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Abstract

Normal-mode lineshapes are obtained in the strong and intermediate coupling regimes
of atom-cavity interaction. The system consists of a beam of two-level 138Ba atoms
intersecting at right angles a standing-wave TEM00oo mode of a low-loss cavity. The
coupling regimes are realized with two cavities which differ only in finesse. Two
experimental configurations are employed: The atoms or the cavity mode are weakly
driven by tunable coherent laser light. In either case, both the light scattered out
the resonator sides (from the atoms) as well as out the cavity end are simultaneously
recorded as functions of laser frequency.

Lineshapes obtained are critically dependent upon excitation and observation
schemes. Furthermore, dramatic manifestations of the standing-wave mode struc-
ture and intra-cavity atomic number fluctuations are observed with mean intra-cavity
atomic number, (N) ; 1. For strong coupling, one, two and three-peaked lineshapes
are observed. In addition, two-peaked spectra observed in intermediate coupling
demonstrate that lineshape splitting is not necessarily indicative of oscillatory atom-
cavity energy exchange (normal-mode splitting).

The relationship between lineshapes and temporal evolution of the system is elu-
cidated with a semiclassical model which accounts for intra-cavity atomic number
fluctuations. The predicted lineshapes agree well with the experimental lineshapes in
all configurations. Single-peaked lineshapes with widths twice the free-space natural
linewidth reveal greatly enhanced irreversible spontaneous emission in the intermedi-
ate coupling regime, and two-peaked lineshapes indicate greatly enhanced reversible
spontaneous emission (vacuum Rabi oscillations). In such experiments, a single intra-
cavity atom does not constitute a true single atom experiment but, instead, requires
on average several atoms interacting with the cavity mode simultaneously.

Thesis Supervisor: Michael S. Feld
Title: Professor
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Chapter 1

Introduction

In 1917, the phenomenon of spontaneous emission was introduced in Einstein's cel-

ebrated treatment of a gas of atoms in thermal equilibrium with the surrounding

radiation field [1]. Not only is spontaneous emission as well as stimulated emission

and absorption necessary, but these processes also had to be directional in order to

correctly obtain the Planck radiation distribution law. This provided further evidence

for the existence of photons: The radiation field is composed of discrete packets of

energy which also possess momentum that may be imparted (directionally) to inter-

acting molecules or atoms. One of the earliest successes of the formally developed

quantum theory of radiation is the natural occurrence of spontaneous emission, placed

on an equal footing with simulated emission, in the description of a radiating atom.

The Einstein A and B coeffficients could now be rigorously calculated in a theory

capable of going far beyond the conditions and assumptions required in prior phe-

nomenological derivations based on thermodynamics and rate equations.

To calculate the total spontaneous emission rate, Weisskopf and Wigner [2] applied

perturbation theory to the interaction between the atom and the quantized field

modes of free space. The vacuum surrounding the excited atom no longer plays a

passive role, as it did in the preceding classical theories of radiation but, instead,

couples to and perturbs the atom. Another celebrated result, also a consequence

of the interaction between an atom and the vacuum, is the Lamb shift [3]. In free

space, the vacuum is viewed as an ensemble of unexcited harmonic oscillators, the



electromagnetic field modes of free space, and these oscillators all couple to the atom.

As a consequence of this ensemble, the spontaneous emission process is irreversible,

i.e., the emitted energy does not return to the atom.

In the quantum theory of radiation, alteration of the surrounding vacuum by

placing bounding surfaces naturally leads to changes in the atomic properties and,

consequently, the spontaneous emission process. The first experimental demonstra-

tion of this involved a monomolecular layer of dye molecules deposited on a thin

dielectric layer which lay on top of a metal mirror [4]. The fluorescence lifetime of

the dye molecules exhibited a dependence on the thickness of the dielectric layer: For

thicknesses less than the fluorescence wavelength, the lifetime increased.

For more dramatic effects, a natural system to consider is a cavity which is formed

by contoured surfaces, with large electrical conductivity (or, equivalently, reflectivity),

that either completely or partially enclose a radiating atom. The first experimental

demonstration of inhibited spontaneous emission for this type of setup observed large

changes in the damping rate of cyclotron motion of an electron in an electromagnetic

trap [5]. With proper construction, a cavity can not only inhibit the atom from radi-

ating its energy (increase of the excited atomic state lifetime), but also enhance the

spontaneous radiation rate (decrease of the excited atomic state lifetime). Further-

more, if the interaction between the atom and the cavity field is strong enough and

if the bounding cavity can store the emitted photon for a sufficient period of time,

then the spontaneously emitted photon can be reabsorbed by the atom. This leads to

an oscillatory exchange of energy between the atom and cavity field and the atomic

emission may be viewed as reversible spontaneous emission. The resulting process has

been popularly referred to in the literature as vacuum Rabi oscillation [6] by virtue of

its similarity with the evolution of an atom subject to an intense, external laser field.

In this thesis, open optical resonators are used to investigate the lowest energy

eigenstate structure of a composite atom-cavity system. In this type of cavity, the

atom couples to an ensemble of free space modes as well as to a cavity mode. Note,

however, that the cavity mode itself is coupled to free space modes via the finite

reflectivity of the mirrors which make up the cavity. Not only the atom but also the



cavity mode can irreversibly lose energy. The resulting competition between the irre-

versible damping processes and the reversible atom-cavity energy exchange provides

for a rich source of phenomena which may be characterized in three regimes: (1)

Strong coupling, in which oscillatory energy exchange dominates, (2) weak coupling,

in which radiative decay to free space (damping) dominates, and (3) intermediate

coupling, where all processes are of similar strength.

1.1 Background

The study of an atom coupled to a single mode of a resonator, known as cavity

quantum electrodynamics (QED), has undergone significant advances since Purcell

first pointed out that a resonator could alter the atomic spontaneous emission rate [7].

Many of the initial experiments demonstrating suppression and/or enhancement of

spontaneous emission were conducted in the microwave regime with Rydberg atoms

[8, 9]. The advantages of this system are twofold: (1) Large dipole moments provide

for large transition rates and (2) large wavelengths make feasible the construction

of cavities whose dimensions are on the order of that wavelength [10]. Interestingly,

investigations which utilized these low order mode cavities were also performed in the

optical regime by placing two plane parallel mirrors, separated by 2.2 um, in an atomic

beam of properly prepared cesium atoms [11]. In the microwave experiments, direct

measurement of the emitted photons is impossible. Instead, the atomic population

levels are recorded after interaction with the cavity. In the optical regime, however,

the emitted light can be measured directly.

Results in our laboratory demonstrated that substantial modifications of the spon-

taneous emission process is also possible in cavities with much larger dimensions, i.e.,

high order mode resonators. Large enhancement and suppression of spontaneous

emission as well as cavity-enhanced radiative level shifts in the visible regime were

observed in confocal and concentric geometry cavities [12, 13, 14]. These resonators

have a degeneracy of modes which significantly alters the vacuum field density of

states and gives rise to a large atom-cavity coupling (see also [15]). Note, however,



that these experiments were performed in the weak coupling regime because cav-

ity damping dominated the atom-cavity interaction. We will discuss these special

resonators further in Sec. 3.4.

Note that in the regime of weak atom-cavity coupling, perturbation theory is ad-

equate to describe the system's behavior. Of great interest, however, is the strong

coupling regime where a host of phenomena is possible. Evolution of the atomic ra-

diator, as well as the cavity field, must be taken into account. Microwave researchers

were the first to observe several interesting consequences of strong coupling which

included quantum collapse and revival [16], Rabi oscillations [17, 18], and single-

atom maser oscillation [19]. Improvements in resonator design have recently made

this regime accessible at optical wavelengths. For example, experiments have demon-

strated Rabi oscillations with many atoms coupled to a single field mode [20] and

normal mode splitting for a single intra-cavity atom [21] as well as squeezed-state

generation [22] and optical bistability with few atoms [23]. Normal mode splitting

refers to the two-peaked frequency spectrum expected when oscillatory energy ex-

change occurs. The peaks correspond to each of the two nondegenerate frequencies

(normal modes) of oscillation and their separation measures the oscillatory exchange

rate of energy. Furthermore, single atom laser oscillation has recently been observed

in our laboratory [24, 25].

