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Abstract

Gain Distributed Feedback (GDFB) structures are used to form a novel type of chan-
nel dropping filter which possesses several unique and desirable features. GDFB
channel dropping filters allow transparent detection of selected channels and provide
better suppression of undesired resonances than passive filters. Equivalent circuits of
GDFB filters are developed. A general scheme to assemble the equivalent circuits of
an arbitrary number of coupled GDFB resonators is devised. This technique is a very
powerful tool to analyse and design higher-order filters. Optical gain in semiconduc-
tors is reviewed and its relation to the injected current density through the device
is discussed. A simple gain grating design is discussed and is used as an example
to illustrate the spurious effect of index coupling and net travelling wave gain (or
dc gain) on the performance of the device. Techniques to minimize these effects are
explored.
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Chapter 1

Introduction

1.1 Motivation

The invention of the laser in 1960 [1] and the development of low-loss fibers in the

70's [2, 3] sparked a flurry of research in the field of optical fiber transmission tech-

nology paving the way for viable optical communication systems. As early as 1978,

development of the Trans-Atlantic Telephone cable system (TAT-8) based on the SL

single-mode fiber-based lightwave system had started [4]. The TAT-8 cable system,

connecting the European and North American continents was in service by 1988. Also,

during the late 80's several high-speed terrestrial single-mode optical fiber systems

operating above 1 Gb/s were developed. These included AT&T's FT series G 1.5

Gb/s, Fujitsu's 1.6 Gb/s transmission system, NEC's 1.12 and 1.6 Gb/s systems and

many others [4]. More recently a 10 Gb/s channel is being developed by AT&T, ready

to be deployed in New York. At the very high bit-rate end, a project between MIT

and Lincoln Laboratories is attempting to provide a 100 Gb/s optical link between

the campus and Lincoln Laboratories. The transition to higher and higher data rates

is driven by the increased demand for high speed telecommunications. With applica-

tions like high-definition TV, videobroadcasting, supercomputers with high resolution

graphic terminals, etc. the need for higher data transmission rates has continued to

increase. In recent years, research has been focussed on providing low cost solutions

for this increased demand using existing fiber systems. Among the techniques being



considered are Time Division Multiplexing (TDM) and Wavelength-Division Multi-

plexing (WDM). TDM techniques increase the capacity of a communication link by

using higher transmission speeds. This technique is, however, limited at the opto-

electronic interface by the speed of the digital processing circuitry. Even with GaAs

digital IC's, the maximum date rate is probably going to be limited to about 2 Gb/s

[1].

1.1.1 Wavelength-Division Multiplexing

An alternative approach to increase the transmission rate at small additional costs in-

volves exploiting the large bandwidths of optical fibers and optical integrated circuits

(OICs) [5]. By multiplexing several signals at different wavelengths and transmitting

them across the same fiber, the transmission rate can be increased linearly with the

number of data channels [6]. This process, called wavelength-division multiplexing

(WDM), allows the optimal use of the fiber bandwidth making it possible to upgrade

systems without installing new fibers. The key components of a WDM system are

a multiplexer, to combine signals at different wavelengths for transmission down the

fiber, and a de-multiplexer to resolve the signals at the receiving end. De-multiplexers

can primarily be divided into two main classes: full-spectral resolvers and channel-

dropping filters (CDFs). In the first class the multiplexed signal is simultaneously

resolved into all its different wavelength components. Devices of this type include

integrated diffraction gratings which reflect the various wavelength components into

different directions [6]. These can then be collected by separate fibers dedicated for

specific wavelengths. Channel-dropping filters, on the other hand, allow a single data

channel to be filtered out from the multiplexed signal. Among the devices in this class

are planar optical waveguide filters [6] and distributed feedback filters [7, 8, 9, 10, 11]

The two classes of de-multiplexers offer their own advantages. Full-spectral re-

solvers are fast as they simultaneously de-multiplex all the data channels. However, if

the signal needs to be transmitted further, the signals have to be multiplexed again.

Channel-dropping filters, on the other hand, while sacrificing speed allow a single

channel to be detected leaving the other channels unaffected. They can be cascaded



to perform desirable filtering operations. This allows greater freedom to a system

designer.

An "ideal" filter is one that allows data on a specific channel to be detected without

disturbing the ongoing signal. Moreover, an "ideal" filter should be tunable enabling

it to detect the different data channels, with the ability to turn the filter on or off as

needed. The first property of such an "ideal" filter requires an active device since it is

not possible to transparently detect a channel in passive devices without violating the

energy conservation principle. The tunability of the filter while a desirable property

can be sacrificed by using an array of filters with their center frequency placed at the

different channels, accompanied by the ability to pass the signal to the appropriate

filter. The ability to turn the filter on or off is a flexibility that system designer would

like to have, although this requirement too may be circumvented by shunting the

signal via an alternate route with no filter.

Gain Distributed Feedback (GDFB) channel-dropping filters are a class of filters

which possess some of the properties of the "ideal" filter [9, 12]. Since these structures

have gain they allow a channel to be detected with little distortion of the ongoing sig-

nal. Moreover, it is possible to tune the center frequency of these filter across a finite

frequency range. GDFB resonators or gain-gratings are made by forming alternate

regions of gain and loss along a waveguide. These regions cause coupling between the

counter-propagating waves leading to an energy storage cavity. By evanescently cou-

pling such a resonator to a signal bus, it is possible to form a CDF. GDFB structures

are interesting devices with applications in practical optical communication systems

and are the topic of this thesis.

1.2 Thesis Objective

This thesis attempts to provide a comprehensive theoretical treatment of gain dis-

tributed feedback (GDFB) structures. Prior familiarity with DFB structures is not

presupposed and the material presented in this thesis is mostly self-contained. It is

intended that this thesis will be a valuable reference for researchers interested in de-



signing and fabricating GDFB filters and for those interested in learning about these

devices.

An understanding of waveguides and waveguide couplers is essential for the study

of distributed feedback structures. For this reason, chapter 2 provides a brief overview

of waveguides and coupling between them. The properties of guided solution needed

to derive the equations describing DFB structures are highlighted. The coupled-

mode equations describing waveguide couplers are reviewed and an expression for the

coupling parameter is derived.

In chapter 3 the coupled-mode equations describing the waves in a GDFB res-

onator, (also known as gain grating) made by a periodic gain variation along the

length of a waveguide, are derived using perturbation theory. The coupled-mode

equations are solved and the threshold condition for lasing is derived. The filter char-

acteristics of a gain grating below threshold are discussed thoroughly. The chapter

concludes by deriving an equivalent circuit for a symmetric GDFB resonator. This

circuit, we will see, forms the basic element of the equivalent circuits of GDFB struc-

tures discussed in the following chapters.

Having discussed an isolated GDFB resonator, chapter 4 turns to consider how

two evanescently coupled GDFB resonators interact. The filter characteristics of

this second-order system are explored by developing an equivalent circuit for the

coupled resonators. This circuit is related to the equivalent circuits of isolated GDFB

resonators and helps to clarify how these resonators exchange power. Moreover,

chapter 4 gives us the tools to assemble the equivalent circuit of an arbitrary number

of coupled resonators.

Gain distributed feedback resonators when coupled to a signal waveguide form

channel-dropping filters which are the topic of the next two chapters. Chapter 5

discusses the case of a single GDFB resonator coupled to a bus which forms a first-

order CDF. Chapter 6 deals with higher-order or multi-pole CDFs. The case of a

second-order CDF is discussed in detail and a general scheme to solve a nth-order

CDF is explained.

The performance of GDFB filters relies heavily on the ability to precisely control



the gain/loss in these structures. Consequently, chapter 7 is devoted to the study of

optical gain, produced by current injection, in semiconductors. A scheme to relate

the injected current to the material gain is discussed. The chapter discusses the

distinction between material and modal gain and concludes by discussing a double

heterojunction structure which can be used in making gain gratings.

Practically fabricated gain gratings do not possess the features of an ideal gain

gratings. Chapter 8 discusses two important non-idealities that have to be dealt with

when fabricating these structures, namely the presence of net d.c modal gain and

index coupling in gain gratings. The behavior of these non-ideal gratings is explored

and schemes to minimize the spurious effects are discussed.



Chapter 2

Waveguides and Waveguide

Couplers

Integrated optics technology has focussed on developing microscopic optical circuits

on appropriate solid-state substrates to enable signal processing of optical signals.

Waveguides and waveguide couplers are used to provide guidance and distribution

of the optical waves in these circuits. Filters may then be used to separate out the

various frequency components of a signal, as in a WDM communication system. The

intent of this chapter is to lay the foundations for understanding Gain Distributed

Feedback (GDFB) structures and their application in channel-dropping filters. To

this end, a brief overview of waveguides and waveguide couplers is provided. This

review is not intended to be exhaustive and will be used to refresh some basics and

to introduce the notation to be used.

The chapter will discuss the properties of guided modes in waveguides. By solving

the case of a symmetric slab structure insight into guiding structures and the condi-

tions for guidance is developed. We shall see that such structures can support one or

more discrete guided modes and a continuum of radiation modes which are orthogonal

to each other. The modes of an optical waveguide form a complete set, a property

which will be assumed without proof. If two or more waveguides are fabricated close

to one another, transfer of electromagnetic energy can occur between them. The

guides exchange power as the radiation propagates along them. Such structures are
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Figure 2-1: Planar waveguide

known as waveguide couplers and have many applications including use as switches

[13] and broad-band filters [14] and in channel dropping filters [9]. The equations de-

scribing a waveguide coupler are derived. This chapter, thus, reviews two basic optical

components that are pervasive in optical networks and integrated optics. Knowledge

of these devices is essential for understanding DFB structures which is the topic of

the subsequent chapters.

2.1 Waveguides

Figure (2-1) shows a planar dielectric slab structure comprised of three regions of

refractive index ni. As we will see, such a structure acts as a waveguide, confining

the field in the x-direction and guiding it along the z-direction. The central region is

called the core and the adjacent regions are known as the cladding. The planar guide

has no variation along the y-direction. Practical guides, however, wish to confine the

fields in both transverse dimension x and y and thus have index or effective index

variations in the y-direction as well (fig. (2-4)). Finding the mode profiles in these

structures is mathematically challenging and tends to obscure the properties of guided

modes. For this reason, we will only consider planar structures. The electric field, E,

in any one of the three regions must obey the wave equation

52



where i = 1, 2 or 3. Since there is no variation along the y-direction, we postulate

solutions of the form [15]

E(r) = E(x)e-j"z  (2.1)

Substituting this into the above equation and explicitly writing out the results for

the three regions, we find

82E(x)E(x) + (ko2n1
2 - p 2 )E(x) = 0 (2.2)

Ox2

E(x) + (ko2n 2
2 - p2)E(x) = 0 (2.3)ax2

2 E(s)2E(x) + (ko2n3
2 - 2 )E(x) = 0 (2.4)

Ox2

where ko = wv/fE - is the free space propagation constant. For the modes to be

guided, the electromagnetic energy must be confined in the x-direction while propa-

gating in the z-direction.[16] The assumed form of the solution presupposes a forward

propagating wave. For the mode to be confined in the transverse dimension, we

require that E(x) should tend to zero as x -+ ±oo. This requirement imposes a con-

dition on the propagation constant 3 and the consequently on the refractive indices,

namely

/ < kon 2

/8 > konl (2.5)

6 > kon 3

which is only possible if n2 > nl and n2 > n3.

Use of (2.2), (2.3) and (2.4) reveals that a wave which obeys (2.5) decays expo-

nentially in regions 1 and 3 and is sinusoidal in region 2, thus satisfying the original

constraint for guided modes. Having derived the conditions for the modes to be

guided, we turn to solve for the electric field distribution in the guide. We consider

the case of a symmetric dielectric slab for which nl = n3 and n2 > nl. The symmetric

structure yields itself to a simple mathematical analysis and is a good case to study
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Figure 2-2: Symmetric Planar Waveguide

the properties of guided modes.

Since n2 > nl, it is possible for waves in region 2, or the core, to undergo total

internal reflection at the interface of regions 1/2 and 2/3 if the waves strike these

interfaces at angles larger than the critical angle, 8c. This results in an electric field

distribution which has a standing wave pattern in the x-direction while propagating in

the z-direction. Since total internal reflection is occuring at the core boundaries, the

field dies out exponentially in regions 1 and 3. Therefore, this structure can support

guided modes. This discussion seems to suggest that total internal reflection which is

responsible for wave guidance, occurs for all angles, 9, larger than the critical angle.

This would lead to a continuum of guided modes, corresponding to the uncountably

infinite values of angles, 0, that exist in the range 8c < 0 < 900. We will see, however,

that the continuity of the E and H fields imposes restrictions on which values of 0

can exist, leading to a discrete set of guided modes.

The symmetry of the structure leads us to expect symmetric and antisymmetric

solutions. For a TE distribution, hence, the solutions must be of the form [16]:

E(r) = E•,(x)e-ji3 z= B sinkx e-jS' jj 5 d (2.6)

E(r) = PS•(x)e-ij z = PAe- x-jl x > d (2.7)

E(r) = }^,(x)e-j oz = Yt AeOx - 'iz x < -d (2.8)

where A and B are the complex amplitudes of the field and are related by the bound-

ary conditions. The top and the bottom line of the brace refer to the symmetric and



antisymmetric solutions. The magnetic fields, H can be found by using Faraday's

law. We find that

H(r)

H(r)

H(r)

(7i·i(x) + ^R2 (x))
sin kx

cos kx

- cosz kx- z jk e- joz
sin kx

= (•71z(x) + 2 -/(x)) = (P0 + .ja) e-ax-joz

= (Wi,(x) + = z(z)) =
A

WAO o

(2.9)

(2.10)

(2.11)- P + ) e-3

Substitution of (2.6) in (2.2) and (2.3) leads to

/32 -2 = ko2n12  (2.12)

o2 +k 2 = ko02 n2
2  (2.13)

which is simply a restatement of the dispersion relationship applied to regions 1 and

2. The boundary conditions at the interfaces (x = dd) are that the tangential com-

ponents of E and H must be continuous. For the symmetric solutions, the continuity

of E, and Hz at x = d leads to the constraint that

Ae-'d = Bcoskd (2.14)

aAe- ' d = kB sin kd (2.15)

which simplifies to

- tan kd

For antisymmetric solutions, continuity of the tangential components of E and H

leads to

S= - cot kd. (2.17)

----~--- (2.16)

Po
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Figure 2-3: Graphical solution of (2.23) and (2.24). Construction of TM modes shown
dashed for e2/eC = 1.1. (Courtesy of [16]).

Subtracting (2.12) from (2.13), we get

k2 + a2 = ko2(n22  n 12) (2.18)

Eqs. (2.16) and (2.18) can be solved simultaneously for a and k to yield allowable

guided modes of this structure. This is illustrated best by a graphical solution. As

can be seen from fig. (2-3), a and k take on discrete values corresponding to the

discrete modes which this waveguide can support. Use of (2.12) and (2.13), enables

us to find the allowable values of P. 0 = kon 2 sin 9 and consequently 9 can only take

on discrete values, rather than the entire continuous range 0 > 0c as was asserted

earlier. For a given width, d, of the core, this structure can support one or more

guided modes, determined by the number of intersections in fig. (2-3). These modes

are represented by Em, where

E'C(x, z) = £6'(x)e- j Mz

1m, and £E(x) are the propagation constant and the transverse field distribution,

respectively, of the mth mode.



So far we have found the conditions that a, k and f must obey for guided modes

to exist. In fact, we started off by assuming guided modes, (2.6) and use of the

boundary conditions led to the constraints on a, 0 and k. These, however, are not

the only solutions that exist to the slab problem. Consider the case when 3 < kon l .

Since p = kn 2 sin 0, this translates to the situation when 0 < 0c. The angle of

incidence is less than the critical angle and the waves striking off the core boundaries

are partially transmitted into the substrate carrying power with them. Such solutions

are members of a set of solutions called the radiation modes. Radiation modes, unlike

the guided modes, form a continuous set. We will not go into an analysis of radiation

modes. The interested reader is referred to [17]. However, we refer to these modes

for the sake of completeness. We have solved for guided modes for the case of a T.E

distribution. The analysis of the T.M is very similar is, therefore, not attempted.

A very important property of the modes of a waveguide is that they form a

complete set. [17] Thus an arbitrary T.E distribution, E, in the waveguide can be

expanded as a superposition of these modes as follows:

E = Z ameC(x)e-3imz + bmgm(x)ejamz (2.19)

where the first term represents the mth mode travelling in the +z direction and the

second term corresponds to the mth mode propagating in the opposite direction. am

and bm represent the projection of the electric field distribution in the guide on the mth

forward and backward travelling eigenmode of the waveguide, respectively. Another

very important and general property of these modes is that they are orthogonal to

each other. For the planar structure this translates into [15]

Ym(x)e )dx = 2 J,m (2.20)

The factor of 2wp/1m is conveniently chosen so as to normalize the power in the mth
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Figure 2-4: Optical waveguide

mode to unity. That is,

-J ErmH*mdX= Om(' [&(X)] 2 dx = 12 _ 2wy
Orthogonality of modes can be easily demonstrated by substituting for £Em(x) and

•(xz) from (2.6). It is, however, a general property of guided modes in a lossless

medium and can be derived from power conservation and the reciprocity theorm [7].

Thus, we see that modes of a guiding structure form a complete orthonormal set of

functions allowing any distribution to be expanded as a superposition of them. This

is the crucial property of modes which will be used in deriving the coupling-of-modes

equations for distributed feedback structures in the following chapter. We now turn

to coupling of energy between adjacent waveguides.

