
Computer Science and Artificial Intelligence Laboratory

Technical Report

m a s s a c h u s e t t s i n s t i t u t e o f t e c h n o l o g y, c a m b r i d g e , m a 0 213 9 u s a — w w w. c s a i l . m i t . e d u

MIT-CSAIL-TR-2007-043 August 24, 2007

World Wide Web Without Walls
Micah Brodsky, Maxwell Krohn, Robert Morris,
Michael Walfish, and Alexander Yip

World Wide Web Without Walls

Micah Brodsky, Maxwell Krohn, Robert Morris, Michael Walfish,Alex Yip (MIT CSAIL)

1 INTRODUCTION

Although the Web is ever more interesting, it is
still—despite the opinions of gushing commentators—
fragmented and insufficient. The Web 2.0 ethos—to ac-
quire, control, and “monetize” users’ data—has compa-
nies scrambling for precious user data, a state-of-affairs
reflected in users having to, for example, type in the same
romantic, music, and food preferences to half a dozen
social networking sites. Yet, despite the fragmentation,
users getlesschoice than they should. First, new applica-
tions face a high barrier-to-entry: they must acquire from
scratch a critical mass of user data (e.g., a new photo shar-
ing application would require a user to retrieve her col-
lection from an existing provider and upload it to the new
one). Second, users cannot choose what Web applications
actually do with their data: the much-heralded “privacy
settings” of certain Web applications do not come with an
enforcement mechanism to prevent error, greed, or malice
from leaking photographs, “friend lists”, or private blogs.
That such calamities will not happen is something that a
user must trust—for every Web application that she uses.

While this arrangement benefits those Web applica-
tions that control valuable user data, we believe that the
status quo is neither optimal nor fundamental. Indeed, our
purpose in this paper is to propose a very different plat-
form, and concomitant eco-system, for the Web called the
World Wide Web Without Walls(W5). What should W5
look like? The above litany of complaints suggests the
following desired properties:

Decouple applications from data . . . On the Web to-
day, data are bound to applications. For example, Flickr
users must store their photographs on Flickr, must use
only software modules from Flickr, and cannot easily mi-
grate their photographs to a different provider. As an-
other example, to offer novel social networking features,
a new application must acquire a set of users, learn a rich
set of connections between them,and develop the novel
features.1 Moreover, sharing data between applications is
difficult (today’s “mashups” combine data from multiple
sites but are limited to the APIs exposed by the data-
owning applications; see§4). Ideally, however, Web ap-
plications would mirror the positive aspects of the desk-
top model. Specifically, new applications should be able
to use existing data easily (if the data’s owner consents),
and applications should be able to work on commingled
sets of data (e.g., a user’s photos, friend lists, blog and

1Facebook, in particular, lets new applications leverage its users, but
their approach does not satisfy all of our desired properties; see§4.

bookmarks), each of which is today the province of dis-
tinct Web sites.2

. . . and give users control over their data. Users
should have fine-grained control overwhich applications
process their data. Given the first two properties, a user
could, for example, select his favorite photo cropping
module from a set contributed by independent develop-
ers, just as many people exert choice over their text edi-
tor. Moreover, users should controlwhich policiesgovern
the use of their data. Today, users can express their pri-
vacy preferences only within the constraints allowed by
the application (e.g., the policy “don’t sell my friend list”
can’t even be expressed) and have to re-express their pref-
erences for each application (e.g., Flickr shouldn’t expose
what a user has hidden on Facebook). Ideally, however,
users would be able to express idiosyncratic policies and
would be able to attach these policies to their data so that
the policies appliedacrossapplications.

Separate data security from other functions. To ac-
tually enforce what users express about what applications
may do with their data, the platform requires a mecha-
nism that (a) controls applications’ access to users’ data
and (b) is logically separate from the applications. This
separation permits the same mechanism to work for many
different applications, so protecting users’ data requires
proper functioning from only a very small number of
components. Today, in contrast, the problems of protect-
ing users’ data from other users and from external attack
must be solved by every application anew.