The above experiments employed atomic beams, but enhanced spontaneous emis-

sion [26] as well as normal mode splitting [27] have also been observed in semiconduc-

tor devices, where practical as well as fundamental issues of cavity QED are studied

[28, 29]. Recently, semiconductor technology has made possible the observation of

normal mode splitting lineshapes in devices with only a few quantum wells (QW)

[30], and even a single exciton within a single QW located at the anti-node of a

low-order cavity mode [31]. In this experiment, the Rabi oscillations in the emitted

intensity as well as the emission spectra were recorded. These studies are only a few

in the recent activity toward realizing low-threshold and, therefore, more efficient mi-

crocavities (also recently demonstrated [32]). A commonly used parameter, called the

spontaneous emission coefficient, /, is defined as the ratio of the (enhanced) spon-



taneous emission rate into the cavity mode to the total spontaneous emission rate

(cavity mode plus all other free space modes). The larger the 3 parameter, the lower

the threshold for laser oscillation. In the limit P -+ 1 thresholdless lasing occurs

[28]. Several areas of technology which may benefit from this research include optical

communications, displays, and optical computing.

All of the above studies utilize standing-wave (SW) mode resonators, in which the

coupling of the radiator to the cavity mode is position dependent. The effect of such

mode structure on atom-cavity dynamics can be significant. For example, threshold

in microcavities is dependent on the spontaneous emission coefficient, which is mode

structure and, therefore, position dependent. Similarly, operation of the single-atom

laser, which employs an atomic beam as the gain medium, is critically dependent on

the location of the atom(s) within the cavity mode volume [33]. Unlike the microcavity

case, in which it is possible to localize the radiators at specific positions within the

cavity mode, atoms in an atomic beam can occupy any position within the cavity

mode. This thesis will elucidate interesting consequences of this in the study of the

normal mode structure of an SW cavity mode interacting with atoms in an atomic

beam. Other interesting phenomena which rely on this SW mode structure include

the effects of atomic motion in the cavity mode [34, 35], trapping, and squeezing

[36, 22].

The first fully quantized treatment of an atom-cavity system was introduced by

Jaynes and Cummings [37]. In this paper, a comparison of the fully quantized the-

ory with a semiclassical theory, a theory in which the atoms are treated quantum

mechanically but the radiation field is treated classically, is made. In particular, it

is pointed out that previous semiclassical treatments (eg., [38]) involve approxima-

tions: In addition to the classical treatment of the radiation field, the molecules are

given independent wave functions and are not treated as a single quantum mechanical

system as was done in a formalism similar to that of Dicke's superradiant gas [39].

For the complete quantum mechanical treatment suggested, however, solution of the

so-called Jaynes Cummings Hamiltonian for one or many atom(s) becomes tractable

only under the assumption of a uniform mode function. To illustrate, consider the



Hamiltonian for atoms interacting with a cavity mode in which damping is neglected:

N 1 ^.

H= [-hwp8 + hwP a&t + igj(&tJ- a )], (1.1)
j=1

where &-7 is the atomic inversion operator, gj is the coupling of the atom to the

quantized cavity field mode with raising (lowering) operators at (a), and 3+ (&_)

is the atomic raising (lowering) operators for the j"h atom. If the cavity mode is

described by a uniform mode function, gj = go for all j regardless of the jth atom's

position, and all the atoms are equally coupled to the mode. In analogy with the

angular momentum formalism, one may introduce the operators

N N

SZ= &S = J±, (1.2)
j=1 j=1

so that the Hamiltonian, Eq. 1.1, may be rewritten as

H = hwpS + hwPat + igo(at S_ - aS+) =_ Ho + igo( tS- - ^S+). (1.3)

The operators satisfy the commutation relations

[S, S±] = ±S±, (1.4)

[+, ] = 2Sz, (1.5)

and a basis which forms simultaneous eigenstates of Ho and the operator 2 = 2 +

(S+S_ + SS+)/2 may be constructed [39]. This situation was treated in a frequently

quoted paper by Tavis and Cummings [40]. If, however, an SW mode function,

depicted in Fig. 1-1, is assumed so that all the gj's are different, the treatment becomes

more complicated. This point will be discussed later in connection with many-atom

versus single-atom effects.

Atom-cavity systems have been studied theoretically in many different approaches,

with predictions of a host of interesting features in both the classical and quantum



Figure 1-1: Atoms coupled to a standing-wave cavity mode

domains. Quantized field models have analyzed the statistical properties [41, 42]

and/or structure [43] of the single-atom system over a range of system parameter val-

ues. Sanchez-Mondragon et al. [6] have presented the first fully quantum mechanical

predictions of the spontaneous emission spectrum of a strongly coupled atom-cavity

system with no cavity damping (see also Agarwal, who has calculated the atomic

absorption [44] and spontaneous emission [45] spectra of such a system). Rice and

Carmichael [46] have discussed nonclassical effects such as squeezing-induced line nar-

rowing and spectral holes in the incoherent part of the fluorescence and transmission

spectra, and Carmichael et al. [47] have discussed the role of squeezing in the spon-

taneous emission spectrum and weakly driven fluorescence spectrum of a damped,

strongly coupled system. Models in which the emission field is quantized have been

developed to study the strongly excited system [48, 49].

Quantized field models become increasingly more complicated to apply when the

cavity field or the number of interacting atoms becomes large. Recent theoretical

activity, however, holds promise of providing numerical simulations in fully quantized

treatments of these more realistic systems: Quantum trajectory simulations are fully

quantized treatments currently being applied to experimentally realizable systems



that include open, high-order cavities similar to those studied here (with one or many

atoms) (see [50] and references therein).

1.2 Present Work

Many of the above mentioned phenomena are manifested in spectral lineshapes. For

example, two-peaked lineshapes occur in normal-mode splitting, multi-resonance line-

shapes are predicted to arise from atomic motion through the cavity mode, and

broadened and narrowed Lorentzians demonstrate enhanced and suppressed sponta-

neous emission, respectively. These lineshapes are sensitive not only to the kind of

resonator (standing/traveling wave, open/closed and degenerate/nondegenerate) and

radiator (moving atoms in a beam or fixed excitons in a quantum well), but also

to the excitation and observation geometry. In particular, normal-mode lineshapes

in an atom-cavity system with an open optical resonator may be obtained either by

exciting the atom from the side of the resonator, or the cavity mode through the end

mirrors. In either case one may observe light scattered by the atom out the resonator

side (sidelight) or transmitted out the resonator ends, Fig. 1-2. The various schemes

can exhibit dramatically different lineshapes.

The core of this thesis consists of a detailed study of spectral lineshapes obtained

in experiments with an atomic beam interacting with a single mode of an open optical

resonator. All schemes mentioned above are performed with weak excitation to obtain

the normal mode structure for this system. We utilize nondegenerate resonators

("super-cavity") but, in order to connect with other works, degenerate (concentric or

confocal) and nondegenerate resonators are briefly compared. We obtain lineshapes

in all three coupling regimes (strong, intermediate and weak coupling) and extract

information about the spontaneous emission processes in such cavities.

One objective in studying these systems is the realization of the single atom limit

in which only a single atom interacts with the cavity mode. This objective has

not been realized in these experiments for very interesting reasons attributable to

manifestations of the SW mode structure. Fluctuations in the number of intra-cavity



MO(M atoms

e'JvAo

"I".-

tdli u a0
06ipbeOj tula

r

I

(b I



atoms, defined in Chapter 3, are very important in this limit and have dramatic effects

on the lineshapes for appropriately chosen schemes.

The analyses of our results utilize a semiclassical model in which all fields, cavity

and probe, are treated classically via Maxwell's equations. This approach, of course,

cannot provide information about effects that arise from the quantum coherence be-

tween the atoms and field: The semiclassical theory of this type arises from assuming,

in the fully quantized theory, that the expectation of products of the atomic and field

operators is equivalent to the product of their expectations. (Note that some semi-

classical theories, such as those treating a strongly driven atom in free space (see, for

example, the derivation of the Mollow spectrum, [51]), assume that the probe field is

classical but the emission field (free space) is quantized.) Nonetheless, such a theory

is applicable to our studies of normal mode structure and provides a tractable means

for analyzing the various results.

1.2.1 Contributions

In summary, we provide a list of what this thesis demonstrates:

* Demonstration of the importance and effects of fluctuations in intra-cavity

atomic number on experimental lineshapes.

* Clarification of the conditions for single atom effects in SW and degenerate

resonators.

* First observation of normal mode splitting for a single intra-cavity atom in an

"artifact-free" scheme.

* Large enhancement of spontaneous emission in intermediate coupling regime.

* Elucidation of the relationship between lineshapes and temporal evolution. In

particular, we distinguish lineshape splitting (two-peaked lineshapes) from nor-

mal mode splitting (two nondegenerate normal mode frequencies) and demon-

strate the conditions under which lineshape splitting implies oscillatory energy

exchange.



* Utility of a semiclassical model in describing the various spectral lineshapes

experimentally obtained.

* Investigation of saturation effects in an SW cavity mode in the strong coupling

regime.

* Comparison of nondegenerate and degenerate resonators.

1.3 Organization of Thesis

In Chapter 2, we present the "fixed-atom" semiclassical model. This model assumes

that either one stationary atom interacts with the cavity mode or, if there are many

atoms, they all are equally coupled to the cavity. This provides the framework from

which a more realistic model applicable to the experiments can be constructed (in

Chapter 3).