2.2 Waveguide Couplers [18, 19]

Consider the dielectric waveguide structure shown in fig. (2-4) . This structure is in

some sense similar to the dielectric slab discussed in the previous section. It differs,

however, in that it is finite in both the x and y directions. No attempt will be

made to solve this structure analytically and the interested reader is refered to the

vast literature available on this topic [17, 20]. However, based on the analysis of the

symmetric slab of the previous section, we expect that this structure supports one or

more guided modes. Furthermore, as in the previous section, we expect the modes

IIII
X



to be mainly confined to the region of greater refractive index, n, and to die out

exponentially in the surrounding regions of lower index, no. Thus, the electric field

distribution of TE mode is of the form [15]

E = a(z)£(x, y) (2.21)

and obeys the wave equation

a(z)V)2(x, y) - (02 - W2/1p n,)a(z)E(x, y) = 0

where E(x, y) is the field distribution in the transverse dimension and a(z) is the

amplitude in the z-direction. We have assumed here that the waveguide of fig (2-4)

is single moded. This greatly simplifies the notation and for simplicity we will as-

sume that all our guides are single moded. Extension to the case of a multi-moded

guide is not too difficult. As in (2.6), the variation in the z-direction is a(z) c e- jiz

where 6 is the propagation constant along the z-direction. It is constrained by the

boundary condition on the tangential components of the field and obeys equations

similar to (2.12) and (2.13). a(z) represents the fact that we have a forward propa-

gating modes which maintains its transverse distribution, £(x, y) as it moves along

the guide. Ignoring the transverse distribution, we can write a differential equation

for a(z) [7]:
da(z)da(z) = -ja(z) (2.22)

dz

Let us now suppose that we fabricate another guide next to the first one and

separated from it by a distance, D as shown in fig. (2-5). If D is very large, the

exponential tails of the electric field distribution do not "see" the other guide and we

expect the modes will not interact with each other. In this case, the modes in the

two guides can be solved for separately are described by the following equations:

dalda' -jal Guide 1 (2.23)
dz
da2da = -j2a2 Guide 2 (2.24)
dz



Figure 2-5: Coupled Waveguides

If, however, the separation, D, is such that the transverse mode profiles of the two

guides begin to overlap, we expect the modes to interact. If this overlap is small, the

modes will couple weakly and in this case we may treat the presence of the other guide

as a perturbation to the first one. The weak coupling, then, justifies the assumption

that the transverse mode profiles in guides 1 and 2 remain essentially unchanged with

the total electric field given by [21]

E = a1(z)E 1(x, y) + a2(z)E 2(x, y) (2.25)

al(z) and a2(z) are, however, no longer described by equations (2.23) and (2.24). We

will see shortly how coupling modifies these equations.

Weak coupling implies that we may evaluate the power in the two waves disregard-

ing the coupling. Thus, using the normalization condition, we find that the power

in the mode of the coupled structure is given by a1
•12 + Ja2 

2 . For weak coupling the

system is power orthogonal (i.e there are no cross terms of the form ata2 etc. in the

power expression). [21] This is the type of coupling we will be concerned with. When

the mode overlap becomes large or the coupling is strong, the system is no longer

power orthogonal and is described by the more general non-orthogonal coupled mode

theory [18, 21] which will not be discussed.

To see how al (z) and a2(z) are modified due to weak coupling, let us conduct a

simple thought experiment. Suppose we excite a mode in one of the guides, say guide

Guide 1 Guide 2

Z

y

G



1, at z = 0 but not in guide 2 (i.e a2(0) = 0). The exponential tails of the electric

field distribution in guide 1 extends across guide 2. They act as a source of excitation

for guide 2 and are capable of transferring power to it, provided the propagation

constants 01 and 12 of the two guides do not differ by too much. If 01 »> 2 (or

vice versa), the field in guide 1 will not be able to effectively transfer power and thus

excite a mode in guide 2. The situation is akin to driving a RLC circuit far away

from its resonance. Effective power transfer cannot be accomplished in this case. On

the other hand, if 1 1 = 12, we expect energy to be transferred from guide 1 to guide

2 as the modes propagate along the guides as a result of the exponentially decaying

field coupling power from one guide to the other. Once a mode has been excited in

guide 2, the roles of the two waveguides are reversed and the excitation in guide 2

couples back to guide 1. We, therefore, expect that as the modes propagate, along

z, there will be a "sloshing" of power between guides 1 and 2. As stated earlier the

transverse mode profiles are assumed to be unaffected in this weak coupling regime

and we concern ourselves with al and a2. Since al is affected by a2 and vice versa,

we postulate that the new equations describing the wave amplitudes are [7]:

dal
S- -jal- jp12a2 (2.26)

dz
da2 da2  - ja2 212  (2.27)
dz

where P12 and 121 are the coupling coefficients describing how al and a2 affect each

other.

Although, we have modified the equations in a rather adhoc fashion, we will see

that these new equations correctly describe the behavior of the system expected from

the previous arguments. More formally, it can be shown that the coupled mode

equations can be derived from a variational principle for the propagation constant

which assumes that the electric field distribution for the composite structure is given

by a linear superposition of the uncoupled modes as in (2.25) [21]. For the power

to be conserved as the modes propagate along the guides, a constraint is imposed

on p112 and p21 SO that they are not independent of each other. Since the modes are



propagating in the same direction, conservation of power requires

(a, +I ja2 12) = 0

j (*12 - /121) al a + j (.1 - /A12) a0a 2 = 0

Since the phases of al and a2 are arbitrary, the above equation is satisfied if

/12 = /21 A /

Using the above relations, we can rewrite the coupled-mode equations as

dal R n -
- i± jrh

da2 = j/ 2a2 - j/pa

(2.28)

(2.29)

(2.30)

(2.31)

(2.32)

For an assumed dependence of exp(-jpz), we find that the determinantal equation

is

- (01 - )) (02 -_)+ 11 2 = 0

which has the solution

0 1 + /2
2 2 2+ | 12

If we assume that the mode profiles at z = 0 are a1 (0) and a2(0) = 0, we find that

al(z) and a2 (z) are given by

al(z)

a2 (z)

= [a (0) (cos #o~ +3 22-0 sinoz e-j [(01+02)/2]z

-= -joa (O)sin ioz e-j [(#1+l2)/2]z

(2.33)

(2.34)

where

I I 2I

=0 2 )+I12



If /1 > /2 or /2 > /•, so that I/1 - 121 > |I1, we find that /3o ; (01 - 02)/2.

Substituting this in the above expression and bearing in mind that I/0• >» p, we get

al(z) _ al(0)e - i fz (2.35)

az(z) 2 0 (2.36)

Thus, as expected from the qualitative reasoning if 81 is very different from /2, we are

unable to excite a mode in guide 2 and the mode in guide 1 propagates undisturbed

with its characteristic constant, /I along the guide as though guide 2 were absent.

However, if /1 =2 so that /, - j/pl, we find that

al (z) = [a (0) cos .oz] e-3[(01+2)/2)z (2.37)

a2(Z) 1•--!al(0) sin 1oz e- 1[(J3+02)/2]z (2.38)

The above expressions clearly show that the power oscillates between the two guides

as we had expected. Moreover, for f1 = 02, complete power transfer is possible

between the two guides with the transfer length, It = =r/(2p). If /1 not equal to 32,

the transfer of power between the guides is incomplete and the maximum fraction of

power transferred. F, given by

F=( a2 (2.39)Jla, 2 + a2=) 2 1 +2

The coupled-mode equations, therefore, correctly describe the behavior of the

system we had speculated based on physical arguments. This does not, however,

constitute a proof of the coupled-mode equation and readers who would like a more

rigorous development are referred to ref. [21].

2.2.1 Coupling Coefficient, IL

Thus far, we have assumed that the coupling coefficient, p, is a known quantity.

We will see now that p can be calculated using a physically appealing argument [7].



Recall that the field in the coupled structure is given by

E = a, (z)1(x, y) + a2(z)62(X, y)

The rate of change of power per unit length along guide 2 can be found easily by

using the coupled mode equations. It is given by

d 12 da + ada2

dz dz dz
= ja*a2 - jp*ala2 (2.40)

We know that this power is supplied to guide 2 by the polarization current produced

in this guide due to that part of the field of mode 1 which overlaps with guide 2.

Mode 1 finds a perturbation el - E2 and drives a polarization current jwP12 through

it, given by [18]

jwP 12 = jw (E1 - E2) a1 1 (x, y) (2.41)

The power fed into mode 2 per unit length is given by

S[ Ey. (jwP12)da + cc

which simplifies to

-4 [a ajal*62  (el - e2) da + c

Comparing the above expression with (2.40), we find that the coupling coefficient is

given by

S= w AE ' (x, y) E 2(x, Y)da (2.42)

where A~ E - E2 and the integration is performed over the cross section of guide 2.

We have reviewed waveguides and the coupling between them. In the following

chapter we treat distributed feedback structures freely employing the results derived

in this chapter.



Chapter 3

Distributed Feedback Gain

Gratings

In the previous chapter we saw that a dielectric waveguide can support TE and TM

guided modes. These modes are orthogonal to each other and if excited in an ideal

waveguide without imperfections, propagate along the guide undisturbed with their

characteristic group velocities and propagation constants, 0m, without interacting

with one another. However, practical waveguides are not without imperfections.

The imperfections can be in the form of index inhomogeneities, rough surfaces, non-

uniform widths of the guide, etc. These imperfections can result in the guided modes

of a waveguide interacting and exchanging power with each other [17]. Thus, it is

possible for energy from one mode of the guide to couple to another mode propagating

in the same guide. In many cases this is not desirable. For example, if guided

modes couple power to the continuum radiation modes, it results in waveguide losses.

However, coupling between modes is not always an undesired effect. In fact, in some

structures perturbations are intentionally introduced in the guide so as to couple

modes. One class of such devices are the distributed feedback (DFB) structures.

DFB structures are produced by periodic perturbations in the complex refractive

index [22] along the length of the guiding structure as shown in fig. (3-1). If the

periodic variations are purely real, we have a passive index grating. Passive index

gratings are used as mirrors and if side-coupled to another waveguide, behave as a
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Figure 3-1: Gain grating

filters [10, 23]. A passive index grating can perform useful filtering functions [24]. If,

however, the perturbation is purely imaginary, or in other words, we have periodic

gain/loss variations along the guide, the resulting structure is a gain grating belonging

to the larger class of GDFB structures. Gain gratings, although harder to fabricate,

have certain distinct advantages over passive gratings for use as filters. As we will see,

distributed feedback structures (index and gain) couple power between the forward

and backward travelling waves of the same mode, when appropriately designed. The

equations describing the behavior of the optical modes in the DFB grating will be

derived using perturbation theory. We will focus on gain gratings, which are produced

by periodic variations of the gain along the guide. Gain gratings have the essential

ingredients for lasing, namely feedback and gain. The oscillation condition will be

derived and the behavior of the gain grating will be thoroughly explored. The chapter

will end by deriving an equivalent ciruit for a gain grating, which as we will see is a

very convenient way of understanding these structures.

3.1 Coupled Mode Equations [15]

Consider the guiding structure shown in fig. (3-1). It is similar to the planar di-

electric waveguide of the previous chapter. However, unlike the previous waveguide,

this structure has gain and loss variations along its length which are represented

schematically by the sinosoidal variations on the top surface of the guide. If the gain

variations are small, we may use perturbation theory to analyse this structure. Before



Ei

Er = IEi

Et = T E,

Figure 3-2: Reflection from a gain boundary

we proceed with this approach, however, let us gain some insight into this structure

by considering what happens to an optical wave at the boundary of two media with

different gains. Fig. (3-2) shows a normally incident wave at a boundary between two

media with dielectric constants E1 and E2 respectively. Continuity of the tangential

fields yields the familiar expression for the reflectivity, F:

r = - (3.1)

Let us assume that the real part of the dielectric constant for the two media is the

same , i.e RR{e} = 6{e•} = e' and is much larger than the imaginary part. The

imaginary parts of the dielectric constants for the two regions are unequal which

corresponds to these regions having different gain. Q{e(1} = E'l and !Ž{E2} -E'2 . In

this case, we have that

- j 4 (3.2)

Thus, we see that the wave is reflected when it encounters a boundary between media

which have different gain. Returning to the gain grating, we recall that an ideal

gain grating alternates region of gain and loss along the guide with no dc. gain

value as shown schematically in fig. (3-1). From the previous discussion, we expect

the optical waves to be reflected at each of the gain/loss boundary. If the waves

have the appropriate wavelength, the reflected waves could add in phase leading to

a wavelength dependent resonant behavior. Based on this simplistic approach, we



expect a coupling between the forwards and backward propagating waves in a gain

grating. To quantify this coupling between the counter-propagating waves of the

optical mode, we resort to perturbation theory. The approach used to derive the

coupled-mode equations is similar to that of ref. [25]

The electric field in the gain grating obeys the wave equation

2E 2ptot(33)
V2E = IPoEo •t2 + Lo &t2

It is convenient to separate the total polarization density, Ptot, into two parts, namely

the polarization of the unperturbed waveguide corresponding to the dashed lines and

the polarization produced due to the perturbation, Ppert. Thus,

Ptot = Po + Ppert (3.4)

where

Po = EoxeE(r, t) = [E(r) - co]E(r, t) (3.5)

and E(r) is the dielectric constant of the unperturbed waveguide.

As stated in the previous chapter, the modes of the unperturbed waveguide form a

complete orthonormal set allowing any distribution to be expanded as a superposition

of them. The orthonormal set consists of all the guided modes, TE and TM and

the continuum of radiation modes. However, we will assume that the electric field

distribution in the perturbed structure has no projection on the radiation modes. For

well designed systems this is a valid assumption since we are dealing with guided

modes which do not lose power to radiation modes, but couple only to other discrete

modes. To be specific, we treat the case of a TE distribution. Extension to an

arbitrary guided distribution is straightforward but unnecessarily complicates the

notation and thus will not be attempted.

According to the previous discussion, we can write the electric field Ey in the



perturbed structure as a superposition of the modes of the unperturbed guide, i.e [25]

E,(r, t) = 21 A'm(z)~m(x)eji(dw-mz) + B'm(z)Eym(x)e(2w+#'mz) + c.c (3.6)

where as in (2.19) the first term represents the mth mode travelling in the + z direction

and the second term represents same mode travelling in the - z direction. Notice,

however, unlike in eq. (2.19), the weighting coefficients A'm and B'm are functions of

z. This is because the perturbation itself is a function of z and thus requires that the

coefficients, which represent the projection of the field in the perturbed structure on

the unperturbed modes, to be z-dependent as well. Recall that Ym(x)e3('wt±mz) are

solutions of the unperturbed waveguide and hence obey the following equation:

9t2 - m2 '(x) = -w 2joE(r)En(x) (3.7)

where we have used the fact that • = 0 for the planar waveguide. Using (3.4) and

(3.5), we can rewrite (3.3) as

82E 82ppert
V2 E - pOEO 2 2 = p

Substituting the expression for the electric field distribution, (3.6), in the above

equation, we find

ei( { m Am( mm 2 + W2,e(r))E&m(x)e-jimz

+ Enm (i-- #m + uW2 poE(r))E"m(X)e - j mz

+ Em I(-2 - 2j/m A' , )Sym(x)e-ijmz

E+ m (( 8 B'2 + 2jrm )Eym(x)ei0mzJ

o at2 [P pertJ1  (3.8)

The above equation can be simplified considerably by realizing that the first two

summations are zero according to (3.7). Thus far no approximations have been made.

The above equations are exact provided we assume that the modes of the unperturbed



guide form a complete set. We now make our first approximation. Since the pertur-

bation is small, we assume that A'm and B'm are slowly varying functions of z. This

is a sensible assumption since in the limit that the perturbation tends to zero, A'm

and B'm become constants as in (2.19). Using this "slow" varying approximation, we

conclude that [15]
1z_2 I<<lb OA'm

and
a2B'm OB'm

z2 I < Om z I

Taking this into account, we can rewrite (3.8) as

e3t ~-~-jm e-ja-z - OaB'm emz m (x) + c.c = Po,, [Ppert] (3.9)

To eliminate the summation and so as to be able to deal with a specific mode, we

use the fact that different modes are orthogonal to each other. In this chapter we use

a slightly different normalization condition for the fields. Instead of normalizing the

power in the mode to be unity we choose the integral of the square of the E field to

be unity. This choice yields a particularly simple form for the coupling coefficient, as

we will see later.

I " &(x)&t(x)dx = 6t

as found in chapter 2. (6im is the Kronecker delta function.) Multiplying both sides

of (3.9) with £E(x) and integrating over x, we obtain

j(t-z) - + = - t [Ppert]Y ',(x)dx (3.10)
dz d~z p68Ot2

We have not yet discussed how Ppert is related to the perturbation. The perturbation

along the guide is described by a dielectric perturbation Ae(r). The total dielectric



constant Etot is given by

tot = e(r) + A c(r) (3.11)

Af may be purely real, imaginary or complex depending on whether we have a pure

index grating, a gain grating or a grating produced by a combination of index and

gain variations. Since AE is a scalar, we see that this type of structures can only

couple TE to TE and TM and TM modes [15]. It is not possible to couple TE to TM

with either a gain or a passive grating. In our case Ae is purely imaginary since we

have only gain/loss variations and thus Ae = jAe.. We know that

EtotE = EE + Ptot

where Ptot is the total polarization defined in (3.4). Using (3.4), (3.5) and (3.11) in

the above expression, we find that

Ppert = AE(r)E

Use of eq. (3.6) and the above expression yields

dA' e(wt-OP3 ) - dB'ej(wt+z) + c.c =
dz dz

-" ej t ff. AeE,(x)•ym(x) [Em A' (z)e-32mz + B'(z)e3Omz] dx (3.12)

AEg is a periodic function of z which can expanded in a Fourier series as:

Aeg(x, z) = ce.(x) a,, eA.

where

aE() = e" if lx<d

and0 >dUse of the above expression in (3.12)
and A is the wavelength of the perturbation. Use of the above expression in (3.12)



results in

dA's Z dB's kjo. k o A (x)* e-jaz 0 gp ()E.."(X)6m(x) Xdz dz 2, -oo o E(

[ianE a- A' (z)e-j( m'- • )zB'm(z)e i (#m + )z] dx

where we have divided out by the common time dependence, ej•t.The term on the

right hand side acts as a driving term for the propagating modes A', and B',. Only

the term which is phase matched to those on the left side will effectively couple to

them. Thus, if there is a term on the right hand side of the form e-i z where p3 ; ,,

it will strongly couple to the forward travelling mode, A',(z) and we can ignore the

contribution due to those terms for which 0 is not approximately equal to 3,. [15] To

be specific, let us assume that

30 t3(L WO) A

so that
27r

For this case the term on the right hand side which effectively couples power to

the forward propagating mode is the m = s and n = -1. Similarly the term which

effectively drives the backward propagating mode is the m = s and n = 1. Writing

out the equation for the modes separately, we obtain:

d a.-• [,S(x)]2dx B',e2i (# - A )z (3.13)

dz - s a[, [•()] ko ) d A',e- 2j(-i)z (3.14)

We define the following coupling coefficients

KAB = k2- a-, [Si,[(x)]2dx (3.15)

KBA = - (x)[(x)]2dx (3.16)2)3 -- 2 a



Using these definitions of coupling coefficients (3.13) and (3.14) can be rewritten as

dA',
dz

dB',

dz

= ABB'e(2j (0,-) z

= KBAA',e-2j(P,-A),

(3.17)

(3.18)

To express these equations in the conventional coupled-mode form, we define two new

quantities A(z) and B(z) which are related to A,'(z) and B,'(z) as follows

A(z)e-
•ooz

B(z)eY3 0z

= Au'(z)e-ji •. z

= B,'(z)eips z

The total z-dependence of the modes is expressed by either side of the above equations.

