Claim 2.2.6. If C is a quarter with vertex in T and if H E 7 has direction i =

i(H) E Z(C), there is an injective map Z(CoH) - ZI(C)- {i} which preserves the

parameter.



W.l.o.g., let C be the quarter with vertex A containing A. We distinguish two cases.

First, suppose H passes through A, hence H equals one of the above hyperplanes

Hj for some 1 < j • n. We have AOH C COrH and A E AaH. Since s .. s'(A) =

S/_l ... Sl(AoH), we get

A+ = s' s'(A) = s',...s +S1_l... S'(A'H ).

Therefore, any hyperplane H' separating At and ACH supports a face of type s'

for some 1 < k < n, k j, and we can map i' = i(H') to i(Hk). (Note that the

expression s' ' s+ ... - s' does not have to be reduced.)

Next, suppose H does not pass through A, i.e. H = Hj p, for some 1 < j < n and

some y E P. Then

CU H = C Hj, p = (CoHj ) P22p

Since A P2p is again a special point and I(C) = Z(C p 2,), we can replace C by C p2,

and argue as before.

By Claim 2.2.5, the proposition becomes a consequence of the following statement.

Lemma 2.2.7. (comp. [14], Lemma 4.3) Let A be a special point, A an alcove con-

taining A in its closure and C the quarter with vertex A containing A. Let sl,... ,sk E

Sa be such that d(A, Sk ... s(A + )) = k, and let 1 < ii < ... < ip, k be such that

Sit'" it,_" .. ". A < • ... s_ ... s(A) < ... ... ,... sx(A)

for all t = 1,... ,p. Write E = c3i .
j=1

(i) We have 5 _ m(Z(C)).

(ii) If Sk ... si(A+ ) C IIH and A $ A+ , then P < m(Z(C)) - c*.

Proof. The following facts can be found in loc. cit.

Let w E Wa be such that Aw = A and A+w = A. We denote by H, 1 < j < k, the

hyperplane in J" separating sj_-1 ... si(A+ ) from sj ... si(A+). Let 1 < j 5 k.

* If sjsj_ -... si(A) < sj-1". sI(A) we have i(Hjw) E Z(C).

* If sk ... sl(A + ) C HIx the hyperplane Hjw is not parallel to any of the walls of

C.

The proof proceeds by induction on jZ(C) I. If Z(C) = 0 we have A = A+ and

p = 5 = 0. There is nothing to prove for part (ii).

Now let IZ(C)I > 1. The case p = 0 is clear, so we assume p > 1. Let H be

the unique hyperplane in 7 separating Si, ... S2S1(A) from Si, ... S2S1(A). We set



A' = AOH, A' = Aea, C' = CcOH. Then d(A+,,Sk... si(A+)) = k, and ^i ... s2sl(A) =

Sil ... s2s1(A') implies

si, . . .it- _,- . .i . Si .. si(A') < S, it ..., _, ... .""2 Sil .. sl(A')

for t = 2, 3, ... ,p.

We have II(C')I < IZ(C)I. Applying the inductive assumption, part (i), to A', A',
sl,... ,sk and i2,... ,i p yields

Ic <5 m(I(CUH)),
j=2

and therefore

E c. • m(I(CoH)) + c,
j=1

= m((CH)) + CH

< m(z(C)).

We used Claim 2.2.6 for the last inequality. (Note that it is feasible that

m(Z(CaH)) + CH < m(I(CaH)) + Ci(H) < m(Z(C)).)

Under the assumptions of part (ii), if C' C+, it follows by induction that

p

cIij • m(I(C•,H)) - C*,
j=2

and therefore
P

cZ • m(I(C)) - c*.
j=1

Otherwise, we have
P

S Cs8  = 0.
j=2

But then, according to the two facts mentioned at the beginning of the proof, Z(C)

contains the direction of Hw, which is not parallel to any wall of C, and also the

direction of some wall of C. Consequently,
p

I c,. = C., = CH m(I(C))- c*,
j=1

which completes the proof of the lemma.

Note that fi = m(I(C)) implies p = |Z(C)I. We therefore obtain the following

corollary of the proof of the above lemma in the same way as for equal parameters.



Corollary 2.2.8. (comp. [14], Corollary 4.4) Let A and y be as in Proposition 2.2.1

(i), and let B be an alcove such that B < y(A + ) and such that 7rA  has degree equal

to c(B, y(A+)). Then B = y(A) r for some translation r E Wa.

2.3. The basis elements. The following results all have their counterpart in [14].

In view of the two previous sections, most proofs in loc. cit. can easily be generalized,
and we refer the reader to loc. cit. whenever a statement in this section is presented

without proof.

Theorem 2.3.1. (comp. [14], Theorem 2.15) Let A be a special point and C an alcove

in IIA. There exists a unique element Dc E MA such that

(i) Dc = E QA,cA where QA,c is a polynomial in v with integer coeficients of
A<C

degree less than c(A, C) if A < C and Qc,c = 1 and

(ii) v2c(AtC)QA,c = QAV,,C-

(We set QA,C = 0 for A, C E X, A % C.)

Remark 2.3.2. With A and C as above, let B = CvA and DB = ýOA(Dc). The

element DB is characterized by the conditions DB E MA and

(i) DB = E QB,AA where QB,A is a polynomial in v with integer coefficients of
A>B

degree less than c(B, A) if B < A and QBB = 1 and

(ii) v2c(B,A-)QB,A = QB,Av,

Let G be a simply connected almost simple algebraic group of type ( over an

algebraically closed field of characteristic p > 1. Assume that p is sufficiently large.

In loc. cit., Lusztig conjectured that the integer QB,A(1), A > B, equals the multi-

plicity of a certain irreducible G-module in a Jordan-H6lder series of a certain Weyl

module of G associated to A. He pointed out that for v = 1 the condition DB E MA

becomes the condition that

SQsB,A(1)
A

A>B

is invariant under the stabilizer Q2 A of A in Wa acting on X on the right. Assuming

Lusztig's conjecture, this Q2A-invariance is due to Jantzen (cf. [7]).

The Q -invariance of EA>B QB,A(1)A also implies the symmetry condition (ii) for
v=1.

(The above conjecture by Lusztig is equivalent to his conjecture on the irreducible

characters of rational G-modules in [13]. It is now known to be true - due to work

involving affine Kac-Moody Lie algebras as well as quantum groups.)



For A E Q, define

YA = {yp IC y E Wo, y E Q, y -< A}

where -< denotes the usual partial order on Q. A subset K C Wa is called x-bounded,
x E Wo, if

KCYA x

for some yE Q. Instead of e-bounded, e being the identity in Wo, we also say bounded.

For x e Wo, let 7 ax be the set of formal sums f = a,'i, aw E A, such that
WEWa

defw
Supp f efw E W, a. 7w 0} is x-bounded. The sets -,x can naturally be regarded

as H-modules. Similarly, let M^x be the 7--module which contains all formal sums

f = E bAA, bA E A, such that {w E We, bA-w f 0} is x-bounded. We set W = He
AEX

and MA = Me. In this section we will only need M.

Choose a weighted length function -y on X.

As in loc. cit., we can extend 4, : M 0  M o to a map D- : M --+ M, and we

define elements RB,A E A for A, B E X by

Žy(A) = v-2Y(A)E (_ )d(A,B) B,AB.
BEX

We remark that RB,A = 0 for all B ý A and that RA,A = 1.
The following statement strengthens the uniqueness part of Theorem 2.3.1.

Theorem 2.3.3. (comp. [14], Theorem 7.3) For any C E X, there is a unique ele-

ment Dc E MA4 such that ,.y(Dc) = v-2, (C)D c and

Dc = S QA,cA,
A<C

where QA,C E A+ has degree less than c(A, C) if A < C and Qc,c = 1.

(It follows from Theorem 2.1.5 and Corollary 2.1.6 that the conditions #,(Dc)

v-2-(C)Dc and v2c(A•,C)QA,C = QAvA,C are equivalent.)
For C E X, let A C T and w E W, be such that C C II and w(A +) = C. The

element Dc can be shown to satisfy

Dc= Py,,,3, T,(3 Tz (A;))
y5wwA, l(ywA)=l(y)±l(wA) ZeWA

- P_',wwATy'(A )

= C* (A().>ww>, A

This representation of Dc is used to prove the next two corollaries. (We preserve

the notation.)



Corollary 2.3.4. (comp. [14], Corollary 5.3) With y E Wa such that A = y(A-), we

have

QA,C(1)= Py,wwx(1)

Corollary 2.3.5. (comp. [14], Corollary 5.4) Let 0 C X be an orbit under the trans-

lation subgroup Q of Wa. For C E X, the sum

E QA,C
AEC

is independent of the choice of 0, and it is equal to

S V2m(Y)PYWA,W"

Theorem 2.3.3 is the main ingredient of the following statement.

Corollary 2.3.6. (comp. [14], Corollary 7.4) Let T E T be a translation on X. For

any A < C in X, we have QA,C = QAT,CT

Finally note that for A, C E X and A E T such that C C II, the polynomial QA,C

is non-zero only if CvA < A.

In analogy with loc. cit., we now want to further examine the elements Dc. The

aim is to find an inductive formula.

For A, C E X and s E Sa such that sA < A < C < sC, we define elements

MA,C E A by the conditions

(i) vE V(B,C)QA,BMh,c - Vs QA,c has degree less than c(A, C) and
A<B<C, sB<B

(ii) M!, = M'c

(We set Mý,c = 0 in all other cases.) This definition is similar to the definition of

Mv,, E A for y, w E Wc and s E Sa with sy < y < w < sw in [16], Section 3.

