I|I'I- Computer Science and Artificial Intelligence Laboratory

Technical Report

MIT-CSAIL-TR-2007-043 August 24,2007

World Wide Web Without Walls

Micah Brodsky, Maxwell Krohn, Robert Morris,
Michael Walfish, and Alexander Yip

massachusetts institute of technology, cambridge, ma 02139 usa — www.csail.mit.edu

CSAIL

World Wide Web Without Walls
Micah Brodsky, Maxwell Krohn, Robert Morris, Michael Walfishlex Yip (MIT CSAIL)

1 INTRODUCTION bookmarks), each of which is today the province of dis-

Although the Web is ever more interesting, it istlnctWeb sites.

still—despite the opinions of gushing commentators—..and give users control over their data. Users
fragmented and insufficient. The Web 2.0 ethos—to ashould have fine-grained control owehich applications
quire, control, and “monetize” users’ data—has compgrocess their data. Given the first two properties, a user
nies scrambling for precious user data, a state-of-affaicould, for example, select his favorite photo cropping
reflected in users having to, for example, type in the sanmodule from a set contributed by independent develop-
romantic, music, and food preferences to half a dozeats, just as many people exert choice over their text edi-
social networking sites. Yet, despite the fragmentatiotgr. Moreover, users should contwhich policiesgovern
users gelesschoice than they should. First, new applicathe use of their data. Today, users can express their pri-
tions face a high barrier-to-entry: they must acquire frondacy preferences only within the constraints allowed by
scratch a critical mass of user data (e.g., a new photo shtire application (e.g., the policy “don’t sell my friend list

ing application would require a user to retrieve her colean't even be expressed) and have to re-express their pref-
lection from an existing provider and upload it to the neverences for each application (e.g., Flickr shouldn’t eepos
one). Second, users cannot choose what Web applicatiowsat a user has hidden on Facebook). Ideally, however,
actually do with their data: the much-heralded “privacyusers would be able to express idiosyncratic policies and
settings” of certain Web applications do not come with awould be able to attach these policies to their data so that
enforcement mechanism to prevent error, greed, or malitlee policies applie@crossapplications.

from leaking photographs, “friend lists”, or private blogsSeparate data security from other functions. To ac-

That such calamities will not happgn IS something thatﬁlally enforce what users express about what applications
user must trust-fer every Web application that she US€Say do with their data, the platform requires a mecha-

While this arrangement benefits those Web applicqﬂsm that (a) controls applications’ access to users’ data

look like? The ab i ¢ lai hcomponents. Today, in contrast, the problems of protect-
foﬁ e d © Z ove |ta_my_ of complaints suggests t fag users’ data from other users and from external attack
ollowing desired properties: must be solved by every application anew.

Decouple applications from data ... On the Web to-

day, data are bound to applications. For example, Flickr W5 achieves the above properties witheta-
usZ’rs must store their Egto ra hs. on Elickr pmlilSt uggplicationsthat host large collections of applications
onlv software modules ffom Flg?ck[r) and cannot ;s:asil migmd user data. Internally, a meta-application is a single
y . e . y logical machine on which applications and data are seg-
grate their photographs to a different provider. As anr'egated We imagine there being only a small number of
other example, to offer novel social networking featuresfheta_a' lications, each supplied by\é provider (We
a new application must acquire a set of users, learn a riah bp ' bp P

: escribe W5 in more detail in the next section.) A key
set of connections between theamd develop the novel
component of this architecture is the mechanism that al-

features. Moreover, sharing data between applications Bws a single meta-application to protect users’ data while

difficult (today’s *mashups” combine data from mUItiplecommin ling private data from many users and hosting a
sites but are limited to the APIs exposed by the data; gling p Y 9

. S plethora of applications that all potentially have access
owning applications; se¢d). Ideally, however, Web ap- . : . . .
o ; o to this data. For this function, our architecture relies on
plications would mirror the positive aspects of the desk- L :
o L recent advances in Distributed Information Flow Control
top model. Specifically, new applications should be abl .
. S ; ee, e.g., [5,11-13] and references therein).
to use existing data easily (if the data’s owner consents), . .
L ; Indeed, we are not creating technology but rather pi-
and applications should be able to work on commingled

sets of data (e.g., a user’s photos, friend lists, blog arﬁé“”g it (which is ironic, given our goals) to imagine