Substituting for A', and B', into (3.17) and (3.18) we get

dA(z) dA() -j6A(z) + rZABB(Z)
dz

dB(z) =
J -4.BA(

where

6 ~ - 'o

Expanding ,(w) around w0 we find that

d=,
dw (W - W)

V9

where we have used the fact that the group velocity, v, = . The above expansion

assumes that dispersion effects in the guide are negligible and can be ignored, that is
121 << Id1. Consequently,

W - Wo

and is the "frequency" parameter of the system. Note that the definitions of KAB
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Figure 3-3: Defining Reference Planes for Fourier Series Expansion

and rBA have Fourier coefficients, a±l. These coefficients depend on where we define

the reference plane for the series expansion. Consequently the phase of KAB and KBA

depends on our choice of the reference plane. Two obvious choice of planes are marked

in the fig. (3-3). For the choice of plane 1, from the symmetry of the waveform we

know that

al = a-1  and !{asl} = 0

For this case, then KAB and KBA are real and of opposite sign.

KAB = -KBA E K

and the coupled mode equations become

dAdA = -j6A + KB (3.19)
dz
dB

= jsB -KA (3.20)dz

Likewise if plane 2 is chosen, we have

al = -a-1 and R{a±l} = 0

In this case KAB and KBA are purely imaginary and are related by

KAB = KBA = jK



To relate K to the peak to peak material gain oscillation, Ag, in the guide, we

make use of the dispersion relation, i.e

k2 = W2 PO = W2ltO (E' + j2")

where k is the complex propagation constant and is given by

kAg

Assuming that E" < e' which is true for most achievable values of material gain, we

know that Ag < ps. Thus to lowest order we have that

O2 + j•,Ag = W2Po (E' + jE")
E = SoAg (3.21)

where, ko = wUpoo, is the free space propagation constant. For the choice of reference

plane 1, substituting the above result in eq. (3.15) we find that

K = aJt A1 g [', (x)] 2 dx (3.22)

For a first-order square wave oscillation of the gain, al = 1/1r and the coupling

coefficient K is given by

S= r (3.23)
27r

where r is the overlap integral of the power in the field over the cross section of

the grating. Although we have derived the coupled-mode equations for the planar

structure with periodic perturbations, the form of the equations is unchanged if we

have a guiding structure which confines the mode in both transverse dimensions as in

figure (2-4). The only change that occurs is in the definition of K. Instead of E~(x),

we now have Em(x, y) and the single integration in x becomes a double integration

over the cross section of the guide. [7]

Having derived the coupled mode equations for the distributed feedback struc-



tures, we turn to solve them for the case of a gain distributed feedback resonatoror

gain grating. The GDFB resonator is discussed and an equivalent circuit representing

the structure is derived.
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Figure 3-4: GDFB Resonator

3.2 GDFB Resonator [9]

Figure (3.2) shows a GDFB resonator. The equations describing the forward and

backward travelling waves A(z) and B(z) of a gain grating are:

dAdA - j6A + KB (3.24)
dz
dBdB j- B - KA (3.25)
dz

Notice that we have chosen the reference plane at the peak of the gain. As a result

K is real and positive. We will see later that this choice of the reference plane allows

us to exploit the symmetry of the problem thus simplifying calculations enormously.

The above equations can be cast in matrix form.

d A -j6 n A
dz B -L_ j6 B

For an assumed dependence of exp(jpz), we find that a non-trivial solution exists

if

det - j (j + 0 )  K = 0-K M 0)J



The determinantal equation is

62 - p2 + X2 = 0

which leads to

S= -162 + 2 (3.26)

We see that i is real for all 6 unlike for the case of the passive index grating. [7] Even

though 0 is always real, we denote the range 161 <_ IJK as the "stop-band" in analogy

with the passive index grating. The solution is

B(z) = B+e-j3z + B_eja z (3.27)

Use of equation (3.25) gives

A(z) = -(j+6) B,e - pzr + ( 6 - Bj.B ejI3z (3.28)

B+ can be related to B_ by using the fact that the reflection coefficient at z = 1/2 is

Fo, that is
B(1/2) r
A(1/2)

Using the expressions for A(z) and B(z), we get

B_- Be- 1 + ro ( )]

The above expressions when substituted in (3.27) and (3.28) result in

B+

B+
1 - r

{[1 - o ( ) e-jz - e [1+ (Io 6 p)] e

{ ". ( p6+) - To] &j1z - e'j' [(I3,6) - 0]o eiiz}I

It is convenient to define a reflection coefficient F(z) as function of the distance along

B(z)

A(z)



the grating. As we will see F(z) enables us to find the oscillation condition and the

filter characteristics of the GDFB resonator.

( B(z) e' [1- o ( e-a#z - [1 + Fo(+6)] ejIz
F (z ) = (3.29)

A(z) ejot [-P(o] eifiz - ( )- ] ei

For the case that the structure is matched at z = 1/2, i.e Fo = 0, r(z) simplifies to

-j sin 3(z - 1/2)
j, cos /(z - 1/2) + 6 sin 3(z - 1/2)

Notice, r(-1/2) = oo when 6 = 0 and I11 = = 7. F(-1/2) = B(-1/2)/A(-1/2) =

oo means that there is emission from the left end of the structure without an incident

wave. The system is, therefore, an oscillator at the threshold of oscillation. Recall

that the GDFB resonator alternates gain with loss along the guide and has no DC

gain. The fact that the structure lases without DC gain may be puzzling at first.

However, a little thought makes it clear why the oscillations occur. The answer lies

in the field distribution within the guide. For a matched structure, the amplitudes of

the counter-propagating waves at resonance (i.e 6 = 0 ) are given by

A(z) = 2jej 31/ 2 cos (z - 1/2)

B(z) = -2je j1 // 2 sin O(z - 1/2)

Recall that the total z-dependence of the waves is given by

a(z) = A(z)e-=

for the forward propagating wave and

b(z) = B(z)e"

for the backward travelling wave. We can see from above that at z = 0 (and near it)

we have two counter propagating waves of equal (and nearly equal) amplitude which



Figure 3-5: Overlay of electric field intensity distribution and gain in the guide

form a standing wave pattern. As we move away from z = 0 towards either end, the

nature of the waves changes from a pure standing wave to a pure travelling wave.

Perfect travelling waves experience no net gain as the GDFB structure alternates

gain and loss and a travelling averages the two . On the other hand, a standing wave

pattern of appropriate spatial phase whose intensity maxima coincide with regions of

gain and whose intensity minima fall under regions of loss experiences net gain. [9] As

a result, although the GDFB structure has no DC gain, it does have net gain and this

makes it possible for the structure to lase. The intensity in the actual guide at 6 = 0

is shown overlayed on the gain curve. In this figure we intentionally chose A much

larger than its actual value so that the oscillation are easily visible. In a practical

device there are hundreds of wavelengths, A, across the length of the structure. As

expected we see a standing wave near the center where the intensity maxima are

aligned with the regions of gain resulting in the optical wave experiencing net gain in

the absence of dc gain.

_ __ __
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Figure 3-6: r, needed to maintain oscillations

3.3 Tuning the Laser

We know from the previous section that the system is an oscillator if F(-1/2) = oo

or alternately 1 - 0. Using this condition and (3.29), we see that the system

lases at frequency Jo if

eifoL 0[ + f o - e[i(/2 o - o60  - Fo eCol/2 = 0

where o = I6-• + ý2 Solving for Fo, we find

Fo = cot 13l + j60 (3.31)

When the above value of Fo is presented to the right hand side of the structure by

appropriate means, the structure oscillates at the "frequency" 6S. Thus, we see that

by changing Fo we may continuously tune the laser . Tuning may be achieved in

two ways. In the first scheme the value of K is kept fixed so that ~KIj = 7r/2. In

this case, the magnitude and phase of ro needed to maintain threshold at 60 are

shown in fig. (3-6) As can be seen from the figure, using this scheme the laser can be

tuned over about 80% of the stopband with a passive (Iro| < 1) external adjustment.

Alternately, suppose that #ol = ir/2. In this case, the value of To needed to make the

structure lase at 65 is given by Fo = j using (3.31). As 16o1 is increased from zero

and 0ol is kept fixed at 7r/2, smaller and smaller values of K are needed to maintain

I
30 t

2.5

20

1.5

OS

05j . !
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Figure 3-7: Overlay of the electric field intensity distribution and the gain curve for
= 0.5

oscillation. If the gain is produced by carrier injection, the current supply to the

grating must be decreased. These finding appear to be counter intuitive at first sight.

As we move off away from the Bragg frequency, 6 = 0 (w = w,), the effectiveness of

the grating is reduced. Why is it then possible to lower the current drive (i.e r.) as

the lasing frequency, J6, changes and the grating becomes detuned. The answer lies

in the nature of the gain of a GDFB structure as explained in the previous section.

When a reflection is presented at one end of the structure, the standing wave pattern

extends over a larger length of the grating (see fig. (3-7) and compare with fig. (3-5)).

As a result, in accordance with the previous discussion, the net gain of the structure

increases allowing the frequency to shift inspite of the fact that the effectiveness

(phase matching) of the grating is decreased.

3.4 Operation below Threshold

We saw in the previous section that when ,ol = 7r/2 and a reflection coefficient of

ro = j-6 is presented to the right hand side of the grating, the system is a laser



at the threshold of oscillation, with an oscillation "frequency", 6,. In this case,

Ir(-1/2, 6)1 = oo 1 and the bandwidth of r(-1/2,6,) is zero. Imagine that the

current drive (i.e r,) is reduced so that 3ol = 7r/2 - A where A is positive and

A < 1. The laser is below threshold and the oscillation condition is no longer

satisfied exactly. r(-1/2, 3o) becomes finite. Moreover, r(-1/2, 6) also acquires a

non-zero bandwidth. The reason why the magnitude of r(-1/2, 6,) is reduced is

because the field distribution in the guide is altered. The standing waves near the

center of the grating are slightly displaced relative to the gain curve so that the

intensity maxima no longer coincide with the peak gain. The gain is reduced and F

becomes finite. The gain grating below threshold acts as a reflection filter with filter

characteristics described by r(-1/2, 6). Use of (3.29) gives

1 [A) - r ( (Jr. )] ei~ol- [i+ r,( (o+o)] eijBol

[' (- 3r+.o) I',] ejOl- [(Ko-o) - r.] eIlo'

where 3o = b2 + ,2 and ro = j . Since ,ol = - A and A < 1, a Taylor series

expansion reveals that

e30  - j +A (3.32)

e- j ' -j + A (3.33)

Substitution of the above in the expression for F, followed by some simplification

leads to
I -a ()+j (I1+ 2)r(- J,) = (3.34)

Thus, the gain of the filter is given by

r-I i 1 JOF(-, -- t r + 1 +

1Note that we have added 6 as an argument of r so as to emphasize that r varies with 6.
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Figure 3-8: Filter characteristics for (a) A = 0.01, (b) A = 0.1

Since A << 1, the second term dominates and we can ignore the contribution due to

the first term. This leads to

1+
A (3.35)

The gain is, thus, inversely proportional to A and approaches infinity in the limit

that A -* 0, as expected.

The bandwidth of the filter, (A6), is defined as

(A6) = 2(6hp - 6o)

where 6hp is the half power "frequency" and obeys the following equation

1
2 6hp
2'

1
2 ) 2 (3.36)

To calculate the bandwidth, we thus evaluate 6h, using the above equation. In the fol-

lowing analysis, we assume a sufficiently narrow-band filter such that ,6hp = + K2

^^% '

ro -21 ,10



is approximately equal to 0o so that

7r
2

Use of eqs.(3.29), (3.32) and (3.33) leads to

2 (hp-0o )+j(1+ h

Substituting for 6 hp in the above equation and retaining terms to first order , we find

that

(A6) = 2KA 1 + .2  (3.37)

This expression yields the correct answer in the limit that A approaches zero. The

gain and the bandwidth of a matched resonator (6o = 0) tuned slightly below thresh-

old such that Kl = - A is given by

S(-) (3.38)2 A
(A) = 2A (3.39)

(3.40)

3.5 Equivalent Circuit for a GDFB Resonator

[9] Equivalent circuits are a convenient and useful way to model optical structures.

Not only do they allow circuit synthesis methods to be applied to optical networks,

but familiarity with circuits enables greater insight into the workings of the optically

devices they model. In this section we develop equivalent circuits for the symmetric

gain grating structure shown in fig. (3-9). Unlike the structure of the previous section,

this gain grating has reflection coefficients on either ends. Notice that the reflection

coefficient of the left-hand side is defined differently from that on the right-hand side.

These definitions are, however, consistent with reflection coefficients seen looking

into the ports as defined by the arrows in the figure. In order to develop equivalent
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Figure 3-9: Symmetrically loaded GDFB Resonator

circuits, it is necessary to define equivalent voltages and currents. This is done in

analogy Transmission Line Theory by defining the "voltage" [9]

V (z) = A (z) + B (z)

and the "current"

I(z) = A(z) - B(z)

Voltage and current are written under quotes since V and I actually represent the

normalized electric fields and magnetic fields respectively. However, we will drop the

quotation marks bearing in mind that they correspond to the total E and H fields in

the structure. By appropriately adding and substracting the coupled mode equations

we obtain

dVdV (
-

+ jS)I (3.41)
dz

d' = ( - j6)V (3.42)
dz

The symmetric gain grating structure can be modelled using a pi-circuit represen-

tation of the form shown in fig. (3-10) where y(1) and y l) are susceptances to be

determined. This is a completely general representation for a symmetric two-port

structure [26]. The two parallel susceptances, y(1) are of equal value because the grat-

ing looks identical when viewed from either port. y(1) and y~') can be evaluated by



Figure 3-10: Pi-circuit representation of a symmetric structure

considering the symmetric and antisymmetric excitations of the grating. Equations

(3.41) and (3.42) can be decoupled by differentiating (3.41) and using (3.42) to obtain

d2V
= -02Vdz

where 02 = 62 + K2. Therefore,

V(z) = V cos 3z + I " sin Oz

For a symmetric excitation, V~ = 0 (we choose VI = Vo) and we have

1V(z) = IV cos pz

Use of (3.41) results in

It is clear from fig. 3

I(z)=j = l sin/3z

;-11(a) that for a symmetric excitation, the admittance seen

from the right hand side is

I
V z=--

= )= -j6 p1)- tan --
a 2

(3.43)

The minus sign arises as a result of the way I has been defined (see fig. (3-10)).

To evaluate ybl), one must consider the antisymmetric excitation of the grating.

(1)
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Figure 3-11: (a) Symmetric excitation, (b) Antisymmetric excitation.

In this case

V(z) = V~ sin Oz

I(z) = 1~ os

Use of fig. 3-10(b) shows that

-I = V(y(1') + 2y'l)

Thus,
I

2

Y(1) + 2y') (
a yb

K - j6

S
plcot 0
2

which can be solved for ybl) to obtain

(1) 2 - j6
Yb- 2# cot - + tan-

2 2 ]

VWe consider the case of a matched laser, (Lo = 0), that is tuned slightly below

threshold i.e Kl = s - A. Moreover, we are only concerned with the behavior of the

laser near resonance, 6 = 0. In this limit of small frequency deviations such that

(3.44)
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Figure 3-12: Equivalent circuit of a symmetrically matched GDFB resonator

6/K <« 1,/3 0 zr and

tan - ; 1 -A
2

cot- 1+
2

The above approximation when used in (3.43 ) and (3.44) results in

y'(1) ' A-I+j- (3.45)

Yb 1 -(- -) (3.46)

As can be seen from above, y(1) is a negative conductance corresponding to the gain

in the structure whereas ybl) is a positive conductance and corresponds to the loss in

the system. A symmetric excitation excites only y(1). Hence, a symmetric excitation

experiences net gain by placing the electric field maxima at the position of gain. On

the other hand, an antisymmetric excitation displaces the field distribution relative

to the gain/loss curve so that the intensity maxima fall on loss segments. As a result

the conductance accessed by it is positive. The imaginary parts of the admittances

correspond to energy storage elements and are responsible for bandwidth limiting.

Recall that the admittance of a parallel GLC circuit near resonance, i.e w = w, + Aw,

is given by

y = G + 2jAwC
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Figure 3-13: Equivalent circuit of a matched GDFB resonator

Comparing the imaginary parts, we get

1
C =

where the imaginary contribution of yb() has been ignored and we have made use of

the fact that 6 = ". The complete circuit for a symmetric GDFB resonator is shown

in the fig. (3-12).

3.5.1 Comparison of equivalent circuit and exact analysis

Figure (3-13) shows the equivalent circuit a matched GDFB resonator. The response

of the grating can easily be derived using standard transmission line theory. The

impedance seen looking into the transmission line is Y, as indicated in the figure and

is given by

+ 

= (1))

Yb + y + 1

The reflectivity, r of the grating is given by

S- Y A1- a+j)

1+Y A+ 6

1
(3.48)
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Figure 3-14: Comparison
line) for A = 0.1

of equivalent circuit (solid line) and exact response (dotted

As is obvious from eq. (3.48) the peak gain occurs at 6 = 0 and is

1

The half frequency points Jhp occur at

6 hp=

K

(AJ) = 2tA

as found before, eqs. (3.38) and (3.39). Moreover the transmitivity, T, of the grating

is given by

T = +F=l+ A+ -

a+=1 (3.49)

We see that to lowest order the transmittivity is equal to the reflectivity P. Figure

(3-14) compares the response of the grating computed using the exact analysis and

the equivalent circuit. The fit is very good. For the case of the single GDFB resonator



the advantage gained from using an equivalent circuit is not obvious. However, as we

will see in the following chapters, equivalent circuits are very powerful and useful in

analyzing more complicated structures where the mathematics becomes complicated.

For these cases equivalent circuits provide a very simple and intuitive approach to

solving these problems.



Chapter 4

Two Coupled Resonators

In the previous chapter we reviewed, in detail, the behavior of a single GDFB res-

onator. We saw that a GDFB resonator below threshold acts as a reflection filter.

This filter is a single-pole filter with a Lorentzian response. Frequencies near the reso-

nant frequency of the resonator are strongly reflected while those further away fall off

inversely with frequency, characteristic of a first-order system. In many application

it is advantageous to use higher-order systems. Two coupled resonator constitute the

simplest higher-order system and this chapter will be devoted to their study. From

the previous chapter, we saw that equivalent circuits are a convenient way of gaining

insight into GDFB structures and we will focus on deriving an equivalent circuit for

two coupled resonators. Coupled resonators are interesting because their frequency

responses may be shaped by pole manipulation and also because they form the ba-

sic component of higher-order channel dropping filters. Moreover, the study of two

coupled resonator also serves to increase our intuition about how adjacent resonators

interact. Gaining an understanding of this will prove to be essential in the study of

channel-dropping filters which are the topic of the subsequent chapters.