Chapter 3 extends the model of chapter 2 to study an atomic beam interacting with

a standing-wave cavity mode. The number of atoms and their positions (which de-

termines each atom's coupling strength) within the mode fluctuate, giving rise to

fluctuations in the number of intra-cavity atoms. Manifestations of these fluctuations

are discussed and the lineshapes are compared with the fixed-atom lineshapes. The

single atom limit is discussed and a study of saturation is briefly described.

Chapter 4 describes the experiments and their results are compared with theory.

Chapter 5 presents a summary of the present work. Possible future studies for this

particular experimental arrangement are also presented.

Appendix A calculates a cavity transmission factor for transmission experiments.

Appendix B briefly describes broadband excitation of the atom-cavity system.

Appendix C discusses stimulated emission line narrowing.

Appendix D contains a reprint of the Physical Review Letter.





Chapter 2

Theory I

This chapter describes a semiclassical model which assumes a fixed number of atoms

interacting with a single resonator mode described by a uniform mode function. The

positions of the atom(s) is irrelevant, they are all coupled equally to the cavity mode.

For a related work see [52]. The theory described below has also been applied to the

study of optical bistability in atom-cavity systems, see [53].

2.1 Introduction

Consider a two-level atom with free-space atomic center frequency, wp, and transition

dipole moment matrix element, lp, coupled to a mode of a resonator with frequency,

we, and volume, V. In a quantized field picture this system can be described using

dressed states [54]. If we consider only the lowest lying states (those with zero or

one quantum of excitation), neglect damping of the atom and cavity, and treat the

coupling in the rotating wave approximation, the dressed state frequencies are

Q = W +w w+ g2. (2.1)

In this equation the atom-cavity mode coupling constant is defined as go = zE,,,c/- =

S/27rhwc/V, with w_ = (we - wp)/2 the atom-cavity frequency detuning. The quan-

tity Eac corresponds to the RMS electric field associated with vacuum fluctuations
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Figure 2-1: Dressed state diagram of the two lowest excited states of the atom-cavity
system. IG, 1) is the superposition state with one photon in the cavity and the atom
in the ground state, and jE, 0) is the superposition state with no photons in the cavity
and the atom in the excited state. The dashed lines show the uncoupled states.

[55].
The forgoing treatment provides a simple, qualitative picture of the mode fre-

quencies of the atom-cavity system, depicted in the dressed state diagram of Fig. 2-1.

Essentially the same result is obtained classically if one considers the atom and cavity

as coupled harmonic oscillators. Because of the coupling, the normal mode frequencies

deviate from the uncoupled oscillator frequencies. For zero detuning (cavity tuned

to the atomic center frequency, w_ = 0) the normal mode frequencies differ by 2go.

Physically, this normal mode frequency difference corresponds to the exchange rate

of the energy of one quantum between the atom and the cavity field (normal mode

ringing). Even for large detuning, Iw I >» go, the normal mode frequencies deviate

slightly from the atom and cavity field uncoupled frequencies. For w_ < -go, the

I+) dressed state is atom-dominated (i.e., the probability that the atom is excited is

much greater than the probability that a photon is in the cavity) and the I-) state

is cavity-dominated. For w_ > go, the reverse occurs. For w_ = 0, these states are

a linear superposition of an excited atom, empty-cavity-mode product state and an

unexcited atom, one-photon-cavity-mode product state.

Since decay is an essential feature of any physically realizable atom-cavity sys-

tem, damping must be incorporated. The atom decays out the side of the resonator



via coupling to the free-space modes there and also emits into the resonator mode,

which itself decays via coupling to free-space modes bounding the mirror surfaces.

The inclusion of damping gives rise to three regimes for study: the strongly coupled

regime, of which the preceding dressed states example is an extreme case; the inter-

mediate coupling regime, in which the coupling strength is of the same order as the

damping; and the weakly coupled regime, in which damping dominates the atom-

cavity interaction. (These three regimes are defined more precisely in Sec. 2.3.1.) In

the time domain, a strongly coupled, resonant (w_ = 0) system exhibits an oscilla-

tory exchange of energy between the two oscillators (ringing), despite the presence of

damping, whereas a weakly coupled, resonant system exhibits decay with no ringing,

despite the presence of coupling. In the frequency domain, the spectral lineshape of

the oscillators (studied, e.g., by monitoring the atomic fluorescence and the cavity

transmission) is effected by the presence of coupling in various ways depending on

the coupling regime and the experimental arrangement. For a resonant system in the

strong coupling regime, the spectral lineshapes are two-peaked (lineshape splitting)

but in the weak coupling regime they are single-peaked. The observation of lineshape

splitting in the frequency domain, however, does not necessarily indicate ringing in

the time domain. As will be discussed in Sec. 2.3.2, in the intermediate coupling

regime there can be significant lineshape distortions, and a two-peaked structure can

occur, even in a resonant system with no ringing. Most atom-cavity experiments

are performed in the frequency domain by studying the emission or scattering in a

succession of single-atom events. On average, this is equivalent to performing the

experiment in the steady state. In fact, for the experiments described in Chapter 4,

each atom reaches steady state very quickly so that the initial transient regime may

be neglected.

As seen in Sec. 2.3.3, for arbitrary atom and cavity decay rates the spontaneous

emission rate into the cavity mode for the resonant atom-cavity system may be written

as

2g2,Aca, = , (2.2)



with -y the atomic dipole moment decay rate and y, the cavity field decay rate into

free-space modes. We will mainly specialize to open optical resonators, for which

% = c(1 - R)/2L, with R the mirror reflectivity and L the cavity length. Acav may

be expressed in various ways. From an experimental point of view, it is useful to

relate it to the resonator finesse F = 7wc/2L7y = r/(1 - R), and to the factor f,

the ratio of power spontaneously emitted by a free-space dipole into a solid angle

subtended by the cavity mirrors to the total free-space power spontaneously emitted

[13]:
2fF 27cy,Acav 2fF 2 + .c (2.3)

Note that the parameter f is not the same as the spontaneous emission coefficient,

3, which includes the effects of atom-cavity coupling. In fact,

Acav
= cav (2.4)

2% + Acav

The total free-space spontaneous emission rate is

Afree = . (2.5)

Equation 2.3 can also be expressed in terms of the atomic absorption cross section,

2Vgg 2  47wwpp 2

o =- (2.6)
cy chiy

to obtain,

Acav= oc (2.7)
V 7p + -Y

In general, the coupled atom-cavity system is best described in terms of the two

normal modes. As mentioned above, three regimes of interest may be defined, accord-

ing to the relative sizes of go, iy and 7. In strong coupling, the coupling constant go

dominates, and in weak coupling 7Y and/or yp dominate. (In a system of N atoms

interacting with the cavity mode, the coupling constant is given by \/-go.) The

normal modes contain contributions from the properties of both oscillators. The



identification of separate, distinct atomic and cavity-mode oscillators is not possible

in the strong and intermediate coupling regimes when the atom and cavity mode are

resonant. With weak coupling, however, one normal mode resembles the atomic os-

cillator, and the other resembles the cavity oscillator. Changes in the decay rate and

emission frequency resulting from the coupling will occur for the cavity oscillator, as

well as for the atomic oscillator. The atomic emission rate, emission frequency, and

lineshape can be significantly altered by the atom-cavity interaction.

In a weakly coupled system the spontaneous emission rate of the atom can be en-

hanced or suppressed and the atomic emission frequency can shift due to the presence

of the resonator. Such changes in the atomic spontaneous emission rate have been

observed at microwave [8, 9] as well as optical [11] wavelengths in systems with a

low-order mode resonator/waveguide whose dimensions are on the order of the wave-

length (L ; A). For visible wavelengths, spontaneous emission rate changes as well as

vacuum radiative level shifts have been studied using specially designed open optical

resonators (L > A) with degenerate high-order modes [12, 13, 14]. In these experi-

ments, the spontaneous emission rates and frequencies were extracted from lineshapes

obtained in a scattering arrangement (Sec. 2.2.3). The lineshapes observed were sin-

gle Lorentzians. In this limit, the total spontaneous emission rate is identical to the

linewidth of the scattering lineshape, but this is not generally true. In Sec. 2.3 we will

discuss the relationship between emission rates and linewidths obtained from scat-

tering lineshapes, as well as from emission spectra. All of the preceding experiments

have been performed in the broad cavity limit, where y > yp. Enhancements as

large as 42% have been observed [14]. We may write equation 2.2 in this limit to

obtain the enhanced spontaneous emission rate, Aenh:

Acav + Aenh = 2g2 > Yp (2.8)
, Yc

The spontaneous emission rates and vacuum radiative level shifts can also be

analyzed using perturbation theory [2], since the atom interacts with a resonator

mode that decays more rapidly than the atom. The changes in spontaneous emission



can be understood as arising from the alteration in the density of modes caused by the

presence of the resonator [7, 56]. The resulting perturbation also gives rise to vacuum

radiative level shifts analogous to the Lamb shift [13]. Note that perturbation theory,

however, is no longer appropriate in the strong or intermediate coupling regimes or

when the field mode damping rate is comparable with or slower than the atomic decay

rate (i.e., narrow cavity limit, 7'p > y). In these cases, the atom evolves on a time

scale comparable with or faster than the field to which the atom is coupled.

