Kazhdan—Lusztig Polynomials and Cells
for Affine Weyl Groups and Unequal Parameters

by
Kirsten Bremke
Diplom, RWTH Aachen (1992)

Submitted to the Department of Mathematics
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy in Mathematics
at the
MASSACHUSETTS INSTITUTE OF TECHNOLOGY
June 1996
(© Massachusetts Institute of Technology 1996. All rights reserved.

Author....... SRS AN T e T e,
Department of Mathematics
February 6, 1996
Certified by ...
George Lusztig
Professor of Mathematics
Thesis Supervisor
n A M /
Accepted by..J».W.w.‘..'..‘.V.‘T/v.—.-../;».c.,........................;..

David A. Vogan
Chairman, Departmental Committee on Graduate Students

SCIENCE

MASEACHURETTS INSTITUTE
QT T

S VL 06 139






Kazhdan—Lusztig Polynomials and Cells
for Affine Weyl Groups and Unequal Parameters
by
Kirsten Bremke

Submitted to the Department of Mathematics
on February 6, 1996, in partial fulfillment of the
requirements for the degree of
Doctor of Philosophy in Mathematics

Abstract

Let W, be an affine Weyl group with a set S, of simple reflections and parameter set
{cs | s € S.}. We study Kazhdan-Lusztig polynomials and cells for the cases that
not all parameters are equal.

Denote by H the generic Hecke algebra corresponding to (W,, S,) and {cs | s € S, }.
We show the existence of a canonical basis for a certain #-module M°. The coeffi-
cients of the basis elements are generically inverses of the Kazhdan-Lusztig polyno-
mials. We establish a formula for Kazhdan-Lusztig polynomials in terms of certain
alcove polynomials. We also obtain a formula involving an analogue of Kostant’s
partition function.

We explicitly describe the lowest generalized two—sided cell. We find reduced ex-
pressions for its elements, provide a geometric interpretation of this cell, and we give
a description in terms of a numerical function @ on W,. We also prove that the
lowest generalized two—sided cell consists of at most |Wy| generalized left cells where
Wy denotes the finite Weyl group corresponding to W,. For parameters coming from
graph automorphisms, we show that this bound is exact. For these parameters we
also characterize all generalized left cells.
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INTRODUCTION

The concept of cells for an arbitrary Coxeter system (W,S) was introduced by
Kazhdan and Lusztig in [10]. They defined left, right, and two-sided cells. The
definition involves a canonical basis of the generic Hecke algebra H of W. The coef-
ficients of the canonical basis elements with respect to a standard basis of H are the
Kazhdan-Lusztig polynomials.

Cells in Coxeter groups have been intensively studied. They are important because
they give rise to representations of #. For example, if W is the finite Weyl group
of type A, r € N, the representations attached to the left cells of W are all the
irreducible representations of #, and similarly for right cells.

In [16], Lusztig extends the concept of cells to Coxeter systems (W, S) equipped
with a parameter set {c; € N | s € S} such that ¢, = ¢y if s and s’ are conjugate.
We refer to these cells as generalized left, right and two—sided cells. If all parameters
¢, are equal, we get the same cells as before.

Generalized cells give rise to representations of the generic Hecke algebra corre-
sponding to (W, S) and parameter set {c, | s € S}. If W is a finite resp. affine Weyl
group the representation theory of corresponding Hecke algebras is very relevant for
the representation theory of reductive groups over finite resp. p-adic fields.

In this thesis, we are mostly concerned with Hecke algebras corresponding to affine
Weyl groups. Let W, be the affine Weyl group with a set S, of simple reflections
and parameter set {c; | s € S,}. Denote by H the corresponding Hecke algebra over
the ring A = Z[v,v~!] where v is an indeterminate. Let W, be the finite Weyl group
corresponding to W,.

For equal parameters, the cells in W, have been explicitly described for type A,, r €
N (see [27], [17]), rank 2, 3 (see [18], [2], [6]), and types Ba, Cs, Dy (see [29], [30], [5]),
and a lot of important results are obtained in [18]—[21]. In particular, Lusztig shows
that the two—sided cells of W, are in bijective correspondence with the unipotent
conjugacy classes in a simple algebraic group over C of type dual to that of Wj.

Several problems regarding Kazhdan-Lusztig polynomials and cells arise for arbi-
trary parameters but have only been solved for equal parameters. In this thesis, we
solve some of these problems for unequal parameters.

The following is an outline of the contents of this thesis.

Chapter 1 contains background material on affine Weyl groups and affine Hecke
algebras. In particular, the affine Weyl group W, is realized as a group of affine
motions of a Euclidean space V as well as in terms of certain alcoves in V. Let X be
this set of alcoves.
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In Chapter 2, we consider a certain H-module M°. Generalizing [14], we prove the
existence of an A-basis {D¢ | C € X} whose characterization is similar to the charac-
terization of the canonical basis for H. We show that the coefficients of the elements
D¢, C € X, expressed with respect to X are generically inverses of the Kazhdan-
Lusztig polynomials and that they can be calculated by a finite induction. We obtain
patterns which generalize Jantzen’s generic decomposition patterns for Weyl modules
of a simply connected almost simple algebraic group over an algebraically closed field
of prime characteristic p (for p large).

In Chapter 3, we prove formulas involving Kazhdan-Lusztig polynomials, their
inverses, and alcove polynomials. (Alcove polynomials generically equal Kazhdan-
Lusztig polynomials.) This generalizes work by Kato and Andersen ([9] and [1]).
The main statement is a formula which expresses Kazhdan—Lusztig polynomials for
dominant elements in terms of alcove polynomials. We also find a way to express
certain Kazhdan-Lusztig polynomials in terms of an analogue of Kostant’s partition
function.

Chapter 4 deals with generalized cells. We first consider the lowest generalized two-
sided cell. This cell contains nearly all elements of W,. We give different descriptions,
and show that this cell consists of at most |Wp| generalized left cells. (References for
the equal parameter case are given in Chapter 4.) We then study the case that the
parameters ¢,, s € S,;, come from a graph automorphism. In this situation, the co-
efficients of the Kazhdan-Lusztig polynomials and of the structure constants of the
canonical basis of  can be interpreted in terms of intersection cohomology sheaves.
We derive a characterization of all generalized left cells. This characterization implies
that there are only finitely many generalized left cells. We also show that for pa-
rameters coming from a graph automorphism, the lowest generalized two-sided cell
consists of exactly |Wp| generalized left cells. The results in this chapter partially

answer questions raised in [31].

1. PRELIMINARIES

In this chapter, we collect some basic material about affine Weyl groups and affine
Hecke algebras which will be needed later on. The exposition follows [9], [14] and

[31]. For more details and proofs, we refer to these publications.

1.1. The affine Weyl group. Let V be a Euclidean space of finite dimension r > 1.
Let ® C V be an irreducible root system of rank r and & C V* the dual root system.
We denote the coroot corresponding to o € ® by &, and we write (z,y) for the value
ofyeV*atzeV.
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Let @ be the root lattice and P the weight lattice. The Weyl group Wy of ® acts
on () and P (on the left), so we can form the semidirect products

Wa—T—WoD(Q

and
Wa = Wg x P.

The group W, is the affine Weyl group of type @, and W, is the extended affine Weyl
group associated to a simply connected, simple algebraic group G (over C) of root
system ®. When A € P is regarded as an element of Wa, we will also write p) instead
of A. The reflection in W} along the hyperplane orthogonal to a € ® will be denoted
by sa.

Geometrically, W, can be described as follows. (We will not distinguish between V
and the underlying affine space.) Fix a set of positive roots ®+ C ®, and let II C &+
be the set of simple roots. For a € ®* and n € Z, we define a hyperplane

Hyn={z €V |(z,a) =n}

and write 0o n = 0g,, for the reflection along H,,. Let ap € &1 be such that &g
is the highest coroot in ®. Mapping s4, o € II, to 040 and so def PooSap 10 Tag1
establishes an isomorphism from W, to the group  generated by 040, € II, and
O 1-

Denote the set of simple reflections in Wy by Sg. The group W, is a Coxeter group
with generating set S, = So U {so}-

The extended affine Weyl group Wa can be written as the semidirect product N xW,
where N is the normalizer of S, in W,.

We also need the following realization of W, (cf. [14]). Let

F={Hy,|aecdt neZ}

and let X be the set of connected components of V — |y H. The elements of X
are called alcoves. The group () acts on the set of faces of alcoves, and we denote the
set of (Q-orbits by S.. If f is a face contained in the orbit t € S}, we say f is of type
t. For A € X and t € S!, there is a unique alcove tA € X, tA # A, such that tA
shares with A its face of type t. The involutions oy : A+~ tA on X for ¢ € S, generate
a group W.. There is an isomorphism from W, to W], which can be described as
follows. Let

At ={z €V |(z,&) >0 for all @ € II, {z, ) < 1}.
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For s = s4, a € II, resp. s = so, the hyperplane H, ¢ resp. H,,1 contains a unique
face of At, whose orbit in S’ we denote by ¢;. The isomorphism sends s € S, to the
involution oy,.

Identifying W, with Q yields an action of W, on V' and thereby on X, which we
consider as a right action. We also identify W, with W! from now on and write the
action of W, on X resulting from this identification on the left. The two actions of
W, on X can be seen to commute and to be simply transitive.

We fix parameters ¢; € N for s € S, such that ¢, = ¢; whenever s and t are

conjugate in W,.

Lemma 1.1.1. Let H be a hyperplane in F, and suppose H supports faces of types
s,t € S;,. Then s and t are conjugate in W,.

Proof. The assumptions imply that there are alcoves A, A’ € X such that sA =
Aoy and tA' = A’oy. Because of the transitivity of the left action of W, on X, we
can find an element w € W, such that A’ = wA. We have

twA =tA' = Aloyg = wAoy = wsA,

and hence tw = ws, i.e. s and t are conjugate via w.

As a consequence of this lemma, we can associate a parameter cg € Nto H € F
where cy = ¢, if H supports a face of type s.

For a 0-dimensional facet A of an alcove, we define

m(A) = Z ¢y,
HEF,H3A
and we call A a special point if m(A) is maximal. Note that, in general, the set of
0-dimensional facets of alcoves contains P as a proper subset.

Let T' C V be the set of all special points. If all parameters are equal, the notion
of special points coincides with the notion in [14], so T' = P and m()) = |®*]| for
A € T. The next lemma will enable us to determine T in all cases.

Let T' be the Coxeter graph of (W,, S,), and identify the set of vertices of I' with
Se. If T is of type A; or C’,, r > 2, there is a unique nontrivial automorphism ~on I'.

Lemma 1.1.2. Let H, H' be parallel hyperplanes in F and let s,s' € S,. If H sup-
ports a face of type s and H' supports a face of type s', we either have
(i) T is of type A, or C., r > 2, and {s,s'} = {s0, 30} or

(ii) s and s’ are conjugate in W,.
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Proof. Suppose (i) does not hold (and s # s'). W.l.o.g. we can assume that there
exists an element ¢ € S, such that (st)? = id.

Let A be an alcove having its face of type s on H, and let H” be the hyperplane
containing the face of A of type t. Then H” intersects H and hence H' at an angle
= H'. Therefore, H' supports a face of type ¢, and

+%, which implies H"og15,

s’ ~t by Lemma 1.1.1. Since (sts)s(sts) =t, we have s ~ ¢. Thus s’ ~ s.

Throughout this paper, we refer to the situation in which the Coxeter graph I is
of type A; or C~',., r > 2, and ¢,, # c;,, as Case 1 and all other situations as Case 2.
In Case 1, let A, be the fundamental weight such that P is generated by @ and A,.

Claim 1.1.3. Wehave T=Q orT =X+ Q in Case 1 and T = P in Case 2.

We first notice that if X is a special point and p € @, the point A + 4 = Ap, is a
special point as well.

Next, since according to the definition of the weight lattice, P consists of all points
A € V that lie in the intersection of |®*| hyperplanes in F, we have T' C P.

Now suppose we are in Case 1 and I is of type C,. (For the following data about
roots and weights see e.g. [4], Ch. VI.) Take an orthonormal basis {e;,... ,e.} of V
and write a; = €; — €;41, 1 <1 <r —1, and o, = e, for the simple roots in II. Then
Ar = %(al +2a3+ - +rey) = %(el+---+er) and ag = a; + -+ o, = e;. Hence
(Ar,&0) = 1, i.e. A\, € Hqyy,1. More generally, we have A, € H,, for all short roots
a € ®t. Since each H,1, a € ®*, a short, supports a face of type sp, we conclude
T=Qifcy, <czand T =\ + Q if c;, > cs. (The case T of type A; follows by a
simpler computation.)

In Case 2, parallel hyperplanes have the same parameter, so the special points are
the same as in [14].

For the remainder of this paper, we assume that in Case 1 we have ¢,, < ¢z, 50
T = Q. (We can always make this true by labeling the simple reflections accordingly.)
We define

Wa = Wo x T.
The right action of W, on X naturally extends to a right action of W, on X.