4.1 Two Evanescently Coupled Resonators

Figure (4-1) shows a schematic representation of two coupled resonators where i is

the parameter characterising the coupling strength. In the limit that the resonators
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Figure 4-1: Two evanescently coupled GDFB resonators.

are very far apart and do not interact with each other (i.e Mi -+ 0) the equations

describing Ai, Bi (i = 1, 2) were derived in chapter 2. However, when the resonators

are close to one another the forward travelling wave A1, in resonator 1 can couple to

and excite the forward travelling wave A2 in resonator 2 and vice-versa. Likewise, B 1

can couple to B 2 and vice-versa. This is similar to what was observed in chapter 2

when two guides were fabricated close to one another. As in that case, the equations

of the isolated systems are modified through the introduction of the coupling term.

The equations of the two coupled resonators, therefore, are:

d.41
dz -j6A 1 + nB 1 - jpA 2  (4.1)dz
dA2dA = -j6A2 + KB 2 - jMuA 1  (4.2)dz
dB1

= j6B1 - nAl + jlB 2  (4.3)dz
dB2d = j6B2 - ,A2 + jpB1 (4.4)dz

The fact that -jp -+ j/p for the backward travelling wave follows from arguments

of time reversibility [7].

We digress slightly at this point to make a few observations. First of all, notice

that there are two coupling coefficients, namely n, and p, in eqs. (4.1), (4.2), (4.3) and

(4.4). These coupling coefficients are produced by and correspond to two very different



physical mechanisms. r represents the coupling between the counter propagating

waves of the same mode in the GDFB resonator. This coupling occurs due to the

presence of the periodic gain/loss variations along the resonator and is given by eq.

(3.15). On the other hand, p represents the coupling between co-directional modes of

adjacent waveguides which are sufficiently close to one another. The forward travelling

mode of resonator 1 couples only to the forward propagating wave in resonator 2 and

vice-versa. It cannot directly couple to a backward mode of the adjacent resonator

except via the coupling between A 2 and B 2. The fact that we have the same 6

parameters in (4.1)...(4.4) means that the isolated structures are assumed to have

identical propagation constants and are, therefore, synchronous. Finally, it must

be stressed that the above equations are valid in the weak coupling limit in which

perturbation theory allows "adding on" coupling terms to the equations of the isolated

resonators.

4.1.1 Equivalent Circuit for Two Coupled Resonators

In this section, we will derive the equivalent circuit for the two coupled resonators of

fig. (4-1). The approach followed is very similar to that of the previous chapter. As

before, we begin by defining the "voltages" and "currents".

Vi = Ai + B, (4.5)

I, = Ai-B,, (4.6)

where 1' and Ii are the normalized electric and magnetic fields respectively in res-

onator i. It is obvious from fig. (4-1) that the system of two coupled resonators is

symmetric about z = 0. The reference plane defining r was deliberately chosen at the

peak of the gain so as to preserve this symmetry. A symmetric two port, as we saw

earlier, may be represented by a symmetric pi-circuit. The coupled resonator system

is a four port device. However, by forcing that the system is only excited through

resonator 2, i.e A 1(-1/2) = B 1(1/2) = 0, it is a two port device. Therefore, the equiv-

alent circuit representing the coupled resonator system, as viewed from resonator 2
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Figure 4-2: Pi-circuit representation of 2 coupled GDFB resonators.

ports, is the pi-circuit of fig. (4-2). ya2) and yb2) are the admittance seen looking

into the input ports of resonator 2 at z = ±1/2. The superscript (2) differentiates

the admittances of the two resonator case from those of the single resonator ya(1) etc,

found in chapter 2. The main simplification that a symmetric structure offers is that

it allows y 2) and y( 2) to be found by considering only the symmetric and antisym-

metric excitations of the system. Once these admittances are known the response of

the system to an arbitrary excitation may be computed quite readily.

In what follows, the equations describing 1V and I, will be written down. Using

these equations explicit expressions for II, 12 and V2 will be found in terms of V' such

that if IV were known, the other three quantities can be calculated. For the case

of symmetric and antisymmetric excitations, the expression for V1 is trivial and the

admittances y 2) and y 2) can be readily computed. The equation governing 17 and I,

are obtained by adding and subtracting eqs. (4.1)...(4.4).

dVl
d• = -(j6 +  )11 - j#2 (4.7)dz
dV2d" -jI - (j6 + K)12  (4.8)dz
dlx
d- (r - j6)VI - jpV2 (4.9)

dl 2d- = -jpV1 + (n - jp)V2  (4.10)dz



For an assumed solution of the form V = Voe j 0z, the

-jp 0 -(j6 + ) -jA.

0 jZ p -j -(j6 + r)

(r - j6) -jP -jp 0

L-j (K- j) 0 -ji

=0 (4.11)

for a non-trivial solution. The determinantal equation is

4 - 2(2 +2 6t- p2 ) 2 + 4 _ 2p262 + 2j2 62 + (,2 + Q K 2 )2 = 0 (4.12)

which is quadratic in 0 2 and can be solved to yield

0 = +{K2 + (j ± t)2}1/2. (4.13)

Let us make the following definitions

" E {K2 + (5 + P)2}1/21 (4.14)

+ 3 b - +±K2 (2 5p) 2}1/ 2. (4.15)

In the following analysis, we will be interested in the response of the system

near the lasing frequency of the individual resonator (i.e 6 = 0). Moreover, we

will assume that coupling between the resonators is weak which is consistent with

equations (4.1...4.4). Stated explicitly, it will be assumed that

62 I2 2ji <
2-<1, T2<<1 2<<1

Using the above, &a and Pb can be approximated as

Sa ~ + ( )2K (4.16)

b ((  - _( )22 (4.17)

(4.18)

det



We proceed to write down explicit equations for II, 12 and V2 in terms of 1V.

Substituting for -j1uV 2 from equation (4.9) into equation (4.10), we find that

SdI 2  [d2v- ý- = (. - j) ~ ) V V (4.19)dz dz

Differentiating equation (4.7) with respect to z and substituting for d in the above

equations, we get

dV1 dl. dlx
+ (jj + K)dI = (K - j) - [( - jK)2 + 2 V1

dz- dz dz

dz }
d =ldz -2)[(-J6)'+ pI+ (4.20)

From equation (4.7), we have

It2 = + (K + j)I1 (4.21)

and finally from equation (4.9), we have

S d= - ( - j6)v1] (4.22)

Next we turn our attention to finding V1 . In general, for an arbitrary excitation

of the two resonator system, V1 is given by

V1 = Va+ej O + V-e-~Oa + Vb+ejbz + 7-e-jbz,

where the constants Vf and Vbf are determined from the boundary conditions. Such

a calculation can be quite mathematically involved even for the simplest boundary

conditions. Instead we exploit the symmetry of the problem.



4.1.2 Symmetric Excitation

For a symmetric excitation (symmetry is defined with respect to the E fields), the

response Vi must be symmetric and we immediately recognize that V+ = Va- - Va/2

and Vb+ = Vb- = V1/2. Thus,

V1 = Va cos az + 17 cos Pbz. (4.23)

Substituting for V1 in equation (4.20) we get

[( - j6)2 + ] Va cos az + [( - j6)2 + 1 2- 21 V] cos bz}
(4.24)

(K - j6) p2 + _ 2 = -26(6 + ja + p)

and

(K - j6)2 + p2 _ O = -26(6 + ja - p)

which follows simply by substituting for 2 and • from eq. (4.14) and (4.15) in the

above expressions. Eq. (4.24) can be integrated to yield

. (6 + + j_ ) (6 - p + jn)11 = -j + Oa Va sin Paz + V' sin obz] (4.25)

Use of eq. (4.22) and the above expression gives

V2 = Va cos aZ - Vb COS bbZ (4.26)

Moreover,

12 = i + dz j6)I1I
Y dz

Consider first the term

(K + j6)I1 = -j( + 6) [ + () Vasin az + + in)sin o+bI OaO

d1= j
dz 26

but



+ J (1 - ]

+- V1 + E+1
Va sin az +

Ssin az + K

1 -L a • Vb sin ýbz

[+J-+ V bsinObz
ril K , O

In the above expression, both first and second order terms have been retained. It is

necessary to keep the second order terms at this stage to ensure the correct answer

as we will see later. Use of eqs. (4.16) and (4.17) gives

a

Ob
1 + 2

[1+2
+ 1 + 2

Kl •
(4.27)

Substituting the above results in eq. (4.21) and simplifying we get

1 K .ii 6 3 +(3
12 = 3 -S - +

(P/K) I K K

([ +j! +,( )] (1 +

K2 2

L2 ) ab 1AV sin Obz}
K2 K2

The terms in the parenthesis are correct to second order. However, there is division

by (p/K) so that the overall expression for I2 is correct only to first order.

K
2 2 K2 1 2 2 ]

62 + I2
_ 1+ (4.28)

Using this we find that

jI
.12 110aI

p+• + j - +

= j-

A 
A

-j +3

I6 6 - p

K

(3si

ru

+-1-K2

Va sin fla +

1 Va sin #az

(J2+ y. Vbsin ., z

i p + P ( 6-

where terms higher than second-order have been ignored. This simplifies to

b sin bz I}

flal

Oa
= K 1

- I1+
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Figure 4-3: Boundary conditions of resonator 1

a2 = 1 j V na z - 1 - j _ sin__ (b.29)

To relate Vb to Va, the boundary conditions of the problem have to be considered.

As was mentioned earlier and as shown in fig. (4-3), A 1(-1/2) = B 1(1/2) = 0.

Alternately, resonator 1 is matched at both ends, i.e Io = B1 (1/2) 0 .We know from

standard Transmission Line Theory that the reflection coefficient seen looking into

z = 1/2, Fo, is given by
Z, -1

ro-
Z, + 1

where Zn is the normalized impedance of the line. A match at z = 1/2 implies that

S= (1/2) =_.
11(1/2)

The matched condition is automatically met at z = -1/2 if the above equation is

satisfied. Thus, Va and 1'b are related by the equation

(1/2) cos 2 +( Va cosb
Zn - =1

11(1/2) -j =) sin a + ) sin 12]R\- / 2 1 bK ) sin 2 bV



To lowest order 0, fO b ý- n and the above expression simplifies to

cot •1 + V=1.
+ j [ =)] ( V) (4.30)

As in chapter 2, we are interested in the case when the two resonators are below

threshold and Kl = 7r/2 - A, where A < 1. A simple Taylor series expansion shows

that cot l./2 2 1 + A. Using this and eq. (4.30), we find that

-V [a+j(-)] (4.31)

With VI/V. known, y 2) may be computed.

given by

Y -I12(1/2)
a V2(1/2)

For a symmetric excitation, y(2) is

- (1- (j ) sina - [1 -j ( ( ) sinb)

(coso~2 -- o) co s 2b

Again assuming that 0,a --1Ob 1 K , we have

(1- ")
= (A- 1) 1

.6
Kj-

.jp (1 + Ir/ /Va)
K (1 - '1,/Va)

where we have used the fact that tan n1/2 = 1 - A. Use of eq. (4.31) gives

1 + V,;/Va
1 - VblVa

A-j(P/j,)

= (A 1) 1 .6 _ #u2/n 2
-•

+ + A2/ .2

_(a - 1) +- +/,K A+jV"
(4.32)



The above expression can be written in a form that is more revealing:

y(2) = y( + , (4.33)
ya +1

where y(1) are the admittances of the isolated GDFB resonators found in chapter 2.

We shall interpret this result later.

4.1.3 Antisymmetric Excitation

To calculate y2 an analysis similar to the one presented must be performed for an

antisymmetric excitation of the system. For an antisymmetric excitation, the response

V1 must be also be antisymmetric =-

VI = Va sin faz + VI, sin /bZ (4.34)

Use of eqs. (4.20), (4.14) and (4.15) gives

j II (  ,+ + jK' ) V, COS 3aZ + -P+J' COS Ob(4.35)Oa Ob
Substituting into eq. (4.22), we get that

/V2 = V sin Oaz - Vb sin obz. (4.36)

Finally,

I2 = +dz (j + r)Ii

but

(j6+K)Ii = r 1+ ) j(1 ) Vacos az

+ [1 _j (( ) Vb COSs aZ.



Retaining both the first and second order terms and using eq.

expression can be simplified to yield

(r + j6)Ii -- + Va cos paZ

+ 1 + Lj + - Vb cos bz

The above result when substituted into eq. (4.21), gives

12 = 0{[-1+j
K ) I

Va cos Iaz +

where use of eqs. (4.28) and (4.34) was made. From the matched boundary relation

we have that

Z V= (1/2) = 1
11(1/2)

sin 0,, + 1 sin Ob

j ( + ) cos + ( ) cos Ob6~• )co -
= 1.

To lowest order a - b - K. Moreover, Kl = 7r/2 - A = tan rl/2 2- 1 - A.

Incorporating these approximations, into the above equation we find that

- [2 -A - () (4.38)

For an antisymmetric excitation, we know that

-12(1/2)
V2(l/2)
//a {[1 - j (6+)] cos 3al/2- [1 - j () cos ,b1/2}

sin l,1/2 - i sin obl/2

1 + Vb,/ Va1
1n -- Vb / 1a

1 - j( Vb cos Obz (4.37)

(2) + 2y(2)as + 2yb

(4.27) the above

O a

cot K 1 - j-
2 K



(2) (1)
Yb = Yb

+1

Figure 4-4: Equivalent circuit of two evanescently coupled resonators

Substituting for (2) and solving for y 2), we get

y -A- 2)2 ( 1 (4.39)
b 2 (A +j')

to lowest order.

Recapitulating,

(2) jS + P2/ 2 _ Y(1)  P2/ 2

y2) ( - 1) a (+ _ y i) , (4.40)
a + -)y± + 1

y = (4.41)

We see that the equivalent circuit for the coupled resonators, (fig. (4-4)), looks

very similar to that of the isolated resonator except for the additional admittance

( ) in parallel with y(1). The circuit of fig. (4-4) can be redrawn to explicitly
show the coupling between the equivalent circuits of the individual resonators (see

fig. (4-5)). The coupling between the resonators is represented by the transformer

coils with the turns ratio of nl/n2. The coupling is mediated by a quarter-wave

section which is necessary to invert the admittance of resonator 1 appearing across

the paralled branches of resonator 2. Note that y 2) = ), implying that the series

admittance, yel) of resonator 1 is not "sensed" at resonator 2. Recall that only

a antisymmetric excitation accesses series admittances. The fact that Ybl) is not

"felt" across resonator 2 suggests that an antisymmetric excitation does not couple



-1
10

F

Figure 4-5: Equivalent circuit of the 2 coupled GDFB resonators drawn to explicitly
show the equivalent circuit of the individual resonators and the coupling between
them.

to resonator 1. This is indeed the case and is clearly seen if we look at eq. (4.38).

For an antisymmetric excitation, to lowest order

Substituting this into the expression for 14, eq. (4.34) and realizing that 0a -_ Ib -1 r,

we see that

V1 = IV sin Kz + 14 sin Kz = 0

for a non-zero 12 . Thus, to lowest order the antisymmetric excitation does not couple

from resonator 2 to resonator 1. To determine the turns ratio, we calculate the total

admittance seen across the parallel branches of resonator 2 and equate it to y(2).

Transforming the total parallel admittance of resonator 1 across the quarter-wave

section and using the transformer relation, we find that

y)) + W 1)

nl2
nl2



yn m (2)
a

Figure 4-6: Equivalent circuit of the 2 coupled GDFB resonators viewed from res-
onator 2 ports.

With the coupling ratio determined, the equivalent circuit is complete. Moreover, it

makes good physical sense. The two conductances of unity value model the matched

ends of resonator 1. As expected from physical reasoning the coupling between the

two resonators (modelled by the transformer coils) is related to the strength of the

coupling parameter, p. However, the equivalent circuit analysis reveals that p/K

and not p is the relevant parameter. The quarter-wave section leading up to the

transformer coils represents the inherent time delay involved in the coupling of the

excitation from resonator 2 to resonator 1. Finally, the fact that the antisymmetric

excitation does not couple to resonator 1 explains why y 2 ) y(l)

4.2 Comparison of the equivalent circuit with the

exact analysis

The equivalent circuit allows us to calculate analytical expressions for the transmitted

signal (A 2(1/2)), the reflected signal (B 2 (-1/2)) and the cross-coupled signal (A 1(1/2))

using standard Transmission Line Theory. These can then be compared with the exact

solutions obtained by numerically solving the full-blown coupled mode equations.

In this section we assume that A 2(1/2) = 1. Consider fig. (4-6) which shows the

equivalent circuit viewed from the ports of resonator 2. y, is the admittance seen

looking into the input port of resonator 2 and is given by

"V
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Figure 4-7: Tc represents the signal coupled from resonator 2 to resonator 1.

()62) (1 + y(2)
(2 + Yy2 ( +Yn = Ya + (2) (2)

+ y + Yb

(2) 1 Y2)Sy(2) ++ -
2 + y)

F, the reflection coefficient of resonator 2 as indicated in the figure is given by

B 2 (-1/2) 1 - yn
A2(-1/2) 1 + yn
1 - 2y 2 ) -(y2)) 2

a 2(4 .4 2 )
3 + 4y + (a2) (4.4)

The transmission coefficient T is given by

(2)
T b (1 + + (1 + r)

Now

1 + ya(l)

(2) (1) yK2  (1

1 + Ya

Tc

9 I / 4



(2) Vt
Za +

Figure 4-8: Calculating the power coupled to resonator 1.

S1-2A-2j--2 2 2

where terms higher than first order have been neglected. Substituting the above

expressions into eq. (4.42), we get

r = 2 (4.43)
(A + jý)2 +

Moreover,
1 (A + j )T ) (1 + F) = ( j= F. (4.44)

Notice that to this order T = F and the response of the resonator is symmetric.

To find the power coupled to resonator 1, we need to compute the power leaking

into the waveguide connected to the resonator 1. In the equivalent circuit, this is

indicated by the arrow labelled Tc (fig. (4-7)). Alternately it is the power dissipated

in the l• - 1 hanging off of resonator 1 in fig. (4-5). In the collapsed equivalent

circuit as viewed from resonator 2, this power also corresponds to that dissipated in

the K2/p2 resistor shown in fig. (4-8). The circuit of fig. (4-8) is the same as that

shown in fig. (4-6) but is drawn in terms of the impedances (z(') = 1/y(1)) with each

component of z 2) = 1/y(2 ) drawn explicitly.