As mentioned, the fluorescence and emission spectra of the atom-cavity system

canri exhibit a two-peaked lineshape for zero atom-cavity detuning in the strong or

intermediate coupling regimes. One source of this two-peaked lineshape is the normal

mode ringing that occurs in the time evolution of the two oscillators as energy is

exchanged back and forth between the atom and cavity field, despite the presence

of damping. This process has been described as vacuum field Rabi oscillation [6],

although it should be clear from the foregoing discussion that it is purely classical in

origin (see also [45, 20]). The terms normal mode splitting and vacuum Rabi splitting

have frequently been used as well to describe the resulting lineshapes. In general,

as will be discussed in Secs. 2.3.1 and 2.3.2, lineshape splitting in the frequency

domain does not directly correspond to normal mode ringing in the time domain.

The conditions that determine whether or not ringing will occur are not the same as

those which determine whether or not lineshape splitting will occur.

In the visible wavelength regime, resonant atom-cavity systems have been studied

with a small number of atoms coupled to a high-finesse "supercavity" optical res-

onator, and lineshape splitting has been observed [57, 21]. In these experiments the

cavity mode was excited by a weak laser field and the transmission out the end of

the cavity monitored as the laser frequency was swept through resonance. Lineshape

splitting has also been observed in a similar experiment with a large number of atoms,

each weakly coupled to a weakly excited nondegenerate resonator mode (go < 7y, 7p,

and v/Ngo) [20]. This latter experiment also studied the time domain, where normal

mode ringing was observed in the decaying output emission of the cavity mode. A

model based on linear absorption and dispersion in a multi-atom medium was used



to provide a classical interpretation of this effect.

As previously discussed, an atom can undergo spontaneous emission into the

resonator mode at a greatly enhanced rate. Under appropriate conditions, i.e., in

the presence of cavity photons, single-atom stimulated emission into the resonator

mode can also occur. The features of these two processes are very different. In en-

hanced spontaneous emission the linewidth increases with increasing emission rate

[12, 13, 14]. In stimulated emission, however, the linewidth should decrease with

increasing emission rate in a manner analogous to laser emission [58]. As will be

discussed in Sec. 2.2.2, for incoherent excitation of the atom-cavity system we may

write a rate equation for the average number of photons, v, in the cavity mode:

i = Ac,N, + K(N, - NI)v - 2yv, (2.9)

where Nu and N, are the average occupation probabilities (populations) of the upper

and lower states of the atom, Ac is the Einstein A coefficient for spontaneous emis-

sion into the cavity mode, defined above, and K = Ac, is proportional to the Einstein

B coefficient. We may solve for v in the steady state to obtain the power emitted out

the end mirrors (assuming cavity loss is negligible compared with transmission):

N, hw Aca,
P = 2%yhwv = 1-Go ' (2.10)1- Go

with
Go = (N, - NI)aoL y, (2.11)V(1- R) -y+ (y,

Note that Go can be interpreted as the multi-pass gain of the atom-cavity system.

When Go is negligible and y, > y,, we recover the usual enhanced spontaneous

emission result. For positive gain, however, a further increase in emitted power occurs.

This extra enhancement is due to stimulated emission. One is thus led to assess the

possibility of studying stimulated emission in an atom-cavity system and its interplay

with enhanced spontaneous emission. In Sec. 2.3.3, we will discuss the conditions for

which stimulated emission can occur. Note that the above rate equation approach,



while useful in the description of conventional lasers, does not properly account for the

underlying process which occurs in the recently realized single atom laser [25]. In this

system, atom-cavity energy exchange occurs by means of quantized Rabi oscillations

with no disruption of phase by incoherent pumping mechanisms. Excited atoms enter

the cavity, undergo coherent evolution with the field, and exit the cavity.

The objective of our study is to develop a theoretical framework that describes

various regimes of cavity QED emission. The present chapter describes a semiclassical

model in which only the atom is quantized. This is particularly useful for exploring

the" inter-relationships among different cavity QED experimental schemes and for de-

scribing stimulated emission in an atom-cavity system and its relation to spontaneous

emission. The model predicts both spectral features (linewidths and emission frequen-

cies) and emission and decay rates. We restrict ourselves mostly to the case of weak

excitation, in which the background atomic level populations are unperturbed. We

study all regimes of the system parameters (specified by relative sizes of atom and

cavity damping rates and coupling constant), showing agreement with quantized field

calculations where they exist, and we explore the unique properties of the system

when the inversion is allowed to become positive and there is net positive gain.

An atom-cavity system is a composite entity that exhibits characteristic line-

shapes, decay rates, and emission rates. Its features can be studied in either emission

or scattering experiments. In emission, the upper state of the atom, averaged over

a series of successive events, is incoherently populated and the resulting spectrum

of emitted radiation (emission spectrum) is studied or the total emitted power is

studied (by either measuring the atomic population or the integral over the emis-

sion spectrum). The system response can also be observed in the transient regime,

by initially exciting the atom or cavity mode and studying the emitted radiation.

This can be considered as the free-induction decay of the atom-cavity system. In a

scattering experiment, on the other hand, resonance fluorescence of the atom-cavity

system in its ground state is studied by exciting the system with a monochromatic

field and observing the scattered photons. In this case, one can study either the

spectrum of scattered photons (resonance fluorescence spectrum) or the total power



scattered as a function of the excitation frequency (excitation spectrum). As will

be discussed in Sec. 2.3, measurement of the excitation spectrum is equivalent to

probing the absorption of the atom-cavity system. If the exciting field is weak, the

resonance fluorescence spectrum will be monochromatic at the excitation frequency

(elastic scattering) [59]. For strong excitation, however, nonmonochromatic spectral

components (inelastic scattering) will also be present (e.g., the Mollow spectrum;

see [51]). These are manifested as power broadening of the Lorentzian lineshape in

the excitation spectrum [48]. As will be explained, equivalent information can be

obtained in an emission experiment and a scattering experiment, and both types of

experiments have been performed. Goy et al. [8], Hulet et al. [9], and Jhe et al. [11]

have studied emission by monitoring the atomic state populations, whereas Heinzen

et al. [12, 13, 14], Raizen et al. [57] and Thompson et al. [21] have employed scatter-

ing arrangements. Zhu et al. [20] have performed both types of experiments, but in

the emission set-up they observed the time evolution of the emitted field directly. In

the present chapter we connect the parameters measured in various experiments and

clarify the relationships among linewidths, decay rates, and emission rates.

From a theoretical point of view, too, one can study either emission or scattering.

A normal mode analysis of an atom-cavity system is presented (Sec. 2.2.1), from which

the free-induction decay is obtained and decay rates extracted. Emission spectra can

then be obtained from the Fourier transform of the transient solutions (Sec. 2.2.2).

We then analyze the case of scattering (Sec. 2.2.3). In scattering, the excitation

spectrum gives the absorption profile of the atom-cavity system, which is identical

to the emission profile (see Sec. 2.3). Therefore, the lineshape of the excitation

spectrum contains information about spontaneous emission enhanced or suppressed

by the atom-cavity interaction. The connection between scattering and emission is

discussed. In the time domain analysis, the system is given a prescribed set of initial

conditions, and the evolution in time of the atom (via emission out the side of the

cavity) or cavity field (via emission out the end of the cavity) is monitored as shown

in Fig. 1-2(a). In a scattering experiment, either the atom or the cavity field can

be probed (Fig. 1-2(b)), and the power scattered out the end mirrors (proportional



to the square of the cavity field) or the side of the resonator (proportional to the

square of the atomic dipole moment) can be monitored. The various possibilities are

analyzed below. In addition, we discuss the possibility of stimulated emission and

absorption, and their relation to spontaneous emission, in Sec. 2.3.3.

2.2 Semiclassical Model

The analyses of this section are based on the coupled Maxwell-Schr6dinger equations.

Consider an atom-cavity system composed of N two-level atoms coupled to a single

mode of a resonator. We are particularly interested in systems employing open optical

resonators, but our results will be written in a form applicable to various other types.