Suppose C is an alcove in HA, A E T. We claim that Mjc = 0 unless CvA < A < C.

In particular, for any C E X, there are only finitely many Mjc , A E X, s E Sj,

which are non-zero.

Indeed, assume A f C. Then QA,C = 0, and of course there is no B E X satisfying

A < B <C. Thus , = 0 for any s Sa.

Next assume CVA g A or equivalently AvA % C. Again, we know that QA,C = 0,

and if B E X, A < B < C, is such that QA,B 5 0, then AVA B, hence AvA < C, a

contradiction. The claim follows.



Theorem 2.3.7. (comp. [14], Theorem 8.2) Let C E X and s E Sa. We have

-Dc + Dc + E vc(A,C)+c M,cDA if s C(C),
TsDc = A<C, sEC(A)

v 2 c, Dc if s E £(C).

Note that the sum is finite.

Proof. The case s E £(C) is dealt with as in loc. cit. Consider the case s L £(C).

We set

Dic = (Ts + 1)De - vc(A,C)+c, M,cDA.
A<C, sEC(A)

As in loc. cit., we deduce that

Dy(DDc) = v-2y(sC)D DI

The coefficient of B E X in D1'c equals

QB = 2cSQB,C + QB,C, if sB > B vc(A,C)+c, QB,AM ,C
QsB,C + V2CQB,C, if sB < B A<C,

We have Qsc = Qc,c = 1, and since the condition B < sC is equivalent to sB < sC,
the coefficient QB is zero if B $ sC.

Suppose B < sC. If sB > B, the definition of MsB,C implies that

Y vUc(A,C)QsB,AMA,c - v-."QsB,C
A<C, sEL(A)

has degree less than c(sB, C). From TsDA = v2c'DA for A E X with sA < A, we

derive QB,A = QsB,A for any B < A. Consequently, the degree of

Y VC(A,C)QB,AM ,C - VccQB,C
A<C, sEC(A)

is less than c(B, C) - c., and therefore QB has degree less than c(B, C) < c(B, sC).

If sB < B the degree of

E VC(AC)QB,AM,C - vVCQB,C
A<C, sEC(A)

is less than c(B, C). Thus QB has again degree less than c(B, sC)(= c(B, C) + c,).

Now we apply the uniqueness statement in Theorem 2.3.3 to conclude that D'c =
Dsc (and QB = QB,sC), hence the assertion.

Notice one equality which occurred in the above proof.

Corollary 2.3.8. (comp. [14], Corollary 8.4 (a)) For A, C E X with A < C and

s E £(C), we have QA,C = QsA,C.

The following statement can be deduced from Theorem 2.3.7.



Corollary 2.3.9. (comp. [14], Corollary 8.3) The elements Dc, C E X, form an

A-basis of Mo.

For A, C E X, we write A < C if for some (or equivalently any) box II the alcoves

A', C' in II obtained from A, C by translation under T satisfy A' < C'.

Proposition 2.3.10. (comp. [14], Corollaries 10.5 and 10.6) Let C E X and s E

Sa - L£(C) such that sC and C lie in the same box. Then (T, + 1)Dc - D,e is an

A+-linear combination of elements DA such that A < C, A < C. In particular, if

A E X is such that sA < A < C and M $A,c 0, then A < C.

This result enables us to give an algorithm to compute the elements Dc by a finite

induction.

Let C E X. There exists a unique A E T such that C C IH, and we can find

elements sl S2, .. ,nc in Sa such that C = sis2 sncA +A and d(A+, C) = nc. We
proceed by induction on nc.

If nc = 0 we have C = A+ , hence Dc = e and Mj,c = 0 for all A E X, s E Sa.

Now assume ne > 1. Let C' = s2 ... sc (A+), which lies in HA. By Propositions 2.3.7

and 2.3.10, we can write

Dc = (T,, + 1)Dce - vc(A,C')+c .l M"c, DA.
A<IC', si EI(A)

Since nc < nc and A < C' implies nA < nc', the elements Dc, and DA for A < C',
as well as the polynomials Mj,c, are known by induction. Thus Dc and by induction

on d(A, C) the polynomials Mj C, for A E X, s E Sa, can be calculated.

Example 2.3.11. Suppose W, is of type 02 with parameters

a b a

so Sl S2
and

b
a

represents a box HA, A E T. (So if A lies in the same a-orbit as 0 then a = A+,

b = soA + , c = slsoA + , and d = S2SIsoA+.) Since co = c w2 , we can assume that A

and 0 lie in the same a-orbit.



Set x = v2a and y = v2b. We obtain

Db = (Tso + 1)Da,

DC = (T,, + 1)Db-

Dd = (T 2 + 1)D -

z+y

0

0
x
x+y

a<

a =

a>

a<

a =

a>

} Da

Db -

0O

-x2 _

0

xy+ y

if 2a < b

if 2a = b
if a < b < 2a

if a= b
if a > b

The following patterns describe the elements Dc for C E {a, b, c, d}. Each pattern

has center A. The alcove C is singled out, and the entry of an alcove A is the

polynomial QA,C.

D,

Da.



-z

1
1 +y

1+x
1 B' =

I -

0

x

x+y

x+y
X

o

xy - y

x2

xy+y

+4-

x
2

0
SD' =

xy + x2 y
x3

x 2y - x 2

for
a<b

a=b

a>b

and

x - X2

x

x+y

x

x-y

F' •

xy - y

xy - y + x2

xy + x2

x2

0

for

2a < b
2a = b

a < b < 2a

a=b

a>b

(For Wa of type G2, we get 21 cases for the relationship between a and b.)

We now introduce another right action of Wa on X. Let A E X, A = y(A +) C II

for some y E Wa and some A E T. For w E Wo, we define

A w = y(A7+ ) C IAw.

Proposition 2.3.12. (comp. [14], Proposition 8.7) ForC E X and w E W,, we have

Ow(Dc) = vc(C*w,C)Dc*.w

For C G X, let Dc = v-Y(C)Dc, and define

MA,C
M,c= 1

O

if A < C,
if A = sC > C,
otherwise

for A, C E X and s E Sa. We rewrite some of the previous statements in terms of

the A-basis {Dc I C E X} of Mo.

Corollary 2.3.13. (comp. [14], Corollary 8.9) Let C E X, w E W, and s E Sa. We

have

S,(Dc) = Dc,
DoC0 = DoCe,

where

S B I S C=



and

-Dc +vcs S M,cDA i fs I2(C),
TsD A<C, sEC(A)

v•2cDc if s E £(C).

Corollary 2.3.14. (comp. [14], Corollary 8.10) For A, C E X, s E Sa, and w E Wa,

we have MA*c = M ,C*w"

Remark 2.3.15. Suppose we specialize q to a prime power pS. Let A be a homomor-

phism of the group of translations Q in Wa to C*. The C-vector space MA spanned

by all infinite formal linear combinations

* = D A(').
TEQ

has dimension equal to the number of orbits of Q on X, and it has a natural 7-action.

For generic A, the 'N-module MA is isomorphic to the principal series representation

defined by Matsumoto in [26].

We conclude this section with a few results concerning the polynomials RB,A and

QA,B, A, B E X. For more details, we refer to [14].

Define polynomials R,y, E A +, y, w E Wa, by

Tw-1 = v-2m(w) E ( - 1)(w)-l(y)Ry,~Ty

yEWa

and polynomials Qy,w E A + for y, w E W., y(A + ) C C-, w(A + ) C C- by

y<z<w, z(A+)CC-

Theorem 2.3.16. (comp. [14], Theorem 11.6 and Corollary 11.9) Suppose A, B E X

and A E T are such that A, B C CA and A, B are sufficiently far from the walls of

C-. Let y, w E Wa be such that y(A + ) = B, w(A + ) = A. Then

RB,A = Ew,yb
bEWA

and

QA,B = Qy,w-

We remark that as in loc. cit., the function defined by

(A, B) ý+ (-1)d(AB)QA,B(0)

for A, B E X is the M6bius function of the partially ordered set (X, <). In particular,

QA,B(O) does not depend on the choice of parameters.



Proposition 2.3.17. (comp. [14], Proposition 11.15) Let A E T and y, w E W,. We

have

Ry(A-),w(A-) =- Ryw

and

Qy(A-),w(A-) = Py,w-

3. A FORMULA FOR THE KAZHDAN-LUSZTIG POLYNOMIALS

In Corollary 3.3.3, we express the Kazhdan-Lusztig polynomials in terms of alcove

polynomials (see Section 3.2 for the definition). For equal parameters this has been

achieved by Kato in [9], and we follow his approach. Statements which are not

proven here are obtained via a straightforward generalization of the proof of the

corresponding statement in loc. cit.

3.1. Definitions. We need some more notation from loc. cit.

Let 7-:-+ - be the map such that

W(f) = fTwo

for f E 7-t. This map is 7--antilinear, and it satisfies (Wo-0 ) = Ho.

Proposition 3.1.1. (comp. [9], Proposition 2.8) There exists a unique involutive '7-

antilinear map Io :7o _ + _o such that

To(d ) = v- 2h(woPA)dA

for any A E T. We have

1o = v- 2m(wo)o ()o .