Pc = 1{VC I}1



but

(2) 1
v = Yb V ( 1 + F) = T

2) 2) +1 2+ y(2) F)

Vt T
=(1+ ye') 1 +y

Ic =-iVK2

PC= 2 | 1V2 2  T 2  (4.45)P 1 { 2 =K2 I1 + Ya) 2

where T is given by eq. (4.44). Let us define a new quantity Tc denoting the magnitude

of the signal coupled to resonator 1.

TC =P = - K 2 (4.46)

The expressions derived above are used to compare the response of the two res-

onator system with the exact solutions of the coupled mode equations calculated

using a computer. The responses are shown in figures (4-9) and (4-10). Figure (4-9)

makes a comparison between the two analyses using parameters for which the ap-

proximations made in deriving the equivalent circuit are strictly met. Notice that the

equivalent circuit (solid line) provides an excellent fit to the exact analysis (dotted

line). Fig. (4-10) uses A = 0.1 and p1/K = 0.1 which are not strictly much less than

1. Even for this case the agreement between the equivalent circuit analysis and the

exact analysis is very good.
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Figure 4-9: Responses computed from equivalent circuit (solid line) and coupled
mode analysis (dotted line): (a)Transmitted signal amplitude, T, in resonator 2; (b)
Reflected signal amplitude, F, in resonator 2; (c) Signal coupled to resonator 1, T,;
/Ll/ = 0.02, A = 0.01
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Chapter 5

First-order Channel Dropping

Filter

When a GDFB resonator is evanescently coupled to another waveguide, (signal bus),

the combined system forms a channel dropping filter [9]. Signal frequencies that are

near the lasing frequency of the GDFB resonator couple more strongly to it and are

transferred from the bus to the resonator, allowing a channel to be detected. Since the

GDFB resonator is active and can couple waves back onto the bus, the spectrum of

the signal transmitted on the bus may be only slightly disturbed. This is a desirable

feature as it allows multiple detections of the same channel.

In this chapter, we will study a single GDFB resonator evanescently coupled to a

signal guide (fig. (5-1)). This systems as we will see is a first-order channel dropping

filter with a characteristic Lorentzian response. Although the system of equations

describing the first-order CDF will be given for the sake of completeness it will not be

solved explicitly. Instead, the intuition gained from the previous chapter will allow

the equivalent circuit of the CDF to be assembled without a mathematical derivation

and this will be used to solve the structure.

The equations describing the first-order CDF are:

dAl A = -j6A 1 + nB 1 - jpA 2  (5.1)
dz



reference plane

AI • - B ( )

<I

zV-l/2 z=l2

Figure 5-1: GDFB Resonator side-coupled to a Signal Bus - 1st-order CDF

dB 1 = -KA 1 + j6B 1 + jpB2  (5.2)dz
dA2

= -jsA2 - jpAB (5.3)dz
= j6B2+ jpBj (5.4)

dz

Before we proceed with assembling the equivalent circuit, let us see if the response

of the CDF can be physically reasoned based on our knowledge of the behavior of

the isolated GDFB resonator and the coupling between synchronous guides (chap.

2). In chapter 2 it was seen that a single matched resonator tuned slightly below

threshold (i.e .cl = 7r/2 - A) when excited from one port had an approximately

Lorentzian lineshape with a bandwidth of 2,A and a gain of 1/A. Moreover, it is

possible to couple power between guides that are fabricated close to one another.

This means that in the structure shown in fig. (5-1), it should be possible to excite

the resonator via the evanescent fields of the mode in the bus. In the absence of the

periodic gain variations in the resonator guide, the broad-band coupling between the

synchronous waveguides (i.e the bus and the resonator guide) is frequency insensitive

and all frequencies couple equally strongly. However, the periodic gain variations give

rise to a frequency dependent mode in the resonator (Lorentzian in shape) and only

those frequencies supported in the resonator can couple from the bus to it. Thus,

frequencies near the lasing frequency (6 = 0) couple strongly and those further away

are suppressed. Based on this we expect the received signal, B1(-1/2), of the coupled
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Figure 5-2: (a) Equivalent circuit of a GDFB resonator. (b) Equivalent circuit of the
signal waveguide.

structure to be a scaled version of the response of the isolated GDFB resonator where

the scaling is related to the coupling strength, p. We expect a "notch" to be present

in the transmitted spectrum near 6 = 0 where frequencies have coupled to the GDFB

resonator. However, since the waves in the resonator also couple back into the bus

and the resonator is active, there is no obvious relationship between the received

and transmitted spectrum. In fact as we will see, the transmitted spectrum may be

completely restored allowing "transparent" detection of a channel. As a consequence

of coupling between the resonator and the bus there is also a backward propagating

signal (i.e reflected signal) on the bus. Since this coupling is the only source of the

backward propagating signal in the bus, we expect the reflected signal on the bus to

be a scaled version of the received signal. The entire physical picture here assumes

that the coupling between the bus and the resonator is sufficiently weak so that the

resonator modes are unaffected due to the presence of the bus. In this limit, it is clear

that the coupled structure does indeed behave like a channel-dropping filter, allowing

detection of a channel near the lasing frequency of the resonator.

5.1 Equivalent Circuit for First-Order CDF

To derive an equivalent circuit of the structure shown in fig. (5-1) an approach sim-

ilar to that of the previous chapter may be followed by considering the symmetric

~II
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Cr )./4

Figure 5-3: Equivalent Circuit of a first-order Channel-Dropping Filter.

and antisymmetric excitations to give the relevant admittances [11]. However, based

on our knowledge of the equivalent circuit of an isolated GDFB resonator and an

understanding, gathered from the previous chapter, of how excitations couple to res-

onators, the equivalent circuit for the first-order CDF may be inferred without any

calculations. The equivalent circuit of a single matched resonator is shown in fig.

(5-2 (a)). The equivalent circuit of the signal bus is a simple transmission line shown

in fig. (5-2 (b)). Since the coupling of waves between the bus and the resonator

is associated with an time delay, we expect a quarter-waved section to mediate the

coupling. The coupling itself is represented by transformer coils with a turns ratio

of p/t. In the previous chapter we saw that an antisymmetric excitation does not

couple to resonator 1 so that y(l) is not sensed across the other structure. This has

been emphasized by drawing the series admittance yb() in dotted lines to indicate the

fact that only symmetric excitations couple from the bus to the resonator so that

yi ) cannot be accessed from the bus. The equivalent circuit of the first-order CDF

is shown in fig. (5-3). This circuit can be collapsed into that shown in fig. (5-4) by

transforming the admittances across to the bus. Fig. (5-4) represents the equivalent

circuit of the CDF as viewed from the ports of the bus. y is the total admittance



Figure 5-4: Equivalent circuit of a first-order CDF as viewed from the bus ports

seen at the input ports of the bus and is given by

2(p2/K 2 )
y=l+ 1 + y

From transmission line theory, the reflection coefficient, r and the transmission coef-

ficient, T, of the bus are given by

1 -y -2 (5.5)
l+y (A,+ ) + j

T = 1 + = (5.6)

Note that for (p2 /C 2 ) < .A, the transmission is approximately unity, i.e T _ 1.

This means that it is possible to completely restore the transmitted spectrum as was

suggested in the beginning of the chapter.

Finally, the power coupled to the GDFB resonator, Pc, is found by calculating the

dissipation in the 1Q-1 admittance of fig. (5-3). Alternately this is also the power

dissipated in the E.1 resistance of fig. (5-5).

Pc = Rf{VcI}

where

VVc =(1)
1 + ya

y=



Figure 5-5: Calculating the power coupled to the GDFB resonator

2
Ic = ;Vc

j2 (1 + F)A 2
C K +y(1)

= (5.7)

where we have used the fact that (1 + F) = T x 1. The power coupled to the GDFB

resonator on resonance is

p2/ iK2 2Pc(6 = 0) = 22 = Pmaz
K2 4

The half power points in terms of the normalized frequency are

K K2

Thus, the bandwidth, 2(A6) of the signal coupled to the resonator is given by

2(A6) - 26hp = 2 A + . (5.8)

We see that the prediction of the response of the first-order CDF based on physical

reasoning was very accurate. The bandwidth of the response of a isolated GDFB

resonator as found in chap. 2 was 2KA. The additional term in the bandwidth of the

signal coupled to the resonator represents the increased loss in system due to coupling
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to the bus in addition to the "losses" from the matched ends of the resonator. Also,

we see that P,,m = 4- 2 as compared to the maximum power in the single isolated

resonator tuned below threshold of 1. The scaling of /i 2 /n 2 is due to the fact that

the resonator is not excited directly but rather via the coupling of the signal from the

bus to the resonator. Moreover, notice also that

i.e, the reflected signal, as argued earlier, is indeed a scaled version of the received

signal, with the scaling given by p//. This confirms that a GDFB resonator evanes-

cently coupled to a signal bus can be used to form a first order channel-dropping filter.

The signal picked up by the resonator is Lorentzian in shape as is clear from eq. (5.7).

Moreover, if the system is properly designed it is possible to have transparent and

consequently multiple detection of the same data channel, properties which offer in-

creased flexibility to a communication system designer. Figure (5-6) shows an overlay

of the exact analysis and the equivalent circuit response for filter with bandwith 1

GHz assuming a K value of 35cm - 1, smaller than that reported in the literature [27].

The equivalent circuit provides an excellent estimate of the exact response.



Chapter 6

Higher-order Channel Dropping

Filters

We saw in the previous chapter that a first-order filter has Lorentzian frequency

response. The power of the detected channel falls off approximately as the inverse

square of the normalized frequency . In some applications this roll off with

frequency may not be sufficient to meet system specifications like acceptable cross-talk

levels between adjacent WDM channels. In such an event, it is necessary to use higher-

order (or multi-pole) filters. Wheras first-order filters are necessarily Lorentzian in

shape near the resonance, higher order filters offer the flexibility of allowing the filter

characteristics to be shaped by manipulating the poles of the system. This flexibility

is the key to filter design and for many applications the advantages gained by using

the multi-pole filters may be sufficient to offset the increased complexity encountered

in higher-order systems.

This chapter will be devoted to the study of higher-order channel dropping filters.

We will begin by considering the two resonator system of chapter 3, evanescently

coupled to a signal waveguide as shown in fig. (6-1). From the intuition gained

from the previous chapter, we suspect that this system forms a second-order CDF. It

should be possible to excite the modes of the two resonator system by the evanescent

tails of the field in the bus thereby transferring power from it to the resonators. We

will see that this is indeed the case. The approach adopted to study the second-order
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Figure 6-1: Second-order Channel Dropping Filter

CDF will be to draw the equivalent circuit for the system without a mathematical

derivation. The equivalent circuit will be used to derive analytical expressions for the

responses at the various output ports. Comparisons with the exact analysis and with

the first-order channel dropping filter will be made wherever appropriate. We will

end the chapter by generalizing the scheme of assembling equivalent circuits for an

nth-order filter. Comparisons with the exact analysis will be made.

6.1 Second-order Channel Dropping Filter

The second-order channel dropping filter is shown in fig. (6-1). Instead of solving

the coupled mode equations describing this structure, we draw the equivalent circuit

for the above structure. This approach is considerably simpler and allows an analytic

handle on the higher-order filters which is essential for filter design. The equivalent

circuit of a second-order CDF is obtained by coupling the equivalent circuits of the

individual matched resonators (chap. 2) via quarter-wave segments. Recalling that

antisymmetric excitations do not couple to the resonators and that the transformer

ratio corresponding to the coupling between structure i and structure j is given by

., the equivalent circuit for the second-order CDF is as shown in fig. (6-2). In fig.

(6-2), y represents the parallel admittance of the single isolated GDFB resonator i
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Figure 6-2: Equivalent Circuit for a Second-Order CDF

tuned below threshold, i.e

The parallel 1 -1' conductances represent the matched ends of the resonator or equiv-

alently the fact that resonators are not excited directly, but only via the coupling to

the bus. Transforming the admittance of resonator 1 across on to resonator 2, the

above circuit can be collapsed to give the circuit shown in fig. (6-3). This looks similar

to the equivalent circuit of the first-order CDF except that the parallel admittance,

ya2) is that of the two resonator of chap. 3, i.e

( )2
(2) ( \K (1) - Ya2

1 + y) 1 + yal

where

Oli--
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Figure 6-3: Equivalent circuit of 2nd-order CDF

The admittance, Y seen across the transformer coils of the bus is given by

-(23) a2 (6.1)

Y+ l +1

Since the factor (y• + 1) will be encountered repeatedly, we simplify the notation
by defining the new quantity, y~, where

Yat - y( + 1 = a, + j- (6.2)

In the new notation, thus, Y is given by

Y 
2 2Ya2 + 'aYal

The reflection coefficient, F, of the bus is given by

1 - (2Y + 1) -Y
1 + (2Y + 1) 1+Y

S+ a Ya (6.3)
a1 + ayal + YalYa2
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Figure 6-4: Equivalent Circuit for a Second-Order CDF viewed from the bus ports

Notice that Yai = Ai +j' < 1 (for 6/n < 1) and is a first-order term. Also note that

2a = (pIij/r.)2 is a second order term. (a2 yal) is, thus, a third order term and can be

ignored relative to the other terms in the denominator. With this approximation, we

find that

r 2 Y (6.4)
YalYa2 + a~

A !(6.5)

The signal transmitted in the bus, T in the bus is given by

T = 1+r

a2 + yalYa2T = Y2 (6.6)
a1 + a2 Yal + YalYal

In the case that a2 Yal < YalYa2, the above equation reveals that T x 1 and the

signal in the bus passes through essentially undisturbed. At resonance, this condition

amounts to the requirement that (L)2< A 2 "

6.1.1 Power Coupled to the Resonators

Having determined the reflected and transmitted signals in the bus, we turn our

attention to finding the power coupled to resonators 1 and 2 respectively. These are



labelled by Pr1 and Pr2 respectively, and are defined as

Pri - A1(1/2) 12

Pr2 - IA2(1/2)12

In terms of the circuit elements, these correspond to the power dissipated in the

1Q-1 conductance in the equivalent circuit of resonators 1 and 2 respectively of fig.

(6-2). To calculate these power dissipations, however, we will consider the collapsed

equivalent circuit, viewed from the bus ports (fig. (6-4)). Note that

/ ( yaa2 2 / YalY'

i.e Y is a series combination of 2 and ( )2 Ya as shown in the figure above. Recall

that ya, = yl) + 1. The power coupled into resonator i is the power dissipated in the

scaled 1Q-1 component of yji in the admittances c and ~+ ). Consider

one of the branches of fig. (6-4) as shown in fig. (6-5). The components of (,)2 Ya1

have been drawn separately.

6.1.2 Power Coupled to Resonator 1

The power coupled into resonator 1, P71, is given by:

Pri = R{Vrili}

where V1, and Ir are the voltage and current indicated in the fig. (6-5). From a

voltage divider relation we have that

2

Yra =, o2 V = (1 + F) A 3  (6.7)
Ya2+ ) Yai a + t ) YalYa2
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Figure 6-5: Calculating the power coupled to resonator 1

where we have used the fact that

V = (1 + r)A3-

For a unity input on the bus (i.e A3 = 1), assuming that a22 < Ya2, so that

T = (1 + r)A 3 . 1,

we have from eq. (6.7) that

.2
Fr1 =1 -^Oa2 + a ' 2Ya la2

1 2Ya + YalYa2

a2
a2 + YalYa2

Furthermore

Ir1 = r1 2 1(6.11)

Thus,

Prl = C 1alY2
ai + YalYa2

, (6.12)

and The magnitude of the signal transmitted through resonator 1, Tr1 = IA1 (1/2)1, is

given by

Trl ia + YalYa2

(6.8)

(6.9)

(6.10)

1
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Figure 6-6: Calculating the power coupled into resonator 2.

()2 ) () (6.13)

6.1.3 Power Coupled to Resonator 2

Consider the same branch again as shown in fig. (6-6). This time we have separately

drawn each component of . The power transferred to resonator 2, Pr2 , is given by
Ya2

Pr2 = R{Vr2I72}

where 112 and Ir2 are indicated in the figure. We have that

V2 Yal (1 + F)A3
YalYa2 + 21l

Yal
S Yal (6.14)
- l + YalYa2'

where use of eqs. (6.8) and (6.9) was made. Furthermore,

Ir2 = a2 Vr2 - (6.15)
a212

i + Yal(a2Pr2 (6.16)



The magnitude of the signal transmitted through resonator 2, Tr2 = 1A2(1/2) 1, is

given by

I / =Yal I
I ?i + YalYa2l

(~)2
+ (Al +ii) (A2

(6.17)
+i)

6.1.4 Second-order Butterworth Filter

Let us consider the power coupled into resonator 1 for the special case when yal = ya2

i.e A 1 = A 2  A and moreover 4 = A. In this case,
K

use of eq. (6.18) gives that

Pr 1

( ) (A)42
4A4 +()

(6.18)

When I <« A,

pL23 2C2Pr1 2A

which is independent of the frequency 6. However, for 1 >> A,

x,

The half power points, 6hp can be found from eq. (6.18) and obey the following

equation:

(hp) 4

(A5), - 26hp = 2vnA,

II

2

(6.19)



where (A&6) is the bandwidth of the signal coupled to resonator 1. Thus, we see

that the power coupled into resonator 1 is maximally flat for low frequencies and

falls off inversely as the fourth power of the normalized frequency for large deviations

from the resonance condition. This is the characteristic response of a second order

Butterworth filter. Therefore, we see that it is possible to shape the filter response

for an appropriate choice of parameters as opposed to in a first-order CDF where the

response is necessarily Lorentzian. However, we notice that once these parameters

are chosen, we are forced to accept whatever response we get at the output port

of resonator 2. Thus, in a sense resonator 2 only serves to provide an appropriate

response at the output ports of resonator 1. For yai = Ya2 and (p12/I~) = A, the

power coupled into resonator 2 is

Pr 2  2 + 2

S4 ((6.20)4A4 + )
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Figure 6-7: Responses computed using the circuit model (solid line) and the exact
analysis (solid line). (a) Transmitted Signal, T, on the bus. (b) Reflected Signal F
on the bus. (c) Signal Coupled to resonator 2, Tr2. (d) Signal Coupled to resonator
1, T,1. P12/r = 0.015, P23/K = 0.01, Al = 0.03, A2 = 0.015.

6.1.5 Comparison between Equivalent Circuit and Exact

Coupled Mode Analysis

A comparison between the exact responses, found by numerically solving the full-

coupled mode equations of the 2nd-order CDF, and those computed using the expres-

sions found from the equivalent circuit analysis of the previous section are shown in

figures (6-7) and (6-8). Figure (6-7) shows the response using parameters for which

the approximations made in deriving the equivalent circuit are strictly valid. The

circuit model (solid line) provides an excellent fit to the exact analysis (dotted line).

| |,



Figure (6-8) shows the response of the second-order CDF for which the parameters

were chosen so that the signal tapped off resonator 1 has a Butterworth response. For

an assumed value of K = 35cm - 1, the bandwidth of the filter is about 14 GHz. For

channels spaced apart by 50 GHz, the cross-talk level is about -34 dB as compared

to -17 dB for a first-order CDF with approximately the same bandwidth and peak

power. We see that a considerable advantage in the cross-talk level is obtained in

going to a second-order filter. This may be useful in a high density WDM system.