The atom is assumed to decay radiatively. Other homogeneous and inhomogeneous

broadening mechanisms are assumed negligible. In Sec. 2.2.1, a normal mode analysis

is performed from which transient solutions for the atomic dipole and the cavity field,

as well as their Fourier transforms, are obtained. These results are then extended

in Sec. 2.2.2 to the case of steady state emission, assuming an incoherent pumping

mechanism. In Sec. 2.2.3, the scattering formalism is presented. In this case a driving

field is included in the coupled Maxwell-Schridinger equations as a source for exciting

either the atom or the cavity mode. In each analysis two ensemble averaged observ-

ables are computed: the power scattered/emitted out the sides and out the ends of

the resonator as a function of the excitation/emission frequency, respectively. From

these quantities the spectral structure of the atom-cavity system is obtained. The

linewidths obtained in the scattering analysis will later be compared to the decay

rates obtained in the time domain analysis, and to the steady state emission rates.

This model therefore elucidates the relationships between linewidths, decay rates and

emission rates.

2.2.1 Normal Mode Analysis

We first study the time-dependent behavior of the atom-cavity system, prepared

with a given set of initial conditions. The transient solutions provide decay rates and



emission frequencies, and their Fourier transforms provide the frequency content of the

emitted radiation, none of which are obtainable in a scattering analysis. Furthermore,

if we consider a steady state experiment in which an ensemble of these radiators is

supplied at some rate, we may also obtain emission rates and emission spectra, as

well as a rate equation for the cavity photon number. It is then possible to discuss

stimulated emission/absorption in the atom-cavity system.

To obtain the transient solutions, we start with the Maxwell-Schr6dinger equa-

tions:

i + 2y,p + w2p = - 2 PEc (2.12)

4irw2
Ec + 2Y~Ec + WEc = P, (2.13)

.A + 2- (N - fNo) = 2(P + ypp)Ec (2.14)hwP

V = Nu - N, ; N = N, + N1, (2.15)

with p the atomic dipole and Ec the resonator field evaluated at the position of the

atom. The vector notation is suppressed because we assume they are all parallel.

This is a valid assumption so long as the cavity mirrors exhibit no birefringence. The

atom is assumed to have a dipole moment decay rate, yp (the decay rate into all

modes except the cavity mode, i.e., out the sides). If we interpret these equations as

describing the average atom-cavity behavior due to a succession of single-atom events,

the atom can be considered to have an inversion, A , with decay rate y and No the

inversion in the absence of Ec (background inversion). Note that

2 /p = Afree(1 - f). (2.16)

In most cases, f < 1 (see, however, Heinzen et al., [12, 13, 14]). The population

equation 2.14 is essentially a statement of energy balance. It can be rewritten as the

rate of energy flow into the upper state of the atom:

hwpN, = [hwpN, 2p] - [hwpN, . 2y, - (p1 + pp)Ec]. (2.17)



The two bracketed quantities represent the energy supply and energy loss contri-

butions to N,, respectively. The NO term represents the rate of supply of background

population, if any, to the upper state. The N, term describes the power emitted out

the side of the resonator. Finally, the last term describes the interaction of the atomic

dipole with the cavity field, which results in the power scattered out the ends of the

resonator.

In this chapter we assume a weak cavity field so that the level populations are

unperturbed (i.e., eN• No) and Eq. 2.14 may be neglected. We will leave N arbitrary

in most of the following equations for future use, however. In particular, in Sec. 2.3.2,

we will assume that AN0 = -1, and in Sec. 2.3.3 we will allow the inversion to be

positive as well as negative.

We assume normal mode solutions of the form:

p(t) = Re[p(t)] = Re[poeixt], (2.18)

and

Ec(t) = Re[Ec(t)] = Re[EoeiAt], (2.19)

with A the normal mode frequencies. Note that A is a complex quantity whose real part

represents the actual normal mode frequency and imaginary part the decay constant

of the excited normal mode. The following secular equations for A are obtained from

Eqs. 2.12 and 2.13:

[w2- A2 + 2iAjp]po - 2 Eo, (2.20)

[w - A2 + 2ic]E = P (2.21)

In general, only numerical solutions for A are possible. In the present case, however,

damping, atom-cavity detuning, and coupling are all much smaller than the optical

frequency, and we may find approximate analytic solutions to Eqs. 2.20 and 2.21 by

assuming w2 - A2 ; 2A(w - A), a condition equivalent to the near-resonance condition



employed in the frequency domain. Equations 2.20 and 2.21 then become:

C,(A)po -= Eo,

C.(A)Eo = -Po,

(2.22)

(2.23)

with the complex Lorentzian factors

4CI(X) = -i(x - W"P) - y,,, (2.24)

where x is an arbitrary variable. We shall refer to £, as a Lorentzian factor; the

actual Lorentzian is 1/ q(x) 12. The resulting secular equation for A is

[Lc(A)L~(A) - Ng o]Eo - C+(A)_-(A)Eo = 0, (2.25)

with complex Lorentzian factors

£C±(x) = -i(x - A±), (2.26)

with

(2.27)

and

± = 9+ - I,

S = w+ - R,

(2.28)

(2.29)

with St, rF, I, and R all real, and

2R 2 = (wA2 - -g,2 ) + w2

212 .(2 - g2 - y2_) + (w2 rgo_ -y2)2 + 4+y2 7!

(2.30)

(2.31)

A± = n, + iF,

- .g2 - -2_)22 + 4w2 !,



where

wW=W .; Y±7P (2.32)
2 2

For the special case of zero atom-cavity detuning (w, = 0), Eqs. 2.30 and 2.31 become

2R2 = -(Ng2 + y2) + I|Ng2 + _Y , (2.33)

2I2 = (Ng2 + Y2) + |Irg02 + _2_I. (2.34)

As seen from Eqs. 2.33 and 2.34 for the resonant atom-cavity system, Ro is zero when

fg02 > -7!Y and Io is zero when /g02 < -72. We shall term an atom-cavity system

operating in these two regimes as over-damped and under-damped, respectively. For

the special case K = -1, discussed in what follows, these conditions become

g02 < -y,2 over-damped; (2.35)

g0 > ly, under-damped. (2.36)

For an over-damped system, the decay rates will differ but the normal mode frequen-

cies are degenerate. For an under-damped system, however, the reverse is true.

Both R and I of Eqs. 2.28 and 2.29 are real quantities and, in taking the square

root in Eqs. 2.30 and 2.31, the proper sign must be chosen. Our convention is as

follows: for Agg > -2!, the sign of I is 7-/ 7-y and the sign of R is w_/Iwl; for

Ng2 < -y2, the sign of R is positive and the sign of I is -w_-_/|w_--I. In both

cases, if w_ or 7- are zero, the plus sign should be chosen. With this convention the

:C+ factor is associated with the cavity and the £_ factor is associated with the atom

in the weak coupling limit. Note that Q± are the frequencies of the normal modes

whose decay rates are F±. In the strong coupling limit Q+ is the higher frequency

and Q _ the lower frequency normal mode. If we let y,, yp -+ 0, then R± -+ GQo, the

eigenfrequencies given in Eq. 2.1, as is easily verified.



The general solutions for the dipole and the field may be written in complex form:

p(t) = p+eix+t + peixt, (2.37)

Ec(t) = Eo+e' +t + Eo-ei -t, (2.38)

where po0 and Efo are complex constants to be determined by the initial conditions.

Invoking Eqs. 2.22 and 2.23 for each normal mode, the following additional relations

must hold between the complex constants:

____jV 27riw (£p(\+)p+o = -- - Eo , c(A+)Eo+ = PO (2.39)

h 2. 0' V

We consider two types of initial conditions: the system begins with all the energy

either in the dipole (which we denote with the superscript e = p) or in the cavity

field (which we denote with the superscript e = c). In Sec. 2.2.3, it will be seen that

these conditions correspond to the driven-atom case (f = p) and the driven-cavity

case (e = c), respectively, of the scattering arrangement. In general, the evolution

of the decaying atom-cavity system depends in detail on the specific initial values

of the dipole and its time derivative as well as the field and its time derivative.

To order go/wp and y%, 7pwp, however, the emission properties depend only on the

initial distribution of energy between the two oscillators, and not on the particular

distribution of energy within a given oscillator (i.e., the distribution of energy between

kinetic and potential energy of the atomic dipole or the distribution of energy between

the electric and magnetic fields of the cavity). This can be understood by observing

that energy is rapidly exchanged from kinetic to potential in the atom and from

electric to magnetic in the cavity field (at a rate of order w > 'c, 7p, go), whereas it

is transferred between oscillators much more slowly (at a rate of order go) and to the

surroundings (at a rate of order -y, y,). Therefore, to simplify the algebra, we choose

the following convenient initial values, expressed in complex form:



1. Dipole initially excited (e = p):

p' (t = 0) = Po, E P(t = 0) = 0, (2.41)

where Po is a real quantity. The solutions corresponding to these initial conditions

may be written

pe (t) iA A+) {,c(A+)ei+t - Lc(A_)e ix t}, (2.42)

and

EE=P(t) = (2iw/V)Po {ei-t - ei+. (2.43)Si(A_- +)e .