Remark 3.1.2. Let y be the weighted length function on X defined by

y(A-w) = h(w)

for w E W,. It turns out that under the isomorphism : 'N --+ AM, the map V)
def Fnn0

corresponds to the map o = (o and Io corresponds to D,. From now on, we fix 7
and also the length function S on X defined by

S(A-w) = g(w)

for w E Wa.



We define 0(a) for arbitrary a E Q. Let a E 40. If a lies in the Wo-orbit of a
simple root 0, we set c, = cs,, , C = c•, and

9(a) = (Tvcc+ac - 1)(T_•vco - cc + 1).

Besides, we let

e(a) -G(a)

where G(a) is again right multiplication with 9(a).

Let x E Wo. For A E Q, we can regard O, as an element of Endw(Wx) (and 0 \ as

an element of End-(M,)). The operators of the form 1 - pO,, p E A, a 4), are

invertible on jx with inverses as follows. Consider the formal sums

and (1 - pO,) 1_=

Then

(1 - poc) 1 {(1 - pOc,)+1
(1 - poc) -1

Yp"Ona
n>O

-p 0e, p O--n
n>O

-p OE c p-• Oe
n>O

n>O

if a > 0, ax -1 < 0
otherwise.

if a > 0,

if a < 0

if C > 0,

if a < 0.

or if a < 0, ax - 1 > 0,

The map 6s, s E So, can be regarded as an element of Homt (7-, Hx,). For x E Wo,
S = sc, a E II, we can therefore define an operator

0 + = e(o)-l6

belonging to Hom-(•,W~, Wx). By definition, we have O0 I|o= O,. The corresponding

operator in Hom-(AM1•, M x,) will be denoted by 0+ .

Let wo = S ... Sn, si E So, 1 < i < n, be a reduced expression, and define

0+ = ++ 0 Hom-(,W0)

(which can be shown to be independent of the chosen reduced expression). Each O,,
1 < i < n, is a map in Homj(R;, XS,,) for some x E Wo such that xzs > x. Hence

(-ai)(xsi)- 1 > 0 (where ai C H is such that si = s,J), and

O• = (1 - vC"t+a' O_(,)+ (1 + vC- Coi-Co-aoi)O16si.



Since we also have (1 - p O_) -' = (1 - p _-)+ 1 on WWo for any a > O, we deduce,
using Proposition 2.1.1, that

Eo0 = e(a)-' bwo
a>O

where e)o = )s. " · e8,,. We now set

T = v-2m(wo)¢ 0+o,

an W7-antilinear map on W.
Let -< be the partial order on Wa given by y _ w, y, w E Wa, if and only if

y(A-) < w(A-). We point out that, since x(A-) = A-x for x E Wa, this definition

agrees with the definition of -< on Q C Wa.

Lemma 3.1.3. For w E Wa, we have

WP(Ta') = v- 2h(w) Zl)g(w)-g(y) y(A-),w(A-) y-
y-_w

(This follows from the correspondence between T and the --antilinear map C, on

3.2. Alcove polynomials. We introduce elements Ec E M, C E X, whose coeffi-

cients generically equal the Kazhdan-Lusztig polynomials.

Definition 3.2.1. The alcove polynomials PY,, E A +, y, w E Wa, are defined by the

conditions

(i) v-2h(w) P, = v- 2h(y)Jz(A+),Y(A+) Pz,w and

(ii) the degree of Py,, is less than h(w) - h(y) if y -< w and ,,, = 1.

For A = y(A-) and C = w(A-), we set PA,C = Py,•.

Let

D = {w E Wa I w(A-) C C+}.

Elements in ND are called dominant. If y, w E D and y(A-), w(A-) are sufficiently

far from the walls of C+, it turns out that P,,, = P,,,.

For a E 4, put

f(a) 1 - v-2Cao_-a if ca = a,

(1 - v-(C"+~a)8_a)(1 + v-(CU-`)O)_a) otherwise.

(The condition c, = Z, is equivalent to the condition & B 2 U where U is as in the

proof of Proposition 2.1.1.)



Since all f(a), a E D+, are invertible on MA, we can define elements Ec E M,

CE X, by

Ec = f(a)-'Dc.
a>O

In the remainder of this section, we prove the following theorem.

Theorem 3.2.2. (comp. [9], Theorem 3.5) For any C E X, we have

Ec = PA,CA.
A<C

Let C E X. We set

E = Z PA,cA E .M7,
A<C

and we define an 7--antilinear map ý on M given by

4(A) = v-2Y(B)JAwo,BwoB

BEX

for A E X.
The element E& can then be characterized by the conditions

(i) O(E&) = v-2y(C)E& and

(ii) EE = > P,c A where PA,c E A+ has degree less than c(A, C) if A < C and
A<C

P', = 1.

We first show that Ec satisfies (ii).

Let a > 0. Remember that the inverse of 1 - p O-, p E A, on M is given by

(1 -pO_,)-' = Zp&1_na.

n>O

First, suppose ca = ca. The degree of the coefficient of Ap_,a, A E X, n > 0, in

v-2nc_,n,aA is c(Ap-•a, A) - 2nc,.

Next, suppose ca, :a. The degree of the coefficient of Ap_(m+n),, A E X, m, n >
0, in v-m (c+6a)O_mca(-1)) v-fn(c-v-ea)OcA is c(Ap_(m+n),, A)-m(cc,+a)-n(c-, -Z~).

So if / = Ea>o nca : 0, nc, 0, then the degree of the coefficient of App in

H1a> 0 f(a)-1 A, A E X, is less than c(Apo, A). (Also, notice that in both cases the

degree is non-negative.) This, together with the facts that QA,C has degree less than

c(A, C) if A < C and Qc,c = 1 shows that Ec satisfies condition (ii).

Condition (i) is implied by the following theorem.



Theorem 3.2.3. (comp. [9], Theorem 3.7) We can write ý as

= i f(a)-l4 H f(a).
c>O a>O

The rest of this section will be taken by the proof of this theorem.

We have an A-valued symmetric bilinear form (-, ) on R satisfying

(iTty)= -2h(w)jVw

where y, w E W,. We also write (-, ) for the corresponding bilinear form on M.

Let W* be the A-module consisting of all formal sums -E •w awTw, aw E A for

w E W,. The domain of (-, -) can be extended to 7* x 'H (and W x V*), and we

can consider W* as the dual space of 7 via f(g) = (f, g) for f E *, g E W. For an

arbitrary A-linear map 7r : --+ 7-*, the formal adjoint operator 7r* :-+ 7- * is then

defined by

(7r(T•), ) = (T, 7r*(P))

for y, w E W,. We will also need to extend the domain of 7r* to Wx for some x E Wo.

If, for example, 7r is of the form

7r(TJ)= ay,wly

with ay, E A, y, w E Wa, we have

7r*(Ty) = v2h(y) ) ay,wv-2h(w)Pw

wy

for y E W,. Hence 7r* can be regarded as an element of EndA(7).
Formal adjoint operators on M (or MX, x E Wo) are defined accordingly.

We define an involutive ring automorphism j on H by

j( aTw) = (-1)(w)v2m(w),

wEWa wEWa

aw E A for w E Wa. The corresponding map in Autz(M) will also be denoted by j.
Let w = xpA E W,, x C Wo, AE Q, and let pEQ n T + be such that A + pET + .

We compute

j(TW) = j(TTJ7) =j(TXTA+±T,- 1)

= (-1)l(x)+l(px+)-l(pj) V-2m(x)-2m(px+/)+2m(pp)TxTA+ T~-

= (1)(w")v-2h(w)P.

It follows that

j(A) = (-1)S(A)v-2-y(A)A

for A E X.



We will also consider j as a map on 1, and MiZ, x E Wo. Note that j* = j.
The following three lemmas contain several relations needed for the proof of The-

orem 3.2.3. The calculations are straightforward, and we only show the first lemma.

Lemma 3.2.4. (comp. [9], Lemma 3.10) On R- resp. M, we have

(i) j Oj = \ for A E Q,
(ii) j O, = -v-2c, for s C So,

(iii) j~ j = (-1)l(wo)v- 2 m(wo) and

(iv) jp j = (-1)l(wo)v-2m(wo) (.

Moreover, (i) holds on ~X, x C Wo, (ii) is an equality of operators in Homw(tx, R-s),
x E Wo, and (iii) resp. (iv) is an equality of -- antilinear operators in Homz( , W71o-).
resp. Homz(M, M4A4 o W).

Proof. (i) Since

j(TAx)= v h()(-1)2ht(A)v- 2h(A)TA = L,

we obtain

j oAj(f) = j(j(f)TA) = fj(TA) = oA(f)

for f E 7,X, x E Wo.

(ii) If s = s, a E HI, we have

j(I) = -v-2cT(1 - T-2a - - () -T(v(UCS+ ) V- (c,- i,)) + 1 - v2C

= -v-2c (T(1 - 2a) - _i,(v cs +  - vIOc-Es  ) +1 - V- 2c )

-- v -2cs is

For f E RX, x E Wo, we conclude

j S j(f) = j(j(f)l) = -v- 2css(f)

(iii) We calculate

j Cj(Tw) = j ((-1)g(W)v-2h(w))

= j((-1)g("w)v2h(w") To)

= (_ 1)(wo)V- 2m(wo)t Two
= ( 1)l(o)v- 2m(wo), (PW)

for w E Wa.

(iv) This is equivalent to (iii).

Lemma 3.2.5. (comp. [9], Lemma 3.11) The map 1 can be expressed as

= v-2m(w'o)j (j )*



Notice that (9 4~ 9P)* and therefore j (j p9, 9)* can be considered as 7-antilinear

elements of Endz(M).