Even though the value of the parameters used do not exactly obey the conditions

for which the circuit model is strictly valid, the fit is reasonably good and equivalent

circuits can be used to provide a first-cut design of channel-dropping filters.
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Figure 6-9: nth-order channel dropping filter

6.2 nth-order Channel Dropping Filter

An nth-order channel dropping filter can be made by side-coupling n GDFB res-

onators, with n'h resonator evanescently coupled to a signal waveguide as shown in

fig. (6-9). By sending a signal down the bus waveguide, it is possible to excite the

modes of the n-coupled resonator system, transferring power to them and achieving

filtering. The system of 2n +1 equations describing the nth-order CDF is given below.

dAldA = -j6A + 0BI - jI12A2 (6.21)
dz

dB =- -KA, + j6BI + j 112B 2  (6.22)
dz

dA2 = -j6A 2 + KB 2 - jpl 2 A 1 - jp 23 A3  (6.23)
dz
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dB 2
- j6B 2 - KA 2 + jui2 B1 -+ j1 23B 3  (6.24)dz

i (6.25)
dAn - jAn+I - jPnn+An (6.26)
dz

dBn+ = j6B,n+ + jgnn,+Bn (6.27)
dz

Even for modest values of n, it is difficult to analytically solve these equations exactly.

Thus we resort to an equivalent circuit approach for the nth-order CDF leaving the

exact solutions of the above equations for the computer. The equivalent circuit of

the nth-order channel dropping filter is simply obtained by stacking the equivalent

circuits of the isolated resonators (see fig. (3-12)). The coupling between adjacent

resonators is represented by the quarter-wave section and transformer coils where the

turns ratio of the coils in structure i to those in structure i + 1 is Aii+1 : K. Finally

the last resonator couples to the bus as shown in fig. (6-10). Alternately, the circuit

can be drawn as shown in fig. (6-11). The symmetric pi-circuit at the end of the

quarter-wave section is the equivalent circuit of the n-coupled resonators. From the

reasoning given earlier, it is clear that

(n) = (1)

y(") is found by transforming the total parallel admittances of the individual resonator,

(ya) + 1), across the A/4 sections and looking at the total parallel admittance at the

nth resonator of fig. (6-9). y " ) is given by a continued fraction of the form

2(n) (1) +n-Ia Yan 02_ _ (6.28)
(n-2

+1 +.... 1 7

2

" an -+ n-1 2 (6.29)Ya (1) an-2

Ya2+yal
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103

an -I

bius I
-- -·

-1 --------- n.

·····
······

···

1L



(n)
Yb

1R (n) (n) 1

X/4Turns Ratio - -nn+1
K

yI

Figure 6-11: Alternate form of the equivalent circuit of
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a nth-order channel dropping

where the previous expression follows from the definition, y,, () + 1. The continued

fraction is reminscent of the admittance of a LC ladder. However, the two are not

equivalent as the admittance Ya, has a resistive component and is scaled by ai. As a

result it is not immediately possible to use conventional LC tables to design higher-

order filters. All the same the signals at the output ports may be readily computed.

The admittance appearing across the coils of the bus is found simply by trans-

forming y, = (y•n) + 1) across A/4 wave section and is given by

2 ,2 a2
Y, (n = 02

2+5

(6.30)

For a unity input, the reflected signal on the bus, 1, is given by

1+Y
1 + Y),---J "--A2+yn.

(6.31)
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Finally, since it is easy to calculate the power coupled to the nth resonator, P n, (i.e

the one closest to the bus), we will derive an expression for it. P n is the power

dissipated in the 1i - 1 admittance of fig. (6-11). Alternately it the power dissipated

in the a2 admittance of fig. (6-12). From the fig. (6-12), we have that

1 1

1rn -1± ) (1 + F) 1+ An(n) (6.32)

Irn = a V2 = (6.33)

Prn = ?{V 7nVI1 n} = ( n) 2 (In+1/K) 2  (6.34)

Notice also that

analogous to the first-order CDF case. The reflected signal in the bus is due to the

back coupling from the nth resonator to the bus.

105



6.2.1 Comparison of Equivalent Circuit and Exact Analysis

The formalism discussed above was applied to the case of a 3rd-order channel drop-

ping filter. The results are shown in figure (6-13). The parameters of system were

chosen rather arbitrarily. However, the response of resonator 2 is quite interesting

and resembles a Chebyshev. Once these paramters have been selected, we have to

accept whatever response is obtained at the output ports of the other two resonators.

They only serve to provide the appropriate coupling to yield the desired response at

the output of resonator 2. The equivalent circuit once again provides a reasonable fit

to the exact analysis.

Thus far, we have only derived expressions for power coupled from the bus to the

resonators in the forwards directions, for eg. P,1, P,2 etc. We have not explicity

derived expressions for the power coupled from the signal bus to the resonators in

the backwards propagating direction. However, by looking at the equivalent circuit

it is clear that since the admittances appearing across the two coils of the bus are

symmetric, the power coupled into the i'h resonator in the backwards and forwards

direction, to first order, is identical.
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Chapter 7

Gain in Semiconductors

In the previous chapter we saw that evanescently coupled GDFB resonators excited

from side-coupled signal waveguides form channel-dropping filters. The characteristic

response of a filter of given order is determined by the choice of the device parameters,

namely the DFB coupling coefficient K, the coupling strength between structures i and

j, pij, and Ai . A, is related to the Kli product of the ith resonator and is a measure

of how close resonator i is to threshold. Some of the parameters, like the physical

dimensions of the device and the spacing between the guides are obviously fixed at

fabrication. Others like tij and K depend on the gain and can thus be controlled

by adjusting the gain pumping mechanism. jii depends weakly on gain via the

dependence of the mode profile on the gain. To lowest order this dependence may be

ignored provided the gain is not too large. n on the other hand is directly dependent

on the gain of the active region. Since the bandwidth of the filter response and the

maximum power transferred to it are sensitive to the value of K and Ai, use of GDFB

resonators as viable CDFs relies on the ability to precisely control the gain/loss in the

structure. In current injected systems, which is the type of gain pumping mechanism

we are considering, this requirement translates to an accurate control of the gain

by varying the current injected through the device. Therefore, to be able to design

GDFB CDFs and evaluate their performance, an accurate characterization of the gain

as a function of the current density and other material parameters is needed. This

chapter is devoted to the study of optical gain and how it depends on the properties
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Figure 7-1: Schematic drawing of a gain grating

of a given material and the rate of carrier injection. We will consider the simplest

case of an isotropic 3-D bulk medium. Some basic level of familiarity with electron

Bloch wavefunctions and energy bands in semiconductors will be assumed. Using

time dependent perturbation theory, the rate of transition of an electron from a

discrete state in the conduction band to one in the valence band may be determined.

Summing over all the electron states which obey energy conservation, will yield the

total downward transition rate. A similar approach allows the upward transition rate,

that is from the valence to the conduction band, to be obtained. Once these rates

are known the gain of the active region may be found as a function of the carrier

density which in turn can be related to the current density injected through the

device, allowing a relation between current and gain to be obtained.

7.1 Electrons in Semiconductors

Consider the schematic representation of a gain grating shown in fig. (7-1). The

figure shows a waveguide with the core region having gain and the cladding having

loss. The substrate has neither gain nor loss. The patterned section of the guide

provides alternate regions of gain/loss which cause DFB coupling, with the coupling

coefficient, K, given by

A g= F (7.1)27r

109



as found in chapter 2. IF is the overlap integral of the power in the field with the

grating cross section, indicated shematically as the shaded region under the mode

profile, and Ag = gcor - clad = gcore + clad. We will assume that cOclad is chosen

such that there is no net gain for a travelling wave in the guide. The gain, gcor,,

can be externally controlled via the pumping mechanism; i.e gcore is a function of the

injected current density, j, through the device. Consequently, K is a function of j

via Ag (eq. (7.1)). By changing j, K(j) can be adjusted to give the desired value of

A, = 7r/2 - rl, and thus the appropriate filter response.

Before we can relate g,, and thus n to j, we need a description of electrons in a

semiconductor. Ignoring electron-electron interactions but allowing the electrons to

interact with the periodic potential V(r) of the crystal lattice, the equation describing

the electronic wavefunction, Tnk, in a semiconductor is [28]

Ho =nk = + 17(r) nk = En(k) nk (7.2)

where Ho is the Hamiltonian describing the lattice. n and k are the band index and

the crytal momentum or electron wavevector respectively. En(k) is the energy of an

electron in the nth band with the wavevector k. The interaction of the electron with

the periodic lattice leads to a specific form of the Bloch wavefunction given by

''k (r) = eik.r n (k, r) (7.3)

where un (k, r) is a periodic function with the periodicity of the lattice [28]. Accurately

determining the Bloch functions and the energy band structures is an entire field in

itself. We will assume presently that the Bloch functions are known. However, we

will see later that they are not really needed; only the band structure is required.

Moreover, we will not be concerned with the entire band structure of the solid but

only be interested in the conduction and valence band Ee(k) and Eh(k) respectively.
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Figure 7-2: Schematic representation of the band structure of a direct gap semicon-
ductor.

It will be assumed that these bands are parabolic, i.e

Ee(k) = Ec+ e (7.4)
2me
h2k2

Eh(k) = E, h- k (7.5)
2rn,

where m, and m, are the effective masses of the two bands and ke and kh are

the magnitudes of the wavevectors of the electrons and the holes. The parabolic

approximation is really a simplification. Away from the band edge this approximation

is no longer valid. We have also assumed a lightly doped material so that there are

no band-tail states [29] and the parabolic approximations is valid near the band

edges. The energy versus wave-vector of a direct band gap semiconductor is shown

schematically in fig. (7-2). Notice that there are three valence bands; the light-hole,

heavy hole and the split off band which are twofold degenerate at k = 0. Eq. (7.5)

applies to each of these bands each with its respective E, and m, value.

Often we are interested in describing localized electron states in a given band, no.

This may be done by using a linear superposition of the wavefunctions ,,nok as follows
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[28, 30]

S= JA(k) Tk (r)d3k

= A(k)e'k.ru(k, r)d3k (7.6)

where A(k) are the expansion coefficients of the linear superposition. Since we are

concerned with electrons in a specific band, the subscript no has been dropped. The

subscripts will be re-introduced as needed. u(k, r) is a slowly varying function of k

and near the band edge may be approximated by its value at k = 0, i.e u(k, r) Z

u(k = 0, r) = u(r) [31, 30]. Hence,

= [f A(k)eik.rdk] u(r) F(r)u(r) (7.7)

The above description is called the envelope approximation where F(r) is the envelope

function [31, 28]. Since the electron wavepacket is strongly localized in reciprocal

space, F(r) is a slowly varying function of position and does not change much across

a single unit lattice cell [30, 31]. According to convention, the two components of

S(r) are independently normalized according to the following definition.

(FIF) = vF*F d3r = (7.8)

(ulu) = u*udr= 1, (7.9)

where V is the volume of the entire crystal and V,e is the volume of a single unit

(or primitive ) cell of the crystal. The eigen vectors of a Hermitian operator may be

chosen to be orthonormal and therefore the periodic part of the conduction band and

valence band Bloch functions, uc and u,, are orthogonal i.e

(ucIu,) = 0 (7.10)

For electrons in a bulk medium, the envelope function F(r) takes a very simple
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form, [31]

F(r) ekr. (7.11)F(r) = ik.r

In more complicated structures, like quantum wells etc., however, F(r) is obtained

by using the effective mass theorm [31, 28, 30]. In this chapter we will be concerned

with the simplest system i.e a 3D isotropic bulk medium.

7.2 Interaction of Photons and Electrons

Photons can interact with electrons in a solid causing transitions to occur between

electrons in the conduction and valence band. Such transitions may lead to a growth

or decay of photons in the optical mode. For example, a photon with energy greater

than the bandgap energy, E9 , may be absorbed by an electron in the valence band

causing it to make an upward transition to an unoccupied state in the conduction

band. Such a process causes a depletion of photons in the optical mode, a mechanism

leading to loss. On the other hand, a photon may excite a transition of an electron

from an occupied state in the conduction band to an unoccupied electron state (or

a hole) in the valence band resulting in a stimulated emission of a photon. The

recombination of the hole and electron produces a photon and contributes to gain.

In order to understand optical gain, we need to closely examine the electron-photon

interaction.

Classically, the photon can be represented by an electromagnetic field. In the

presence of an electric field, the Hamiltonian is modified through the introduction of

the vector potential, A [32] i.e

p -+ (p + eA) (7.12)

The vector potential is related to the electric field by the equation E = -A and is

given by

A = [A(r)e-i + A*(r)ei] (7.13)

where 6 is the polarization vector. The Hamiltonian in the presence of a electromag-
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netic field is, therefore,

1
H - (p + eA)2 + V(r)

2mo

~-t + V(r) + eA.p - Hg + H'(r, t). (7.14)
2mo mO

m. is the free-space mass of the electron. Notice that the A2 term has been dropped.

The final result is, however, not affected by this approximation provided A(r) varies

slowly over a unit cell [31]. Equation (7.14) has been written so as to separate the

"unperturbed" Hamiltonian Ho, (eq. (7.2)), whose eigen-functions are the Bloch

states, from the "perturbation", H' produced due to the field associated with A.

Written explicitly,

H'(r, t) = H'(r)e- iwt + H'*(r)eiwt  (7.15)

where
eA(r)

H'(r) .p (7.16)

The effect of this time dependent perturbation as stated before is to cause transi-

tions to occur between the valence and conduction band electron states. Using time

dependent perturbation theory, it is straightforward to calculate the transition rate,

l11e.h, of an electron undergoing a transition from a conduction band state T, with

energy Ee, to a valence band state Wh, with energy Eh [32]. It is given by

We-+ h = IH hI2(Ee - Eh - th) (7.17)

where

h -= ('h H'(r)[Te)= /f ý H'(r)P dr (7.18)

Equation (7.17) is known as Fermi's Golden Rule. IHh 12 is the transition matrix

element and represents the probability of the transition. The Dirac delta function

ensures the fact that the energy, (Ee- Eh), of the photon emitted due to the transition

of the electron from an energy level E, to Eh, is the same as the energy, hw, of the

photon which stimulated the transition. For upwards transitions the delta function

114



ensures that the energy absorbed by the electron, uhw, must be equal to the difference

in energies between the final and initial states of the electron, thereby enforcing energy

conservation. The transition matrix element may be simplified by substituting for the

T"e and Ih, given by ke,h = Fe,h u,,,. Thus,

H-eh
( e= h'L -A.p I I'Ie)

2m,,= Fiu A.p) Fewud 3r

= f uuc .F (A.p) Fe d3 + FFe (A.p) uc d3r, (7.19)

where we have used the fact that

p (Feuc) = uc (pFe) + Fe (puc) -

As mentioned previously, Fe(r) and Fh(r) vary slowly over a single unit cell. Moreover,

we will also assume that A(r) does not vary appreciably over a primitive cell. This

allows the integrals in eq. (7.19) to be approximated by considering their values at

the unit cell j and summing over all unit cells. Thus,

kv uucF, ( 2(e A.p) Fed 3

unit cells

VI d3r u;Uc {F(rj) A((rj).pFe(rjJV jC V 2m,, ~ j

However, uc,. are periodic functions with the periodicity of the lattice and can there-

fore be pulled out of the summation. Hence

SUuuc d runit cells / e

v ( 2~A.p) Fed 3r d3r {F(rj) A(rj).p) F(r)

- 0,

by the orthogonality condition (u.,Iu) = 0. The second term can, likewise, be ap-

proximated by

qFý ( e2 A.pn uc d3r e - F(rj)A(rj)Fe(rj) u (.p) uc d3r
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= (& u(J.p)ucd3r) F- (rj) A(rj)Fe(rj) 1c.

We have again used the periodicity of uc and uv to pull the integral out of the

summation. Since the terms in the summation are fairly constant over each unit cell,

the summation can be converted into an integral as

unit cells

SF, (rj)A(rj)Fe(rj) Vuc v F;(r)A(r)Fe(r d3r

Therefore,
H'e = (U (.p)luc) F;A(r)Fe d3r (7.20)

Consider a bulk medium, with F = 1eik.r, excited by a plane wave. In this case,

A(r) = Aoeikph 'r and we have that

f F,A(r)F, = Ao fe-k'.r e'kp.r e'.r

= Ao(kh - ke - kph)

-4 Ao(kh - ke) (7.21)

The last expression follows from the fact that in general kph - << ke,h ~ where

the wavelength of light, Aph is much larger than a which is the periodicity of the

lattice and is generally on the order of angstroms . Thus, we see that wavevectors of

the electrons are conserved in interband transitions and only vertical transitions are

allowed. This is known as the k-conservation or k-selection rule [31] and applies to

direct inter-band transitions. The k-selection rule does not apply to all transitions,

for e.g. like phonon-assisted transitions etc. If the vector potential can be treated as

a constant, i.e A = Ao, which is a good approximation in the case of quantum wells,

we have that
eAo

Hah= - o (UvIl(.p)IUc)(FalFe)

which yields its own selection rules according to the value of (FhIFe).

Summarizing, for a 3D bulk material, excited by a plane wave, only vertical tran-

116



sitions are allowed and the transition matrix is given by

IH 2  ) 2 - IMTI (7.22)

where IMTI2 = I(u',I(.p)lu)122 . At this stage, it seems that the functions uc and u' are

needed to evaluate MT. However, a second-order perturbation technique called the

k.p theory [33] allows IMTI2 to be related to the band structure of the given material.

Since this calculation is somewhat more involved and requires more familiarity with

Bloch functions and band structures, the derivation of IMTI2 is not attempted. Here

we present the key results [31].

A112 = o 1) g oE, (7.23)
m* 2 (E9 + 2, A)m

I M TI = 2 1M12 (7.24)3

where m* is approximately the same as the effective mass, me, of the conduction band

electron. Eg is the bandgap and A is the split-off energy (see fig. (7-2)). In relating

1IITI1 to JMI2, the factor of 1 comes from averaging over all the k-vectors of the

electrons and the factor 2 comes from taking the spin degeneracy into account. mc can

be measured quite accurately using cyclotron resonance techniques [28]. Assuming

m* ~ m. allows IM12 to be evaluated by using eq. (7.23). Table (7.1) shows the most

accurately reported value of IM12 for several commonly used material systems [31].