The corresponding conditions for the cavity field are:

2. Cavity field initially excited (E = c):

p= C(t = 0) = 0, Ec=~(t = 0) = Eo, (2.44)

where Eo is now a real quantity, with solutions:

S (iL2./h)E {eix- t - eix +t}, (2.45)p'-°() = i(A_ - A+)

and

E (t) {,(A+)ex  +t - p(_)ex - t  (2.46)
(t) = i(A_ - A+) p(A)e

With the forgoing solutions, note that for the case e = p the initial conditions of Eq.

2.41 imply that Ec(t = 0) = Re[Ec(t = 0)] = 0. Similarly, for the case E = c, the

initial conditions of Eq. 2.44 imply ib(t = 0) = 0. Thus we initially have all of the

energy in the appropriate oscillator, as required.

The power emitted out the sides of the resonator is proportional to the square of

the atomic dipole moment and the power emitted out the cavity ends is proportional

to the square of the cavity electric field. In particular, the instantaneous power

emitted out the sides of the resonator is obtained by applying Larmor's formula to



the dipole emitter:

2i(t)2 2w4p(t) 2

Pside(t) = 2 (t)2 (1 - 2 t) (1 - f), (2.47)
3c3  3C3

with f defined in the introduction of this chapter. The instantaneous power out the

cavity ends is given by:
Ec (t)2V

Pends(t) = rcav27c , (2.48)

with 7cav, = 1T the output coupling factor (throughput) for a cavity with mirror

transmission T and reflectivity R (1 - R = T + AL, with AL the mirror loss), and

p(t) and Ec(t) the real parts of the preceding solutions for the case of interest. Note

that the field mode is normalized such that f E2 dV = E2V.

The power spectra, which provide information about the frequency content of the

decaying oscillators, are proportional to the complex conjugate squares of the Fourier

transforms of Eqs. 2.42, 2.43 and Eqs. 2.45, 2.46. We define the Fourier transform

of the complex function, F(t), as

oo dMdt

F(f) = F(t)e-ift, (2.49)

and neglect the anti-resonant terms to obtain for the e = p case,

p C = M 'Ccp(2.50)
C-() =- Po (( 2) ) (2.51)

where now the Lorentzian factors are functions of the Fourier transform variable 0.

In Eq. 2.50 we have used the identity

Similarly, the Fourier transforms of Eqs. 2.45 and 2.46, (2.52)

Similarly, the Fourier transforms of Eqs. 2.45 and 2.46, neglecting the anti-resonant



terms, are:

p2= C(() =Eo (2.53)

E-f=CQ) = EO - -( (1) "(2.54)

In Eq. 2.54 we have used the identity

P(Q) = (+)L() - ) (2.55)i(K_ -A+)

2.2.2 Emission Analysis and the Photon Rate Equation

The transient solutions of the preceding section can be used to obtain expressions for

the power emitted under steady state incoherent excitation of the atom-cavity system.

Consider such a system in which initially excited atomic dipoles, Po, are supplied at

some constant rate, A (atoms/sec). An individual, excited atomic dipole interacts

with the cavity and evolves according to Eq. 2.42. Averaged over a succession

of incoming dipoles with random phases, the net effect is steady state atom-cavity

emission, which may be studied in the frequency domain. Note that in this section,

the average background inversion, NVo, may take on values between ±1. To calculate

this emission spectrum, we first note that the total power emitted out the side of the

resonator is determined with Larmor's formula and the supply rate:

Pside = (1 - f)A2w f dt ([p =P(t)]2) (2.56)

where the time average, denoted by <>,ve in Eq. 2.56 is over an optical cycle. Using

Parseval's theorem and the fact that < p(t)2 >ave= Ip(t) 2/2, we get

Pside = (1- f)Ac JdQpP(Q)2. (2.57)

Thus, we obtain for the spontaneous emission power spectrum out the resonator side,

Pside (Q) =-(24Q)r3 ( (Q) (1 - f). (2.58)



Similarly, the total power emitted out both ends of the cavity is simply the total

steady state energy maintained inside the cavity, multiplied by the cavity decay rate,

2%:

Pends = lcavA2Yc dt [Ec (t)]2 e (2.59)

Therefore we obtain:

Pends ocavAYV d/le-P(Q) 1, (2.60)

from which the cavity emission spectrum is:

Pends() 7c A P2 W cp 2 . (2.61)= , 4/ 2  V  47r £+(Q)_C ) ( ")

The above arguments have been applied to the e = p case of initially excited

dipoles. However, one could exploit the symmetry of this system and consider inco-

herently exciting the cavity mode (e.g. with thermal photons) at some rate A. The

above arguments would then apply to the e = c case.

The resulting emission spectra all contain the product of two Lorentzians with

factors I£C (Q) 12, which characterize the two normal modes of the system. For the

initially-excited-atom case (I = p) these two Lorentzians in the power spectrum out

the side are multiplied by the empty cavity lineshape factor, Ic(f) 12. Similarly, for

the initially-excited-cavity case (e = c) the two Lorentzians in the power out the end

are multiplied by the free-space atomic lineshape factor, ICp(0) 12. These additional

lineshape factors are discussed below in Sec. 2.3.2.

We may now obtain a rate equation governing the average number of photons

in the resonator mode due to emission. Consider the atom-cavity system discussed

above, in which atoms are excited into the upper state via incoherent pumping at

a rate A. First, if no resonator is present (free-space) we can relate the initial sup-

ply rate, A, and Po to No, using the correspondence principle for the excited state

population,

Pside = Nuhw27p, (2.62)



to obtain the steady state power emitted with no cavity field:

W4
Pfde = A dQ•hp•() (1 - f) = NOhw27p, (2.63)

where ph (Q) is the Fourier transform of the homogeneous solution to the dipole

equation, Eq. 2.12, given by:

1 P0pM 2V (20 ( (2.64)

which gives
N A (P\ 2

No= A.8 (2.65)

We evaluate the integral in Eq. 2.57 by the method of residues, use Eq. 2.62 and

substitute Eq. 2.65 to obtain the excited state population in the cavity:

Nu = No [1 + ( G' _ (2.66)

where
ac

G' -a= f_ (2.67)
27cV'

and

'a (2.68)

with the peak atomic absorption cross section, ao, defined in Eq. 2.6.

Using Eq. 2.65 and evaluating the integral in Eq. 2.60, the total power emitted

out the resonator ends may then be written as

Pends = ycavN ahw2p 2 + p ) G" (2.69)

or, substituting Eq. 2.66 and writing Eq. 2.69 in the form of a steady state rate

equation for the number of photons in the resonator mode via a correspondence



principle for v analogous to Eq. 2.62,

Pends cavNuhw2 (-c -c + -YP 1 - G'= cavhw2yc, (2.70)

with G the single-atom gain, given by

G = G, ( = A/ ac  7 (2.71)yp + 7 27,V + 7"

Rearranging, we obtain the photon rate equation (cf. Eq. 2.9):

i = 0 = N + (Nu, -N) )v - 2/yv , (2.72)V V
" . 1 resonator

spontaneous stimulated emission loss
emission and absorption

where

a- a (2.73)
Yp + 7

The physical features of these equations are discussed in Sec. 2.3.3, below.

Note that as a check for our model, it is straightforward to verify conservation of

energy, i.e., that the rate of energy loss out the ends and side equals the total energy

supply rate. Assuming rla = 1 and using Eqs. 2.66 and 2.69, we obtain after some

algebra

Psoide = Nhw2yp = Pends + Pside. (2.74)

The results of this section can also be derived in the elastic scattering analysis

of the next section, with the assumption of broadband excitation. We consider this

situation in Appendix B, and discuss an atom-cavity experiment in which atomic

excitation with a broadband light source is used to study emission.