We need some more notation. If w € W, has a reduced expression w = 5185+ s,
8; € Sy for 1 <1 < n, we set

Y

n

m(w) = Z Cs; s

i=1
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which is independent of the chosen reduced expression. (This follows from the fact
that any two reduced expressions for w can be transformed into each other by a
sequence of braid relations. See e.g. [4], Ch. IV.) We remark that the length function
| on W, and the function m on W, extend to functions on W, via l(nw) = [(w) and
m(nw) = m(w) for n € N and w € W,.

Let Wy, A € T, be the stabilizer of the set of alcoves containing A in their closure
with respect to the left action of W,. (The definition of Wj is consistent.) It can be
shown that this group is a maximal parabolic subgroup of W, and that m(w,) = m(A)
for the longest element wy € W,.

A hyperplane H = H,, € F divides V — H into the two parts

V+={m€V | (z,&) >n}
and
Vg ={zeV]|(z,&) <n}.

For A € T, a quarter with vertez X is a connected component of

v- |J H

HeF,H3A

Hyperplanes which are adjacent to a quarter C are called walls of C. The quarter

AR
HeF,H3)
will be denoted by Cf, and Al is the unique alcove in C} such that X lies in the
closure A_j" Set Ay = w)AY, and let C; be the quarter with vertex A containing Aj.
For A = 0, we also write C*, A* etc. Let vy € W, be such that Afv) = AJ.

Let F* be the set of hyperplanes H € F such that H is a wall of C} for some
A € T. The connected components of V' — | g H will be called bozes. We denote
by II, the box containing AY for A € T.

To an alcove A € X, we associate the subset £(A) of S, containing all s € S, such
that, if H € F is the hyperplane supporting the face of type s of A, then A C VI,
sSACVy.

We define two integers d(A, B) and ¢(A, B) for A, B € X. Consider the set of
hyperplanes H € F separating A from B. For each such hyperplane, we set ez = 1
ifACcVg,BCVfandeyg=-1if ACVZ, B CVj. The integer d(A, B) is the
sum of all ez, and ¢(A, B) is the sum of all egey.

A length function on X is a function ¢ : X — Z such that

d(A, B) = §(B) — 6(A)



17

for all A, B € X. Similarly, we call a function v : X — Z a wetghted length function
on X if it satisfies
(A, B) =v(B) —~(A)
for all A, B € X.
We have the following partial order on X (cf. [14]). For A, B € X, wesay A < B if
there exists a sequence A = Ay, Ay,..., A, = B of alcoves such that d(A;-1,A4;) =1
and A; = A;_1op, for some H; € F for all 1 <1 <n.

1.2. The affine Hecke algebra. Let A = Z[v,v™!] be the ring of Laurent poly-
nomials in an indeterminate v, and set A+ = Z[v]. The generic Hecke algebra H

of Wa with parameters ¢;, s € S,, can be defined as a free A-module with basis
{Ty | w € W,} and relations

(T, — v*)(T, +1) = 0

for s € 5, and
TwTyw = Ty
for w, w' € W, with l(w) + [(w") = [{ww'). We denote by H the subalgebra of H
generated by T for s € S,. Note that in Case 1, the algebras H and H coincide.
We have
Tt = 26, 4 p=2¢ _ 1

for s € S, and

Tn_l =Th-1
for n € N, which implies the invertibility of all elements T,,, w € W, resp. w € Wa,
in H resp. H.

Let ~: # — H be the unique involutive automorphism sending v to v~! and T, to

T4, we W,
For w € W,, there exists a unique element C?, € H such that C* = v=?™)C* and
Co=> Pu.T,
y<w

where the degree of P,,, € A% is smaller than m(w) — m(y) for y < w and P, , = 1.
(This is proven in [16] for w € W,. The extension to W, is straightforward.)
The polynomials P, ., for y, w € /Wa are the Kazhdan-Lusztig polynomials. It is
easily seen that the elements C for w € W, form an A-basis for .
Let M be the free A-module on X. There is a unique ‘H-module structure on M
such that
TSA:{ o if s ¢ L(A),
v¥sA 4 (v — 1)A if s € L(A)
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for A€ X and s € S, (comp. [31)).
For A € T, we set

and denote by M the H-submodule of M generated by e). (See Remark 2.3.2 for a
motivation of this definition.) The H-submodule of M generated by all elements ey
will be called M°.

Let T+ = T NC* be the set of dominant weights in 7. For A € T, we choose an
element u € T such that A + x € T* and set

Ty =Tap T
This is a well-defined element in # (cf. [22]). For w € W, of the form w = Tp),

x € Wy, A € T, we set
T, = T, T.

Proposition 1.2.1. (comp. [9], Proposition 1.10)
(i) The set {T\, | w € W,} is an A-basis for H.
(ii) The map ¢ : H — M sending f € H to f(A™) € M is an H-module isomor-
phism. (Consider H as a left H-module.)

For the proof, we refer the reader to the proof of Proposition 1.10 in loc. cit. The
generalization of the arguments used there is straightforward.
We remark that ¢! sends A~ w to T, for w € W,.

In loc. cit., Kato introduces the generic length function g : Wa — Z as follows. Let
ht : Q — Z be the linear function satisfying ht(«) = 1 for all a € II. This function
uniquely extends to a linear function ht : P — 1Z. The generic length function is
given by

g(zpr) = l(z) + 2ht(})
for x € Wy, A € P. Kato shows that this function satisfies

g(w) =d(A7, A" w)

for w € Wa.
Similarly, let ht : T — 17 be the linear function satisfying lflvt(a) = ¢,, for a € II.
We set
h(zps) = m(z) + 2ht())

for x € Wy, A € T'. Arguments analogous to the ones in loc. cit. then show that

h(w) = ¢(A™, A w)
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for w € Wa. We call the function A : Wa — Z the generic weighted length function.
The restriction of A to T' will again be denoted by h. Note that h : T — Z is linear.
For A € T, we set

T)‘ = U_h(A)T,\.

(As shown in [22], the sets {Tw’.f’,\ | we Wo, A € T} and {TATw | w e Wy, A € T} are
A-bases of ’ﬁ; for equal parameters, the elements T\ were introduced by Bernstein.)

2. A CANONICAL BASIS FOR M°

The main result of this chapter is Theorem 2.3.1, which generalizes the main theo-
rem of {14] to unequal parameters c,, s € S,. We follow the proof in loc. cit. Sections
2.1 and 2.2 deal with those parts of the proof whose generalization is not straight-
forward. Section 2.3 also contains the generalization of several other statements in

loc. cit.

2.1. Intertwining operators. Our main goal in this section is to define an element
6., € Endy(M?°) for w € W,. We do this in Proposition 2.1.3.
For A € T, we set

dy = Tppy)-1 (Z T,) Ty,

€Wy

where n(w) for w € W, denotes the element in N such that n(w)lw € W,. The
elements dy lie in H (cf. [9] for equal parameters; the general case is completely
analogous). Also, the arguments in loc. cit. show that ¢(dy) = en.

The H-submodule of H generated by all elements d) will be called H°. We first

define an element ©,, € Endy(H?°) for w € W,. For equal parameters, this has been
done in loc. cit.

We extend the definition of the automorphism ~ by saymg that ™ is the identity on
the Coxeter graph I' (and on Sp) whenever I is not of type A; or C,. For o € I and

s = 8, the corresponding simple reflection, we define
is = Ts(]- - T—2a) - T_a(vc_,+C3 - vc,—c;) +1- p2cs € H.

This relates to the element I, in loc. cit. as follows. Suppose s € Sy with ¢, = c;.
Then

L=L0+T.)
where

L=T,1-T_,)+1—v*
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Proposition 2.1.1. For A € T and s € Sy, we have
T, = LT,
Proof. Let U be the set of coroots in Case 1 and the set of coweights in Case 2.

Since (T, U, ®, ®,1I) is a root system, as defined in [22], Proposition 3.6 in loc. cit.
implies the stated identity.

Let o € I, s = s4. In loc. cit., Lusztig defines an element
(Tav°’+°5 — 1)(Tav°“°3 +1)
The — 1
which lies in the quotient field of the A-submodule of H generated by the elements
Ty for A € Q. (Note the similarity between G(c:) and the function ¢4 in [26], p. 98,

which is used in order to construct intertwining operators between the principal series

G(e) =

?

representations of H; also, see [25], p. 51.)

In terms of G(a), we can express I, as
L= (T, +1-G(a))(1 — T_2a).
We define
G(a) = (TLav*t — 1)(T_qv™™ +1)
and denote by G() € Endy(H) right multiplication with ().
To s € Sp, we associate an H-endomorphism O, of H, which maps f € H to
0.(f) = fI.
Lemma 2.1.2. Leta €Il, s=s,, and A € T. Then
6,((T, + 1)Ty) = —v*C=29G(a) (T, + 1)Ths).
Proof. Using Proposition 2.1.1, we calculate
6,((T, + 1)T))
= (T, + )i,
= PON(T, 4 DT,
= POANT, 4 1) (0% (1 — Tiaa) — Toa(v®*F — vo~%F) + 1 — %) T,
= —ohONT, 4 1)(Tgev® 4+ T (votes — o) = 1)
= —o"ONT, + 1) G(a) D,
= —o" MG () (T + 1)),

which is what we claimed.
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We deduce from this lemma that
0,(dy) = —v**2)G(a)d)s.

Thus O, induces an H-endomorphism on H°, for which we write ©, as well. Since

G(a) is an injective endomorphism on # (and on H°), we can define
0, = —G(a)™10, € Endy(H°).

Ifw=s -5, €Wy withs; €Sy, 1 <1< n, weset O, =0, -0, € Endy(H°).

Now take an arbitrary element w = zpy, ¢ € Wy, A € @, in W,. Right mul-
tiplication with Ty yields an element ©, in Endy(H°) (and in Endy(H)). We let
0, = 0, - 0, and thereby obtain an element in Endy(#H?°), which satisfies

0, (dy) = v"*=)q,,
for e T.

Proposition 2.1.3. (comp. [14], Proposition 2.8) For any w € W,, there is a unique
H-linear isomorphism 0, of M° such that

aw(e)\) = UC(Ai-w’At)e/\w
forany A €T.
Proof. We have

¢@w¢’_1(6/\> = ¢®w(d)\)
= VOg(dy,)
_ AT,

+ 4t
'UC(AM"'AA )eAwa

and the map 6, & ©.,¢ ! has the desired properties. The uniqueness is clear.
p

Note the equality 6,8, = 0. for w, w’ € W,.
There are further maps introduced in [14], which we will need later on. Let g = v2.
Replacing g by the appropriate ¢, s € S,, and 4, a length function, by ~, a weighted

length function, will prove the following statements in this section.
Lemma 2.1.4. (comp. [14], Lemma 2.10) For X € T, the map @) : M — M defined

by
(,9)\(2 CAA) = Z caAvy,
AeX

AEX
ca € A for A € X, is H-antilinear.
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Theorem 2.1.5. (comp. [14], Theorem 2.12) Let v be a weighted length function on
X.

(1) There is a unique H-antilinear map ®., : M® - M such that
. (e)) = v’zV(Ai)eA

forallXeT.
(ii) The map ®. is an involution.
(iii) If¥' =+ +n, n € Z, is another weighted length function on X we have ®., =

—2n
v,

Corollary 2.1.6. (comp. [14], Corollary 2.13) Let A € T and v, be the weighted
length function satisfying yA(AY) = 0. Then ®.,(m) = @\(m) for all m € M.

2.2. Some estimates. We now generalize the degree estimates in [14], Section 4.
We achieve this by means of a more detailed analysis of the arguments in loc. cit.
Fix a special point A. If A is an alcove such that A € A and if y € W, is such that
y(AT) C Cf, we write
1,4) = Y wh B (e M).

BeX
Proposition 2.2.1. (comp. [14], Proposition 4.2) Let A and y be as above.
(i) The coefficient ng, of B € X is zero unless B < y(A), in which case nf , is a

polynomial in q of degree at most 3¢(B,y(AY)).

(ii) Let ¢ = grensral cs, and suppose y(AT) C Ily. If B < y(A), the polynomial ﬂgyy has
degree at most 3(c(B,y(Af)) —c*). If B=y(A), we have 8 , = 1.

(iii) If ¢(B,y(Al)) is even, the coefficient of qzeBv(A) i T8, is non-negative.

(iv) In part (ii), if o(B,y(AY)) — c* is even, the coefficient of q%(C(B’y(AD)_C') in 7r§’y

18 non-negative.

In order to prove this proposition, we need the following result, which is Corollary

3.4 in loc. cit.

Lemma 2.2.2. Let A € X and s1,53,...,55 € S, be such that d(A, si---s281(A)) =
k. For any sequence 1 <13 < --- <1, <k, we have s;, -+ s;,(A) < sg- -+ s351(A).