W5 achieves the above properties withmeta-
applications that host large collections of applications
and user data. Internally, a meta-application is a single
logical machine on which applications and data are seg-
regated. We imagine there being only a small number of
meta-applications, each supplied by aW5 provider. (We
describe W5 in more detail in the next section.) A key
component of this architecture is the mechanism that al-
lows a single meta-application to protect users’ data while
commingling private data from many users and hosting a
plethora of applications that all potentially have access
to this data. For this function, our architecture relies on
recent advances in Distributed Information Flow Control
(see, e.g., [5,11–13] and references therein).

Indeed, we are not creating technology but rather pi-
rating it (which is ironic, given our goals) to imagine

2We do not expect today’s Web applications to “open up” their
databases, but our purpose here is to imagine a new platform. The plat-
form’s success does not depend on existing providers embracing it.

1

Photo Sharing
App. Logic

Blogging
App. Logic

Amy’s
Data

Bob’s
Data

Amy’s
Data

Bob’s
Data

Photo Sharing SiteBlogging Site

Figure 1: Today’s Web sites.

an alternate model for Web applications. Our innovations
are the architecture itself (a general-purpose platform and
eco-system for Web applications), the properties it up-
holds (e.g., that users control their data directly), and the
new functions that it makes possible (e.g., any developer
or user can customize a Web application—and run the
customization on the server). However, we do not mean
to imply that there are no hard questions, and§3 discusses
challenges for W5.

We now comment on the relationship of W5 to the
status quo, making two points. First, W5 is not a “clean
sheet” design:3 although W5 “servers” differ from to-
day’s, the clients are the same. Thus, W5 can be deployed
gradually; the world need not switch Webs suddenly.

Second, one corollary of the W5 architecture is that,
if it is even partially successful, the barrier to entry for
new applications will be lower than it is today. For W5
not only solves some technical problems for new appli-
cations (e.g., protecting users’ data), it also solves a mar-
keting problem. Today, for a new application to acquire a
user, the user must visit the new site and input data from
scratch. Under W5, a prospective user can sign up sim-
ply by checking a box or “accepting an invitation”. We
conjecture that these changes—together with fine-grained
competition among software modules and users’ ability
to runanycode while still having a protective backstop—
will lead to a burgeoning set of Web applications, thereby
transforming the market for Web services.

Of course, such changes cannot benefit everyone: ex-
isting Web applications do not benefit, and it ispossible
that, by lowering barriers-to-entry, W5 diminishes incen-
tive to innovate. A large-scale cost-benefit analysis is be-
yond our pay grade (and requires predicting the future).
Instead, we simply observe thatW5 yields new options. It
is up to the market whether W5 will supplant the current
model, coexist with it, or fail. Nevertheless, we are hope-
ful because W5 is consistent with today’s trends. In par-
ticular, W5 takes to an extreme (1) commoditization of
infrastructure (e.g., [1]) and (2) support for applications
that leverage a site’s existing data (e.g., on Facebook).

2 OVERVIEW OF W5 ARCHITECTURE

Figure 2 depicts the architecture of W5 relative to today’s
Web architecture (Figure 1). At a high level, the entities
in W5 areproviders, who supply a platform that achieves

3It is, however, a paper design; building a prototype is future work.

Photo Sharing
App. Logic

Blogging
App. Logic

Amy’s
Data

Bob’s
Data

W5 Platform

W5 Meta-Application

Figure 2: The proposed W5 architecture.

the properties in§1; developers, who write software—
applications, modules, modifications to other developers’
work, etc.—that run on this platform; andend-users, who
store their data on the platform and who choose which
software interacts with their data, what that software is
allowed to do with their data, and under what circum-
stances the software can reveal the data (to other software
or to external clients).

One aspect of this architecture is that, unlike today,
safeguarding users’ data is not under the control of a
bevy of different applications. Instead, the platform pro-
tects users’ data from other users, from external attack,
and from applications. One might wonder what assurance
a user has that providers will implement these functions
correctly. Our answer is that the providers’entire purpose
and business is to get these functions right; that, because
of the factorization in the architecture, only a small num-
ber of components must be correct; and that this factoriza-
tion requires strictly less trust than the status quo. More-
over, “protection” and “non-interference” would presum-
ably be encoded in a contract, just as today’s companies
that provide storage services do not try to control or profit
from the contents of their customers’ files.