We now have the transition rate, We-h, of an electron making a transition from

a single occupied state in the conduction band to one in the valence band in terms of

quantities that are either known or can be estimated.

We-h = IHeht2 6(Ee(ke) - Eh(kh) - hw)We--h = We
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Material system 2 (in eV) Reference
Mo

GaAs 28.8 ± 0.15 [34, 35]
AlxGa-lAs 29.83 + 2.85x [36]
(x < 0.3)
InxGa_-xAs 28.8 - 6.6x [34, 35]
InP 19.7 ± 0.6 [34, 35]
In-lGaxAsyPy 19.7 + 5.6y [35, 37]
(x = 0.47y)

Table 7.1: Magnitude of IM12 for various material systems.

For a bulk medium incorporating the k-selection rule and using eq. (7.22), we have

e- (h T 2m, 1 26(Ee(k) - Eh(k) - hw) (7.25)

where AMT12 is related to the band structure of the given material system, eqs. (7.23)

and (7.24).

There are many states in the conduction and valence band of a given solid. In

fact, from the periodic boundary conditions [28], we know that the number of k-states

per unit volume per unit spin is given by

d3k
# states/vol =

(27r)3

To evaluate the total transition rate per unit volume from the conduction band to the

valence band, We-,, we must sum over all possible k-states which obey the energy

relation imposed by the delta function. Since the k-selection imposes the condition

that only vertical transitions take place (and we will assume that these are the only

dominant transitions), we need only sum over the states in the conduction band to

get TV_,. Thus, the total transition rate per unit vol. W-,, is given by [31]

/ d3k (7.26)Wcev = JWe-_sh • -(7.26)(2W)3

The spin degeneracy has been taken into account in We.4 h via |AITI. Substituting
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for We'•h, we have that

R 2., r f )d3k (7.27)W-V = IH~h2 J6(Ee(k) - Eh(k) - ) (7.27)

The above integral is called the reduced or joint density of states, Pred, and is simply

the total number of states per volume which obeys the energy relation imposed by

the delta function.

Pred 6(Ee(k) - Eh(k) -hw) (2) 3k
d(2S) dE

S 1 6(Ee - Eh - w) d2S dE
(27)3 eVk(Ee - Eh)

1 S (7.28)
(2) 3 ýE-.-Eh=nw Vk(Ee - Eh)

Using equations (7.4) and (7.5), we have that

h2k2

Eeh Ee (k) - Eh(k) = + E (7.29)
2mr

where + = -+ - and E9 = Ec- E,. Using these expression in eq. (7.28), we get

Pred = - f d2 S 1 4irk2  (7.30)(27r)3 ,-Eh=h Vk(Ee - Eh) - (2r)3 ,2k
mr Ee-Eh=hW

Pred(h) (2)2 )3/2 (h- E9)1/ 2  (7.31)

Physically Pred(hW) corresponds to the number of states per energy per volume that

emit light of energy hw as a result of transitions between the conduction and the

valence bands.

Thus far, we have assumed that the state in the conduction band is occupied and

the state in the valence band that the electron is making a transition to is empty.

However, for finite temperatures we can only associate probabilities for the occupancy

of these states. f, and f, denote the probability of occupancy of a conduction band

and valence band state respectively and are given by the Fermi-Dirac distribution
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functions [38].
1

fC,v (7.32)
1 + exp [ kh-EfTI kBT

where Ef, and Ef, are the non-equilibrium Fermi levels [38, 31]. Ee and Eh are the

energies of the electron and hole respectively and can be described in terms of Eeh

and the effective masses me,v as follows

Ee = Ec + (Eeh -Eg) M, (7.33)
mC

Eh = Ev - (Eeh -Eg) Mr (7.34)
m,

Taking these probabilities into account, the transition rate per unit volume from the

conduction to the valence band 11-•v, is given by

rate of transition
' available states occ. c-state unocc. v-state

27r 2
S= - - IH : h l  Pred fc (1 - ).35)

As indicated, the first term represents the rate of transitions between discrete states

in the conduction and valence band. The second term represents the density of states

that can emit photons at the energy of interest. Finally the probability densities

take into account that for downward transitions, the conduction band state must be

occupied and the valence band state is unoccupied.

To find the transition rate per unit volume of electrons being excited from the

valence band to the conduction band, ,Vc,, a similar analysis to the one above may

be performed. However, we will find that the first two factors of Wv- are the same

as that of TWe_. The only difference is that we now require that the electron state in

the valence band be occupied and the state in the conduction band that it is making

the transition to be unoccupied. Thus the relevant probability is f,(1 - fc) and

WV-c = I Hei Pred(hW) fv(1 - fc) (7.36)

SWe will use the transitions rates computed here to calculate the optical gain per
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unit length in the following section.

7.3 Gain

As was mentioned earlier, the presence of photons in the form of an EM wave, causes

electrons to make transitions between the conduction and the valence bands. Tran-

sition from the conduction to the valence bands lead to the generation of photons.

Similarly transitions from the valence to the conduction band require energy and lead

to the depletion of photons from the optical mode. Whether the net result is an in-

crease or decrease of photons in the optical mode depends on which of the two types

of transition processes dominates.

Let P represent the incoming photon flux in the optical mode. The rate of change

of photon flux, 4, along the direction of propagation of the EM wave (chosen as i for

definiteness) is given by

- = W'Ivcv - lyV-c
dz

S•iT Pred (fc - f). (7.37)
h 2mo

The gain, g, is defined as the fractional increase in the photon flux per unit length,

i.e
1 d4

g -= dz (7.38)

The photons flux is given by

b= (energy density of the mode) (group vel.)
energy per photon

The energy density of the optical mode is

1 1
energy density = 1 %eoE2  = - 2EoW2 A2

2 2
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The group velocity, vg is obtained from

v9 (d7 -1 {d wn(w)]y1

C C
••-- (7.39)

- n + w• • g

where ;f is the group index. Substituting the above results in the expression for (4I

we find that the photon flux is

( = w n) (7.40)
hw

Use of eqs. (7.37), (7.38) and the above expression allow the gain, g, to be calculated.

9 = ) Te 2h InrIT|2 pred(hw) (fc-- fv) (7.41)
hw elc•,2m 2

It is clear from eqs. (7.31) and (7.41), that the gain is zero when hw = Eg and is

positive when fc > fv. The latter condition implies that

(Ee - Efc Eh - Eh ,
exp \kT < exp T

kBT ) kBT
hw < Ef - Ef.

Combining the two conditions we see that g > 0 provided

E, < hw < EIf - Ef,. (7.42)

We see that the gain is function of frequency. Moreover, it depends on the quasi-

fermi levels Efc and Ef, via the Fermi-Dirac distribution functions, fe and f,. The

fermi-levels are determined by the carrier densities in the active region and are related

to the current injected through the device. In the following section, we will derive an

expression for the current density, j, through the device and then relate j to g.
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Figure 7-3: Schematic picture of a non-equilibrium situation which results in gain for
some frequencies, w

7.4 Current Density

Under equilibrium conditions, Ef, = Ef, and according to eq. (7.42) none of fre-

quencies experience gain. However, under non-equilibrium conditions, for eg. when

carriers are injected into the active region, it is possible to have a situation in which

Ef, - Ef, > hw. In this case certain frequencies can experience gain. This situation

is drawn schematically in fig. (7-3) which shows the conduction band and one of the

valence bands of the active region. We see that in the active region, there is a large

concentration of holes and electrons. The electron-hole pairs may either recombine

via radiative mechanisms, giving rise to photons or via non-radiative processes which

as the name implies does not result in the generation of photons. Radiative processes

are of two types namely stimulated or spontaneous transitions. Non-radiative pro-

cesses, on the other hand, may result from several mechanisms. Among these are bulk

and interface recombination via defect states [29, 31], Auger recombination [29, 31]

or leakage of carriers out of the active region [29, 31] etc. Each of the processes,

radiative and non-radiative, is associated with its respective current densities, jrad

and jnon-rad. The current densities are functions of the carrier density in the active

region and the rate of recombination of the carriers due to the two processes. The
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total current density is the sum of the two contributions,

hjot = jrad + jnon-rad-

Non-radiative processes are undesireable since they do not contribute to gain and re-

sult in a larger current density through the device for the same gain. Below threshold,

the radiative process is dominated by spontaneous recombination. To calculate jrad,

thus, we need to determine the spontaneous recombination rate which is discussed in

the next subsection.

7.4.1 Spontaneous Recombination Rate

A complete quantum mechanical treatment of the optical processes which quantizes

the electromagnetic field reveals that the rate of transitions from the conduction to

the valence band is proportional to ((nph) + 1)hw, where (nph) is the average number

of photons in the mode [31]. Thus, we see that the downward transitions are possible

even in the absence of any photons. This decay of electrons from the conduction to

the valence band in the absence of light corresponds to spontaneous emission.

The number of photons enters into the previously derived transition rate Wc-v

through the A' term. Thus, to find the spontaneous emission rate the A2 term in

Ii•_I, must be replaced by relating the energy in the EM wave to the energy of single

photon, i.e

12Eo 2A V = W - A' 2hw  (7.43)2 0 0 ff22Eo,2V

where V is the volume occupied by the optical mode. Spontaneous transitions can

occur into any of the optical modes near the transition energy, hw # E9. Since there

need not be photons in these modes for spontaneous emission to occur, the electron

interacts with all the optical modes in this energy range. Thus, the quantity of

interest is the rate of spontaneous emission per unit vol. at a given energy, R,p(hw).

Rsp(hw) is given by the product of IV,,, using the appropriate value of A2, and the

number of optical modes, Napt available at hw. The number of optical modes at a
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given energy may be found using the density of optical modes, Popt.

Nopt (hw) = op0 t(hw) V

where Popt (hw) is given by

Popt (hw) d(hw)

Popt (hW)

d 3 kot= 2 opt
(27r)3

= (h )hc
1 2fg (hU)2

T2 (hC)3

(7.44)

(7.45)

(7.46)
hc

The factor of 2 in eq. (7.44) takes into account the fact that for each plane wave

there exist two polarization states. 59 is the group index defined by eq. (7.39). From

the above discussion, it is clear that the equation defining R,p(hw) is

R,p(hw) d(hw) = W1 (4 2 2hw d
n2EoW2 )popt V d(hw).

Substituting for e-t. and popt into the above equation, we find that

Rp (hw) = (- A( h1
Pe e2h

2 2 IMT2 Pred(hW) Popt(hW) fc(1 - f)H' com0

for an isotropic bulk medium. In general, IMTI2 must be replaced by an appropriately

averaged quantity IMav 12 which takes into account the anisotropy of the medium, i.e

1
IMave 2 = 1

all 3 polarizations
IMTI2

The radiative component of the current density, jrad, is simply given by the integral

of Rsp(hw) over the spontaneous emission spectrum, i.e

irad = e J Rp(hw) d(hw) (7.49)

We now have an expression for the radiative current density, jrad, and are in a position
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Figure 7-4: Calculating the quasi-fermi levels Efe,fj by relating them the carrier
density in the active region, N (_~ P).

to relate it to the gain. The expression for the optical gain is rewritten here.

(- i 7 reh •T12 Pred(hW) (fc - fv)
, : w EoCTmi2 72

Looking at the above expression, we see that all quantities are either known like the

physical/optical constants or can be estimated; for eg. MIAT1 2 is related to the band

structure. The only quantities which are undetermined are the quasi-fermi levels, Ef,

and Ef, in the distribution functions fc and f,. Likewise, it is clear from eqs. (7.49)

and (7.48) that the only quantities that are not known in jrad are the quasi-fermi

levels. The quasi-fermi levels can be related to the carrier density in the active region

via the following equations:

00
N = pC(E)fc(fE)dE (7.50)

P = pv(E)(1 - fv(E)) dE (7.51)'-

where N and P are the density of electrons and holes respectively (see fig. (7-

4)). pc,v(E) are the density of states in the conduction and valence band which are

found using the dispersion relation, eqs. (7.4) and (7.5), and the periodic boundary
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Figure 7-5: Relating the current injected to the gain

conditions [28].

d3k
Pc,v =2 (2)(27r)3

Pc = (2r 3 /2 (E- Ec)1/2 (7.52)

p, = 2 - 2 (E, - E)1/2 (7.53)

To relate the gain, g, to the current density , we follow the following operations.

This approach is very similar to that of reference [31].

(i) For a given density N and P of carriers in the active region, the quasi-fermi levels

Efc and Efy are calculated by using eqs. (7.50) and (7.51). Efc and Ef, are related

by imposing the condition of charge neutrality which is

N =P.

(ii) Once quasi-fermi levels are known, use of eqs. (7.41), (7.48) and (7.49) allows the

gain, g, and the radiative current, jrad, to be calculated as a function of the carrier

density, N (= P). By eliminating the carrier density a relation between g and jrad

may be obtained. To relate the gain to the total current density, jiot, an expression

for the non-radiative component of the current density needs to be determined. As
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claddinp

Figure 7-6: Waveguide with gain in its central region.

mentioned earlier, there are several mechanisms which contribute to jnon-rad. Each

has its characteristic dependence on the carrier density N in the active region. For

eg. for the Auger process, the recombination rate is proportional to N3 [29] and

for surface and defect recombination, the rate is proportional to N [29]. A rigorous

derivation of the total non-radiative component of the current density is beyond the

scope of the present discussion. The interested reader is referred to some references

on this topic. Suffice it to say that an expression for jnon-rad as a function of the

carrier density N may be obtained. For the given carrier density in (i), the total

current density jtot(N) = jrad(N) + jnon-rad(N), and the gain may be obtained as

functions of N. Eliminating N, between them allows a relation between g and jtot to

be obtained. The steps followed are shown diagramatically in fig. (7-5).

7.5 Material Gain and Modal Gain

In the previous sections we found the optical gain, g, of an infinite 3-D bulk medium

excited by a plane wave of the form A(r) = Aoeik.r. g is the material gain and as is

clear from eq. (7.41) it is only depends on the material and optical properties and

on the pumping levels. Typically, in semiconductor devices, however, the excitations

are not plane waves but are rather optical modes of waveguides. Moreover, the

active region is finite and is often smaller compared to other features of the device.

Figure (7-6) shows a waveguide which has gain in the central region of its core.

The optical modes supported by the waveguides stimulate transitions which lead to
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gain if condition (7.42) is satisfied. Only the field overlapping with the active region

contributes to the gain as the field outside this regions does not give rise to stimulated

emission, thus not contributing to gain. As a result, the net gain experienced by the

optical mode, or the modal gain, 7, is smaller than the material gain, g. Since the

medium is not uniform in the transverse dimension, instead of considering the photon

flux, I, and the transition rate per unit volume, WC,,, we are concerned with the

number of photons, nph passing through the guide per unit time, and the transition

rate per unit length denoted by wc-,. The modal gain, y, is defined as the change in

the number of photons per unit length per unit time along the guide normalized to

the number of photons per unit time passing the guide, i.e

1 dnrh
S= (7.54)

nph dz

but nph is related to the rate of transitions per unit length by the equation

dflph

dzdz = Wc4v - Wv-+c

where uc-_v may be related to rate of transitions per unit volume 1,V1-, by

we v= TV-+v dp (7.55)
Jactive region

where p denotes the transverse coordinate and the integral is over the transverse

cross-section of the gain region. A similar expression relates w, 4 c to WT+,c. Provided

A(r) varies much more slowly than the envelope functions Fe(r) and Fh(r) and we

assume that k-conservation holds, the previous expression derived for We-,v for a

plane wave excitation, is valid with Ao simply replaced by A(r) i.e

( ~-~ ( eA(r)

Wr = (2)IA 2m Pred fc(1 - fv)h 2m,

Moreover,

nph = (r)dp
- OO
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Figure 7-7: Double-Heterojunction Laser Diode

where P is the photon flux found earlier with Ao replace by A(r). Thus,

1-2 n2

ph -- he ] -oc |A(r) 2 dp.

Substituting the above expressions in eq. (7.54), we find that

factive |A(r) 2 dpI=9 f ' IA(r)12 dp

factive |E(r)12 dp g
gf-0o IE(r)| 2 dp

where F is called the mode confinement factor and is the fraction of the power in the

mode overlapping with the active region. i.e

- factive IE(r)12 dp
_fi' IE(r)|2 dp

Physically this makes sense as we expect only the field interacting with active region

to contribute to the gain. In the limit that the active region fills the entire space, F

approaches unity and 7y - g.
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Figure 7-8: Band diagram of a DH diode

7.6 Double Heterojunction Laser Diode

A convenient way of obtaining gain in a semiconductor is by using a p-i-n heterostruc-

ture of the type shown in fig. (7-7). The choice of the material systems is determined

by the lasing frequency. In the 1.1 im - 1.6 ym wavelength range, the material of

choice is InGaAsP. The adjacent n and p regions must be lattice matched to the

active region to avoid defects arising due to stress. Defects can produce a continuum

of states in localized regions [29] which serve as sites of non-radiative recombina-

tion. This lattice match restrictions constrains the n and p regions to be InP. For

xz 0.45y, InxGal_-AsP 1_y is lattice matched to InP. This kind of a p-i-n struc-

ture is called a double heterojunction (DH) diode. Figure (7-8) shows the energy

band edges (i.e k = 0) as a function of position in the DH diode under forward bias

conditions. The bandgap of InGaAsP is less than that of the adjacent InP regions.

As a result, a potential well of height AEc is formed for the electrons and a cor-

responding well of height AE, is formed for the holes. These potential wells can

trap electrons and holes respectively, allowing them to recombine. Under forward

bias conditions electrons from the n-side and holes from the p-side are injected into

the active region. This non equilibrium condition is characterized by the quasi-fermi

levels, Efc,f,. The carriers injected into the active region are confined by the po-

tential well and eventually recombine resulting in net gain for frequencies satisfying

condition (7.42). The modal gain, y, depends on the material gain g and the optical
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Figure 7-9: Index distribution of DH diode; mode profile is also shown schematically.

confinement factor F. Thus, for a maximum modal gain, it is desired to confine the

light as tightly as possible in the active region. Fortuitously, InxGal_xAsyP1_y has

a higher refractive index than the adjacent InP regions. The refractive index, n, is

given by n(y) _ 3.4 + 0.256y- 0.095y2 at a wavelength corresponding to the bandgap

energy. This produces a waveguiding effect resulting in the confinement of light. Ad-

ditional confinement in the other transverse dimension, may be effected by creating

a rib waveguide structure. Figure (7-9) shows the index distribution and the mode

profile in the InP/InGaAsP DH diode. The net modal gain, y, is given by

- = g]a - aprp - Qnrn

where Fa, F, and Fn are the field confinement factors in the active, p and n regions

respectively. g is the gain of the active region and ap and an are the losses of the p

and n regions respectively.
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Chapter 8

Non-Ideal Gain Gratings

In this chapter we will discuss a simple gain grating design. This example will allow

us to highlight some basic issues that one must contend with in making these devices.