Lemma 3.2.6. (comp. [9], Lemma 3.13) On W- resp. M and moreover as elements

of Homz(W,7- W 0 ) resp. Homz(MJl,M 0 ), we have

(i) (j 4)* = (-1)l(wo)j 0 and

(ii) (j 9)* = (-1)l(wo)j P.

Let

Z = v-2m(wo)j (j )*

be the operator on N corresponding to C. By the previous lemma, we get

S= j(Jpb ®+o ¢)*

= J (j #)* (j 0;0 j)*
= (-1)I(Wo) o )I

For s c So, we define A-linear maps P3, and p, on HN by

O38(TXTA) = TXT8 TA

and

p,(TeA) = Vh(")TsTs

where x E Wo and A E Q. The map Pf can be considered as an element of EndA((,)
and ps as an element of HomA(Nx,, Wxs), x E Wo. Let s = s,, a E H. For x E Wo,
A E Q, we have

{((1 - -2) - _ cs+cv - vc~S- Cg) +1 - v2cs)ps}(TTA)

= vh(A-A)(ps(1 - _-2a) - O_(vUc+ca - vs-c~) 1 - v2cS)(TxTAs)

= vh( -X)TX(TSS(1 - ~-2a) - As c+c( - c - c~) + T (1 - v2cs))

- vh(A-As)T siTs

where the last equality follows from Proposition 2.1.1. So

Os = (ps(1 - 0-2,) - O-e(vcs+c3 - vcs-Cg) 1 - v 2c,)ps.

Arguments analogous to the ones in loc. cit. then demonstrate the following lemma.

Lemma 3.2.7. (comp. [9], Lemma 3.15) On W and as elements of HomA(7WX, WXs),
x E Wo, s E So, we have

(,)* = ~,.



The next lemma contains a few more equalities which are all easy consequences of

the definitions.

Lemma 3.2.8. On "H, we have

(i) o0 = O-A for A E Q,
(ii) Ose5 = O0,s, for s E So, a E 4, and

(iii) 0 O, = Oc- for a E ).

Furthermore, (i) and (ii) hold on tX3, x E Wo, and (iii) on W.

We remark that (ii) implies

(,) Oo~0,, = eO-Oe
for a E (.

We now prove Theorem 3.2.3 or rather the equivalent on W.

Recall that Oo = -I>o e(a)- 1 •,, and that for p E A and a > 0, we have

(1 -pO_0)-1 = -pO_, Ep-nOnc>
n>O

on 7,, 0 and

(1 -pea()- 1 = -p OeIp-nOc
n>O

on W. Therefore,
we can write

(j O o j)*

using Lemma 3.2.4 (ii) and (i), Lemma 3.2.7 and Lemma 3.2.8 (i),

= (-1)l(wo)v-2m(wo)6w0 (1 - v-(ca+Ea)Oa)-l(1
ca>O

Thus

"= (-1)l(wo) (j oj) *

Sv2 m(wo) bo II(1- v-(co+jQ)O)-l(1 +
oa>O

v-(CQa -3) ® ) -1

= v2m(wo)o II(1 - vc+oa -0_)(1 + v~ocao- ) o
a>O

• 7(1 - v-(co+ao)O0)-l(1 + v-(c-aQ)O!)-l

ca>O

Set + = {a E ()+ c, = &a} and )+ = {a E 4+ I c, 7} a}. Then

Sv-(C1--a) a) - 1



4 = v2m(wo), JJ (1 - v2c•O_,) 1J (1 - vca+E•EO_)(1 + vcc- Oo- )

S Ho (1 + Eo) ] (1 + eo)-

S1 (1 - v-2caa-1 1 (I- -(ca+•kE)-a(1 + V-(ca-ca)a<)- 1

= v2m(wo)- (1 - v2 c-•o-)- 1 J1 (1 - v-(cao+ia)O_)-l(1 + v-(c 3-Ea)e-a)-1

SOo 0 J- (1 - v2caao) II (1 - vUc+- e)(1 + vcO'-EO,)

For the above calculations, we used consequence (*) of Lemma 3.2.8 (ii). Lemma 3.2.8

(iii) now yields

Vd = v 2 m ( wo) (1 - vU2cOa)-l H (1- VCa+•a)-1(1 + VCOC-,eOaa) - 1

SO+o i (1 - v2CQ a) II (1 - VCQ+CoQa)(1 + VCac•6a ).

Using

• 2c, + (ca + a + c - e) = 2c> , 2m(wo),
aE- aE-D a>0

we can rewrite the last expression for 1V as

S- v2m(wO)V-2m(wo)(-1)l(wO) J 0- 1 1 0 2- 1

-](1 - v-2c~ o _) -1 ( - v-(c+•-)-(1 + v-(ca-0) _-•) - 1

• 0(o V2m(wo)(-1)' l() OJ II O2a

ii (1 - v-2c-0_-) - (1- _ -(Ca+Eo)_a)(1 + V-(CC0-E3 a)O)

S-2m(wo) H (1- v-2C~ )-1 (1 - v-(Qo+Ca)- )-1(1 + V-(Ca-E)O-a)- 1

S( - v-aE+21--1 -(

E )+ (1V- V2CQ0)) H (1 - V(COc+ao)0-a)(1 + V-(CQ-Q)()

1 2



We conclude

I = J (1 - v-2coQO) - 1  (1 - v-(ca+a)O_ )-l(1 + v-(c-a)O_•-lII

]1 (1 - v- c _o) -I (1 - +

which is equivalent to Theorem 3.2.3.

3.3. The Kazhdan-Lusztig polynomials. We now generalize the formula in [9]
for Kazhdan-Lusztig polynomials. They appear as coefficients of elements Fc E M,

C E X. At the end of the section, we describe an analogue of Kostant's partition

function, generalizing part of [8].

We start with introducing a third right action of Wo on X. Let A = y(A + ) C II ,

y E W,, A C T. For s E So with c, = cq, we set

A @ s = y(AA+p)s-p) C_ II(A+p)s-p.

For s E So with c, -4 cg, we set

A s = y(A+ C2p)s-2p) C (ap)s- 2p.

Hence for w E Wo, we have

A W = y(A+(A+)w•_) C I(A+ý_W-

where

2 1: a+Y a.
1 2

If A = A-y, C = A-w, y, w E W,, we let PA,C = Py,w. The next theorem and

corollary contain the main statements of this section.

Theorem 3.3.1. (comp. [9], Theorem 4.2) Let C be an alcove in C+ . The coefficient

of any alcove A C C+ in

Fc = (-1)l(x)vc(CO'C)Ecox
xEWo

equals PA,C.

Remark 3.3.2. As in loc. cit., the above theorem implies that PA,C, A, C C C+ ,

can be calculated from PA',c' for A', C' C H. Furthermore, for equal parameters,

the above formula generalizes the q-analogue of Kostant's weight multiplicity formula

found in [8].



Corollary 3.3.3. (comp. [9], Corollary 4.3) For any alcoves A, C C C+ , we have

PA,C - (-)l(W) vc(C*xC) PA,COx
xEWo

The corollary is an immediate consequence of the preceding theorem. In order to

prove the theorem, we first have to generalize a result of Andersen in [1]. Let VA be

the 7--submodule of M generated by A+ + A+s where s runs over So, and let

,' = {f f AEMW0 I (n, f) = 0 for all n E An}.

Instead of considering M, Andersen introduces a module M_ which is a free A-

module on C- and has an N-module structure given by

-A if sA ý C-,
TA = sA if sA E C- and sA > A,

v 2csA + (v 2CS - 1)A if sA < A

for s E S, and A C C-. It turns out that M_ is isomorphic to M/A. By modifying

[14], Andersen obtains elements D'c for all alcoves C C C- whose coefficients Q'A
are exactly inverse Kazhdan-Lusztig polynomials. The polynomials Q'~,c satisfy an

induction formula which coincides with a formula for the composition factors of Weyl

modules. Andersen obtains the latter formula by "inverting" the Lusztig conjecture

in [13].

The result we need is the following one, which for equal parameters reformulates

[1], Theorem 7.2.

Theorem 3.3.4. For alcoves A, BC C-, set

RB,A =- Rywx

xE Wo

where y, w C D are such that y(A+) = A and w(A+) = B. Then

(1-(A), f) = v - 2 (A) ()d(A,B) I,A

BCC-,B<A

for any f E / .

Note that R' = 0 unless B < A.
B,A

We comment on those parts of the proof of the above theorem which require real

changes.

Let a E II. We denote by nA the W-submodule of M generated by A+ + A +s ,,
and for n E Z, we set

U= {v E V n< (v,&) < + 1}.



(Note loc. cit., Remark 7.4.) For any alcove A in Uo, we define alcoves A,, n E Z,
inductively by setting A = Ao and An = Al-a,,n. We write

fAn = An + An+1

where n E Z and

n-1

gn(A) = v2c(A,An-1)A-n + (v2c(AAn-i) v_ 2c(A,An-i-1))A2i-n-1 + An, 1.
i=1

n-1

= v2c(AAn_1)fA_ - v2c(A,An--1)/(fA2--1 - fA2i-n)
i=1

where n E N.

Lemma 3.3.5. (comp. [1], Lemma 4.3)

(i) The elements gn(A), A an alcove in Uo and n E N, constitute a basis for N• as

an A-module.