We now discuss the above entities in more detail.

Providers. We assume a single provider and relax this
assumption in§3.3. The provider’s job is to supply hard-
ware infrastructure (machine clusters, routers, etc.) and
a general-purpose software platform (i.e., an operating
system) for which developers write software using com-
mon development tools. In building this platform, the
provider’s only requirements are that the infrastructure be
secured (physically and against remote exploits) and that
the software platform enforce users’ policies.

Because these policies concern, in part, what data may
be revealed to other users (e.g., a user may wish to express
that the output of a new photo processing application may
be viewed only by his roommates and certainly not, say,
emailed to the application’s author), the provider must es-
tablish a logicalsecurity perimeterthat excludes exter-
nal clients and that allows only “authorized” data to exit.
Within this perimeter, the provider’s software must track
data as it moves inside of a machine, between machines,
or to and from persistent storage. Implementing this re-
quirement is possible with recent advances in Distributed
Information Flow Control; see§3.1 for more detail.

We imagine that providers would allow users to con-
figure their policies via front-ends like Web forms. In-

2

deed, all of W5 should have DNS and HTTP front-ends
so that users can interact with a W5 application with to-
day’s Web clients. When an HTTP request arrives at the
provider, the provider would read incoming cookies or
HTTP data fields to authenticate the user; identify the re-
quested application; and launch the application, perhaps
granting it some privileges over the user’s data (depend-
ing on the policies configured by the user).

Developers. Under W5, developers have much flexibil-
ity. First, while they must code to the API exposed by the
W5 platform, we expect that API to enable a wide range
of functions, including file I/O, communication with other
modules, etc. The Unix system call API, for instance, fits
the bill and would allow existing software to run on W5.
Second, various development models are possible. For
example, developers can write closed-source software, in
which case they upload binaries to the server which are
“executable” but not “readable” (we discuss developers’
incentives in§3.4).

Developers can also release source code for their
modules, which permits operations not possible today.
For example, the platform itself can guarantee that the
code with which a user is interacting is exactly the
code that the user has audited. As another example,
anydeveloper—not just the application owner—can cus-
tomize an existing application by simply “forking” the
existing code. At that point, the customizing developer
has a pool of users (who need only check a box on a form
to begin using the modified application).

End-Users. An end-user interacts with a W5 site much
as he would any other. When establishing an account, log-
ging on, or choosing which applications to grant author-
ity to, he is interacting with code written by the provider.
Otherwise, developer-written code handles his data and
requests on the server side.

Consistent with the desired properties in§1, users can
express choice about all aspects of the server-based appli-
cations that are interacting with their data. For example,
users can choose particular modules from different devel-
opers (e.g., “Use developer A’s photo cropping module
and developer B’s labeling module”) or even particular
versions of software (e.g., “I want to use version X.Y of
that Web application, not the latest version”).

The user would express preferences like these either
via configuration options on Web forms or else by nav-
igating to particular URLs (e.g., developer A’s cropper
at http://w5.org/devA/crop, or developer B’s version at
http://w5.org/devB/crop).

Examples Besides the examples inline, we can imagine
new applications that W5 enables. For instance, W5 en-
ables arbitrary recommendation engines over private data:
Bob can deploy an application that sends him daily e-mail
with the 5 most “relevant” photos and blog entries posted

by his friends. For an online-dating application, Bob can
upload a custom compatibility metric. Bob can also create
a “chameleon” profile display that adjusts its output based
on the viewer (for instance, to hide his penchant for Sci-
Fi novels from love interests). We believe that bona fide
Web innovators (unlike ourselves) will find ways to use
W5 to greatly improve today’s Web features.

3 CHALLENGES FOR W5

W5 raises a number of questions. In this section, we first
list the most salient of these, then give preliminary an-
swers (in§3.1–§3.4), and then, in§3.5, quickly mention
other challenges that we will need to address. Having not
yet begun a prototype, we caution that our initial esti-
mates of the difficulty of these problems may be opti-
mistic, and of course new issues may arise.