2We do not expect today’s Web applications to “open up” their
IFacebook, in particular, lets new applications leveragjasers, but databases, but our purpose here is to imagine a new platforenplah
their approach does not satisfy all of our desired properiees4. form’s success does not depend on existing providers emigréacin

Blogging Site Photo Sharing Site W5 Meta-Application

ABIogEing PZOtO Sl-ha(ing Photo Sharing Blogging Amy’s Bob’s
P Pp. Logic App. Logic App. Logic Data Data
Amy’s | | Bob’s Amy’s || Bob’s
Data || Data Data || Data | W5 Platform

Figure 1: Today's Web sites. Figure 2: The proposed W5 architecture.

an alternate model for Web applications. Our innovatiorf§€ Properties ir§1; developerswho write software—
are the architecture itself (a general-purpose platfordh agPplications, modules, modifications to other developers’
eco-system for Web applications), the properties it ug¥ork, etc.—thatrun on this platform; ared-userswho
holds (e.g., that users control their data directly), ared tr$tore their data on the platform and who choose which
new functions that it makes possible (e.g., any developé?ﬂware interacts with their data, what that software is

or user can customize a Web application—and run trllowed to do with their data, and under what circum-
customization on the server). However, we do not meatiances the software can reveal the data (to other software

to imply that there are no hard questions, §8dliscusses OF {0 external clients). _ _ _
challenges for W5. One aspect of this architecture is that, unlike today,

We now comment on the relationship of W5 to thesafeguarding users’ data is not under the control of a
status quo, making two points. First, W5 is not a «cleaieVvy of different applications. Instead, the platform pro-
sheet” desigr: although W5 “servers” differ from to- tects users’ d'ata.from other users, from external attack,
day’s, the clients are the same. Thus, W5 can be deploy@@d from applications. One might wonder what assurance
gradually; the world need not switch Webs suddenly. & USer has that prowd_ers will |mplement these functions

Second, one corollary of the W5 architecture is thafOrrectly. Ouranswer is that the provideesitire purpose
if it is even partially successful, the barrier to entry fo2nd business is to get these functions right; that, because
new applications will be lower than it is today. For wiof the factorization in the architecture, only a s.maII num-
not only solves some technical problems for new app|perof componepts must be correct; and that this factoriza-
cations (e.g., protecting users’ data), it also solves a maton requires strictly less trust than the status quo. More-
keting problem. Today, for a new application to acquire V€N “Protection” and “non-interference” would presum-
user, the user must visit the new site and input data frop!y be encoded in a contract, just as today’s companies
scratch. Under W5, a prospective user can sign up sirfhat provide storage services do not try to control or profit
ply by checking a box or “accepting an invitation”. Wefrom the contents of their customers'’ files. .
conjecture that these changes—together with fine-grained e now discuss the above entities in more detail.
competition among software modules and users’ abiliproviders. We assume a single provider and relax this
to runanycode while still having a protective backstop—assumption ir§3.3. The provider’s job is to supply hard-
will lead to a burgeoning set of Web applications, therebyare infrastructure (machine clusters, routers, etc.) and
transforming the market for Web services. a general-purpose software platform (i.e., an operating

Of course, such changes cannot benefit everyone: &ystem) for which developers write software using com-
isting Web applications do not benefit, and iigssible mon development tools. In building this platform, the
that, by lowering barriers-to-entry, W5 diminishes incenprovider’s only requirements are that the infrastructuge b
tive to innovate. A large-scale cost-benefit analysis is beecured (physically and against remote exploits) and that
yond our pay grade (and requires predicting the futurehe software platform enforce users’ policies.