(ii) Let A be an alcove in Uo. We have

v2c(AAn)fAn fAn- 2 E NO!

if either c, = & and n C N arbitrary, or if c, # &, and n E N odd or equal to

2. If cc, cZ and n E N even, we have

v2c(A,An1)fA-n + v2c(AA1) (V2c(A1,An-2)fA-n,,+2 fAn-4) + fAn- 2  .

Proof. (i) for any a c II and (ii) for a E II n D+ follow as in loc. cit.

Suppose a E II n JD+. For n E N, we denote the respective expression in (ii) by

F,(A). (We take the first expression for n = 2. The second expression then equals

2F 2(A).) It is easily checked that

FI(A) = v2 c(AAo)fA + fA_ = 2g1 (A) , Ac

F 2 (A) = v 2c(AA1) fA 2 + fA = g2 (A) + gi(A) E Nýa,

F3(A) = v2c(AA2)fA_ 3 + fA1 = g3 (A) + F2(A) - v2c(AA,)gl(A) E AXc, and

F4(A) = v 2c(AA3)fA-4 + 2c(A,A1) ( 2 c(A1,A2)fA-2 + fA) + fA 2

= g4 (A) + F3 (A) + v 2c(AA1)gl(A) E NA.

For n > 5 we claim

F(A) -= gSn(A) + (Fn 1(A)- V2 c(AA1)Fn- 2 (A)) - v 2c(A,A2)gn- 4 (A) if n odd,

g,(A) + (F,_1(A) + v2c(AA1)Fn_ 3(A)) - v 2c(AA2)gn-4(A) if n even.



Indeed, if n is odd we obtain

n-1

RHS = v2c(AAn1-)fA_n - 02c(A,An-i-) ( AN2-- -- fA 2,-n)
i=1

+v2c(A,A,-2)fA-n+l + v2c(AAn-3)fA-_+ 3 + V2c(A,A')fA,_ 5 + fAn-3
2V2c(A,A1) V2c(A,A - 3 ) f A-n+2 - V2c(A,A1 ) An-4

n-3

-v2c(A,An-3) fAn+4 + 2c v2c(A,Ani-) (fA2i-n- - fA2i-n)
i=3

= 2c(A,An-) fA_n - U2c(A,An-2)(fA-n+ - fA-n+2 ) - 2c(A,An_3) A-n+3 - fA 4 )

-v 2c(A,A,)(fAn- 5 - fAn-4) - (fAn- 3 - fAn-2)

++v2c(AAn-2)fA-n+1 + v 2 c(AAn-3)fA-n+ 3 + V 2C(A,A1)fAn- 5 + fAn-3

-_V2c(A,An-2) fA-+ 2 _ v2c(A,A) fAn_4 - V2c(A,An-3) fA-+ 4

= v2c(A,An- )fA-_ + fAn-2

= Fn(A).

For n even, we obtain

n-1

RHS = v2c(AAn-1) fA - V2c(A,An-i-)(fA--I - fA 2 ,-,)
i=1

+v2c(A,An-2)fA-n+l + fAn-3 + V 2c(A'An-3)fAf-+ 3 + V2c(A,A) fAn-s

n-3

-v2c(A,An_3) fA-+ 4 + v2c(A,A,_i) (fA 2 -n- 1  fA2i-n

i=3

Sv2c(A,An-1)fA- n - V2 c(A,An-2)(fA-n+l - fA-+ 2 ) - v2c(A,An3)(fA-n+ 3 - fA-n+4)

--v2c(A',A)(fAn- - fA,_,) - (fAn- - fAn-2)

+v 2c(AAn"2)fA-n+l + fAn-a + v 2c(AAn-3)fA-)+ 3 + v 2c(AAi) fAn-5

-v 2 c(A,An-3) fA_-n+ 4

= v2c(A,An-1)fA_ + 2c(AAn-2) A-n+2 + 2c(AA)fAn 4 + fA-2

= F (A).

So F,(A) E A/a for any n E N.

We need this lemma for the following proposition.

Proposition 3.3.6. (comp. [1], Proposition 5.1) Let A E T and w E Wo. We have

e - (-1)1(w)vc(A +'A+ )E • .



Proof. As in loc. cit., it is enough to prove that

eA + V C('AXI Ae oeA0 G Ar, c A

for all a II H. Let a II H and n C Z be such that A E HC,n. We write

eB= B (B + Buo,n) = •ZfAn-1
BEX,BgA BEX,B3A,B<Ba,n A

where the last sum runs over all alcoves A in Uo such that A c An-1. Similarly, we

have

eCxa - • fA-n-1
A

where the last sum runs over the same set of alcoves A as before.

According to the definition of T, if c, 54 , the integer n is necessarily even. So,

since c(Af+, A' ) = 2c(A, A + ) where A is the alcove in Uo such that A, = A + (hence

A+, = A_n), the claim follows from the previous lemma.

Notice that this proposition shows that the operator 0, G Autu(Mo), w E Wo,

maps Mo0n into itself and therefore induces an W-linear automorphism of MO/MO n

N. Theorem 3.3.4 can now be proven as in loc. cit.

Back to the proof of Theorem 3.3.1, it remains to check that

j p(Fc) K'.
(The other arguments in [9] have a straightforward generalization.)

The left ideal I of 7- generated by Two + Two, for any s E So is the submodule of

R corresponding to N. Hence the condition

for f E M is equivalent to the condition

(I, j (g)) = 0

for g = q-l(f) W 7. And since

j 4b(Two + Twos) = j(1 + Ts) = 1 - v-2CTS,

the latter condition is equivalent to

(,-(T, - v2c-), g) = 0.

If s = s,, a E H, the operator O, - e(a) on W is right multiplication with

T,(1 - T2•,) -,(VCs+cz - vCs-c-) + 1 - -2cs _ - T-•cs+)(1 + T-civ -c)
= TS(1 - T-2c) - v2 + T+ - 2V2C,



and therefore (1 - O-2a)-1(O, - e(a)) is equal to the map h 1-+ h(T, - v2cs), h E Xi.
Hence the formal adjoint operator of this map is

((1 - _2)-1( - e(a))* = - e(-a))( - 02 - 1,

which we consider as a map on W7. The condition on g becomes

((•, - e(a))(1 - 0 2a)-1g, W) = 0,

i.e.

e,(1 - 02a)-1 = e(-a)(1 - E02a)-'g.
We can apply 1 - 0- 2a = -0-2a(l- 02a) on both sides and obtain the equivalent

condition

8,g = -e(-a)O- 2ag.

Now, O, = e(a) 0 + and consequently

•,g = (1 - EO_,vc+cg)(1 + EOvc-c))O+g

= -E-2v 2c(1 - V-(C8+c)O)(1 + v1-(ca-ci)O)O+g

= -0-2av 2cs•+(1 - v-(CS+ca)O_)(1 + v-(c--cg)O-,)g.

On the other hand,

-e(-a)-O_2g = v2c (1 - v-(c+c5)O_-)(1 + v-(c'-C)O_,.)g.

So we can write the condition on g E 'W in the form

O-2a+(1 - v-(ca+cg)E_-)(1 + v-(c-ca)O_-)g

= -(1 - v-(c+ci)E_-)(1 + v-(ca- )O_-a)g,
and the initial condition j op(f) E j•l is equivalent to

0_2a0+(1 - v-(C'+C)a)(1 + v-(c"-ca)O-_)f

= -(1 - v-(ca+c')0-a)(1 + v-(S-C•)o-,)f.

We defined Ec = Hf(P)-1Dc for C E X, and according to Proposition 2.3.12 we
0>o

have O8Dc = vc(C*s,C)Dc,s.

Suppose C = y(A + ) C HA, y E Wa, A E T. We first consider the case that c, = cs.

We have

C As = y(A ,_ = y(C * s)p-_

and

c(C O s, C) = y(A+pa) + c(C * s, C) = h(pa) + c(C * s, C).



Hence

0-2a +(1 - v-(c+c-c)O-a)(1 + v-(c--cc)O_,)Ec

= 0_(1 + o)0_a0-o+  1 f(3)- Dc
P>o, P a

= (1 0-) f(O)-lc(C*s,C)-h(p-Q)D(c*s)p-a

S(1 + 0-a) H f(/)-3lvc(cosc)Dcos

= (1 - v-(Cs+c±)0_a)(1 + v-(C'-~)_0-a)vc(COs,C)Ec®s.

Secondly, if c, 5 cý we have

C s = y(Ai-2a) = (C * s)p- 2a

and

c(C O s, C) = h(p2a) + C(C * , C).
Hence

0_2a8 (1 - v-(cs+cS"))0)(1 + v-(C5"-c)O_-)Ec

= H f()-lvc(C*s,C)-h(P-2 o)D(C*s)P
- 2

0

3>o, PZa

(1 - v-(Cs+Cs)O_-)(1 + v-(CS-c~)O-_a)vc(COs,C)Ec®,.

In both cases, we thereby obtain

0-2a•8(1 - v-(Cs+c±)O_ )(1 + -(c-cC)O) )Fc
= 0-2,0+(1 - v-(C'+c)O-)(1 + V-(C-C-~)) ) E (-1)(x)vc(C®xC)Ec®o

xEWo

= (1 - v-(Cs+~s)oa)(1 + v-(Cs-ce)O_) (-1)'(x)vc(C®x,c)+c(co®x*Os,c) Ec*Os
xEWo

= -(1 - v-(C"+C)0-_)(1 + v-(Cs-C)Oa) j (-1)'(xs)Vc(Co®xsC)Ec®·
xEWo

= -(1 - v-(Cs+C)O_)(1 + v-(C"s-C)0-_)Fc.