Proof of Proposition 2.2.1. Let sy,...,sx € S,. Let Z be the collection of all
I={i,...,1p,} such that 1 <¢; <--- <1,, <k and

Sict 8iy Biy by s (A) < Siy e Bip o 8iy e 8iy e s1(A)
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forallt=1,...,p;. For I € Z, define

PI
ﬁl = cst Y
J=1
. m
I, = H(qc % —1) and
J=1

where the last sum runs over all j, 1 < 7 <k, such that j ¢ [ and
Sjsj_l...§i2...§il...SI(A)<Sj_l...gz-z...SA“...SI(A)_

(In the last expression we omit all s; such that ¢ € I and 7 < j.)
One verifies by induction on k that

(*) T To(A) =) gy se-- w8iy e 8iy e s1(A)

IeT

We now take a reduced expression si---s1 = y. If s1,...,s, € S, N W)y are such
that s’ ---sj(A) = Al and d(A, AT) = n, we have

d(A,ys, - s1(A)) = d(A,y(AY)) =n+k=(ys, - s1).
We conclude with Lemma 2.2.2 that
Sk iy e By 8iy e s1(A) < y(AT)
forall I ={i1,...,1p,}, 1 <4y < -+ <1p, < k. Suppose I € Z. We set

B:'Sk"'gépt"'giz"'gil"'Sl(A)'

Then
d(A,B) =k — pr — 2m1
and
k
o(A,B) = ¢, — pr — 2.
=1
We deduce

¢(B,y(AY)) = c(A,y(A])) — e(4, B)

n

k
= Y e, +ch; —ch,+p1+2m1

1=1

NER

¢st + Ppr + 2my.

i=1
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In view of (%), it remains to prove

n
Z Cs! > ﬁ]
1=1

for part (i), and

n

Z%;-C* > pr

i=1

(under the additional assumption that y(AY) C II,) for part (ii). Parts (iii) and (iv)
then follow.

Let F be the set of directions of hyperplanes in F. We denote the direction of
a hyperplane H € F by «(H). If C is a quarter, the set Z(C) is said to contain all
directions ¢ € F such that C C Vj7 for some H € F with i(H) = 1.

The proof in loc. cit. makes use of the following two facts.

(2.2.3) Let C be the quarter with vertex A containing A. Then

n = |Z(C)|.
(2.2.4) If C is any quarter and H € F with direction ¢(H) € Z(C), then
1Z(Con)| < [Z(C)I-
We will need stronger versions. For ¢ € F, set

C; = max CH,
HeF,i(H)=i

and if 7 C F, we write
m(J) =Y .
1€J
Claim 2.2.5. Let C be the quarter with vertex A containing A. We have

n

Y e =m(Z(C))
7j=1
Indeed, let Hj;, 1 < j < n, be the hyperplane in F separating s’_, --- s{(A) from
s ---si(A). Since s],---si(A) = A C VI;I'; for all H; € F, 1 < j < n, we have
CC Vg foralll <j < n,ie I(C) = {i(H;) | 1 <j < n}. Besides, for each j,
1 < j < n, the hyperplane H; passes through A € T, so cyz;) = cn,, and since H;

supports a face of type s; € W, the assertion follows.

Claim 2.2.6. If C is a quarter with vertezx in T and if H € F has direction 1 =
i(H) € Z(C), there is an injective map I(Coy) — I(C) — {i} which preserves the

parameter.
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W.l.o.g., let C be the quarter with vertex A containing A. We distinguish two cases.

First, suppose H passes through A, hence H equals one of the above hyperplanes
H; for some 1 < j < n. We have Aoy C Coy and A € Aoy. Since si---s1(A) =
si_y -+ 81(Aoy), we get

Af = sy 5y(A) = sy 854850 - 51 (Aog).

Therefore, any hyperplane H' separating AT and Aoy supports a face of type s}
for some 1 < k < n, k # j, and we can map ¢’ = i(H’) to i(Hi). (Note that the
expression sy, -5, ;5" _; -5} does not have to be reduced.)

Next, suppose H does not pass through A, i.e. H = H; p,, for some 1 < 7 <n and
some p € P. Then

Con =Con,p, = (Con;) pau-

Since A pz, is again a special point and Z(C) = Z(C pa,), we can replace C by C py,

and argue as before.

By Claim 2.2.5, the proposition becomes a consequence of the following statement.

Lemma 2.2.7. (comp. [14], Lemma 4.3) Let X be a special point, A an alcove con-

taining X in its closure and C the quarter with vertex A containing A. Let sy,... ,s; €
S, be such that d(AY, s --s1(AY)) =k, and let 1 <4y <--- <1, < k be such that

Sip - 8iyy o 8iyoos1(A) < Biy - Bipy e 8y - 51(A)

P
forallt=1,...,p. Wrztep:ch..j.

j=1
(i) We have p < m(Z(C)).
(ii) If sk---s1(AT) C Iy and A # AY, then p < m(Z(C)) — c*.

Proof. The following facts can be found in loc. cit.
Let w € W, be such that Aw = A and Afw = A. We denote by H;, 1 < j <k, the
hyperplane in F separating s;_; - - - $1(A}) from s; - - s1(AY). Let 1 < j < k.
o If sj5;-1--+81(A) < sj_1--51(A) we have i(H;w) € Z(C).
o If sz ---51(Af) C II, the hyperplane H;w is not parallel to any of the walls of
C.

The proof proceeds by induction on [Z(C)|. If Z(C) = @ we have A = A} and
p = p = 0. There is nothing to prove for part (ii).

Now let |Z(C)| > 1. The case p = 0 is clear, so we assume p > 1. Let H be
the unique hyperplane in F separating s;, - - - s251(A) from §;, ---s281(A). We set
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N = Aoy, A' = Aoy, C' = Cog. Then d(A%,, sy --- s1(A})) =k, and §;, - - - 535,(A) =
Siy -+ 8281(A’) implies

Sit“‘gz’,_l"'~§i2"'3i1'”31(A’)<'§it"'§i¢_1"‘§i2"'3i1"'SI(A,)

fort=2,3,...,p.
We have |Z(C')| < |Z(C)|. Applying the inductive assumption, part (i), to X/, A’,

81y...,5¢ and 2g,... ,1, yields

> en, < m(Z(Com)),

and therefore

Z Csi; < m(Z(Com)) + Csi,
= m(Z(Con))+ cu
< m(Z(C)).

We used Claim 2.2.6 for the last inequality. (Note that it is feasible that
m(Z(Cog)) + ca < m(Z(Con)) + cigry < m(Z(C)).)

Under the assumptions of part (ii), if C’' # C}, it follows by induction that

p

Z Cs;, < m(Z(Cog)) — ¥,

j=2

and therefore
V4

> ca, <m(Z(C)) - ¢".

i=1
Otherwise, we have

P
E c,; =0.
7

=2

But then, according to the two facts mentioned at the beginning of the proof, Z(C)
contains the direction of Hw, which is not parallel to any wall of C, and also the

direction of some wall of C. Consequently,
P
Z Csij = Csiy = CH < m(I(C)) —-c,
J=1

which completes the proof of the lemma.
Note that § = m(Z(C)) implies p = |Z(C)|. We therefore obtain the following

corollary of the proof of the above lemma in the same way as for equal parameters.
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Corollary 2.2.8. (comp. [14], Corollary 4.4) Let A and y be as in Proposition 2.2.1
(i), and let B be an alcove such that B < y(A}) and such that 7§, has degree equal
to 2c(B,y(AY)). Then B = y(A})r for some translation T € W,.

2.3. The basis elements. The following results all have their counterpart in [14].
In view of the two previous sections, most proofs in loc. cit. can easily be generalized,
and we refer the reader to loc. cit. whenever a statement in this section is presented
without proof.

Theorem 2.3.1. (comp. [14], Theorem 2.15) Let X be a special point and C an alcove
in IIy. There exists a unique element Do € M), such that

(i) D¢ = Z QacA where Qac is a polynomial in v with integer coefficients of
A<C
degree less than ¢(A,C) if A< C and Qcc =1 and

.o +
(u) vzc(AA,c)Q a0 = Qav, 0

(Weset Quc=0for A,C e X,ALC.)

Remark 2.3.2. With A and C as above, let B = Cvy and D? = ¢,(Dg). The
element D? is characterized by the conditions D2 € M, and
(i) DP = Z QB4A where QB4 is a polynomial in v with integer coefficients of
A>B
degree less than ¢(B, A) if B < A and @BP =1 and
(ii) ,v2c(B,A;)QB,A — QB,Av,\_

Let G be a simply connected almost simple algebraic group of type ® over an
algebraically closed field of characteristic p > 1. Assume that p is sufficiently large.
In loc. cit., Lusztig conjectured that the integer @B4(1), A > B, equals the multi-
plicity of a certain irreducible G-module in a Jordan—Holder series of a certain Weyl
module of G associated to A. He pointed out that for v = 1 the condition D® € M,
becomes the condition that
> QP44
A>B
is invariant under the stabilizer () of A in W, acting on X on the right. Assuming
Lusztig’s conjecture, this Q)-invariance is due to Jantzen (cf. [7]).
The Q-invariance of Y ,5 5 @54(1)A also implies the symmetry condition (ii) for
v=1. )
(The above conjecture by Lusztig is equivalent to his conjecture on the irreducible
characters of rational G-modules in [13]. It is now known to be true — due to work

involving affine Kac-Moody Lie algebras as well as quantum groups.)
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For A € @), define
Yi={yp. |y € Wo,n €Q, p <A}
where < denotes the usual partial order on ). A subset K C W, is called z-bounded,
x € Wy, if
KCY\z

for some p € ). Instead of e-bounded, e being the identity in Wy, we also say bounded.
For z € Wy, let 7-A[x be the set of formal sums f = Z awlh, @y € A, such that

weW,
Supp f & {w € W, | a, # 0} is 2-bounded. The sets #, can naturally be regarded
as H-modules. Similarly, let M_ be the H-module which contains all formal sums

f= Z baA, by € A, such that {w € W, | by-,, # 0} is z-bounded. We set H=H,
AeX
and M = M,. In this section we will only need M.

Choose a weighted length function v on X.
As in loc. cit., we can extend ®., : M°® - MP° to a map @)7 : M — M, and we
define elements Rp 4 € A for A, B € X by

&, (A) = o7 Y " (—1)¥ABIRE 4B.
BeX

We remark that Rp 4 =0 for all B £ A and that Ra 4 = 1.

The following statement strengthens the uniqueness part of Theorem 2.3.1.

Theorem 2.3.3. (comp. [14], Theorem 7.3) For any C € X, there is a unique ele-
ment Do € M such that &,(D¢) = v Dy and
De = Z QacA,
A<C
where Qac € AT has degree less than ¢(A,C) if A< C and Qoo = 1.

A

(It follows from Theorem 2.1.5 and Corollary 2.1.6 that the conditions ®.,(D¢) =
v ) D and vzc(Ai’c)QTp = @ av,,c are equivalent.)

For C € X, let A € T and w € W, be such that C C II, and w(A}) = C. The
element D¢ can be shown to satisfy

DC = Z wax,wwATy( Z TZ(A;))

y<wwy, l(ywy)=I(y)+(ws) zEW,,
= > PranTy(47)

y' <wwy
= Chu, (A7)

This representation of D¢ is used to prove the next two corollaries. (We preserve

the notation.)
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Corollary 2.3.4. (comp. [14], Corollary 5.8) With y € W, such that A = y(A}), we

have
QA,C(l) = Pyywwx(l)

Corollary 2.3.5. (comp. [14], Corollary 5.4) Let O C X be an orbit under the trans-
lation subgroup Q of W,. For C € X, the sum

E Qac

A€O

is independent of the choice of O, and it is equal to

Z v2m(y) wahw’i’)\‘
y<wwy, l(ywa)=l(y)+l(w>)

Theorem 2.3.3 is the main ingredient of the following statement.

Corollary 2.3.6. (comp. [14], Corollary 7.4) Let 7 € T be a translation on X. For
any A < C in X, we have Qac = Qarcr-

Finally note that for A, C € X and A € T such that C' C II,, the polynomial Q4 ¢

is non-zero only if Cvy < A.