Instead, we simply observe that5 yields new optionst Because these policies concern, in part, what data may
is up to the market whether W5 will supplant the currene revealed to other users (e.g., a user may wish to express
model, coexist with it, or fail. Nevertheless, we are hopehat the output of a new photo processing application may
ful because W5 is consistent with today’s trends. In pape viewed only by his roommates and certainly not, say,
ticular, W5 takes to an extreme (1) commoditization ogmailed to the application’s author), the provider must es-
infrastructure (e.g., [1]) and (2) support for applicaiontablish a logicalsecurity perimetethat excludes exter-
that leverage a site’s existing data (e.g., on Facebook). nal clients and that allows only “authorized” data to exit.
Within this perimeter, the provider's software must track
2 OVERVIEW OF W5 ARCHITECTURE data as it moves inside of a machine, between machines,

Figure 2 depicts the architecture of W5 relative to today8r t0 and from persistent storage. Implementing this re-
Web architecture (Figure 1). At a high level, the entitie§uirement is possible with recent advances in Distributed

in W5 areproviders who supply a platform that achieves!nformation Flow Control; seg3.1 for more detail.
We imagine that providers would allow users to con-

3Itis, however, a paper design; building a prototype is fetwork. figure their policies via front-ends like Web forms. In-

deed, all of W5 should have DNS and HTTP front-endby his friends. For an online-dating application, Bob can
so that users can interact with a W5 application with tadpload a custom compatibility metric. Bob can also create
day’s Web clients. When an HTTP request arrives at thee“chameleon” profile display that adjusts its output based
provider, the provider would read incoming cookies oon the viewer (for instance, to hide his penchant for Sci-
HTTP data fields to authenticate the user; identify the ré&i novels from love interests). We believe that bona fide
quested application; and launch the application, perhajéeb innovators (unlike ourselves) will find ways to use

granting it some privileges over the user’s data (depentv5 to greatly improve today’s Web features.

ing on the policies configured by the user).

Developers. Under W5, developers have much flexibil-3 CHALLENGESFOR W5

ity. First, while they must code to the API exposed by th&V5 raises a number of questions. In this section, we first
WS5 platform, we expect that API to enable a wide ranghist the most salient of these, then give preliminary an-
of functions, including file I/0, communication with otherswers (in§3.1-$3.4), and then, ir§3.5, quickly mention
modules, etc. The Unix system call API, for instance, fitgther challenges that we will need to address. Having not
the bill and would allow existing software to run on W5.yet begun a prototype, we caution that our initial esti-
Second, various development models are possible. Foates of the difficulty of these problems may be opti-
example, developers can write closed-source software,ntistic, and of course new issues may arise.

which case they upload binaries to the server which aring data. Bad developers might upload applica-
executable” but not “readable” (we discuss developersjong designed to steal data, maliciously delete it, van-

incentives ing3.4). dalize it, or misrepresent it. Moreover, W5 needs to ship

Developers can also release source code for thejfyate data across the Internet (to Web clients), and write
modules, which permits operations not possible t0da}a5 read from those clients to local files. The W5 plat-
For example, the platform itself can guarantee that thg,m myst distinguish between authorized data transfers

code with which a user is interacting is exactly the,,q those that compromise a user’s security aims.
code that the user has audited. As another example,

any developer—not just the application owner—can cuddentifying suitable software. Because WS hosts a
tomize an existing application by simply “forking” the large menagerie of applllcatlons and modu!es, users need
existing code. At that point, the customizing develope® Way to select for function and trustworthiness (the lat-

has a pool of users (who need only check a box on a fort@ is necessary because while users do not trust much of
to begin using the modified application). the software that they use, they do occasionally need to

,)) trust small modules not developed by the provider; see
End-Users. An end-user interacts with a WS site muchy3 1) sych identification mechanisms would also help
as he would any other. When establishing an account, Iogses avoidanti-social applications—those that are not

ging on, or choosing which applications to grant authogjicious but are nonetheless antithetical to the ethos of
ity to, he is interacting with code written by the provideryyg (e.g., an application that stores its data in a propri-
Otherwise, developer-written code handles his data a@?ary format).

requests on the server side.