Thus j cp(Fc) E kfL, which finishes the proof of Theorem 3.3.1.

We conclude this section with the generalization of Theorem 1.8 in [8].

If K = (ka) E Z+ , M = (mO)' Z+ and N = (n,)a E , we set

u(N)= n,



and

a'(K, M,N) = 2 1 kac + 1 (m,(c+ + Ea)+ na(ca - E)).

For T, 0,wethendefine
For r, E T, e> 0, we then define

0aE(D+

P*(n; v) = (--1)O(N)V
a '(K M N )

K,M,N

where the sum runs over all K = (k,) E Z+1, M = (ma) E Z+

such that

N = (n) E Z 2+ 1

1 koa+ Z (ma,+n)a = n.

Let n\ E Wa, A E T + , be the element of maximal length in WopA Wo.

Theorem 3.3.7. Let A, p E T + with A > p. We have

vh(-"P) Pnp, (v-1) = (--1)'(0)P*((A + #)x - (p + p); v).
zEWo

Proof. Since

Pnf,n\ = PA-np,A-n, = PA+,A+ I

we calculate the coefficient of A+ in FA+.

Remember that

FA + (-1)'()vc(A(=+,-) 'A+ )EA _
xEWo

and

EA+
(,\+A)x-A

= II f(a)-1e(A+\+)(a>0
= ( v-2kc_-ka) v-m(c,+E6,)O_-mo)

atE+ k>O aE6+ m>O

-I (n(-1)"nv-n(c-"')0-.o)e(+)X-ý-
06,+ nO>

We have

0 -ka 1 -m a O-naa(A(A+~~),X ) = A+

for some K = (ka), E Z~+tl , M = (ma) E Z , N = (n,), E Z+ if and only if

+ (ma + n)a = (A++ )x - (p + ),
aE4+2

koa



and the contribution to the coefficient of A + in EA+ is

[1 (l) n. JJ Vkh(a-2kc, JJ V m h(ce)-m,(c,+E,) I vnah(c)-nn(coa,)

= (_-1)(N) vh((XA+)x-(+Lý))-o'(K,M,N).

Since

c(At+,,-3, A+7) + h((A + f)x - (y + ,)) = c(A+, A+),
the claim follows.

4. SOME RESULTS ON GENERALIZED CELLS

In the first section, we briefly introduce generalized cells and the a-function. In

the second section, we examine a particular generalized two-sided cell of W,. Here,
Lemma 2.2.7 will play an important role. The third section contains a description of

the generalized left cells in a Coxeter group for one class of parameters. We conclude

this chapter with an example.

4.1. Definitions and basic properties. For equal parameters, the following defi-

nitions and facts can be found in [18]. In [16], Lusztig generalizes the concept of cells

to unequal parameters.

Let W be a Coxeter group with generating set S and parameters cs, s E S, subject

to the condition that cs = ct whenever s and t are conjugate in S. The definition

of the corresponding Hecke algebra 7N is analogous to the definition in Section 1.2.

Here, it will be more convenient to work with the A-basis { Tw I w G W} (instead of

{T, I w W}) where

S= v-m(W)Tw.

Multiplication in terms of these elements is given by

(Ts - vcs)(T. + v.-) = 0
for s E S and

TWW1, = TWW,
for w, w' E W, 1(w) + 1(w') = l(ww').

The A-basis of WN consisting of the elements

Cf= Ww(-1)'(d)-'(Y)vM(W)-m(Y)Py,e(V-l)sy
y<w

for w E W will be denoted by C (see loc. cit.).



For y, w E W and s E S such that sy < y < w < sw, we inductively define

polynomials Ms,w E A by

(i) E m(Zm()-m(Y)Py,zM", - v'+m(w)-m(Y)Py,w E Z[v- ' ] and
y<z<w, sz<z

(ii) M", = M" .

It turns out that

S-(vCS + v-C_)C if sw < w,

(*) CSC = CW, - (-1)l(w)-l(z)M;,WC z if sw > w.
z<w,sz<z

We remark that

Cw Tw + v AT,
y<w

and

we Cw + v EA+Cy.
y<w

For y, w E W, y < w, define polynomials Qy,w E A + by

y<z<w

and set

Du = vm(w)-m(y)Qy,w(V-1)tw,
y<w

which is an element in the set W-* of formal A-linear combinations of the elements

Tw, wE W.
We have an A-linear map 7: 7-* -+ A, given by

rT( awsw) = ae,
wEW

aw C A for w E W. It is easy to check that

T(TxTy) = 6x,y-1

and

T(CxD) = ·(DyC) = C ,,-1

for x, y E W.

Let •L be the preorder on W which is generated by x <L y for x, y E W,, if there

exists some s E S such that T(CCDx-1) O. The associated equivalence relation is

denoted by -L, and the equivalence classes with respect to -L are called generalized



left cells. Similarly, we define _<R, "R, and generalized right cells. We say x <LR Y
for x, y E W, if and only if there exists a sequence

X = Xo, X1, ... ,,Xn = y

such that for all 0 < i < n - 1 we have xi •L Xi+1 or xi •R Xi+1. We write -LR for

the associated equivalence relation, and the equivalence classes are called generalized

two-sided cells. (We use the attribute generalized whenever unequal parameters are

involved.)

For y E W, define

L(y) =s E S I sy < y}
and

R(y) s E S I ys < y}.

Remark 4.1.1. Let x, y E W.

(i) ([31], Corollary 1.20) If x <L y, then R(x) D R(y). Therefore, x -L y implies

7(x) = R(y).

(ii) If CyD, f 0, then y-1 <L x. (Use [31], Corollary 1.15 (a).)

A function

a: W -- No U {oo}

is defined as follows (cf. [18] for equal parameters and [23] for unequal parameters).
Let w E W. For x, y E W, express T Ty with respect to the basis C, and consider the

coefficient of C,-1. If the order of the pole at 0 of these coefficients is bounded as x

and y vary, we set a(w) equal to the largest such order. Otherwise, a(w) = oo. For

equal parameters, this function is an important tool in the study of representations

of Hecke algebras in [18].

Remark 4.1.2. Let M be an abelian group acting on W in a way such that m(S) = S

for all m E M. Consider the semidirect product W' = M < W. The definitions in

this section can be extended to W' (comp. [21]). Generalized cells in W' are of the

form {(m, w) Im E M, w E F} where F is a generalized cell in W.

4.2. The lowest generalized two-sided cell in W,. Suppose W = W,. (We use

the notation of Chapter 1.)
Let v = 1(wo), i, = m(wo), and set vs = vs- _v-c for s E S. For x, y E Wa, we

write

TxTy = Z mx,,zTz-i.
zE Wa

Note that Ti = -T, + 1 for s E S, so any mx,y,z is a polynomial in ,, s E S.



Theorem 4.2.1. Let x, y, z E Wa.

(i) As a polynomial in (s, s E S,, the degree of mx,y,z is at most v, and the coeffi-

cients are non-negative integers.

(ii) The degree of m,,, in v is at most 5.

The proof of part (i) is analogous to the proof of Theorem 7.2 in [18]. Part (ii) is

approached in a similar way, using Lemma 2.2.7 instead of [14], Lemma 4.3.

We will need the following two corollaries, whose proofs are again analogous to the

ones in [18].

Corollary 4.2.2. (comp. [18], Corollary 7.3) For w E W,, we have a(w) •5 .

Corollary 4.2.3. (comp. [18], Corollary 7.10) For any x, y, z E Wa, the elements

v r(TxTyT) and vT(TTxyDz) are in A+ and have the same constant term.

Now, for any w,x,y E Wa, the notation w = x - y means that w = xy and

l(w) = 1(x) + 1(y) (and similarly for w = x -y z, w, x, y, z E Wa.) For A E T, let

M = {z E W, I wz = wx z},

and define

NA,z = {W E Wa I w = z wA z, zC E Wa}
where z E MA. Note that according to [28], Lemma 3.2, the condition wAz = WA z

implies z-lwAz = z-1  wA - z.

Theorem 4.2.4. Let A E T and z E MA. The set NA,, is contained in a generalized

left cell.

Proof. Let x E Wa, and suppose x = Sk ' --81, si E S, for 1 < i < k, is a reduced

expression. Let y E Wa. We denote by 2, the collection of all I = {i,... , ip,} such

that 1 < il < ... < i, < k and

Sit ... " i_1 ... il ... sly < Sit ... S ". si. ... sly

for all 1 < t < pi. For I E E-, we write

ti = tsk ... SipI *il ..Sly-
Induction on k shows that

PI

IEly j=l

Now take y E NA,z, y = z' WA - , for some z' E Wa, and x = z- wAz. (So x E NA,z.)

Say x = Sk ' ' ' sl is a reduced expression such that WA = sm ... s and s,-1 ... sl = z



for some k > m > n > 1. If we set I = {n,... , m, we have I E I,-i and p5 = i (see

Lemma 2.2.7 for the definition of Pi). Hence

v T(T TY-,T(z-,zy-1)-1) = vr(TT -1TV)

has non-zero constant term. Using

7(-tj;-4TJ) = lr(Ty-iTyTx) = -(rT TO T-1)

and Corollary 4.2.3, we see that the polynomials vTr(Cu-1CiD,) and vr(CyCQD,-i)

have non-zero constant terms, in particular, C,Dx and CD,-1i are non-zero. Thus,
by Remark 4.1.1 (ii), we have x = x- 1 •L y and y L• X, i.e. y -L x for all y E NA,z.