In analogy with loc. cit., we now want to further examine the elements D¢. The
aim is to find an inductive formula.
For A, C € X and s € S, such that sA < A < C < sC, we define elements
M3 - € A by the conditions
(i) Z UC(B’C)QA,BME,C —v*Qa,c has degree less than ¢(A,C) and
A<B<C,sB<B
(ii) fo,o = W,c-
(We set M3 o = 0 in all other cases.) This definition is similar to the definition of
M;, € Afory, we W, and s € S, with sy <y < w < sw in [16], Section 3.
Suppose C'is an alcove in ITx, A € T. We claim that Mic=0 unless Cvy < A< C.
In particular, for any C' € X, there are only finitely many M} ,, A € X, s € S,
which are non-zero.
Indeed, assume A € C'. Then Q4,¢c = 0, and of course there is no B € X satisfying
A< B<(C. Thus M}, =0 for any s € S,.
Next assume Cvy € A or equivalently Avy £ C. Again, we know that Q4¢c = 0,
and if B € X, A < B < C,is such that Q4 p # 0, then Avy < B, hence Av) < C, a

contradiction. The claim follows.
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Theorem 2.3.7. (comp. [14], Theorem 8.2) Let C € X and s € S,. We have

—Dc+ Do+ Yy vWMS Dy if s ¢ L(O),
TsDc = A<C, s€L(A)
v D¢ if s € ﬁ(C)
Note that the sum is finite.
Proof. The case s € L(C) is dealt with as in loc. cit. Consider the case s & £(C).
We set

;C — (Ts —I— 1)DC —_ Z UC(A»C)+CS M:Z,CDA‘
A<C, s€L(A)
As in loc. cit., we deduce that

q)'v( ;C) = v~ 2(C) ;C'

The coeflicient of B € X in D} equals

Op = { v QB o 2-10- @B, ?f sB>B } _ Z ,Uc(A,C)+c3QB,AMZ’C.
Qspc +v°Qpc, ifsB< B A< sec(a)
We have Q¢ = Qc,c = 1, and since the condition B < sC' is equivalent to sB < sC,
the coefficient Qp is zero if B £ sC.
Suppose B < sC. If sB > B, the definition of M;p , implies that
Z v NQp aMS o — v QB e
A<C, s€L(A)

has degree less than ¢(sB,C). From T,D4 = v?***Dy for A € X with sA < A, we
derive Qg4 = @sp,4 for any B < A. Consequently, the degree of

AC
E v Qp AMS o — v QB
ALC, seL(A)

is less than ¢(B, C) — ¢,, and therefore Qp has degree less than ¢(B,C) < c(B,sC).
If sB < B the degree of

> v OQpaM ¢ — v QB e

A<C, s€L(A)

is less than ¢(B, C). Thus Qp has again degree less than c(B,sC)(=¢(B,C) + cs).
Now we apply the uniqueness statement in Theorem 2.3.3 to conclude that D, =
D¢ (and Qp = @B.sc), hence the assertion.

Notice one equality which occurred in the above proof.

Corollary 2.3.8. (comp. [14], Corollary 8.4 (a)) For A, C € X with A < C and
s € L(C), we have Qac = Qsac.

The following statement can be deduced from Theorem 2.3.7.
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Corollary 2.3.9. (comp. [14], Corollary 8.3) The elements Do, C € X, form an
A-basis of M°.

For A, C € X, we write A < C if for some (or equivalently any) box II the alcoves
A’, C’" in II obtained from A, C' by translation under T satisfy A’ < C’.

Proposition 2.3.10. (comp. [14], Corollaries 10.5 and 10.6) Let C € X and s €
Sa — L(C) such that sC and C lie in the same boz. Then (Ts + 1)Dg — Dyc is an
At -linear combination of elements Dy such that A < C, A < C. In particular, if
A€ X is such that sSA< A< C and Mj 5 #0, then A< C.

This result enables us to give an algorithm to compute the elements D¢ by a finite
induction.

Let C € X. There exists a unique A € T such that C C II,, and we can find
elements s1, 83, ...,8n; in S, such that C = s;83- - s, AT and d(AT,C) = ng. We
proceed by induction on n¢.

If nc = 0 we have C = A}, hence D¢ = ey and M, =0forall A€ X, s € S..
Now assume ng > 1. Let C' = s, - - - 5, (A}), which lies in II;. By Propositions 2.3.7

and 2.3.10, we can write
D¢ = (Ts, + 1) D — Z A0 ) ey M3 i Dy.
AdC’,s1€L(A)
Since ngr < ng and A < C’ implies ny < ngr, the elements D and Dy for A < C/,

as well as the polynomials M} ., are known by induction. Thus D¢ and by induction
on d(A,C) the polynomials M} , for A € X, s € S,, can be calculated.

Example 2.3.11. Suppose W, is of type C, with parameters

a b a
& ————=0
So S1 82

A

N

and

A

represents a box IIy, A € T. (So if A lies in the same Q-orbit as 0 then a = Af,
b= soA:\", c = slsoAf, and d = 323150/1}'.) Since ¢s, = ¢5,, We can assume that A

and 0 lie in the same Q-orbit.
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Set z = v** and y = v**. We obtain

D,

(To + 1) D,,
z+y ifa<b |
D, = (T, +1)Dy— < = ifa=0b6 »D,,
0 ifa>b‘

(0 if2a<b )
(0 ifa<b ) —2?2  if2=b
Dy = (T,,+1)D.— ¢ =z ifa=b ;Dy—<{ —22—y ifa<b<2a }D,.
| T+ ifa>b‘ 0 ifa=25
| zy+y ifa>d J

The following patterns describe the elements D¢ for C € {a, b, ¢, d}. Each pattern
has center A. The alcove C is singled out, and the entry of an alcove A is the
polynomial Q4¢.

D, D,
1 1
1X1 ]| 1¥Y1
1 1 1 1
1 1 x z
111 g Xz | z X<z
T T
D. Dy
1 1
1 1 1
1 1 Y B’ Al 1
ylyXAlAX1]|1 y | B E|EX A1
B B E' E'
B B F' F'
zylzyXC | CX z| 1 z2y| D F'| F" X C'| 2?
Ty Ty z2y D’ c' z?
Ty Ty z2y z2y
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where
11—z 0 Y —y
A= 1, B = z , C= z? ,
1+y T+y Ty +y
14z z+y 2+ zy zy + 2%y
A = 1 , B= z , C'= z? , D= z3
11—y 0 0 2?2y — 22
for
a<b
a=
a>b
and
[z —2? Ty —y 2a < b
x zy —y+ z? 2a =b
E'=5 z+y , F"—‘j zy + 22 for ¢ a<b<2a .
z z? a=15b
T -y | 0 L a>b

(For W, of type Ga, we get 21 cases for the relationship between a and b.)

We now introduce another right action of W, on X. Let A€ X, A= y(A;r) C II,
for some y € W, and some A € T. For w € W), we define
Axw=y(Af)) C I,
Proposition 2.3.12. (comp. [14], Proposition 8.7) For C € X and w € W,, we have
0.,(D¢) = v D,y

For C € X, let D¢ = v D¢, and define

M, ifA<C,
Mic=14 1 if A=sC > C,
0 otherwise

for A, C € X and s € S,. We rewrite some of the previous statements in terms of
the A-basis {D¢ | C € X} of MP.

Corollary 2.3.13. (comp. [14], Corollary 8.9) Let C € X, w € W, and s € S,. We
have

®,(D¢) = Do,
DCaw = DC*wy



34

and
—Do+v > MicDa ifs¢L(C),
T:De = ) A<C, sEL(A)
v% Do if s € L(C).
Corollary 2.3.14. (comp. [14], Corollary 8.10) For A, C € X, s € S,, andw € W,
we have Mfi,c = M;

*w,Cxw *

Remark 2.3.15. Suppose we specialize g to a prime power p°. Let A be a homomor-
phism of the group of translations () in W, to C*. The C-vector space M, spanned

by all infinite formal linear combinations
Dy =Y Do Mr7h).
TEQ
has dimension equal to the number of orbits of () on X, and it has a natural H-action.

For generic A, the H-module M is isomorphic to the principal series representation
defined by Matsumoto in [26].

We conclude this section with a few results concerning the polynomials Rp 4 and
QaB, A, B € X. For more details, we refer to [14].
Define polynomials R, ., € At, y, w € W,, by

T;_ll = p~2m(w) Z (_1)l(w)~l(y)Ry’wTy
yGWa
and polynomials Q. € At for y, w € W,, y(A*) C C~, w(At) C C~ by
Z (_1)1(2)—1(11) Py,z@z,w — 5y,w-
y<z<w, z(A*t)CC—

Theorem 2.3.16. (comp. [14], Theorem 11.6 and Corollary 11.9) Suppose A, B € X
and X € T are such that A, B C C; and A, B are sufficiently far from the walls of
Cy. Lety, w € W, be such that y(A}) = B, w(A}) = A. Then

RB,A = Z Rw,yb

beW,

and

QA,B = Qy,w-
We remark that as in loc. cit., the function defined by
(4, B) = (=1)**BQ4,5(0)

for A, B € X is the Mébius function of the partially ordered set (X, <). In particular,
(@ 4,8(0) does not depend on the choice of parameters.
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Proposition 2.3.17. (comp. [14], Proposition 11.15) Let A € T and y, w € W). We

have
Ry(A;),w(A;) = Ry,w
and

Qy(A;),w(A;) = Pyw-

3. A FORMULA FOR THE KAZHDAN-LUSZTIG POLYNOMIALS

In Corollary 3.3.3, we express the Kazhdan—Lusztig polynomials in terms of alcove
polynomials (see Section 3.2 for the definition). For equal parameters this has been
achieved by Kato in [9], and we follow his approach. Statements which are not
proven here are obtained via a straightforward generalization of the proof of the

corresponding statement in loc. cit.

3.1. Definitions. We need some more notation from loc. cit.

Let ¢ : H — H be the map such that
¢(f) = fTwo
for f € H. This map is H-antilinear, and it satisfies ¥(H®) = H°.

Proposition 3.1.1. (comp. [9], Proposition 2.8) There exists a unique involutive H-
antilinear map ¥° : H° — H° such that

\Ifo(dk) — ’U_2h(w0p)‘)d)\

for any A € T. We have
lI,O — ,U—2m(w0),¢) Owo-

Remark 3.1.2. Let v be the weighted length function on X defined by
Y(A7w) = h(w)

for w € W,. It turns out that under the isomorphism ¢ : H — M, the map ¢
corresponds to the map ¢ &f wo and ¥° corresponds to ®.,. From now on, we fix v
and also the length function é on X defined by

§(A7w) = g(w)

for w € W,.
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We define g~(a) for arbitrary a € ®. Let a € ®. If o lies in the Wy-orbit of a
simple root 3, we set ¢, = ¢,, Co = Cs, and

G(a) = (T_gvoet® —1)(T_qvea=% 4 1),

Besides, we let
e(a) = —G(a)

where G/(a) is again right multiplication with G(a).
Let x € Wy. For A € (), we can regard O, as an element of Endy(”l:{z) (and 6y as
an element of Endy(/\;Ix)). The operators of the form 1 — p@,, p € A, a € ®, are

invertible on 7:Lx with inverses as follows. Consider the formal sums

Y™ if a >0,
1-pOy);' =< "2°
( POa): —p0B, Zp‘"G)_na ifa<0
\ n>0
and
—pOa Y PO e ifa>0,
1-p0,)_" = n20
(1=79) S 5O if @ < 0.
n>0
Then

(1-p0,)7" ifa>0,az7' <0 orifa<0, az™ >0,
(1 —pO,)=' otherwise.

(1 _pGa)‘l = {

The map (:)s, s € Sp, can be regarded as an element of Homy (7:133, ’;‘-A[xs) For x € Wy,

8 = 84, a € II, we can therefore define an operator
0f =e(a)™16,

belonging to Homy (H, Hes). By definition, we have ©F |;0= ©,. The corresponding
operator in Homy(/\;lz, ./\;lm) will be denoted by 07.

Let wo = 81+ Sp, S5 € Sp, 1 <1 < n, be a reduced expression, and define
0f =07 -.-0f € Homy(H, Huy,)

(which can be shown to be independent of the chosen reduced expression). Each O,
1 <i<n,isamapin Homy(ﬂz,’f:{mi) for some =z € W, such that zs; > z. Hence
(—ai)(zs;)™' > 0 (where o; € IT is such that s; = s,,), and

O = (1= v 0 )7 (1 + 0™ 0_4,) 710,

S T
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Since we also have (1 —pO_,)™' = (1 —pO_,);' on 7:two for any a > 0, we deduce,
using Proposition 2.1.1, that
@I;o = H e(a)™ (:)wo

a>0

where O, = O,, - - 0;,. We now set

U = v—2m(wo),¢) ®+

wo ?

an H-antilinear map on H.

Let < be the partial order on W, given by y < w, y, w € W,, if and only if
y(A™) < w(A™). We point out that, since 2(A~) = A~z for z € W,, this definition
agrees with the definition of < on ) C W,.

Lemma 3.1.3. For w € W,, we have

O(T,) = v 2@ Z(_l)y(w)—g(y)Ry(A_),w(A_)Ty_

yw
(This follows from the correspondence between ¥ and the H-antilinear map &)7 on
M.)
3.2. Alcove polynomials. We introduce elements E¢ € M, C € X, whose coeffi-

cients generically equal the Kazhdan-Lusztig polynomials.

Definition 3.2.1. The alcove polynomials Py,w € AT, y, w € W,, are defined by the
conditions
(l) U—2h(w)Py’w = Z 'U_2h(y)'R,z(A+),y(A+) Pz,w and

y=z3w

(ii) the degree of P, ,, is less than h(w) — h(y) if y < w and B, = 1.

For A =y(A™) and C = w(A~), we set Pac = B, ,,.
Let
D={weW,|wA")cCt}.
Elements in ND are called dominant. If y, w € D and y(A~), w(A~) are sufficiently
far from the walls of C*, it turns out that B,,, = P, .
For o € @, put

£(a) 1 —wv2%ag_, if ¢, = &4,
a) = . .
(1 — v(Catiadg_ (1 +v=(ca=%)9_,) otherwise.