Securing data. Bad developers might upload applica-
tions designed to steal data, maliciously delete it, van-
dalize it, or misrepresent it. Moreover, W5 needs to ship
private data across the Internet (to Web clients), and write
data read from those clients to local files. The W5 plat-
form must distinguish between authorized data transfers
and those that compromise a user’s security aims.

Identifying suitable software. Because W5 hosts a
large menagerie of applications and modules, users need
a way to select for function and trustworthiness (the lat-
ter is necessary because while users do not trust much of
the software that they use, they do occasionally need to
trust small modules not developed by the provider; see
§3.1). Such identification mechanisms would also help
users avoidanti-social applications—those that are not
malicious but are nonetheless antithetical to the ethos of
W5 (e.g., an application that stores its data in a propri-
etary format).

Multiple W5 providers. What are the trust relation-
ships between different providers and how can they be
enforced? Can users “link” accounts on different W5
platforms, so that their data is mirrored across provider
boundaries?

Incentives. Hardware, bandwidth, and development
will make running a W5 cluster costly. Similarly, devel-
opers must invest in writing applications, and users must
move their data from other sites. These entities need a
reason to bother.

3.1 Securing Data

The W5 provider configures the cluster to enforce basic
security policies, forcing all developers and end-users to
conform to them. In this way, the provider can safeguard
end-users from nefarious developers. The two most im-
portant policies,privacy protectionandwrite protection
are discussed below.

3

Privacy Protection The key security insight behind the
W5 proposal (also discussed in other work [5, 7, 11–13])
is that today’s Web-based systems cannot separately grant
privilege for reading of data vs.exporting it past a se-
curity perimeter. In a system that separates these priv-
ileges, however, untrusted software (such as developer-
contributed code in W5) can read private data, manipulate
it, write it to disk, pass it to other applications, but can
neither export it from the system nor enlist another un-
trusted application to do so on its behalf. The boilerplate
privacy policy on the W5 platform, which the provider
assigns to all data by default, is that Bob’s data can only
leave the security perimeter if destined for Bob’s browser.
Thus, Bob can let applications of any pedigree or prove-
nance read and manipulate his data; the boilerplate policy
protects his data from theft, regardless of its movement
inside the perimeter.

However, to provide interesting features, applications
need leeway to “poke holes” through the security perime-
ter. For instance, a social networking application should
be able to show Bob’s profile to Alice but not to Charlie.
Unfortunately, the provider cannot supply this logic, since
application data (like a list of Bob’s friends) is opaque
to the provider. However, the provider does give Bob a
mechanism for granting export privileges to developer-
contributed applications in the form of smalldeclassi-
fier [12] agents, and their job is to selectively export end-
user data across the security perimeter. If Bob wants to
use W5 social networking, he must grant an appropriate
declassifier his data export privileges. A correct declas-
sifier in this context will send Bob’s profile to users on
Bob’s friend list and not to others.

Declassifiers are what enable many of the security fea-
tures of the architecture. In W5 they have two defining
characteristics. First, they are agnostic to the structureof
the data (e.g., pictures or blog entries) they are declas-
sifying. Thus an end-user can use the same declassifier
for multiple applications. Moreover, they are “pluggable”
and factored out of larger applications. Modularity gives
users users latitude in selecting their security policies,
which can range from standard to “idiosyncratic.” And
because declassifiers are typically much smaller than en-
tire applications, they are easier to audit.

We envision that casual W5 users will authorize only
a small handful of reputable declassifiers (see§3.2). Such
a user’s data security is then vulnerable only to bugs in
the provider’s architecture, and bugs in his declassifiers.
While it would be reassuring to remove declassifiers as a
point of trust (and therefore failure), we believe that they
are required as described to make the W5 vision feasible.

Write Protection All user data on an W5 cluster is
by defaultwrite-protected, meaning applications running
without explicit write privileges cannot overwrite (or
delete) user data. A user can delegate the write privilege

for his data as he sees fit, but must trust the delegate to
write faithful representations of his data (as opposed to
vandalizing his files).