2.2.3 Elastic Scattering Analysis

We now turn to a description of scattering. The atom is considered to be in the

ground state ( 0No = -1), and we provide for an external laser field to excite the atom



or cavity mode. Driving terms are then added to the right hand side of the coupled

Maxwell-Schridinger equations:

p + 24py + W2- P fP(Ec + 6epEPL), (2.75)

E'c + 2yýcE + wEC = Pp + JECOEc, (2.76)

J + 2'yp(K - No) = 2(p + 'ypp)(Ec + 5•pEP) (2.77)
hw"

with Ecp the applied monochromatic excitation field at frequency Q for the driven

cavity, atom cases, respectively. As we restrict ourselves to weak excitation (elastic

scattering), Ec and p will also be monochromatic at the same frequency. In a manner

analogous to the normal mode analysis, the Kroenicker delta functions, J6p and 6,

are introduced for convenience in choosing either the atom (E = p) or the cavity mode

(C = c) to be driven by the excitation field, (Fig. 1-2(b)). The quantity a describes

the coupling of Ec into the resonator field mode and is calculated in Appendix A to

be

=2 = 827cav ) Yc. (2.78)

As was done in the previous section, the population equation may be rewritten as the

rate of energy flow into the upper state of the atom:

hwN, = [JE,(p + pp) EPI - [hwpN -2y - (p + 'pp)Ec]. (2.79)

This equation is similar to Eq. 2.17, with N° = 0 and an additional term appearing

in the first brackets which describes the excitation of the atomic dipole when EP is

coupled to the atom e = p. All other terms have the same interpretations given in

the normal mode analysis section. However, note that in the case of E' coupled to

the cavity E = c, the second term in the second brackets includes the component of

the excitation field coupled into the cavity, as well as the field radiated by the atomic

dipole (Eq. 2.84, below).

We consider a monochromatic excitation field in the form E'P = Re[E,'Peint],



and write Eqs. 2.75, 2.76, and 2.77 in the slowly-varying envelope approximation, in

which p = Re[pe""f], Ec = Re[Ece~t], with Ec and p slowly varying amplitudes, and

neglect non-resonant contributions. This gives

iA2
P - p(L)p = iN(Ec + 6pEP), (2.80)

c- Cc() = - +2riwp+C ( )E, (2.81)

Jf + 21p(f-Ao)--Im[p(Ec + 6, EpL)*] (2.82)

h

where £C,,(p2) is defined in Eq. 2.24. Note that the right hand side of Eq. 2.82 is

the time average of the right hand side of Eq. 2.77 after the slowly varying envelope

approximation has been made. For the scattering configurations described in this

chapter, ELP is a weak coherent source. So long as the cavity and excitation fields are

small, the atomic level populations will not change appreciably from their background

values, AF JVo = -1.

Setting the time varying terms in Eqs. 2.80, 2.81, and 2.82 equal to zero, we can

solve for the steady state value of Ec as a function of the exciting laser frequency, Q2.

Solving Eq. 2.80 for p and substituting into Eq. 2.81, we get

E= ./gg2E - (a/2iQ)OCp(Q)E(EcA=p'()- ) ( - /go2 - 4" ( )4 c(Q ) - I'gO2' (2.83)

and

pe=p, . (iC /h)E2 [6,p() - (a)/2it)]. (2.84)Lc=Q)- 0)- Afgo
We may relate the scattered power out the resonator ends to the cavity field at

the atom as follows:

pE=P~C IE=P•(Q) 12V

P.do,(8) = 7cav(2wc) 8 (2.85)

Substituting the expressions from Eq. 2.83, EE=P,c(Q) into Eq. 2.85, after some rear-



rangement we obtain the power scattered out the ends for the driven-atom case:

IL 2cT 29 (2.86)

with IL = cE2/87r the intensity of the excitation field and I, the saturation intensity,

defined by aoI/hw = 7p. Again, £±4() are defined in Eq. 2.26. For the driven-cavity

case, the power transmitted through the output mirror at frequency Q? is

= e = 7L2,,ILa+_y2JC(Q)12 (2.87)

with a = V/L. Note that Eqs. 2.86 and 2.87 exhibit a dependence on exciting

laser frequency equivalent to the dependence of the corresponding emission spectra

(Eq. 2.61 and the complex conjugate square of Eq. 2.54, respectively) on emission

frequency.

According to the discussion following Eq. 2.79, the total power scattered out the

sides of the resonator for both cases (E = p, c) should be given by hwpN, . 2-y. We

may solve Eq. 2.82 in the steady state for JA using Eq. 2.84 to lowest order in IL/II

to obtain

O 1) •= , [ 1 P( ,) (2.88)

which may be written in terms of N, as (Ao r -1)

Nu () t , (2.89)

with the dipole, p(Q), given by the appropriate choice in Eq. 2.84 (we have suppressed

the superscript E = p, c for convenience). Multiplying Eq. 2.89 by hw2yp and noting

that

hw2,p 3c2 P()l( - f), (2.90)

we may write the total power scattered out the side of the resonator in the form:

Nu`PAc(Q)w,2p = P P ,c('), (2.91)



where
4

,', ) . p = P=,=",c()j2(1(- f). (2.92)

Note, however, that N, cannot be measured directly in a scattering experiment with-

out destroying the phase coherence of the excitation-scattering process.

Equation 2.92 has an interesting interpretation if we calculate the scattering out

the side using Larmor's formula for a single dipole radiator. Since p in Eq. 2.80 is the

total dipole moment of a single atom, we write

p=,iC_ 2w4 < p2 >a,,e

d3c 3  (1- f), (2.93)

where the brackets again indicate time averaging. Using

< p2 >ave- 1P9=p'c( ~)12, (2.94)

Eq. 2.93 is easily seen to be identical to Eq. 2.92.

For the driven-atom case, Eq. 2.92 becomes

PILe 2 P+(Q) 2  (2.95)

and for the driven-cavity case,

Pl'IL (hw yp(a/2f) 2

Again, note the similarity in frequency dependence to the corresponding emission

spectra of the previous section. Similarly for N, we use

I = 2y, = 2 -y, (2.97)

together with Eq. 2.89, 2.83, and 2.84 to obtain for the driven atom case,

N=P () I' +(_()2' (2.98)



and for the driven-cavity case,

IL y(/2Q) 2

Nus(Q) (2.99)41, I £+( ()£_ (Q) 12

The quantities t± and rF contained in C£+() take on different forms depend-

ing on the strength of the coupling (as discussed in Sec. 2.2.1). In the absence of

an atom coupled to the cavity, Eq. 2.87 reduces to the empty cavity transmission

function (proportional to IJC(Q) I- 2 because C+(Q) = C,(~) and £-_(Q) = 4C,(f), see

Sec. 2.3.2) and, of course, no scattered radiation is seen out the side (Eq. 2.92). The

presence of the atom modifies the spectral lineshape. For the driven-atom case, the

power out the end, Eq. 2.86, also depends on the presence of an atom in the cavity

because the light is indirectly coupled into the cavity via the atom illuminated by the

side excitation field.

As mentioned above, by comparing these scattering results with the results for

emission with ANJ = -1, we find that the complex conjugate squares of Eqs. 2.50

and 2.51 have the same dependence on frequency as the corresponding expressions

derived here for the driven-atom case (Eqs. 2.95 and 2.86, respectively), and that the

complex conjugate squares of Eqs. 2.53 and 2.54 are identical in frequency depen-

dence to Eqs. 2.96 and 2.87 for the driven-cavity case. Recall, however, the different

interpretations of Q. In Sec. 2.2.2, Q is a frequency component of the emission spec-

trum, whereas in this section it is the frequency of scattering (equal to the excitation

laser frequency). We have thus shown that the lineshapes of the emission spectra

and corresponding excitation spectra are identical. As seen in the next section, when

the gain is small and the atom is uninverted, the emission is purely spontaneous, and

the emission rate is identical to the linewidth of the emission spectrum in the broad

cavity, weak coupling limit. Therefore, in this case the linewidth of the excitation

spectrum is also equal to the emission rate. This provides the basis for interpreting

the excitation spectral linewidths as spontaneous emission rates, as has been done in

some experiments.



2.3 Results and Discussion

In Sec. 2.3.1 the results of the normal mode analysis are studied to obtain the transient

response (decay rates, normal mode ringing, etc.) of the atom-cavity system with

one atom coupled to the cavity mode. In Sec. 2.3.2 the results of the scattering

and emission sections are used to study the lineshapes of the excitation spectra (or,

equivalently, the spontaneous emission spectra) for the different coupling regimes in

both narrow and broad cavity limits. Finally, in Sec. 2.3.3 the photon rate equation

and emission results derived in Sec. 2.2.2 are studied in various regimes of interest.

One such regime includes the situation in which the lower level of the two-level atom

can also decay and KA can take on positive, as well as negative, values.

Before discussing the results of Sec. 2.2, it is perhaps worthwhile to review how

scattering relates to emission in an atom-cavity system. The scattering analysis devel-

oped above provides the excitation spectrum, i.e., the total power coherently scattered

as a function of the excitation frequency. The monochromatic excitation field induces

an atomic dipole moment whose radiated field coherently interferes with the excita-

tion field. So long as the excitation intensity is small compared to the saturation

intensity, the scattered photons are monochromatic at the excitation frequency. In

this case Eqs. 2.86 and 2.96 reflect the normal mode structure of the atom-cavity

system in its ground state (NAo = -1). The correspondence between scattering and

absorption should be noted. Every photon of the excitation field that is absorbed by

the atom-cavity system is radiated as scattered light. Thus, energy conservation (op-

tical theorem, [60]) requires that the total scattered power equals the power absorbed

from the excitation field. The resulting excitation spectrum is thus equivalent to the

absorption spectrum.