(The condition ¢, = &, is equivalent to the condition & ¢ 2U where U is as in the

proof of Proposition 2.1.1.)
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Since all f(e), @ € ®*, are invertible on M, we can define elements Ec € M,
C € X, by
Eg = [] (@)™ Do.
a>0

In the remainder of this section, we prove the following theorem.
Theorem 3.2.2. (comp. [9], Theorem 3.5) For any C € X, we have

Eo =Y PacA.
A<LC

Let C € X. We set

Eq = Z PyoAe M,
A<C

and we define an H-antilinear map ® on M given by

oA) = 3 v O Roun, 50 B
BeX
for Ae X.
The element E}, can then be characterized by the conditions
(i) ®(EL) = v 2O EL and
(i) E; = Z P, oA where P) , € At has degree less than ¢(A,C) if A < C and
A<C
Pér’c =1.
We first show that E¢ satisfies (ii).
Let o > 0. Remember that the inverse of 1 — pf_,, p € A, on M is given by

(1—-pb_n) "= Zp"O-na.
n>0

First, suppose ¢, = ¢,. The degree of the coeflicient of Ap_na, A € X, n > 0, in
vl . Ais c(Ap—na, A) — 2nc,.

Next, suppose ¢, # €. The degree of the coefficient of Ap_(min)a, A € X, m,n >
0, in y~™eatlalg_  (—1)roCamt)f_ A is (AP (minyas A)—M(CatEa) —n(Cs—Ea).

Soif 8 = Za>0 nea # 0, ng, > 0, then the degree of the coefficient of Aps in
[Tosof(a) ™A, A € X, is less than c(Apg, A). (Also, notice that in both cases the
degree is non-negative.) This, together with the facts that Q4 ¢ has degree less than
¢(A,C) if A< C and Qc¢,c = 1 shows that E¢ satisfies condition (ii).

Condition (i) is implied by the following theorem.
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Theorem 3.2.3. (comp. [9], Theorem 3.7) We can write ® as

® = [[ ()™, [ (o).

a>0 a>0
The rest of this section will be taken by the proof of this theorem.

We have an A-valued symmetric bilinear form (-,-) on H satisfying

(T, T,) = v*™§, ,

where y, w € W,. We also write (-,-) for the corresponding bilinear form on M.

Let H* be the A-module consisting of all formal sums » .y awTw, @ € A for
w € W,. The domain of (-,-) can be extended to H* x H (and H x H*), and we
can consider H* as the dual space of H via f(g) = (f,g) for f € H*, g € H. For an
arbitrary A-linear map 7 : H — H*, the formal adjoint operator 7* : H — H* is then
defined by

(x(T), 7,) = (Tuy7*(Ty))

for y, w € W,. We will also need to extend the domain of 7* to 7:[x for some z € W,,.

If, for example, 7 is of the form

™(T,) = v2hlY) Z ay,wv_%(w)Tu,

wxy

A

for y € W,. Hence ©* can be regarded as an element of End 4(H).
Formal adjoint operators on M (or M,, z € Wp) are defined accordingly.

We define an involutive ring automorphism 7 on H by

i) @)= Y @(—1)™*n ),

weEW, weEW,
ay € A for w € W,. The corresponding map in Autz(M) will also be denoted by j.
Let w=ap)y € Wy, z € Wo, A € Q, and let p € Q NTT be such that A + p € T,
We compute
i(Tw) = J(T1) = (DT
(—1)!@+Uprtu)=Hpu) v—2m(w)—2m(m+n)+2m(pu)TzTA+uT;1

— (_l)g(w),U—Zh(w)Tw.

It follows that

for A € X.
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We will also consider j as a map on H, and M, = € W,. Note that 7 =7.
The following three lemmas contain several relations needed for the proof of The-

orem 3.2.3. The calculations are straightforward, and we only show the first lemma.

Lemma 3.2.4. (comp. [9], Lemma 3.10) On H resp. M, we have
(i) JOAJ =0, for A€ Q,
(i) jO,j = —v~20, for s € Sy,
(iii) jj = (=1)/o=2m(0) 4 and
(iv) joj = (=1)/wely2mlw0) g,
Moreover, (i) holds on 7-2,3, z € Wy, (ii) is an equality of operators in Homy(7:[$,7:lzs),
x € Wo, and (iii) resp. (iv) is an equality of H-antilinear operators in Homg(H, Ha, ).
resp. Homg(M, M.,).

Proof. (i) Since
j(T)\) _ Uh(/\)(__l)th(/\)U—2h(/\)T)\ — T)\,
we obtain
10x3(f) = 3(G(NHTy) = f3(T) = O.(f)
for f € ’;Clx, z € Wo.

(i) If s = s4, « € II, we have

](js) = —v 2T (1 - T_za) — T_a(v_(CSJres) — v_(CS_ES)) + 1 — v
= —v (T, (1 - T_ga) — T_a(vcﬁés —v%T) 41— p72%)
= —v %],

For f € ﬁx, z € Wy, we conclude

(iii) We calculate
J0i(T) = Ge(-1) T OT,)
= ()T,
= (1)) T g
- (_1)l(wo)v—2m(wo)¢(Tw)
for w € W,.
(iv) This is equivalent to (iii).

Lemma 3.2.5. (comp. [9], Lemma 3.11) The map ® can be expressed as

& = v (o b, o).
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Notice that (¢ &, ¢)* and therefore j (j p®., ©)* can be considered as H-antilinear

~

elements of Endz(M).
Lemma 3.2.6. (comp. [9], Lemma 3.13) On H resp. M and moreover as elements
of Homg(#, Hu,) resp. Homg(M, M,,), we have
(1) (o) = (-1))j¢ and
(ii) (o) = (=1)™)je.
Let
B = ) (o Uy
be the operator on A corresponding to ®. By the previous lemma, we get
Vo= (Y0l ¢)
= J(I¥) (0%, 5)
(=)' (507, 7).
For s € Sy, we define A-linear maps s and ps; on ‘H by
ﬁs(TxTA) = Ta:TsT)\

and

ps(TxT/\) = Uh(/\_)‘S)TfT)‘S

where £ € Wy and A € (). The map B, can be considered as an element of End 4(H,)
and p; as an element of HomA(’):[x,ﬁxs), z € Wy. Let s = 54, a € II. For z € Wy,
A € @, we have
{(Bs(1 = O_ga) — Oy (v —v=7%%) 41 — v?)p, N (T, Th)
VP2 (B (1 — O_yq) — O_g(voetes — poe=s) 4 1 — p2e)(T, 1)
POITUT (1 = Tlga) — TasTg(vote — vosme) 4 Ty (1 — v?))
= vh()\_/\s)TxisTx\s
= TN,
where the last equality follows from Proposition 2.1.1. So
és = (ﬂs(l — O_za) —_ G)_a(v63+°§ b ch_cg) -|- 1 - ’0203)/)3.

Arguments analogous to the ones in loc. cit. then demonstrate the following lemma.

Lemma 3.2.7. (comp. [9], Lemma 3.15) On H and as elements of Homa(Hy, Has),
z € Wy, s € S, we have
(6,)" = 0,.
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The next lemma contains a few more equalities which are all easy consequences of
the definitions.

Lemma 3.2.8. On H, we have

(i) @, =0_, for A € Q,
(ii) 0,0, = 0,0, for s € Sy, a € ®, and
(iil) v O4 = O_,¢ for a € ®.

Furthermore, (i) and (ii) hold on H,, = € Wy, and (i17) on H.

We remark that (ii) implies
(*) G)zo@a = e_a@lto

for a € ®.
We now prove Theorem 3.2.3 or rather the equivalent on .
Recall that ©F = [],.,e(@) 'Oy, and that for p € A and a > 0, we have

(1 - p®-—a)—1 = —p®—a Zp—ngna

n>0

on H,, and

(1 - p@a)_l =-p ®a Zp—ne—na

n>0

on H. Therefore, using Lemma 3.2.4 (ii) and (i), Lemma 3.2.7 and Lemma 3.2.8 (i),

we can write

(] (_)zo ])* — (_1)l(wo)v—2m(wo)éw0 H(l _ v—(ca+5a)®a)—1(1 + v—(c“_éa)(‘)a)_l.

a>0

Thus

=N
|

(=1)®)p (jOF j)
= v2m(wo)1/) (:)wo H(l - U_(CQ+E°)®Q)—1(1 + v—-(ca—-éa)(_.)a)—l
a>0

,UZm(u/o),lL, H(l . U0a+5a G—a)(l + vCa—Ea @_a) @2’}0

a>0

JJ - vt 0g) T (1 4 v i), )

a>0

Set ®F = {a € ®* | ¢, = ¢} and ®F = {a € ®* | ¢, # é,}. Then
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U= oy T (1-v*=0) [T (1 vt )1 +v=""0.,)

aedf acdf

0f, [T+6.) J[]1+6.)7"
a€®f aGQT

. H (1 _ v_zca@a)_l H (1 _ U_(ch'l‘éa)@a)_l(l + ’U_(CO‘_EQ)@Q)_I

aeéf aEQJ

v2m(w0)¢ H (1 _ v—2ca(_.)_a)—l H (1 — v—(ca+5a)@_a)—l(1 4+ v_(Ca—éa)@_a)'—l

acdf aedf

0% J[ (1 —v*04,) J] (1 - v*=t%0.)(1 + v*"*=0,)
acdf acdf

For the above calculations, we used consequence () of Lemma 3.2.8 (ii). Lemma 3.2.8

(ii1) now yields

o= o) JT (1= v™0,)™" J] (1 = v%t20,) 7 (1 + v*%0,)~"

acdf acd}
1 @2‘}0 (1— v2ca®a) H (1- vca+6a®a)(1 4 pa—ia 0.).
Ote(I)T aeq);’

Using
Y 2+ Y (catéatca—ia) =Y 2 =2m(w),

aE@f ae@f a>0

we can rewrite the last expression for ¥ as

@ — v2m(w0)v—2m(wo)(_1)l(wo) H @;1 H @2—;

acdt agd]
. H (1 . ,U—2Ca@—a)"'l H (1 _ v—(0a+5a)@_a)_1(1 + ,v_(ca—eo:)@_a)"l
acdf aEQJ

3 Ot (=1)0) JT 0 J] 02

aeéf aE@J
[ a-v0) [T (0 -vet@eo )1 +v =",
ae@f aEQ?
v—2m(w0) H (1 . v—2ca®_a)—l H (1 . v"(Ca'}“Ea)@_a)"l(l + ,v_(Ca—Ea)G_a)—l
ae@i" OZEQ';

et (1—v"%=0_,) H (1- U—(Ca+5a)@_a)(1 4y (el ),

aEQf aE@J
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We conclude

U o= JJa-v?0_)™ J] (1 —vleto_)7(1 + v tlo_)7' Y

aE@T aEQJ
I @=ve0l) J] (1 —v et o) (1 + v 20 _,),
acdf aed®}

which is equivalent to Theorem 3.2.3.

3.3. The Kazhdan—Lusztig polynomials. We now generalize the formula in [9)]
for Kazhdan-Lusztig polynomials. They appear as coefficients of elements Fio € M,
C € X. At the end of the section, we describe an analogue of Kostant’s partition
function, generalizing part of [8].

We start with introducing a third right action of Wy on X. Let A = y(AY) C II,,
ye W,, AeT. For s € 5y with ¢, = ¢;, we set

A @ S = y(A?:\+p)s—p) (_: H(A+p)s—p-
For s € Sp with ¢; # ¢z, we set

A ®s = y(A?:\+2p)s_2p) - H()\+2p)s—2p°

Hence for w € Wy, we have

A®w= y(AE':\_'_ﬁ)w_ﬁ) C H(,\+5)w_5

where
|
P=3 Yoot )«
ae@f aGCD,j,'
fA=A"y C=A"wy, we W, welet Py¢c = P,,. The next theorem and

corollary contain the main statements of this section.

Theorem 3.3.1. (comp. [9], Theorem 4.2) Let C be an alcove in C*. The coefficient
of any alcove A C CT in

FC — Z (_1)I(z‘)vc(c®x,C)EC®x
TeW),

equals Pac.

Remark 3.3.2. As in loc. cit., the above theorem implies that Py, A, C C Ct,
can be calculated from Py ¢r for A’ C' C II. Furthermore, for equal parameters,

the above formula generalizes the g-analogue of Kostant’s weight multiplicity formula

found in [8].
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Corollary 3.3.3. (comp. [9], Corollary 4.8) For any alcoves A, C C C*, we have

Pac = Z (—l)l(w)vC(C®Z'C)PA’C®$.
:L‘€W0
The corollary is an immediate consequence of the preceding theorem. In order to
prove the theorem, we first have to generalize a result of Andersen in [1]. Let A be
the H-submodule of M generated by At + A*s where s runs over Sy, and let

Nt ={feMy, |(nf)=0forallneN}.