Other interesting policies complement these two, such
asread protection, in which only authorized software can
read Bob’s secrets in the first place, orintegrity protec-
tion, in which Bob can authorize an application to act on
his behalf only if all of its components (such as its li-
braries and configuration files) are meritorious. They are
covered in other work [11].

The W5 architecture is agnostic to the underlying op-
erating system and Web application platform, so long
as they accommodate and enforce the described proper-
ties. Several recent decentralized information flow con-
trol (DIFC) systems suffice: the Asbestos [7] and HiS-
tar [13] operating systems, and the Flume [11] system
running on standard Linux. An alternate architecture built
with language-level support [5,12] is also possible.

3.2 Identifying Suitable Software

One of W5’s primary goals is to give users ample choice,
both for applications that process their data and for the
modules employed by those applications. Of course, too
much choice can be a bad thing, and users need some
guidance as to which code they should invoke and, more
important, which code they should trust with their export
and write privileges. We now propose several techniques
by which users can select applications.

Users can establish trust in code based on a code audit
or on the developer’s reputation. One can also imagine
the emergence of W5 editors, who collect, audit and vet
software collections that are compatible and dependable.
These editors can establish reputations based on various
popularity metrics mined from users’ preferences.

Also, W5 can infer code quality by considering de-
pendencies between modules. This notion is inspired by
the PageRank algorithm for Web pages [4]: where PageR-
ank uses the structure of the Web’s hyperlink graph to
infer a page’s suitability, a W5 “code search” could use
the structure of thedependency graph among modulesto
infer a module’s suitability. In the context of W5, code
fragment A can depend on code fragment B in two ways.
First, A is an application that renders HTML for Web
browsers, and the HTML that A outputs embeds a URL
that points to an application that uses B’s code. Second, A
imports B as a library. Collecting such dependencies over
a W5 cluster can yield information about which develop-
ers are widely trusted. Applications written by top-ranked
developers would receive top placement in searches by
users for new features.

Though these editorial policies are clearly fallible, we
argue they are at least as good as those in effect on today’s
desktops and servers. Desktop users and Web application
builders alike install (and therefore trust) software either

4

because they trust the code’s developers, because the soft-
ware has achieved some level of popularity, because they
audited the code, or because it was endorsed by an edi-
tor (such as a trade journalist or a package maintainer on
Linux-based system), or some combination of the four.
The W5 platform captures all of these approaches.

Before continuing, we want to addressanti-social ap-
plications. These applications, though not engaging in
thievery, might artificially constrain the user for the de-
veloper’s benefit. One can imagine applications, in an at-
tempt to entrench themselves, writing out user data in pro-
prietary format, or in a corrupted format to crash other
(honest) applications. Nothing in W5 prevents such be-
havior, but W5 editorial controls can discourage it, just
as their analogues do for antisocial software on today’s
desktops.

Moreover, we see an encouraging trend toward modu-
larity, and interoperability in today’s software landscape.
On the Web, many sites syndicate content via RSS and
expose simple programmer APIs via XML-RPC. On the
desktop, browser plug-ins for Mozilla, ActiveX plugins
for Internet Explorer, and Microsoft Office’s adoption of
simplified XML data formats show that previously isola-
tionist developers are opening up, because users are de-
manding it. We hope that W5 can tap this trend and that
the popular W5 applications will conform to convention
when storing data and transporting data.

3.3 Multiple W5 Providers

While it is convenient to envision a single W5 provider,
competing providers would be best for users and devel-
opers, but how might providers peer and share data? One
approach is to create import/export declassifiers that syn-
chronize user data between two W5 providers. If an end-
user deemed such applications trustworthy, it would give
its privileges to data transfer applications on both plat-
forms A and B. Then, whenever the user updated his
data on one platform, the changes would propagate to the
other. One can imagine more elaborate systems, wherein
providers have explicit peering arrangements with other
providers. We leave the specifics for future work.