Consistent with the desired propertiegih users can Multiple W5 providers. What are the trust relation-
express choice about all aspects of the server-based appiliPs between different providers and how can they be
cations that are interacting with their data. For exampl@,nforced? Can users “link” accounts on different W5
users can choose particular modules from different devéilatforms, so that their data is mirrored across provider

opers (e.g., “Use developer A's photo cropping modulBoundaries?

and developer B's labeling module”) or even particularncentives. Hardware, bandwidth, and development
versions of software (€.g., “l want to use version X.Y ofyill make running a W5 cluster costly. Similarly, devel-
that Web application, not the latest version”). opers must invest in writing applications, and users must

The user would express preferences like these eith@fove their data from other sites. These entities need a
via configuration options on Web forms or else by navregson to bother.

igating to particular URLs (e.g., developer A's cropper
at http://w5.org/devA/crop, or developer B’s version at 3.1 Securing Data

http://w5.org/devB/crop). The W5 provider configures the cluster to enforce basic

Examples Besides the examples inline, we can imaginsecurity policies, forcing all developers and end-users to
new applications that W5 enables. For instance, W5 enenform to them. In this way, the provider can safeguard
ables arbitrary recommendation engines over private datnd-users from nefarious developers. The two most im-
Bob can deploy an application that sends him daily e-madortant policiesprivacy protectionandwrite protection
with the 5 most “relevant” photos and blog entries posteare discussed below.

Privacy Protection The key security insight behind the for his data as he sees fit, but must trust the delegate to
W5 proposal (also discussed in other work [5, 7, 11-13jyrite faithful representations of his data (as opposed to
is that today’s Web-based systems cannot separately graandalizing his files).

privilege for reading of data vs.ﬁxportlng It pastha S€ Other interesting policies complement these two, such
ﬁurlty pr(]anmeter. In a sys(';em that separart]tes t desel Pr'¥sread protectionin which only authorized software can
lleges, however, untrusted software (such as developgr, y gopys secrets in the first place,integrity protec-

contributed code in W5) can read private data, manipulafgy, ‘i which Bob can authorize an application to act on
it, write it to disk, pass it to other applications, but Calkis pehalf only if all of its components (such as its li-

neither export it from the system nor enlist another uny o g and configuration files) are meritorious. They are
trusted application to do so on its behalf. The bo'lerplat@overed in other work [11]

privacy policy on the W5 platform, which the provider o \y5 architecture is agnostic to the underlying op-
assigns to all data by default, is that Bob’s data can °”5’rating system and Web application platform, so long
leave the security perimetgr if destined for Bob’s browse&s they accommodate and enforce the described proper-
Thus, Bob can let ap.pllcatlon.s of any pedlgree O PrOV&es. Several recent decentralized information flow con-
nance read and manipulate his data; the boilerplate poll%| (DIFC) systems suffice: the Asbestos [7] and HiS-
protects his data from theft, regardless of its movemept, [13] operating systems, and the Flume [11] system

inside the perimeter. running on standard Linux. An alternate architecture built

However, to provide interesting features, applicatior\%,ith language-level support [5, 12] is also possible.
need leeway to “poke holes” through the security perime-

ter. For instance, a social networking application shoul@2 Identifying Suitable Software

be able to show Bob'’s profile to Alice but not to CharlieOne of W5's primary goals is to give users ample choice,
Unfortunately, the provider cannot supply this logic, &nC i, tor applications that process their data and for the
application data (like a list of Bob’s friends) is opaqueyoqyles employed by those applications. Of course, t00
to the provider. However, the provider does give Bob fhuch choice can be a bad thing, and users need some
mechanism for Qran,“”g gxport privileges to devebperguidance as to which code they should invoke and, more
contributed applications in the form of smaleclassi- i rtant, which code they should trust with their export

fier [12] agents, and their job is to selectively export ends . yrite privileges. We now propose several techniques
user data across the security perimeter. If Bob wants which users can select applications

use WS social networking, he must grant an appropriaté | jsers can establish trust in code based on a code audit

declassifier his data export privileges. A correct decla%-r on the developer's reputation. One can also imagine

sifier in this context will send Bob’s profile to users ONhe emergence of W5 editors, who collect, audit and vet
Bob's friend list and not to others. software collections that are compatible and dependable.