Instead of considering M, Andersen introduces a module M_ which is a free A-

module on C~ and has an H-module structure given by

—A ifsAgcC,
T, A=< sA if sA€C™ and sA > A,
v¥sA+ (v —1)A ifsA< A

for s € S, and A C C~. It turns out that M_ is isomorphic to M/AN. By modifying
[14], Andersen obtains elements D, for all alcoves C C C~ whose coefficients Q'
are exactly inverse Kazhdan-Lusztig polynomials. The polynomials @',  satisfy an
induction formula which coincides with a formula for the composition factors of Weyl
modules. Andersen obtains the latter formula by “inverting” the Lusztig conjecture
in [13].

The result we need is the following one, which for equal parameters reformulates
[1], Theorem 7.2.

Theorem 3.3.4. For alcoves A, B C C™, set

IB,A = Z Rvam
rzeWy
where y, w € D are such that y(A*t) = A and w(A*) = B. Then
(8,(4), ) =v™® 37 (~)*AIR 4 (B, )

BcCc-,B<A

for any f € N+,

Note that Rz , = 0 unless B < A.
We comment on those parts of the proof of the above theorem which require real

changes.
Let o € II. We denote by N, the H-submodule of M generated by At + A*s,,

and for n € Z, we set

Uo={veV|n<(v,d) <n+1}.
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(Note loc. cit., Remark 7.4.) For any alcove A in Uy, we define alcoves A,, n € Z,
inductively by setting A = Ag and A, = A,_10,,. We write

fAn = An + An+1

where n € Z and

n—1
gu(A) = v2c(A,An_1)A_n + Z(UZc(A,An_i) . UQC(A,An—i—-l))AZi_n_I + A,

1=1
n—1
2¢(A,An— AAn—i-
p2eAin 1)fA_n - Z’U2C( 1)(fA2i—n—1 — fa5i_n)
=1

where n € N.

Lemma 3.3.5. (comp. [1], Lemma 4.3)
(i) The elements g,(A), A an alcove in Uy and n € N, constitute a basis for N, as

an A-module.
(ii) Let A be an alcove in Uy. We have

Uzc(A’A"_I)fA-n + fa._. € Na

if either ¢, = ¢4 and n € N arbitrary, or if ¢y, # ¢, and n € N odd or equal to
2. If ¢y # Co and n € N even, we have

UZC(A’An_l)fA—n + Uzc(A’Al)(UZC(Al’An_Z)fA—n+2 + fAn—4) + fAn—-2 e NO"

Proof. (i) for any o € IT and (ii) for o € II N @} follow as in loc. cit.

Suppose o € II N ®F. For n € N, we denote the respective expression in (ii) by
F.(A). (We take the first expression for n = 2. The second expression then equals
2F,(A).) It is easily checked that

Fi(A) = v*BAf, 4 fa =2g(A) €N,

Fy(A) = o™ f 4 fa = ga(A) + i(A) € N,

Fy(A) = oA f, 4 fa = gs(A) + Fa(A) — 0™ g (A) € N, and
F4(A) — UZC(A’AB)fA_4 +U?c(A,Al)(v2c(A1,A2)fA_2 +fA) +fA2

= g4(A) + F3(A) + ’UZC(A’AI)gl(A) € Na.
For n > 5 we claim

Gn(A) 4 (Fu_y (A) — 02 AAVE, o (A)) — 0242 g (A) if n odd,

F.(A) =
(4) { Gn(A) + (Fus1(A) + 0 AAVE,_S(A)) — v¥AA2)g  (A) if n even.
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Indeed, if n is odd we obtain

RHS

n—1

vzc(A’A"—l)fA-n - Z U2C(A’An_i_l)(f442.'—n—1 - fA2i—n)
=1
+v26(A’A"_2)fA_,,+1 + ,U2c(A,An-3)Jl‘A__M‘3 + ,02c(A,Al)wa_5 + fAn_3
_,020(-4,141) UZC(A’A"_S)fA_,,.l.g _ ch(A,A])fA"_4

n—3

__v2°(A’A"'3)fA_n+4 + Z U2C(A’A"_i_1)(fA2i—n—1 - fA?i—")

i=3

P fy = 2B (fy o fa) — ANy L f Ants)
A (fy L Fa ) = (Fhns — i)
follhna)f, g edns)f, g g(Adp, g p
_p2e(AAn_2) Faorn — p2elAd) £,y 2e(AiAn=s) FAcnsa

'U2C(A,A"_1)fA—n + fAn—2

F.(A).

For n even, we obtain

RHS

n—1

'Uzc(A’A"—l)fA_u - Z vzc(A’A"_i_l)(fAzi-n—l - fA2i—n)

=1
+U26(A’An—2)fA_n+1 + fAn_s + v2c(A,An—3)fA_n+3 + ,U2c(AyA1)fAn_5

n—3

—v2c(A’A”"3)fA_n+4 + Z U%(A’An_i_l)(fflzi-n—l - fAzi-n)

1=3

= A fy P A (fy = Fa) = 0 (i — Al

_v2c(A,A1)(fAn_5 - fAn—4) —_ (fAn—3 - fAn—2)
+'U20(A’A"_2)fA_n+1 + fAn-S + UZC(A1An—3)fA_"+3 + v2c(A,A1)fA"_5
_v2C(AaAn—3)fA_ "

e I 0 7S el PR FW

Fo(A).

So Fy.(A) € Ny for any n € N.

We need this lemma for the following proposition.

Proposition 3.3.6. (comp. [1], Proposition 5.1) Let A € T and w € Wy. We have

e — (—1)@patodde, € A7
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Proof. As in loc. cit., it is enough to prove that
€x + UC(AL’“ ’A;‘-)ez\aa € Na g N

for all o € II. Let o € Il and n € Z be such that A € H, ,. We write

ey = Z B = Z (B+ Boun) = fa._,
A

BeX,B3\ BeX,B3)\,B<Boan

where the last sum runs over all alcoves A in Uy such that A € A,,_;. Similarly, we

e)\Ua = Z fA—n—l
A

where the last sum runs over the same set of alcoves A as before.

have

According to the definition of T, if ¢, # &, the integer n is necessarily even. So,
since c(Af,_, AT) = 2¢(A, A}) where A is the alcove in Up such that A, = A (hence
ALG = A_,), the claim follows from the previous lemma.

Notice that this proposition shows that the operator 6, € Auty(M°), w € Wy,
maps M°NA into itself and therefore induces an H-linear automorphism of M°%/ M°N

N. Theorem 3.3.4 can now be proven as in loc. cit.

Back to the proof of Theorem 3.3.1, it remains to check that
je(Fe) e N*.

(The other arguments in [9] have a straightforward generalization.)
The left ideal Z of H generated by Ty, + Tw,s for any s € Sy is the submodule of
H corresponding to A'. Hence the condition

jelf) e Nt
for f € M is equivalent to the condition

(Z,74(9)) =0
for g = ¢~1(f) € H. And since

JP(Tup + Tups) = j(1+Ts) = 1 — o™,
the latter condition is equivalent to
(H(Ts —v*>),9) = 0.
If s = s,, a € II, the operator O, — e(a) on H is right multiplication with

To(1 — Togn) — T_o(voe — 0%7) 41 — v2% — (1 — T veetes)(1 4 T vo)
= Ts(]_ — T_ZQ) — p20s + T_za’l)zcs,
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and therefore (1 — ©_3,)"1(0, — e(a)) is equal to the map h — (T, — v?%), h € H.

Hence the formal adjoint operator of this map is
(1 = ©-22)7"(0, — e(a))” = (O, — e(—a))(1 — ©) 7,
which we consider as a map on H. The condition on g becomes
(6, — e())(1 — ©2) 719, H) = 0,
i.e.
(:‘)3(1 it @20,)_19 = e(—a)(l - @za)"lg.
We can apply 1 — ©_24 = —0O_3,(1 — ©2,) on both sides and obtain the equivalent

condition

0,9 = —e(—a)O_s,9.
Now, O, = e(a) ©F and consequently
0,9 = (1—-0_,v"+)(1+O_ov* )0} g
= —O_pev™ (1 — v CFDQ ) (1 4 v 90,0 g
= —0_3,0™0F (1 — v~ (=+NQ_,)(1 + v~ Q_,)g.
On the other hand,
—e(—a)O_ 39 = v¥**(1-— v"(c""cs)@_a)(l + v (Cem)Q_,)g.
So we can write the condition on g € # in the form

0_3,0F(1 — v~ lFQ_ )1 + v (=)0 _,)g
= —(1—0v DO _,) (1 + v (=)@ _,)g,

and the initial condition j ¢(f) € 'L is equivalent to

0_2007 (1 — v=(ete)g_ Y(1 4 v=(eemca)g_ ) f
= —(1—o oty )(1 4o (=g ) .
We defined E¢ = Hf(ﬂ)_ch for C € X, and according to Proposition 2.3.12 we

B8>0
have 8,D¢ = v<(€*$:C) Dg,,.

Suppose C = y(A}) CII,, y € W,, A € T. We first consider the case that ¢; = c;.
We have
C®s=y(Af 5,5 = Y(AF,_) = (C * s)p-a
and

c(C®s,C)=v(A py) + c(C *5,C) = h(ps) + c(C x 5,C).
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Hence
0_200F (1 —v=(eFeg_ (1 4 v~ (eme)g_ VB,

= 0o(1+0.)0-67 [ £8)~'Dc
£>0, B#a

= (1+0) [ f(8) tv@Oto-a)p,,,
£>0,8#a

= (1+0-) J[ £(8)7"v%®)Deg,
£>0,8#a

= (1 — v g Y(1 4 v g )pelCoO)
Secondly, if ¢; # c¢; we have
C®s=y(Af_s) = (C*s)p-2a
and
c(C®s,C)=h(pa)+c(C*s,C).
Hence
0_20F (1 — vt (1 4 v~ (=)g_ VB,

— H f(ﬂ)—l,uc(C*s,C)—-h(p-ux)D(C*s)p_za
B>0, B#a

= (1 —ov(etelg_ ) (1 4 vleeme)g_ o OO0 frg .
In both cases, we thereby obtain

0_200F (1 —v=(etesdg_ Y(1 4 v=(m)g_ ) e
= 0 508f (1 — o™+ )(1 4 v7(me)g_) Y~ (—1)/Fp (O g,

zeWy
— (1 _ U—(cS+cs)9_a)(1 + v—(c,«—cg)g_a) Z (_1)I(:c)Uc(C@x,C)+c(C®x@s,C®r) EC@x@s
€Wy
— _(1 _ U—(c§+cg)9_a)(1 + v—(cS—cg)G_a) Z (_1)l(xs)vc(0®zs,C)EC®xs
Z‘EWO

= —(1— vt ) (1 4 v mG_, ) i

Thus jo(F¢) € Nt which finishes the proof of Theorem 3.3.1.

We conclude this section with the generalization of Theorem 1.8 in [8].
+ + +
If K= (koo € Zlf‘l, M = (my)s € Z[fzi and N = (na)a € Z'le, we set

a(N)= > ng

ae@i
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and
o(K,M,N) =2 Y kaca+ Y (malca+ &) + nalca — &)).

aEQT aGQ;
For k € T, k > 0, we then define
P*(K;U) — Z (_1)0‘(N),va"(K,M,N)
K,M,N

where the sum runs over all K = (k,) € Zfﬂ, M = (m,) € ngl, N = (n,) € ngl

such that
Z koa + Z (Mma + ne)a = k.

acd} aed}

Let ny € Wa, A € T, be the element of maximal length in Wop)W,.

Theorem 3.3.7. Let A\, p € T with A > . We have
PO P (™) = Y (1) EP((A + p)e — (4 + p);v)-

zeWy
Proof. Since

Pn,;,m‘ = PA‘n,;,A—n,\ = PA;‘;,Ai‘a

we calculate the coefficient of A} in Fyy.

Remember that

FAi - Z (_1)l(m)v6(A(A+5)z—ﬁ’Ai)EA+

€Wy (A+8)z—p
and
-1
EA?Mﬁ)z—ﬁ - I)Iof(a) E(A+p)z—5p
= H (Z ,v—2kca0_ka) H (Z v-—m(ca+6u)0_ma)
acdt k20 a€dy m20

' H (Z(_1)nv_n(ca_éa)e—na)e()\+ﬁ)x—ﬁ.

acdf n20
We have

H o—kaa H 0—ma0! H 9~ﬂaa(A?3\+5)x—ﬁ) = A;I;

acd} ac®d aedf

for some K = (ka)o € Z!, M = (ma)a € 2%, N = (n4)s € Z'¥ if and only if

Y kst Y (Mot na)a=(A+p)z— (4 +5p),

acdf a€d?
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and the contribution to the coefficient of AZ’ in & A% ) 1s
+5)z—p
H (_1)na H vkah(a)—2kaca H vmah(a)—ma(ca-i—é'o,) H vnah(a)—na(ca—éa)
ozE<I>;' aE@f oz€<1>'2i' a€<I>;

— (= 1)7N) yh(O+7)=(ut 7)) =0 (KMN),

Since
(Al peep AN T AN+ p)z — (1 + 5)) = c(Af, AY),

the claim follows.