3.4 Incentives

W5 is “backward compatible” with the current Web but
we must ask why providers, developers, and end-users
would adopt it, particularly since many of today’s Web
applications derive their value from the user data that they
control, and, under W5, this asset would not be theirs.
In answering this question, we first focus on the “steady
state” incentives and then on bootstrapping the platform.

We do not claim to know all of the possible economic
models so here just speculate on a few. We think that
being a W5provider could be profitable. Commoditized
Web services (Web hosting companies, Amazon’s S3 and

EC2, and others) are already successful, and if develop-
ers attract users to W5, then a W5 provider could charge
for hosting users, developers, or, perhaps, for advertising
space on pages.End-userswould presumably be attracted
to the privacy, control, and new applications.

Developersmight be attracted to the large supply of
users (who would allow the developers to profit from
advertising on their pages). Also, under W5, developers
could contribute free software, just as some developers do
today. These incentives mirror those of today’s third-party
Facebook developers (see§4). Of course, as discussed in
§1 and just above, developers might receive lowerreturns
than they do today, but theircostsand risks would also
be lower (because they would have to invest far less in
user acquisition; see§2). We do not claim to know which
model is the better investment for developers; our purpose
is to present new options to developers and users.

For bootstrapping, the requirements are not onerous.
A commercial W5 provider could evolve from a research
prototype. A developer could—out of conviction, curios-
ity, or wish to avoid managing and securing his user’s
data—build a “killer app” for W5 that does not exist on
the old Web, and users could follow. Once the platform
began attracting users, a kind of “network effect” could
develop (as more users and developers use the platform,
more features arise, thus attracting more users). This de-
velopment would in turn attract other W5 providers.

3.5 Further Challenges and Future Work

We plan to build a prototype, expand the preliminary so-
lutions above, and address these additional challenges:

Performance and resource allocation. Processes must
be limited to reasonable amounts of disk, network, mem-
ory and CPU usage, lest rogue applications degrade the
performance of the W5 cluster. Many systems have exper-
imented with resource allocation locally [2, 6] and over
a network cluster [9], and perhaps techniques from the
VM literature can be brought to bear. Similarly, though
most Web sites employ database administrators to audit
SQL for adequate performance, a W5 cluster would need
to welcome SQL from all developers, and therefore must
prevent malicious queries from locking the database for
all other applications.

Debugging. If the platform were to send core dumps to
developers, it could wrongly expose users’ data to devel-
opers. Yet developers need to get some information when
their applications malfunction.

Covert Channels. Covert channels are a way to leak
data without the system’s consent. For example, the SQL
interface to databases can leak information implicitly [7]
and thus needs to be replaced under W5.

Client-side support. JavaScript is an important Web
feature, as well as a source of many security prob-

5

lems, such as cross-site scripting attacks. W5 exacerbates
these problems, allowing developers to upload arbitrary
JavaScript. W5 could disable JavaScript entirely by filter-
ing it out at the security perimeter, but recent ideas de-
scribed in MashupOS [10] could extend W5 policies to
the client’s Web browser.

4 RELATED WORK

The idea of building extensibility into the Web is not new.
Among others, the Semantic Web [3] project has long
advocated for a Web in which services understand each
other’s data. The recent explosion in “mashups” (sites
combining data from other sites) has led to creative com-
binations of Web services. Also, LiveJournal permits its
users to customize the site by uploading PHP-like scripts.
And the popular Facebook site recently introduced a fea-
ture allowing third-party programmers to develop appli-
cations that run as part of the Facebook service.

These developments are innovative and exciting (and
make us think that W5 may not be far-fetched), but none
of them seeks a general-purpose Web platform that satis-
fies all of the properties in§1. In the models above, data
remains the province of Web services, not users. Live-
Journal’s S1 and S2 interfaces are mainly concerned with
data presentation and do not allow users to contribute new
features. Facebook applications are certainly a notable de-
velopment in Web services. However, in this case, it is
Facebook, not the user, that controls the data. Moreover,
these third-party applications run on Web servers external
to Facebook, thereby revealing users’ profile information
to third party developers, creating a vulnerability (being
exposed to the users’ data, the developers could in turn
expose it). In contrast, under W5, a user controls exactly
the set of clients to whom his data is exported beyond
the security perimeter; the user may wish to exclude from
this set the very software developers who implemented
the modules that he has invoked.