We will see that a simplistic approach is not optimal as it results in non-ideal device

behavior. Some of the "non-idealities" are due to a lack of precise control of the

fabrication process which results in achieved parameter values being different from

those designed for. Others, however, as we shall see are more inherent and overcoming

them requires a more sophisticated fabrication sequence which will be discussed.

This chapter will primarily focus on two non-idealities in gain gratings namely index

coupling and d.c modal gain and their effect on device performace.

8.1 A Simple Gain Grating

Figure (8-1 (a)) shows a schematic picture of a gain grating. The waveguide core

has alternating regions of gain and loss which produce DFB coupling. A schematic

longitudinal cross-section of a device which possesses the features of fig. (8-1 (a))

is shown in fig. (8-1 (b)). This device is a DH diode (see section 7.6) in which the

active region has been patterned by using a lithographic step followed by etching.

The upper cladding layer is then overgrown epitaxally. If organometallic vapor phase

epitaxy (OIMVPE) is used to perform the overgrowth, the growth conditions may

be controlled to avoid transferring the corrugation to the upper cladding [39]. As

133



cladding

core

substrate (a)
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Figure 8-1: (a) Schematic representation of a gain grating. (b) Longitudinal cross-
section of a simple gain grating device

discussed in chapter 4, when the device is forward biased, the carrier population in

the intrinsic InGaAsP can be inverted giving rise to gain in that region. Due to free

carrier absorption, the cladding regions have loss. Thus, the patterned section of the

device provides a region of modulated gain giving rise to DFB coupling.

Each tooth of the corrugation demarkates a boundary between regions of different

gain and refractive index. As a result at each interface, reflections occur both due to

the difference in the index of cladding and core, ncore and nclad and also due to the

difference in the gain of these two regions, gco,, = g and gdad = -1. Consequently,

we expect both index coupling and gain coupling, characterized by Kinde• and Kgain

respectively, to be present in the device. The variation of the index or the real part

of the dielectric constant due to changes in the gain or the imaginary part of the

dielectric constant is, in fact, an inherent characteristic of physical systems and is

predicted by the Kramers-Kronig relation. It is independent of the device design and

thus we expect gain coupling to always be accompanied by index coupling even if the

gain modulation is produced by a scheme other than patterning.
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Figure 8-2: Effect of Kindez on the response of a gain grating. 5 = 2

8.2 Index coupling in a gain grating

The presence of index coupling is gain-coupled systems is undesirable. Recall, index

gratings do not support a mode at the Bragg frequency [7, 10] (i.e at 6 = 0) or within

the stopband. Therefore, index coupling distorts and asymetrizes the gain grating

response and causes the center frequency of the laser to drift. For an arbitrary

Kgan/Kindex value, the response of the system must be computed using the computer

(see fig. (8-2)). However, for small values of Kindex it is possible to predict the effect

on the response. We will see that for Kindezx/Kgain << 1, to lowest order, the center

frequency of the GDFB resonator is shifted by an amount related to this ratio.

The total DFB coupling coefficient, K, is the sum of its contribution due to the

gain and index coupling and is given by

K = Kgain + jKindex K' + jrK"

The 900 phase difference between Kgain and Kindez is due to the difference in the phase

of the waves reflected from index and gain boundaries. We know from chapter 2 that

the oscillation condition for a matched grating is given by

S- j6 pltan -- = 1 (8.1)P 2
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where

P2 = 62 + K2

When n" = 0, lasing occurs at the Bragg frequency, 6 = 0, for pl = dI = r/2. For

the case that K"/I' < 1, we have that

32 _ (p')2 + 2j/'O" _ 62 + (r') 2 + 2jK'K" (8.2)

where we have made use of the fact that 3" < 0'. Since by assumption ,K" < K', we

expect the lasing frequency, 6, will be close to zero and in this limit,

(8.3)

(8.4)/1 ,, K

At threshold K'l - 7r/2. Therefore,

l < 1.
K~ ' 2

Use of the above gives that

tan ((' + j") • '1
Stan 2 +3j cot ( +tan )]

211

where the approximation that exp (j6 ) = 1 +j and that 3'1 - have been used.

Substituting this into eq. (8.1) we get

(r' + jA" - j3) (1 + jp"l) = a' + jp" -a -i' + j," (8.5)

which simplifies to

and can be rewritten as

(8.6)- = K' I
•' '

K' 2K'
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(8.7)

1 + jp"l
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Figure 8-3: Response of a gain grating with "d-- = 0.01. The dotted line is the
Xgasn

response of an identical grating but with Kindez = 0. The shift in the lasing frequency
is evident and is given by eq. (5.7)

We see that the lasing frequency of the structure is no longer at 6 = 0 as for a pure

gain grating but has shifted to a new position related to y as asserted earlier, (see

fig. (8-3)).
To understand this, let us see what is the effect of an index grating on the waves

inside the resonator. As we know an index grating reflects waves within the stopband.

The reflectivity at the Bragg frequency, 6 = 0, of an index grating of coupling strength

K" that is matched at one end is given by [7]

IF = tanh K"I

~ "l for n"l < 1 (8.8)

for K"l < 1. From chapter 2 we know that if a reflection coefficient Fo is placed at one

end of the GDFB resonator it causes the lasing frequency to be shifted from 6 = 0 to

the location 6 governed by the equation

ro= cot p0 + j-. (8.9)
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To lowest order, 31 :_ K'1 _ J. In this case

The above equation suggests that the lasing frequency can be shifted to 6/1' = K"l by

a lumped reflector of reflectivity IoI = N".1. Notice that this is exactly the reflectivity

of an index grating of length 1 and Kindez = r", (eq. (8.8)). Thus, for r < 1, the

effect of an index grating is equivalent to that of a lumped reflector placed at one end

of the resonator, which causes its lasing frequency to be shifted to r = -"l.

Generally, differences in the real part of the dielectric constant are much larger

than those in the imaginary part. This is due to the fact that even for very high val-

ues of material gain, the gain per wavelength is small and consequently the R{n} is

much larger than QŽ{n} where n is the complex refractive index of the active material.

Consequently, index = 2 may be significantly larger than nK.ain = 2A- 2{ae}.\sq-one 2 one

As mentioned earlier and is clear from fig. (8-2), this is undesirable as the advantages

obtained from gain-coupling are then lost. Ideally, Kindex should be zero. How-

ever, according to the previous discussion, gain-coupling is inevitably accompanied

by index-coupling.

8.2.1 Pure Gain Grating

An elegant scheme to eliminate index-coupling to yield a purely gain-coupled system

was proposed by Tada et al. [39]. This, is however, achieved at the expense of a more

complicated structure with stricter design constraints. A schematic longitudinal cross-

section of the device proposed by Tada et al. is shown in fig. (8-4). This device used

a GaAs/AlGaAs material system with A0 = 870 nm. However, the scheme should be

generalizable to InP/InGaAsP systems. Notice that there are two gratings in this

device. One of the gratings is between the buffer and the pattern providing layer and

the other is between the active region and the buffer. The former grating provides

only index coupling as the pattern providing layer and the buffer have minimal, if

any, gain/loss. The latter grating, that is the one between the active layer and the
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Figure 8-4: Pure gain grating as proposed by Tada et al.
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Figure 8-5: Variation of the coupling coefficient vs. h2. (Courtesy of [39].)

buffer, by the previous argument provides both index and gain coupling. The net

index coupling coefficient, t indez is given by the sum of the contributions from either

grating, i.e

KCindez

I'index

= Ktacbuf + Kbuf-p.p

Aofle
2+A2+ 2
Aofl~e

Notice that Ac, = (nact- nbf)eo > 0 whereas Ae2 = (nu - n)Eo < 0. Once hi

is chosen, the growth conditions can be adjusted to yield the desired active region

corrugation depth, h2. By appropriately designing for hi and h2, it is possible to
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Figure 8-6: Fabrication sequence of a pure gain grating. (Courtesy of [39].)

engineer the overlap integrals so as to drive Kindex to zero [39]. Figure (8-5) shows the

variation of Kindex as a function of the active corrugation height, h2. The Kindex = 0

design constrains the values of Fl and F2 and thus,

gact - gbuf = -

Kg,,in = 2 r l 127r 27r

may only be increased by increasing Ag or having a higher gain in the active region.

A fabrication procedure of Tada's device is shown in fig. (8-6). The first OMVPE

growth grows the n+ GaAs buffer layer, the lower cladding and the pattern providing

layer. Next a second-order grating is etched in the pattern providing layer. The

second OMVPE process grows the buffer, the active layer, the upper cladding and

the contact layers. The growth parameters are chosen so that the underlying pattern

of the pattern providing layer is conveyed to the buffer layer but is lost in the growth of

the active region. This results in only one side of the active region having corrugations

as desired. The ability to propagate patterns or extinguish them relies on the fact
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that the orientation dependence of OMVPE is a function of the temperature. Thus

by controlling the temperature conditions during growth it is possible to achieve a

device with pure gain coupling, however, it is at the expense of a more complicated

fabrication process.
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Figure 8-7: Focussing on the region with the gain and loss in a simple gain grating

8.3 D.C Gain

The grating structures discussed thus far have had no travelling wave (or d.c) gain

or loss. Even though there are alternating regions of gain, g, and loss, 1, these are

assumed to be centered about an average gain value of zero. The advantage of gratings

with an average gain value of zero is that they exhibit better suppression of other

resonant (lasing) longitudinal modes [22], a point which will be discussed later in

more detail. In any practical device, however, we do not expect the condition or no

travelling wave gain to be precisely met, if at all. There will always be some residual

net gain/loss in the structure. Consider the simple device of fig. (8-7). As stated

earlier, the active region has a material gain, g which is a function of the current

through the device. The cladding has material loss, 1, due to free carrier absorption.

For simplicity we will assume that the rest of the regions in the device have no gain

or loss. As indicated in the fig. (8-7), Fg, r, and Fl are respectively the mode

overlaps with the corrugated region, and the active and the loss regions excluding the

corrugation. The net modal gain, 7 is given by

(g - 1)7 = Fag - ril + (g 2 - (8.10)

where the first two terms correspond to the net gain of the active region and the upper

cladding, minus the corrugation. The last term is the contribution to the modal gain

due to the d.c gain of the patterned region as indicated in the fig. (8-8).

We expect the material gain, g, to be significantly larger than 1, under forward bias

conditions. Thus, we see from eq. (8.10) that we have a net modal gain y. One way

to minimize y could involve growing a lossy region in the device so as to compensate

142



gain

-l

(g+l)
2

. (g+l ) Z
2

(g -1)
2

Figure 8-8: Contribution to the modal gain due to the d.c gain offset of the grating.

for the net modal gain. The disadvantage of such an approach is an increase in the

injection current density required to achieve the same material gain, g. Since it is

expected that g > 1, another method may be to design a grating with IF = 0, i.e the

grating depth is equal to the active region thickness. For a given loss value, 1, it is

then possible to design for a F1 such that the value of -y is minimized or ideally driven

to zero.

Why do we want a d.c gain value of zero ? To answer this question let us see

how the performance of the gain grating is affected due to a net modal gain, -y. The

equations describing the forward and backwards propagating waves, A and B, in a

grating with a finite 'y are

dA = -j6A + rB + 'yA (8.11)

dB- = jB - nB --yB (8.12)dz

For 6 = , = 0 it is clear from the above equations that A grows exponentially in the

+z direction and B increases exponentially in the -z direction as expected. Rewriting

the above equations we have

dA
= -j(6 + jy)A + rB (8.13)dz
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dB - -A + j(6 + jy)B (8.14)
dz

Notice that these equations are of the same form as those describing a gain grating

with no modal gain but with 6 -+ (6 + j-). For an assumed solution of the form ej3z,

we find that the eigen values are

o2 = K2 + (j + jy) 2  (8.15)

Generalizing the oscillation condition obtained in chapter 2 to the case of a grating

with a finite y, we have that this structure lases provided

K- j( 6 +jy) f3l
tan = 1. (8.16)

0 2

This is a complex transcendental equation which may be solved numerically for the

resonant mode spectrum of the gain grating. For a given length and coupling co-

efficient, the threshold modal gain, -y, required for the Nth mode to lase may be

calculated using the above equation. Figure (8-9 (a)) shows spectrum of resonant

modes. Figure (8-9 (b)) shows the relation between the threshold gain, -yl and Kl for

the Nth laser mode. N = 0 corresponds to the mode at 6 = 0 as indicated in the

figure. In the notation of the reference from which the plot has been obtained, a

represents the net modal gain, y and K = ca/2. Notice that for a = 0, or in other

words with no travelling wave gain, there is a larger difference between the threshold

gain value of the higher order modes and the N = 0 mode, resulting in a better side

mode suppression ratio than for a case of a non-zero modal gain (a) value. Physically,

this is due to the fact that in the absence of average gain, only the field profile of

the N = 0 mode can effectively conform itself to the gain distribution in the guide,

resulting in this mode experiencing net gain even though there is no average gain.

The higher order modes require d.c gain to lase.

Let us assume that

K
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Figure 8-9: (a) Spectrum of the GDFB laser against threshold modal gain values.
(b) Relation between the modal gain, c in the notation of [22] and the coupling
coefficient, n = a•1/2. (Courtesy of [22].)

and concentrate on the mode at the Bragg frequency. A lasing mode exists at Bragg

frequency or 6 = 0 provided

+ a (/3l)=tan =1P 2

or

( =l)o - - a2 arctan (8.17)

where the subscript o indicates the threshold value of the parameters. For a > 0 it

can be shown that .l < 2, (see fig. (8-9 (b))). The above equation is solvable for

any value of a which means that a laser mode always exists at the Bragg frequency.

Notice, however, that for y > , or equivalently a > 1, the eigen values, P are purely

imaginary, (eq. (8.15)). We will make a change of variables such that the eigen values

are real for a > 1, i.e / -+ -jp. In this case, the assumed solutions are of the form

eOf and

P2 = r2 - 2 _ 62 _ 2j67y for a > 1 (8.18)

At 6 = 0, /3 = K2 (a2 - 1). In the new variable, the oscillation condition for a mode
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Figure 8-10: Pi-circuit representation of a gain grating with net modal gain, 7

at the Bragg frequency becomes

(2)o- arctanh a-i for a > 1. (8.19)
a+1

It can also shown that for a > 1, nl < 1. (fig. (8-9 (b))).

An equivalent circuit of the gain grating with net modal gain, y, near resonance,

i.e 6 = 0, can be found by considering the symmetric and antisymmetric excitations of

the system. From the symmetry of the structure we expect a pi-circuit representation,

shown in fig. (8-10). As in chapter 2, the device is tuned slightly below threshold

and we are interested in the response of the grating close to resonance, i.e

(Pl),- Pl a

where

( = (l)oV-i 2 for a < 1
(Pl)o = (8.20)

(nl)oVa2  1 for a > 1

where (rl)o satisfies either eq. (8.17) or eq. (8.19) depending on the value of a. The

parallel admittance y, of the pi-circuit is given by

+)1 tan for a < 1

Ya = (8.21)
_ [.r-j(a+j)1 tanh e for a > 1
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where

"1 - a2 +j aj

Vfa 2 -- - j ad

Proceeding as in chapter 2 and realizing that "lI <« 1,

unity, we find that for a < 1

ya A'- 1 +j

1 - a2

( 1- a2

1
Yb ~ 1-a

ya)'

for a < 1

for a> 1
(8.22)

provided a is not too close to

where (8.23)

(8.24)

and for a > 1, we have that

Ya +

' -•• 1

6 a2 - 1 J-
1

Yb - a-1

where (8.25)

(8.26)

Notice, yb is negative for a > 1 which means that the antisymmetric excitation also

experiences gain unlike in the case of a gain grating with y = 0. The reflection

coefficient of the grating F as shown in fig. (8-10) is given by

1-Y
1F =

1+Y
(8.27)

where Y is the net admittance seen in the port indicated in fig. (8-10) and is given

by
(1 + ya)yb

Y = Ya + + + Yb
1 + ya + A
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Note that yb = is the same for both a > 1 or a < 1. Substituting in eq. (8.27),

we find that
(1 - a)(1 - y2) - 2Ya

a = (8.28)(1 - a)(1 + Ya)2 + 2(1 + ya)
Now

ya = Al-- + ,

Ya _ 1 - 2 (1+ya),

(l+Ya)2  1 2( +( )) 0,

where we have made use of the fact that A', j( )' < 1 and have only retained terms

to first order. Use of the above in eq. (8.28) gives,

1 - a(1 + ya) 1
(1 + Ya) (1+ ya)

1
Fr 1 .(1a• •= for a < 1 (8.29)71 --a2 + 1-a2 r

1
= = A (a -1) for a > 1 (8.30)

Notice that for 0 < a < 1, 1 < il < 2 and the prefactor of - is less than unity, i.e

1 - aK1
a2<11 - a2

Likewise for a > 1, rl < 1 and
arl - 1
a2 - 1

Since < , both for a > 1 and a < 1, this frequency scaling causes the response

of the gain grating to be broadened. For a >> 1 this can result in a very broad

bandwidth of the laser, which is undesireable.

Figure (8-11) shows a plot of F normalized to its peak value versus - for a gain

grating with a = 0.3. The dotted line is the exact solution obtained by solving the

eqs. (8.13) and (8.14). The solid line is the approximate response using the equivalent
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Figure 8-11: Normalized r vs. 6. Dotted line is the exact response of a grating with
a = 0.3 and A = 0.1. Solid line is the equivalent circuit approximation. Dashed-dot
line is the response of a grating with a = 0 and A = 0.1.

-1 --05 0 05 I

Figure 8-12: Normalized ' vs. . Dotted line is the exact response with A = 0.1
and a = 5. Solid line is the equivalent circuit approximation. Dashed-dot line is the
response of a grating with a = 0 and A = 0.1.

circuit response, (eq. (8.29)). The dashed-dot line represents the response of a gain

grating with 7 = 0 that has been detuned by the same amount A, (i.e (pl), - A1 -A

) as the grating with net modal gain y = an. The frequency broadening is evident.

Figure (8-12) show the same three responses but with a = 5. The broadening is

much more evident. For large a, the half power frequency points, h A
largeI k KJhp arI-

as compared to ( )h = A for a grating with no dc gain. The reason why the

normalized reflection coefficient was plotted was to enable the bandwidths to be

visually compared. However, this conceals the fact that the peak magnitudes of F are

not same for a grating with a finite dc gain and one for which y = 0. This can easily be
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seen by comparing F(J = 0, a) using eqs. (8.29) and (8.30) with F(6 = 0, a = 0) = •
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