4. SOME RESULTS ON GENERALIZED CELLS

In the first section, we briefly introduce generalized cells and the a-function. In
the second section, we examine a particular generalized two-sided cell of W,. Here,
Lemma 2.2.7 will play an important role. The third section contains a description of
the generalized left cells in a Coxeter group for one class of parameters. We conclude

this chapter with an example.

4.1. Definitions and basic properties. For equal parameters, the following defi-
nitions and facts can be found in [18]. In [16], Lusztig generalizes the concept of cells
to unequal parameters.

Let W be a Coxeter group with generating set S and parameters ¢, s € S, subject
to the condition that ¢; = ¢; whenever s and ¢ are conjugate in S. The definition
of the corresponding Hecke algebra H is analogous to the definition in Section 1.2.
Here, it will be more convenient to work with the .A-basis {7}, | w € W} (instead of
{Ty | w € W}) where

T, = v ™7,
Multiplication in terms of these elements is given by
(Ty — v )T, +v™) =0
for s € S and
TwTw’ = Tww’
for w, w' € W, l(w) + I(w') = [(ww').
The A-basis of H consisting of the elements
Cw = Z(—1)l(w)_l(y)vm(w)—m(y)Py w(v_l)Ty

y<w

for w € W will be denoted by C (see loc. cit.).
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For y,w € W and s € S such that sy < y < w < sw, we inductively define
polynomials M; , € A by
(i) Z vm(Z)—m(y)pysz:’w _ vcs+m(w)—m(y)pyyw € Z[v™'] and

y<z<w, s2<z
(ii) M;’w = M;’w.
It turns out that

—(v® +v7%)Cy if sw < w,
(%) C:Cw=1 ¢,, — Z (—l)l(w)‘l(Z)Mﬁ,wCz if sw > w.
zLw,s2<2

We remark that
Cy€Ty+v) AT,
y<w
and
T, €Cutv ) A*C,
y<w
For y, w € W, y < w, define polynomials @, ., € At by
Z (—1)1(")“(3’)133,,2@2,“, =6y,

y<z<w
and set
D, = Z @m0,
y<w
which is an element in the set H* of formal A-linear combinations of the elements
Tw, weW.
We have an A-linear map 7 : H* — A, given by

A3 wl) = a
weW

a, € Afor w e W. It is easy to check that
T(ToTy) = gyt
and
7(CeDy) = 7(DyCy) = 6z 41

for z,y € W.
Let <y, be the preorder on W which is generated by = <y y for z, y € W,, if there
exists some s € S such that 7(Cs;CyD,-1) # 0. The associated equivalence relation is

denoted by ~r, and the equivalence classes with respect to ~ are called generalized
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left cells. Similarly, we define <g, ~g, and generalized right cells. We say © <pr y

for z, y € W, if and only if there exists a sequence
T =TQy L1y +e+ 3Ty =Y

such that for all 0 <7 < n — 1 we have z; <y, z;4; or z; <g z;31. We write ~p for
the associated equivalence relation, and the equivalence classes are called generalized
two-sided cells. (We use the attribute generalized whenever unequal parameters are
involved.)

For y € W, define
Ly)={s€S|sy<y}
and

R{y) ={s€ S |ys <y}

Remark 4.1.1. Let z, y € W.

(1) ([31], Corollary 1.20) If <y, y, then R(z) 2 R(y). Therefore, z ~, y implies
R(z) = R(y)-
(ii) If C.D, # 0, then y~! <p z. (Use [31], Corollary 1.15(a).)

A function
a: W — NoU {0}
is defined as follows (cf. [18] for equal parameters and [23] for unequal parameters).
Let w € W. For z, y € W, express TxTy with respect to the basis C, and consider the
coeflicient of C,,-1. If the order of the pole at 0 of these coefficients is bounded as z
and y vary, we set a(w) equal to the largest such order. Otherwise, a(w) = oo. For

equal parameters, this function is an important tool in the study of representations
of Hecke algebras in [18].

Remark 4.1.2. Let M be an abelian group acting on W in a way such that m(S) = S
for all m € M. Consider the semidirect product W’/ = M x W. The definitions in
this section can be extended to W’ (comp. [21]). Generalized cells in W' are of the
form {(m,w) | m € M, w € I'} where I' is a generalized cell in W.

4.2. The lowest generalized two—sided cell in W,. Suppose W = W,. (We use
the notation of Chapter 1.)
Let v = l(wo), ¥ = m(wp), and set & = v —v™% for s € S. For z, y € W,, we
write
2eW,

Note that Tf =&T,+ 1 for s € S, so any Mgy . 18 @ polynomial in &, s € S.
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Theorem 4.2.1. Let z, y, z € W,.

(i) As a polynomial in &5, s € S,, the degree of myy . is at most v, and the coeffi-
cients are non—negative integers.

(ii) The degree of my, . in v is at most .

The proof of part (i) is analogous to the proof of Theorem 7.2 in [18]. Part (ii) is
approached in a similar way, using Lemma 2.2.7 instead of [14], Lemma 4.3.

We will need the following two corollaries, whose proofs are again analogous to the

ones in [18].
Corollary 4.2.2. (comp. [18], Corollary 7.8) For w € W,, we have a(w) < ¥.

Corollary 4.2.3. (comp. [18], Corollary 7.10) For any z, y, z € W,, the elements
v"r(TzTyTz) and vﬁT(TzTyDz) are in AY and have the same constant term.

Now, for any w,z,y € W,, the notation w = z - y means that w = zy and
l(w) = l(z) + l(y) (and similarly for w =z -y -2z, w,z,y,2 € W,.) For A € T, let
My={zeW, | wyz=w, -z},
and define
Ny.={weW, |lw=2 w2 2 eW,}

where z € M. Note that according to [28], Lemma 3.2, the condition wyz = w) - 2

implies z 1wz = 271 - wy - 2.

Theorem 4.2.4. Let A € T and z € My. The set N, , is contained in a generalized
left cell.

Proof. Let z € W,, and suppose z = sg--- 81, 8; € S, for 1 < i <k, is a reduced
expression. Let y € W,. We denote by Z, the collection of all I = {i;,...,%p,} such
that 1 <4 <+ <ip, <k and

sit'..git—l.'.gil "'Sly < ‘§it".‘§‘it—1 ...gil ...sly

for all 1 <t < p;. For I € 7, we write

~ ~

TI - Tsk...§"PI ...5'-1 81y

Induction on k shows that
1
T,T, = Z(H €, )T1.
I€T, j=1

Now take y € N ;, y = 2’-wy -z, for some 2’ € W,, and z = 2~ !wyz. (So z € Ny ,.)
Say z = s ---8; is a reduced expression such that wy = 8, -+ 8, and 8,181 = 2
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forsome k >m >n > 1. fweset I = {n,... ,m}, we have I € Z,-1 and p; = ¥ (see
Lemma 2.2.7 for the definition of §;). Hence

vﬁT(TxTy—IT(z—lzy—l)—l) = v"r(f}j’y—l Ny)
has non-zero constant term. Using
(T Ty T,) = 7(T,- T, T,) = (T, TeTy1)

and Corollary 4.2.3, we see that the polynomials v”7(Cy-1CyD;) and v’7(CyCyDy-1)
have non-zero constant terms, in particular, CyD, and C;D,-1 are non-zero. Thus,

by Remark 4.1.1 (ii), we have z = 27! <y and y < z, i.e. y ~ z for all y € Ny ,.

The next corollary is an immediate consequence of the above theorem for z = e
and Remark 4.1.1 (i). For equal parameters, this is Corollary 8.5 in [18].
For A € T, let Sy = WaN S, and write R(S)) = {w € W, | ws < w for all s € S)}.

Corollary 4.2.5. The set R(S)), A € T, is a generalized left cell in W,.
We also get the following result, which for Case 2 is Theorem 3.22 in [31]. Let
Wr={weW,|w=2 wy-222 €W, AeT}.
Corollary 4.2.6. The set Wr is a generalized two-sided cell.

Proof. We only need to look at Case 1, in which case
Wr = U N,
ZGMA

for some fixed A € T. Let z'wyz and y'w,y be elements in Wr, 2'wyz = 2/ - w) - 2
and y'wyy = y'- w) - y. Using Theorem 4.2.4, together with its version for generalized

right cells, we obtain
/ !
ZWAZ ~[ WAZ ~R WA\Y ~L Y WEY,

Thus Wr is contained in a generalized two-sided cell. The other inclusion is proven
in the same way as in loc. cit.
We remark that Wr is the lowest generalized two-sided cell in W, with respect to

<LR.
Theorem 4.2.7. The set Wr contains at most |Wy| generalized left cells.
Proof. For A € T, let

M, ={zeW, | wyz=wy-z swyz g Wr for all s € S)}.
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Following [28], we choose a set of representatives for the Q-orbits on 7' and denote
it by R. Then

We= |J M
AER,zeM}

so the number of generalized left cells in Wy is at most the number of pairs (), 2),
AER, z€ M.

As in loc. cit., we see that z € M} for some A € T implies z7'(A}) C II,. Since all
z7Y(AT), A € R, z € M}, are different, the number of pairs (}, z) is thereby bounded
by the cardinality of {A € X | A C I, for some A € R}. The latter set is easily seen
to be a fundamental domain for the action of the translation subgroup of 2 on X, so

its cardinality is [Ws|. The assertion follows.

There is another way to describe the set Wr, which is similar to the description in
[3]. Let ¢ € F, and denote by F; the set of all hyperplanes H € F of direction 7 such

that cg = ¢;. The connected components of
v-J H
HeF;

are called strips. We write

uA= J U

U strip,UDA
for A€ X.

Lemma 4.2.8. We have
Wr={weWw,| w(A+) Z U(A"')}.

Notice that instead of A*, we could have chosen any other alcove A € X since
U(ATY) = U(A)v for any v € W,,.

Proof. First, let w € W, be such that w(A*) € U(A*). The alcove w(At) lies in
some connected component C of V — Uyeco+ Hao. This quarter C with vertex 0 can

be described as
C={zeV|(z,&) >0for acy.ll}

where y € Wy maps Ct to C. So there are r linearly independent positive roots
a1,...,a, and some k € {1,...,r} such that

C={zeV|(z,d)<0forl1 <i<k, (z,&)>0fork+1<i<r}.
We remove from C all alcoves which lie in Z(A*) and obtain the quarter

C'={zeV|(z,&)<0forl1 <i<k, (z,&)>bfork+1<i<r}
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where

b — { 1 if ¢ = Coy,
' 2 otherwise
for k4+1 <i <. (The set ' is a translate of C.) So w(At) C C'.

Let A be the vertex of C’, and let z € W, be such that z(A*) is the unique alcove
in C' containing A in its closure. Since C' C C, any other element v € W, with
v(AT) C ' satisfies v = v’ - z for some v’ € W,, in particular w = w’ - z for some
w' € W,.

Let s € S), so there is a wall of C containing a face of type s. For each wall of
C', the alcoves A* and z(A™) lie on different sides. Since [(v) for v € W, counts
the number of hyperplanes such that A* and v(A%) lie on different sides, we obtain
sz < z. We conclude z = w, - 2’ for some 2/ € W, and w = w' - wy - 2.

Conversely, let w € Wr, w = 2" - w) - z for some 2/, z € W, and A € T'. If we are in
Case 1, we set A = z7!(A"). Using [28], Lemma 4.2, we get

A=zYANccet

and
w(A) = Zwy(AT) =2 (A7) cC.

Hence (z,&) > 0 and (y,&) < 0 for all z € A, y € w(A), @ € &+, which implies
w(A) LU(A).

If we are in Case 2, we set A = z71(AT). We obtain (z,&) # (z/,&) for all z € A,
' € w(A), a € T, and this again implies w(A) Z U(A).

Note that the connected components of V — U(A") turn out to be precisely the

quarters of the form C’.

Remark 4.2.9. Define
W(,;) = {w e W, | a(w) = 13}

For w € Wy, we obtain from the proof of Theorem 4.2.4 that a(w) > ¥ and from
Corollary 4.2.2 that a(w) < 7. Thus Wr C W(;). At the end of the next section, we

will see that this is actually an equality.

We also point out that we can use the procedure in [19] to attach a based ring
Jw, to the lowest generalized two-sided cell Wr. For fixed T', the ring Jw, does not

depend on the parameters.
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4.3. Parameters coming from graph automorphisms. We now place ourselves
in the setting of [15], Section 8. Let W be a finite or affine Weyl group with a set S of
simple reflections and o : W — W a non-trivial automorphism such that a(S ) =
Let W be the fixed point set of W under . This is again a finite or affine Weyl
group and has a set S of simple reflections corresponding to the orbits of a on S. For
s € S, let ¢, be the length of the longest element in the subgroup of W generated by
the orbit corresponding to s. We thereby get parameters ¢; € N such that ¢; = ¢
whenever s and ¢ are conjugate in W.

We will write P, ,,, Cy, @ etc. for W and ﬁy,w, Cu, @ etc. for W.