The next corollary is an immediate consequence of the above theorem for z = e

and Remark 4.1.1 (i). For equal parameters, this is Corollary 8.5 in [18].

For A E T, let SA = W n S, and write R(SA) = {w E Wa I ws < w for all s E SA}.

Corollary 4.2.5. The set R(SA), A E T, is a generalized left cell in Wa.

We also get the following result, which for Case 2 is Theorem 3.22 in [31]. Let

WT = {w E Wa I w = z' wA z, Z, z' E Wa, A E T}.

Corollary 4.2.6. The set WT is a generalized two-sided cell.

Proof. We only need to look at Case 1, in which case

WT = U NA,
zEMA

for some fixed A E T. Let z'wxz and y'wAy be elements in WT, z'wAz = z W' - Z

and y'wy = y' .w .- y. Using Theorem 4.2.4, together with its version for generalized

right cells, we obtain

Z IWAZ -L WAZ -R WAY -L Y WAY,

Thus WT is contained in a generalized two-sided cell. The other inclusion is proven

in the same way as in loc. cit.

We remark that WT is the lowest generalized two-sided cell in Wa with respect to

<LR-

Theorem 4.2.7. The set WT contains at most IWo| generalized left cells.

Proof. For A E T, let

M' = {z E Wa I wAz = w -z, swAz V WT for all s E SA}.



Following [28], we choose a set of representatives for the Q-orbits on T and denote

it by R. Then

WT = U NA ,
AER, zEM,

so the number of generalized left cells in WT is at most the number of pairs (A, z),
A E R, z E M'.

As in loc. cit., we see that z E M. for some A E T implies z-1(A +) C HA. Since all

z- 1 (A+), A E R, z E M,, are different, the number of pairs (A, z) is thereby bounded

by the cardinality of {A E X IA C HA for some A E R}. The latter set is easily seen

to be a fundamental domain for the action of the translation subgroup of Q on X, so

its cardinality is IWol. The assertion follows.

There is another way to describe the set WT, which is similar to the description in

[3]. Let i C 7, and denote by Fi the set of all hyperplanes H (E F of direction i such

that cH = ci. The connected components of

V- UH
HE ri

are called strips. We write

U(A)= U U
U strip, UDA

for A E X.

Lemma 4.2.8. We have

WT = {w E Wa w(A+) g U(A+)}.

Notice that instead of A+, we could have chosen any other alcove A E X since

U(A+v) = U(A+)v for any v E Wa.
Proof. First, let w E Wa be such that w(A +) V U(A+). The alcove w(A +) lies in

some connected component C of V - UE+ Hr, 0 . This quarter C with vertex 0 can

be described as

C = {x E V (x,&) > 0 for a E y.H}

where y E Wo maps C+ to C. So there are r linearly independent positive roots

al,... ,ar and some k e {1,... ,r} such that

C = {zx V (x, A&) < 0 for 1 < i < k, (x, &i) > 0 for k + 1 < i < r}.

We remove from C all alcoves which lie in U(A +) and obtain the quarter

C' = {x E V I (x, i) < 0 for 1 < i < k, (x, &i) > bi for k + 1 < i < r}



where

bi = 1 if coi = 80s,
= 2 otherwise

for k + 1 < i < r. (The set C' is a translate of C.) So w(A + ) C C'.

Let A be the vertex of C', and let z e Wa be such that z(A + ) is the unique alcove

in C' containing A in its closure. Since C' C C, any other element v E Wa with

v(A+) C C' satisfies v = v' - z for some v' E Wa, in particular w = w' - z for some

w' e Wa.

Let s E S\, so there is a wall of C containing a face of type s. For each wall of

C', the alcoves A + and z(A + ) lie on different sides. Since 1(v) for v E Wa counts

the number of hyperplanes such that A + and v(A + ) lie on different sides, we obtain

sz < z. We conclude z = wA z' for some z' E Wa and w = w' w - z'.

Conversely, let w E WT, w = z' ·w . z for some z' , z E Wa and A E T. If we are in

Case 1, we set A = z- 1 (A+). Using [28], Lemma 4.2, we get

A = z-1 (A + ) C C+

and

w(A) = z'wA(A +) = z'(A-) C C-.

Hence (x, 6) > 0 and (y, ) < 0 for all x E A, y E w(A), a E 4+, which implies

w(A) g U(A).

If we are in Case 2, we set A = z-1(A+). We obtain (x, 6) 5 (x', ) for all x E A,
x' E w(A), a E D+, and this again implies w(A) g U(A).

Note that the connected components of V - U(A+) turn out to be precisely the

quarters of the form C'.

Remark 4.2.9. Define

W(,) = {w E W I a(w)= =}.

For w E WT, we obtain from the proof of Theorem 4.2.4 that a(w) > 1, and from

Corollary 4.2.2 that a(w) < i. Thus WT C Wp(). At the end of the next section, we

will see that this is actually an equality.

We also point out that we can use the procedure in [19] to attach a based ring

Jw, to the lowest generalized two-sided cell WT. For fixed T, the ring JwT does not

depend on the parameters.



4.3. Parameters coming from graph automorphisms. We now place ourselves

in the setting of [15], Section 8. Let W be a finite or affine Weyl group with a set S of

simple reflections and a : W -+ W a non-trivial automorphism such that ca(S) = S.

Let W be the fixed point set of W under a. This is again a finite or affine Weyl

group and has a set S of simple reflections corresponding to the orbits of a on S. For

s E S, let c, be the length of the longest element in the subgroup of W generated by

the orbit corresponding to s. We thereby get parameters cs E N such that c, = ct

whenever s and t are conjugate in W.

We will write P,,,, C,, a etc. for W and P,,,, C Z, a etc. for W.

For x, y, z E W, set

hXy,z = T(CxCyDz-1),

and correspondingly

h ,Yz = F(CxCyDz-,)

for x, y, z E W.

Let x, y, z E W be such that x < y. According to [11], [16], and [24], the coefficients

of P,Y and h ,y,z can (up to a sign) be interpreted as dimensions of certain vector

spaces on which a acts, and the corresponding coefficients of Px,, and hx,y,z are the

traces of a on these vector spaces. We need the following facts which are consequences

of these interpretations.

4.3.1. We have deg P~, < deg PX,,.
4.3.2. If the coefficient of v i , i E Z, in hx,y,z is non-zero, then the coefficient of v i

in hx,y,z is non-zero as well. In particular, a(z) < ~(z).

4.3.3. If the coefficient of v i , i E Z, in h,Y,z is ±1, then the coefficient of v' in

hx,y,z is non-zero.

For x, y, z E W, let cX,Y,z, be the integer given by

va(z)hx,y,z-1 - Cx,y,z E vA+,

and write 8(z) for the degree of the polynomial Pe,z in v. Similarly, we define c,,z,

and S(z) for x, y, z E W, and we set ny,z = (-1)" (z) c,Y,z.

Lemma 4.3.4. We have a(z) < m(z) - 8(z) for any z E W.

Proof. According to [19], the corresponding inequality holds for W. In view of

4.3.2 and 4.3.1, we can therefore conclude

(*) a(z) < ia(z) < l(z) - ý(z) • m(z) - S(z).

Remark 4.3.5. Let

D = {z I a(z) = 1(z) - (z)}



be the set of distinguished involutions in W. We set

D = {z E W I a(z) = m(z) - S(z)}.

From (*), we derive that a(d) = ~(d) for all d E 7D and that D C 7.

The following two results can be found in [19].

4.3.6. Any left cell f of W contains a unique d E . For z E F, we have "z-1,z,d = 1,
and d is the unique element in W such that 7z-1,z,d # 0.

4.3.7. We have Y,,y,z = y,,,, for all x, y, z e W.

Theorem 4.3.8. The generalized left cells of W are the fixed point sets of the left

cells of W under a.

Proof. Let z E W. It follows from the definition of C,, w E W, that

T(Cz-1Cz) E 1 + v.A+ .

On the other hand,

'r(Cz-1Cz) = 3hz-',zw(Cw )
wEW

wEW

Lemma 4.3.4 shows that there exists some d E D such that cz-1,z,d # 0. Since

a(d) = a(d), we conclude Cz-1,z,d f 0 and hence y7z-',z,d O. We have d E 7), and

using 4.3.6 and 4.3.7, we arrive at

'Yz
- 1

,z,d = Yz,d,z
-

1 = 1

Thus, according to 4.3.3, both elements CzDd and CdDz-1 are non-zero, which in

turn implies d <L z <L d (cf. Remark 4.1.1 (ii)), i.e. d -L z. This means that any

generalized left cell in W contains a distinguished involution.

As a consequence of 4.3.2, any generalized left cell in W is contained in the fixed

point set of some left cell in W (comp. [15]). Since there is only one distinguished

involution in each left cell in W, the assertion follows.

In [19], Lusztig proves that if W is an affine Weyl group, W consists of only finitely

many left cells. So we obtain the following statement.

Corollary 4.3.9. If W is an affine Weyl group (with parameters as above) the num-

ber of generalized left cells in W is finite.



Note that the proof of Theorem 4.3.8 shows that D is the fixed point set of ) and

that a(z) = F(z) for any z E W. Several statements in [19] then carry over to W.

We will need the following one for the proof of Theorem 4.3.13.

Corollary 4.3.10. (comp. [19], Corollary 1.9 (b)) For any z', z E W, if z' <L z and

a(z') = a(z) then z' ~L z.