Declassifiers are what enable many of the security fegpase editors can establish reputations based on various
tures of the architecture. In W5 they have two demm%opularity metrics mined from users’ preferences

characteristics. First, they are agnostic to the struattire Also, W5 can infer code quality by considering de-

the data (e.g., pictures or blog entries) they are declass,jencies between modules. This notion is inspired by

sifying. .Thus an en_d-user can use the samue declassi” fE PageRank algorithm for Web pages [4]: where PageR-
for multiple applications. Moreover, they are “pluggable ank uses the structure of the Web's hyperlink graph to

and factored out of larger applications. Modularity give?hfer a page's suitability, a W5 “code search” could use

users users latitude in selecting their security policieg,o structure of thelependency graph among modules
which can range from standard to “idiosyncratic.” AnQpter 4 module’s suitability. In the context of W5, code
because declassifiers are typically much smaller than q‘Pégment A can depend on code fragment B in two ways.
tire appllca_tlt_)ns, they are easier to aud|t_. i First, A is an application that renders HTML for Web
We envision that casual W5 users will authorize only) ., v cors and the HTML that A outputs embeds a URL
a smaI’I handiul of re.pu.table declassifiers (§8€). Such that points to an application that uses B’s code. Second, A
a user's data security is then vulnerable only t0 bugs i, 415 B as a library. Collecting such dependencies over
the_pr(_)wders archltecturg, and bugs in his dec_l§55|f|er§.w5 cluster can yield information about which develop-
While it would be reassuring to remove declassifiers as@g 4.0 widely trusted. Applications written by top-ranked

point of trust (and therefore failure), we believe that the}ﬁevelopers would receive top placement in searches by
are required as described to make the W5 vision feaSibl?sers for new features

Write Protection All user data on an W5 cluster is Though these editorial policies are clearly fallible, we
by defaultwrite-protected meaning applications running argue they are at least as good as those in effect on today’s
without explicit write privileges cannot overwrite (or desktops and servers. Desktop users and Web application
delete) user data. A user can delegate the write privilegpeilders alike install (and therefore trust) software eith

because they trust the code’s developers, because the sBff2, and others) are already successful, and if develop-
ware has achieved some level of popularity, because thess attract users to W5, then a W5 provider could charge
audited the code, or because it was endorsed by an eftir hosting users, developers, or, perhaps, for advegtisin
tor (such as a trade journalist or a package maintainer epace on pageknd-usersvould presumably be attracted
Linux-based system), or some combination of the fouto the privacy, control, and new applications.
The W5 platform captures all of these approaches. Developeramight be attracted to the large supply of
Before continuing, we want to addreamsti-social ap- users (who would allow the developers to profit from
plications These applications, though not engaging iadvertising on their pages). Also, under W5, developers
thievery, might artificially constrain the user for the de€ould contribute free software, just as some developers do
veloper’s benefit. One can imagine applications, in an aweday. These incentives mirror those of today’s thirdypart
tempt to entrench themselves, writing out user data in pr&acebook developers (s&4). Of course, as discussed in
prietary format, or in a corrupted format to crash othe§l and just above, developers might receive lowegurns
(honest) applications. Nothing in W5 prevents such behan they do today, but thegostsand risks would also
havior, but W5 editorial controls can discourage it, jusbe lower (because they would have to invest far less in
as their analogues do for antisocial software on todaylisser acquisition; se$?). We do not claim to know which
desktops. model is the better investment for developers; our purpose
Moreover, we see an encouraging trend toward modis to present new options to developers and users.
larity, and interoperability in today’s software landseap For bootstrapping, the requirements are not onerous.
On the Web, many sites syndicate content via RSS a®dcommercial W5 provider could evolve from a research
expose simple programmer APIs via XML-RPC. On th@rototype. A developer could—out of conviction, curios-
desktop, browser plug-ins for Mozilla, ActiveX pluginsity, or wish to avoid managing and securing his user’s
for Internet Explorer, and Microsoft Office’s adoption ofdata—build a “killer app” for W5 that does not exist on
simplified XML data formats show that previously isola-the old Web, and users could follow. Once the platform
tionist developers are opening up, because users are degan attracting users, a kind of “network effect” could
manding it. We hope that W5 can tap this trend and thaevelop (as more users and developers use the platform,
the popular W5 applications will conform to conventionrmore features arise, thus attracting more users). This de-
when storing data and transporting data. velopment would in turn attract other W5 providers.