Mashups lack dependable security for private data and
therefore primarily traffic inpublic data. For example,
consider a mashup that combines a page of a private ad-
dress book from MyYahoo with map from Google. Under
the status quo, such a mashup would reveal the page of the
address book (both names and addresses) to Google. The
recent MashupOS proposal [10] can improve security in
this example, hidingnamesfrom Google. However, the
application still uses the Google API to place markers on
the map, and therefore cannot stop the transmission of
theaddressesback to Google’s servers. The same appli-
cation on W5 could generate the annotated map on the
server side, disallowing export of the address data to the
map developers. Current mashups are also limited by the
API that happens to be exposed by the “mashee”, which
may be narrow as a result of privacy considerations, cor-
porate policy, or simple caprice. Indeed, the mashee may

hide a user’s data even when the user wants to share it
with a “masher.” W5 removes this limitation by allowing
usersto reveal their data to the masher.

Another recent proposal hardens browsers against
cross-site-scripting and code-injection attacks [8]. This
technique is complementary to the W5 architecture, and
can help it address JavaScript (see§3.5).

To establish a server-side platform within which data
is both protected and under users’ control, W5 providers
use Distributed Information Flow Control (DIFC) tech-
nology (see [5,11–13] and citations therein). Some of this
literature illustrates how simple Web sites can achieve pri-
vacy and integrity [7,11]. These results give us hope that
the privacy requirements of W5 can be met, but any real-
ization of W5 must extend this work.

5 CONCLUSION

Even as Web services expose APIs, they continue to hoard
users’ data, for protection if not profit. Indeed, it is often
assumed that safeguarding data requiresisolation, either
strict (e.g., virtual machines on a server) or loose (e.g.,
narrow APIs). A noteworthy tension exhibited by W5 is
that, in contrast to these trends, it calls foraggregation
over isolation—yet offers the Web security properties and
functional possibilities that are unavailable today.

REFERENCES

[1] Amazon Web Services.http://aws.amazon.com.
[2] G. Banga, P. Druschel, and J. C. Mogul. Resource containers: A

new facility for resource management in server systems. In
OSDI, Feb. 1999.

[3] T. Berners-Lee, J. Hendler, and O. Lassila. The semantic web.
Scientific American, May 2001.

[4] S. Brin and L. Page. The anatomy of a large-scale hypertextual
web search engine. InWWW, 1998.

[5] S. Chong, K. Vikram, and A. C. Myers. SIF: Enforcing
confidentiality and integrity in web applications. InUSENIX
Security Symposium, Aug. 2007.

[6] F. J. Corbat́o, M. Merwin-Daggett, and R. C. Daley. An
experimental time-sharing system.IEEE Annals of the History of
Computing, 14(1):31–32, 1992.

[7] P. Efstathopoulos, M. Krohn, S. VanDeBogart, C. Frey,
D. Ziegler, E. Kohler, D. Mazìeres, F. Kaashoek, and R. Morris.
Labels and event processes in the Asbestos operating system.In
SOSP, October 2005.

[8] Ú. Erlingsson, B. Livshits, and Y. Xie. End-to-end web
application security. InHotOS, May 2007.

[9] Y. Fu, J. Chase, B. Chun, S. Schwab, and A. Vahdat. SHARP: an
architecture for secure resource peering. InSOSP, October 2003.

[10] J. Howell, C. Jackson, H. J. Wang, and X. Fan. MashupOS:
Operating system abstractions for client mashups. InHotOS,
May 2007.

[11] M. Krohn, A. Yip, M. Brodsky, N. Cliffer, M. F. Kaashoek,
E. Kohler, and R. Morris. Information flow control for standard
OS abstractions. InSOSP, October 2007.

[12] A. C. Myers and B. Liskov. A decentralized model for
information flow control. InSOSP, October 1997.

[13] N. B. Zeldovich, S. Boyd-Wickizer, E. Kohler, and D. Mazières.
Making information flow explicit in HiStar. InOSDI, Nov. 2006.

6