Remark 4.3.11. As we will see in the next section, a generalized two-sided cell in

W does not have to be the fixed point set of some two-sided cell in W.

We now again use the notations of Chapter 1 (taking W = Wa).

Theorem 4.3.12. If we have parameters coming from a graph automorphism, WT

consists of exactly IWo0 generalized left cells.

Proof. Let

N = {z-wz I A R, z E M'}.
As in [28], we see that N C D. In view of Theorem 4.2.7, it therefore suffices to show

that NI = WoI.

It follows from the proof of Lemma 4.2.8 that V - U(A +) has IWoI connected

components. According to the same lemma, we have

V - U(A + ) = WT.A +,

which in turn equals

U Nx,z.A+
AER, zEM'

In the proof of Theorem 4.2.7, we saw that {(A,z) I A R, z E MX}I < IWo0, and

since NA,,.A + is connected, we obtain {(A, z) I A E R, z E MX}I = IWo|. We have

z-lwxz.A + C Nx,z.A+ for A E R, z E M., so all z-lwAz.A + and thus all z-lwxz are

different. We conclude |NI = IWoI.

Finally, we prove the equality indicated in Remark 4.2.9. (This holds for any

parameters.)

Theorem 4.3.13. We have

W() = WT.

Proof. It remains to show that W(P) C WT.
We first assume that we have parameters coming from a graph automorphism. Let

z E Wa be such that a(z) = iý. Choose some A E T, and let y E Wa be the element

of minimal length in W z. Then z = x y for some x E WA, and by induction on



l(wA) - l(x) we see that we can find sl, ,... ,sn c S such that sn... slz E WT and
Si ... s l z > i-_l * ... s1z for all 1 < i < n, i.e. there exists an element z' E WT such
that z' <L z. By Corollary 4.3.10, we get z' -L z, thus z E WT.

For arbitrary parameters cs, s E Sa, one can check that there always are parameters

cs, s E Sa, such that the corresponding set W(p,) resp. WT' equals W(r~) resp. WT. (Use

Corollary 4.2.3 for W(p,).) The claim follows.

4.4. The case C2. In this section, we explicitly determine the generalized left and

two-sided cells for the case W of type C2 (= B 2) and W of type A3 . More cases can

be found in the appendix.

Let W be a Coxeter group of type A 3 with Dynkin diagram

Let a be the automorphism on W which fixes so and s2 and interchanges sl and s3.
Then W = We is of type C2 with parameters

1 2 1

SO 81 82

The cells for Weyl groups Ar, r > 2, of type A,-1 are given in [27]. In particular,
Lusztig and Shi established a bijective correspondence between the two-sided cells of

Ar and the partitions of r, which we describe now.

We realize A, as the group of all permutations a on Z such that a(i + r) = a(i) + r

for all i E Z and ->, a(i) = - i by letting the simple reflection si, 0 < i < r - 1
act as

j +1 ifj -i (mod r)

si(j)= j-1 ifj--i+ (modr)

j if j 0 i, i + I (mod r).

A map ir from Ar to the set of partitions of r is defined as follows. Let w E Ar. We

denote by dk, k E N, the maximal cardinality of a subset of Z whose elements are

incongruent to each other mod r and which is a disjoint union of k subsets each of

which has its natural order reversed by w. (We set do = 0.) Let n E N be minimal

such that d = r. For 1 < k < n, we define Ak= dk - dk-1. Then Ek= Ak = r and

A1 > A2 > ... > An (cf. [27]). We set ir(w) = (A1 > A2 > ... > An). The two-sided

cells in A, then coincide with the fibers of r.

gSO § 2*



Now take W and W as at the beginning of this section. We use the above description

of the two-sided cells in order to determine the generalized left cells in W. The fixed

point sets of the two-sided cells in W are unions of generalized left and two-sided

cells in W.

The lowest generalized two-sided cell co consists of the eight generalized left cells
No,l, No,so No,sos , No,SOSS N1 N N N 1

S0,1, 0 ,so, 0,sos 0 ) I T S2 1,0  C1 ,s2 2S1 f V Oi2S1SO*

The two-sided cell corresponding to the partition (1 > 1 > 1 > 1) contains only

the identity element. The fixed point set c, = {1} is a generalized left and two-sided

cell.

As noted in [12], the two-sided cell corresponding to (2 > 1 > 1) consists of all

elements in W with a unique reduced expression. Its set of fixed points is therefore

{so, S2 }. Remark 4.1.1 (i) implies that c2 = {so} and c = {s 2 } are generalized left

and right cells and hence generalized two-sided cells. (This is an example where the

generalized two-sided cells in W are not the fixed point sets of the two-sided cells in

W.)
We are left with the elements in c4 = c I U U C4 where

c4 = 2sso24 1 01 0

S { Sl(SOS2s1)n, s2S1(SOS2Sl)n,S OS1(SOS2S 1)n, (OS2S l)n+1; n > 0},
2 = {S S O)n, 280S12S)n+l, sZ(S1 2so)n+l, SO(S182so)n+l;n _ 0),= {sso( 210 n+ n+1;n > 0}

-- {(S1S2(S)S18,S 2 1S2(S0S 1S 2n (S 01 2 )n S,
2(SoSss 2), 1 0},

= {SISO(S 2S1sO)n, oS1SOS(S2 ), (s2 1S1) , sn(2 1 0}

and c = -c U c U c3 U- where

C5 = {s18 281S1( 2S 1SS 1)n (s012S1 S1)n+ 81(s0s1S2S1 l 281(80 2S1  n+n > 01,
c5 = {S1SOS1(1SOS(S2SO1noSOS1)n -

l 
- 1 

(2S1S2 01 n+1, SOS1(2S1SOln+ 2 0},

c {(ssoss 2))n, 2(S1SS1SS2 S 2(SiSOSIS 2)n soSIS 2(S1SOSIS 2)n;n Ž 11,

C = {(S1S 2S 1so)n, so(S 1S 2S 1so)n, s1SO(s1S2S 1sO)n, s2sI•O(SIS 2S sO); n Ž 1}.

It can be shown by induction on n that 7 sends the elements in c to (2 > 2)

and the elements in cs to (3 > 1). (For example, the element (SOS2S1 )n, Tn N, as

permutation on Z maps

1 to 1 +2n,

2 to 2 -2n,
3 to 3 + 2n,
4 to 4-2n.



So sets of integers which are incongruent mod 4 and whose order is reversed by

(8 0 s 2S1)n are of the form

{1+4k, 2+41},{1+4k,41}, {2+4k,3+41}, or {3 + 4k, 41}

for certain k, I E Z. Thus 7r((sos2sl1n ) = (2 > 2).)

We conclude that ii is constant on c4 and c5, respectively, and that c4 and c5 are

unions of generalized left and two-sided cells. (It is shown in [18] that ii is constant

on two-sided cells.)

It follows from the multiplication formula (*) in Section 4.1 that

s1(30S2S 1)n ŽL S2S1(S OS2SS 1 )n } L (SOS2S1)nl ŽL S1(S082S1)n+l

for n > 0. Similar relationships hold for the elements in C, i > 2, and ~, j > 1. We

derive from Corollary 4.3.10 that elements x, y E W with x <L y and 7(x) = 7(y)

lie in the same generalized left cell. Therefore, any c4 and any fc is contained in a

generalized left cell. Remark 4.1.1 (i) then implies that c; for i > 1 and f5 for j > 3

are generalized left cells.

According to [27], Theorem 16.1.2, elements in A,, r > 2, lie in the same left cells

if and only if they have the same generalized right T-invariant (for the definition see

[27], p.18). Since the elements in A 4 corresponding to sls 2Sl E c1 and slsosl 5 c• do

not have the same generalized right r-invariant (take the right star operation with

respect to {S2, s3}), they do not lie in the same left cell. It follows that c1 and c2 are

generalized left cells.

Since generalized two-sided cells are unions of generalized left and right cells and

since (cl) -1 n c/ $ 0 for n E {4, 5} and all i > 1, the sets c4 and c5 are generalized

two-sided cells.

We remark that in this case, as well as in the cases listed in the appendix, each

generalized two-sided cell has a non-trivial intersection with a maximal parabolic

subgroup WA of W for some special point A.



65

APPENDIX

For W of type 02, we describe generalized left and two-sided cells using the re-

alization of W in terms of alcoves as in Section 2.3. The generalized left cells are

obtained as the connected components after removing the thick lines. The general-

ized two-sided cells are the unions of all generalized left cells with the same label ci,
i > 0. In all cases, the elements in the lowest generalized two-sided cell are labeled

co . The alcove corresponding to the identity element is labeled _c.

We start with the equal parameter case, which is taken from [18]. In the unequal

parameter cases, we indicate W as well as the non-trivial actions of a. (The notation

is that of Section 4.3.) The calculations are similar to those in Section 4.4. (For W

of type B3 resp. D4 , we use [6] resp. [5], [30].)
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W" 1 1 1

SO S1  82

The 4 two-sided cells consist of 8 + 1 + 3 + 4 = 16 left cells (in this order).
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W:

1 1 2

SO S1 82

The 6 generalized two-sided cells consist of 8 + 1 + 2 + 4 + 4 + 4 = 23 generalized

left cells.



X a 2 1 2

SO 81 82

3 2 3
SO S1 82

The 7 generalized two-sided cells consist of 8+

left cells.
1+1+1+1+4+4 = 20 generalized

and

W:



eb~:~?"
;C~e~e

C
L
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~
,X00

A
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