3.3 Multiple W5 Providers 3.5 Further Challenges and Future Work

While it is convenient to envision a single W5 providerYVe plan to build a prototype, expand the preliminary so-
competing providers would be best for users and devéltions above, and address these additional challenges:
opers, but how might providers peer and share data? Ope formanceand resourceallocation. Processes must
approach is to create import/export declassifiers that sye limited to reasonable amounts of disk, network, mem-
chronize user data between two W5 providers. If an endry and CPU usage, lest rogue applications degrade the
user deemed such applications trustworthy, it would giserformance of the W5 cluster. Many systems have exper-
its privileges to data transfer applications on both plaimented with resource allocation locally [2, 6] and over
forms A and B. Then, whenever the user updated hig network cluster [9], and perhaps techniques from the
data on one platform, the changes would propagate to th®/ literature can be brought to bear. Similarly, though
other. One can imagine more elaborate systems, whergiivst Web sites employ database administrators to audit
providers have explicit peering arrangements with oth&QL for adequate performance, a W5 cluster would need
providers. We leave the specifics for future work. to welcome SQL from all developers, and therefore must
prevent malicious queries from locking the database for
all other applications.

W5 is “backward compgtible" with the current Web bUtDebugging. If the platform were to send core dumps to
we must ask why providers, developers, and end-usgfgyelopers, it could wrongly expose users’ data to devel-

would adopt it, particularly since many of today’s Welypers, Yet developers need to get some information when
applications derive their value from the user data that thgja;, applications malfunction.

control, and, under W5, this asset would not be theirs,

In answering this question, we first focus on the “steaggovert_ Channels. COV?” channels are a way to leak
state” incentives and then on bootstrapping the platfornflat@ without the system’s consent. For example, the SQL

We do not claim to know all of the possible economidnterface to databases can leak information implicitly [7]
models so here just speculate on a few. We think thaf'd thus needs to be replaced under WS.
being a W5provider could be profitable. Commaoditized Client-side support. JavaScript is an important Web
Web services (Web hosting companies, Amazon’s S3 afehture, as well as a source of many security prob-

3.4 Incentives

lems, such as cross-site scripting attacks. W5 exacerbaléde a user’s data even when the user wants to share it
these problems, allowing developers to upload arbitramyith a “masher.” W5 removes this limitation by allowing
JavaScript. W5 could disable JavaScript entirely by filterusersto reveal their data to the masher.
ing it out at the security perimeter, but recent ideas de- Another recent proposal hardens browsers against
scribed in MashupOS [10] could extend W5 policies t@ross-site-scripting and code-injection attacks [8].sThi
the client's Web browser. technique is complementary to the W5 architecture, and
can help it address JavaScript (§8e5).

To establish a server-side platform within which data

The idea of building extensibility into the Web is not new!S POth protected and under users’ control, W5 providers

Among others, the Semantic Web [3] project has |ongse Distributed Information Flow Control (DIFC) tech-

advocated for a Web in which services understand eaPRI09Y (s€€ [5,11-13] and citations therein). Some of this

other's data. The recent explosion in “mashups” (Sitégerature illustrates how simple Web sites can achieve pri

combining data from other sites) has led to creative conf{&%Y and integrity [7, 11]. These results give us hope that

binations of Web services. Also, LiveJournal permits it4 .privafcy requirements thWS CaE be met, but any real-
users to customize the site by uploading PHP-like scriptation of W5 must extend this work.
And the popular Facebook site recently introduced a fea: concLusion

ture allowing third-party programmers to develop appli- .)
cations that run as part of the Facebook service. Even as Web services expose APIs, they continue to hoard