For z,y, z € W, set

hey. = 7(CzCyD,-1),

and correspondingly

%r»y,z = ?(avéyﬁz—l)
for z,y, z € w.

Let z, y, 2 € W be such that # < y. According to [11], [16], and [24], the coefficients
of P,, and Ez,w can (up to a sign) be interpreted as dimensions of certain vector
spaces on which «a acts, and the corresponding coefficients of P, , and k., . are the
traces of a on these vector spaces. We need the following facts which are consequences
of these interpretations.

4.3.1. We have deg P, < deg ﬁw’y_

4.3.2. If the coefficient of v', i € Z, in h,, , is non-zero, then the coefficient of v*
in Zm,y,z is non-zero as well. In particular, a(z) < a(z).

4.3.3. If the coefficient of v', i € Z, in Ex,y,z is £1, then the coefficient of v* in
hsy,. is non—zero.

For z, y, z € W, let ¢z .., be the integer given by
v“(z)hz,yyz-l — Cryz € VAT,

and write 6(z) for the degree of the polynomial P., in v. Similarly, we define ¢, ,
and g(z) for z,y, z € W, and we set Y, . = (—1)*2 ¢, ..

Lemma 4.3.4. We have a(z) < m(z) — 6(2) for any z € W.

Proof. According to [19], the corresponding inequality holds for W. In view of

4.3.2 and 4.3.1, we can therefore conclude
(+) a(z) < @(z) < I(z) = §(2) < m(2) - §(2).

Remark 4.3.5. Let
D={zeW|&(z)=1(z)-5)}
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be the set of distinguished involutions in W. We set
D={zeW|a(z)=m(z)—dz)}.

From (), we derive that a(d) = @(d) for all d € D and that D C D.

The following two results can be found in [19].

4.3.6. Any left cell T of W contains a unique d € D. For z € f, we have ¥,-1 , 4 = 1,
and d is the unique element in W such that Yot 54 F 0.

4.3.7. We have ¥, . = Yy, forall z, y, z € w.

Theorem 4.3.8. The generalized left cells of W are the fixed point sets of the left
cells ofW under a.

Proof. Let z € W. It follows from the definition of Cy,, w € W, that
T(Cz—lcz) el+ vAT.

On the other hand,

T(ComCe) = Y hemi,,T(CL)

weW

= Y e (1) @P, (7).
weW
Lemma 4.3.4 shows that there exists some d € D such that c,-1,4 # 0. Since
a(d) = a(d), we conclude ¢,-1 , 4 # 0 and hence 7,-1 ,4 # 0. We have d € D, and

using 4.3.6 and 4.3.7, we arrive at

72—1,2,11 = 72,d,z_1 = 1.

Thus, according to 4.3.3, both elements C,Dy and CyD,-1 are non—zero, which in
turn implies d <p, z <p, d (cf. Remark 4.1.1 (ii)), i.e. d ~1, z. This means that any
generalized left cell in W contains a distinguished involution.

As a consequence of 4.3.2, any generalized left cell in W is contained in the fixed
point set of some left cell in W (comp. [15]). Since there is only one distinguished

involution in each left cell in W, the assertion follows.

In [19], Lusztig proves that if W is an affine Weyl group, W consists of only finitely

many left cells. So we obtain the following statement.

Corollary 4.3.9. If W is an affine Weyl group (with parameters as above) the num-
ber of generalized left cells in W is finite.
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Note that the proof of Theorem 4.3.8 shows that D is the fixed point set of D and
that a(z) = a(z) for any z € W. Several statements in [19] then carry over to W.
We will need the following one for the proof of Theorem 4.3.13.

Corollary 4.3.10. (comp. [19], Corollary 1.9 (b)) For any ', z € W, if 2/ <1, z and
a(z') = a(z) then 2/ ~, z.

Remark 4.3.11. As we will see in the next section, a generalized two-sided cell in
W does not have to be the fixed point set of some two-sided cell in W.

We now again use the notations of Chapter 1 (taking W = W,).

Theorem 4.3.12. If we have parameters coming from a graph automorphism, Wr
consists of exactly |Wy| generalized left cells.

Proof. Let
N={z"wyz | \€ R, z€ M}}.
As in [28], we see that N C D. In view of Theorem 4.2.7, it therefore suffices to show
that |N| = |[W|.
It follows from the proof of Lemma 4.2.8 that V — U(AT) has |Wj| connected
components. According to the same lemma, we have

V - U(AY) = Wr. AT,

which in turn equals

U MN-At

XER, zEM),
In the proof of Theorem 4.2.7, we saw that |{(}\,2) | A € R, z € M}}| < |Wp|, and
since N, ,.A" is connected, we obtain |[{(\,2) | A € R, z € M}}| = |Wy|. We have
z7lwyz. AT C N, ,.A" for A € R, z € M}, so all z 'wyz.A" and thus all z7'wyz are
different. We conclude |N| = |[Wy|.

Finally, we prove the equality indicated in Remark 4.2.9. (This holds for any
parameters. )

Theorem 4.3.13. We have
Wy = Wr.

Proof. It remains to show that Wy C Wr.

We first assume that we have parameters coming from a graph automorphism. Let
z € W, be such that a(z) = U. Choose some A € T, and let y € W, be the element
of minimal length in Wyz. Then z = z - y for some z € W,, and by induction on
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l(wy) — l(x) we see that we can find s1,...,s, € Sy such that s, ---s;2 € Wr and
S;+++812 > 8;_1---s1z for all 1 < i < n, i.e. there exists an element 2’ € Wr such
that 2’ <; z. By Corollary 4.3.10, we get 2’ ~, 2, thus z € Wr.

For arbitrary parameters c;, s € S,, one can check that there always are parameters
Cy, § € Sy, such that the corresponding set Wz resp. Wy equals Wz resp. Wy. (Use
Corollary 4.2.3 for W(3).) The claim follows.

4.4. The case C,. In this section, we explicitly determine the generalized left and
two—sided cells for the case W of type C, (= Bz) and W of type As. More cases can
be found in the appendix.

Let W be a Coxeter group of type A with Dynkin diagram

Let « be the automorphism on W which fixes 5o and §y and interchanges §; and §;.
Then W = W* is of type C, with parameters

1 2 1
&o——0—0
So S1 S .

The cells for Weyl groups A,, 7 > 2, of type A,_; are given in [27]. In particular,
Lusztig and Shi established a bijective correspondence between the two-sided cells of
A, and the partitions of r, which we describe now.

We realize A, as the group of all permutations o on Z such that o(i+7) = o(i) +7
foralli € Z and Y ._, o(¢) = >_._, i by letting the simple reflection s;, 0 <7 <r—1
act as

j+1 ifj=1i(modr)

s5i(j)=1¢ j—1 ifj=i+1(modr)

j if j #£4, i+ 1(mod r).
A map 7 from A, to the set of partitions of r is defined as follows. Let w € A,. We
denote by di, k € N, the maximal cardinality of a subset of Z whose elements are
incongruent to each other mod r and which is a disjoint union of k subsets each of
which has its natural order reversed by w. (We set dp = 0.) Let n € N be minimal
such that d, = r. For 1 < k < n, we define A, = dy — dy_1. Then > ,_, \x =7 and
AL > Ag > - 2> A, (cf [27]). We set m(w) = (A1 > Ay > --- > A,). The two-sided
cells in A, then coincide with the fibers of .
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Now take W and W as at the beginning of this section. We use the above description
of the two—-sided cells in order to determine the generalized left cells in W. The fixed
point sets of the two—sided cells in W are unions of generalized left and two-sided

cells in W.

The lowest generalized two-sided cell ¢, consists of the eight generalized left cells

No,l, No,so, No,sosl, N0,8051327 N%ao,l? N%ao,sp N%ao,sgsn N;-ao,szslso-

The two-sided cell corresponding to the partition (1 > 1 > 1 > 1) contains only
the identity element. The fixed point set ¢, = {1} is a generalized left and two-sided
cell.

As noted in [12], the two—sided cell corresponding to (2 > 1 > 1) consists of all
elements in W with a unique reduced expression. Its set of fixed points is therefore
{so0, s2}. Remark 4.1.1 (i) implies that ¢, = {so} and ¢; = {3} are generalized left
and right cells and hence generalized two—sided cells. (This is an example where the

generalized two-sided cells in W are not the fixed point sets of the two-sided cells in

o~

w.)
We are left with the elements in ¢, = ¢} U 2 U ¢ U ¢t where
G =Yy Yy
= {31(303231)n, 5231(303231)n,5031(805231)n, (303251)n+1; n > 0},
= {-‘5280(515230)n, (315280)n+1, 32(313230)n+1,50(815230)n+1; n 2 0}7

= {5132(503152)n,328182(303132)n, (303132)n+17 82(303132)n+1; n > 0},

Lo 0 I8 o

= {3130(523150)",305150(523130)n, (525150)n+13 30(525130)n+1§ n > 0}

and ¢5 = ¢ U ¢t U i U ci where

c; = {s1s251(s0515251)", (s0s15251)" ", 51(s0515251)" ", 5251 (s0515281)" ! 5m > 03,
2 = {515051(52515051)", (52515081)" !, 51(82815081)" 1!, 5051 (82818081)" 15 n > 0},
g‘;’ = {(31803132)n,82(31803132)n,3132(31308132)n,305132(81803132)n;TL > 1},
= {(51528150)", S0($1825150)", 8150(81525180)", $258150(51525180)";n > 1}.

It can be shown by induction on n that 7 sends the elements in ¢, to (2 > 2)
and the elements in ¢; to (3 > 1). (For example, the element (sgs251)", n € N, as

permutation on Z maps

to 1+ 2n,
to 2 —2n,
to 34 2n,
to 4 —2n.

U I
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So sets of integers which are incongruent mod 4 and whose order is reversed by

(sos2s1)" are of the form
(14 4k, 2 + A1}, {1 + 4k, 41}, {2 + 4k, 3 + 41}, or {3 + 4k, 4}
for certain k, ! € Z. Thus 7((sos251)") = (2 > 2).)

We conclude that @ is constant on ¢, and ¢, respectively, and that ¢, and ¢y are
unions of generalized left and two-sided cells. (It is shown in [18] that @ is constant
on two-sided cells.)

It follows from the multiplication formula (*) in Section 4.1 that

n
31(803231)n 2L 8281(808281) 2L (505281)n+1 2L 31(303251)n+1-
5031(308231)n

for n > 0. Similar relationships hold for the elements in ¢}, ¢ > 2, and _c_{-;, 7>1. We
derive from Corollary 4.3.10 that elements z, y € W with z <j y and 7(z) = 7(y)
lie in the same generalized left cell. Therefore, any ¢, and any ¢ is contained in a
generalized left cell. Remark 4.1.1 (i) then implies that ¢ for i > 1 and ¢ for j > 3
are generalized left cells.

According to [27], Theorem 16.1.2, elements in A,, r > 2, lie in the same left cells
if and only if they have the same generalized right 7-invariant (for the definition see
[27], p.18). Since the elements in A4 corresponding to s;5251 € ¢} and s;808; € ¢ do
not have the same generalized right T-invariant (take the right star operation with
respect to {3, 33}), they do not lie in the same left cell. It follows that ¢} and ¢ are
generalized left cells.

Since generalized two—sided cells are unions of generalized left and right cells and
since (c})™' N # 0 for n € {4,5} and all ¢ > 1, the sets ¢, and ¢; are generalized
two—sided cells.

We remark that in this case, as well as in the cases listed in the appendix, each
generalized two-sided cell has a non-trivial intersection with a maximal parabolic

subgroup Wy of W for some special point A.
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APPENDIX

For W of type C,, we describe generalized left and two-sided cells using the re-
alization of W in terms of alcoves as in Section 2.3. The generalized left cells are
obtained as the connected components after removing the thick lines. The general-
ized two—sided cells are the unions of all generalized left cells with the same label ¢;,
¢ > 0. In all cases, the elements in the lowest generalized two—sided cell are labeled
¢o- The alcove corresponding to the identity element is labeled ¢,.

We start with the equal parameter case, which is taken from [18]. In the unequal
parameter cases, we indicate W as well as the non-trivial actions of a. (The notation
is that of Section 4.3.) The calculations are similar to those in Section 4.4. (For w
of type Bs resp. Dy, we use [6] resp. [5], [30].)
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S S1 S2

The 4 two-sided cells consist of 8 + 1+ 3 + 4 = 16 left cells (in this order).
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So 81 82

The 6 generalized two—sided cells consist of 8 + 1+ 1 + 1 + 4 + 4 = 19 generalized
left cells.
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So S1 S92

The 6 generalized two—-sided cells consist of 8 + 1 4+ 2+ 4 4+ 4 + 4 = 23 generalized
left cells.
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%4 W:
2 1 2
Qa a —eo—p and
So S1 S9
w W
3 2 3
aI Ia ——m
So S1 S2

The 7 generalized two-sided cells consist of 84+ 1+1+1+1+4+4 = 20 generalized
left cells.




70

So S1 82

The 7 generalized two-sided cells consist of 8 +1+1+42+4+4 44 = 24 generalized
left cells.
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