These developments are innovative and exciting (arﬂfers, data, for protectiqn if not profit._llnde(_—:‘d, it ?S often
make us think that W5 may not be far-fetched), but nore>SUmed that safeguarding data requisetation, either

of them seeks a general-purpose Web platform that satiitict (€-9., virtual machines on a server) or loose (e.g.,
fies all of the properties ifl. In the models above, data""OW APIS). A noteworthy tension exhibited by W5 is

4 RELATED WORK

remains the province of Web services, not users. Livdat in contrast to these trends, it calls tggregation

Journal's S1 and S2 interfaces are mainly concerned witl

er isolation—yet offers the Web security properties and

data presentation and do not allow users to contribute ndfctional possibilities that are unavailable today.

features. Facebook applications are certainly a notable
velopment in Web services. However, in this case, it
Facebook, not the user, that controls the data. Moreoveil]
these third-party applications run on Web servers extern ?
to Facebook, thereby revealing users’ profile information
to third party developers, creating a vulnerability (beingl3!
exposed to the users’ data, the developers could in turH]
expose it). In contrast, under W5, a user controls exactly
the set of clients to whom his data is exported beyonds]
the security perimeter; the user may wish to exclude from
this set the very software developers who implemente?g]
the modules that he has invoked.

Mashups lack dependable security for private data and
therefore primarily traffic inpublic data. For example, [7]
consider a mashup that combines a page of a private ad-
dress book from MyYahoo with map from Google. Under
the status quo, such a mashup would reveal the page of tf
address book (both names and addresses) to Google. 'Ilgia
recent MashupOS proposal [10] can improve security i
this example, hidingramesfrom Google. However, the [10]
application still uses the Google API to place markers on
the map, and therefore cannot stop the transmission [ﬂ]
the addressedack to Google’s servers. The same appli-
cation on W5 could generate the annotated map on the
server side, disallowing export of the address data to the]
map developers. Current mashups are also limited by tﬂ?]
API that happens to be exposed by the “mashee”, whi
may be narrow as a result of privacy considerations, cor-
porate policy, or simple caprice. Indeed, the mashee may

%EFERENCES

Amazon Web Servicedit t p: / / aws. amazon. com

] G. Banga, P. Druschel, and J. C. Mogul. Resource contstie

new facility for resource management in server systems. In
OSD]|, Feb. 1999.

T. Berners-Lee, J. Hendler, and O. Lassila. The semarglz w
Scientific AmericapMay 2001.

S. Brin and L. Page. The anatomy of a large-scale hyperaéxt
web search engine. \WWW 1998.

S. Chong, K. Vikram, and A. C. Myers. SIF: Enforcing
confidentiality and integrity in web applications. USENIX
Security SymposiunAug. 2007.

F. J. Corbab, M. Merwin-Daggett, and R. C. Daley. An
experimental time-sharing systemEEE Annals of the History of
Computing 14(1):31-32, 1992.

P. Efstathopoulos, M. Krohn, S. VanDeBogart, C. Frey,

D. Ziegler, E. Kohler, D. Ma#res, F. Kaashoek, and R. Morris.
Labels and event processes in the Asbestos operating sylstem.
SOSR October 2005.

U. Erlingsson, B. Livshits, and Y. Xie. End-to-end web
application security. IiHotOS May 2007.

Y. Fu, J. Chase, B. Chun, S. Schwab, and A. Vahdat. SHARP: a
architecture for secure resource peeringS®SR October 2003.
J. Howell, C. Jackson, H. J. Wang, and X. Fan. MashupOS:
Operating system abstractions for client mashup$idtOS

May 2007.

M. Krohn, A. Yip, M. Brodsky, N. Cliffer, M. F. Kaashoek,

E. Kohler, and R. Morris. Information flow control for standar
OS abstractions. IBOSR October 2007.

A. C. Myers and B. Liskov. A decentralized model for
information flow control. INSOSPR October 1997.

N. B. Zeldovich, S. Boyd-Wickizer, E. Kohler, and D. Mares.
Making information flow explicit in HiStar. IOSDI|, Nov. 2006.