Equivalently, we can study the emission spectrum of an atom-cavity system in

which the atom, averaged over many events, has a background excited state pop-

ulation. By the principle of detailed balance [61] both the scattering arrangement,

which gives absorption, and the emission arrangement must provide the same spectral

information about the normal mode structure. The emission rate in each frequency



interval must be the same as the absorption rate in that same frequency interval.

Furthermore, we can identify the two terms in the absorption cross section, propor-

tional to Pside(Q2) and Penda,(), as corresponding to the spontaneous emission to the

side (free space) and the total emission out the ends of the resonator mode, respec-

tively. This explains how one can extract spontaneous emission information from

the scattering analysis, as is done below. In particular, with N ~ JVK = -1 and

negligible gain, only spontaneous emission occurs, and the emission rate is just the

spontaneous emission rate. In the broad cavity limit with weak coupling we can

interpret the linewidth of the excitation spectrum out the end as a measure of the

enhanced spontaneous emission rate, even though we do not monitor emission rates

at all. We note that in a scattering experiment one cannot measure the excited state

population without disrupting the coherent interaction, because to do so would vio-

late the energy-time uncertainty relation. Hence, it is not possible to directly explore

per-atom emission rates in coherent scattering. Nevertheless, we do obtain equiva-

lent information about emission rates from the linewidth measurements. However,

when incoherent excitation is used the coherence is destroyed and it is possible to

measure the average occupation probability of the excited state without significantly

perturbing the light-atom interaction process. This explains the relationship of the

steady state emission experiment for the special case with A = -1 to the scattering

experiment, and the reason why the same spectral lineshape is obtained in each. Note

that it is also possible to destroy the coherence via broadband excitation.

As discussed in the introduction, a resonant (w_ = 0) atom-cavity system without

damping always exhibits two distinct normal mode frequencies unless the inversion

is positive. We assume a system with negative steady state inversion. (The case

of positive steady state inversion shall be considered in Sec. 2.3.3.) In the time

domain, energy would forever oscillate between the atom and the cavity field at the

normal mode frequency difference and, in the frequency domain, all spectra would

exhibit two distinct delta functions at the normal mode frequencies. A resonant,

system without damping is thus always strongly coupled. With damping, however,

three possible regimes arise within which the resonant, atom-cavity system acquires



distinct characteristics:

g02 < Y2 weak coupling, (2.100)

(1) g2 < 2i
() 2 < intermediate coupling, (2.101)

(2) <0 0 <
S+ 72

g > + strong coupling. (2.102)
2

Note that the over-damped system (with Q+ = Q_ and F+ 0 I ), Eq. 2.35, is

divided into two regimes; the weak coupling regime and case (1) of the intermediate

coupling regime. Similarly, the under-damped system (with Q+ 0 Q_ and P+ =

F_ ), Eq. 2.36, is divided into two regimes; case (2) of the intermediate coupling

regime and the strong coupling regime. In the weak coupling regime the system

undergoes decay with no ringing and the emission (or scattering) lineshapes of both

oscillators are single-peaked. In the strong coupling regime, on the other hand, the

system exhibits two distinct normal mode frequencies and ringing is observable in the

oscillators despite the presence of damping. In this case the emission (or scattering)

lineshapes of both oscillators exhibit two peaks. In the intermediate coupling regime,

however, the interplay between coupling and damping gives rise to subtle atom-cavity

behavior. When the coupling is slightly less than 1l_-1, case (1), the normal mode

frequencies are degenerate and the oscillators decay with no ringing, but the frequency

domain emission or excitation lineshape may nonetheless exhibit two peaks. When

the coupling is slightly greater than l-_ I, case (2), the degeneracy of the normal mode

frequencies is lifted; nevertheless, lineshapes may exhibit only one peak. In fact, in

the intermediate coupling regime, lineshape features will depend on which oscillator

is excited and which oscillator is observed. Therefore, there is no simple correlation

between ringing in the time domain and a two peak structure in the frequency domain.

The choice of the boundary between the intermediate and strong coupling regimes

will be made clear in the discussions of the strong coupling regime in Secs. 2.3.1

and 2.3.2.



2.3.1 Transient Response: Free Induction Decay

Turning to the results of the time domain study of Sec. 2.2.1, we consider the atom

to be in the absorbing state ( N No = -1) and analyze the effects of coupling in

the time dependent behavior of each oscillator in the weak, intermediate and strong

coupling regimes in parts (1), (2), and (3) of this section, respectively. The weak

coupling regime gives rise to pure decay and the strong coupling regime exhibits

ringing in the emitted power.

1. Weak Coupling

First consider the weak coupling regime, go << 72. Neglecting terms of order (go/7-)2

and higher in Eqs. 2.28 and 2.29, we get:

(2.103)

where, in the second equation we have neglected w_ by assuming that Iw_ < l-I1.

a. Broad Cavity Limit. In the broad cavity limit (y >» 7p), E = p case, we may

substitute Eqs. 2.103 into the solutions for the atom and cavity field, Eqs. 2.42 and

2.43, to get

p'=P(t) Poe-r-tcos~_t,
E=P(t) 2rwPo (e-r+t - e-r-t)sinQ_t,

where

g /'0 / (2.105)
(WCwP)2+1

S- w, - )2+ ,2' (2.106)
(wc - Wp)2 +

F+ y e + Ag2/y (2.107)("-- 2--- + 1

and terms only to first order in (go/7c) 2 have been kept. Initially (up to times of

order FP+ 1 ~ :y-), the field decays faster than the atom (F+ > FI_). After this short
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Figure 2-2: Weak coupling regime. (a) Power emitted out the side, Pse(P,(t) (atom),
and out the ends, PdP, (t), of the cavity as a function of time for the case E = p and
(b) the corresponding emission spectra. For this plot go/yp = 1 and Yc/Yp = 4.

period, however, both the atom and field decay at F_, the enhanced decay rate, and

the decay rates out the side and ends of the cavity are the same (see Fig. 2-2(a)).

Using Eqs. 2.47 and 2.48 for the emitted power time-averaged over an optical cycle,

we obtain:

Pide(t) )\ hw2pe- r t, (2.108)

and

Peds(t) 0)= ahwAa(e - r+t - e-r-t) 2, (2.109)

which, after a short time of order y71, becomes:

Pejn's(t) = ear ) 2 hwAcave - r t, (2.110)Pends W= 7cav 2pl



with Aca. given by Eq. 2.8 in the broad cavity limit and with:

=2/+
r = 2F_ ; 2, + 90

[(we - p)7c]2 + 1
(2.111)

since MN ; -1 (see Figs. 2-3(b) and 2-4(b)). A frequency shift also arises (Figs. 2-3(a)

and 2-4(a)), with the atom-cavity system now oscillating at Q _ = wo + 6w0, where

2 (We - Wp)l/e
_yC [(We - Wp)/'Yc] 2 + 1
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Figure 2-3: The normal modes for a weakly coupled atom-cavity system as functions
of atom-cavity detuning: (a) The frequencies and (b) their associated decay rates. In
these plots, go/7p = 3 and y0/7p = 13 (broad cavity, weak coupling limit).
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Figure 2-4: Expanded view of the atomic oscillator normal mode frequency (a) and
the associated decay rate (b). The straight lines represent the uncoupled (free-space)
values for the corresponding parameters. Note the frequency pulling (a) from the
free-space value (vacuum radiative level shift) and the enhancement (A ; 0) and
suppression (IAI > 0) in the emission linewidth.

This is the regime of enhanced and suppressed spontaneous decay. The decay rate

and oscillation frequency of the atom-cavity system are dominated by the atom, and

we may interpret this regime as one in which the atom's decay rate and transition

frequency are perturbed by the presence of the cavity. Because of the damping,

the normal mode frequencies (a) now cross at w- = 0 despite the coupling. In

this limit, curves labeled Q_ and F_ correspond to the normal mode that is atom

dominated, and curves labeled Q2+ and r+ correspond to the normal mode that is

cavity dominated. Note that the frequency pulling and decay rate changes occur for

both oscillators. The numerator of the second term in Eqs. 2.105 and 2.111 shows

the enhancement, (compare Eq. 2.8), and the detuning factor in the denominator

gives rise to suppression. The frequency shift can be interpreted as a frequency

pulling effect due to the interaction of the cavity oscillator with the atomic oscillator.

In a QED calculation (Wigner-Weisskopf perturbation theory), the frequency shift



(vacuum radiative level shift) and the enhanced decay rate can be interpreted as

arising from a perturbation in the free-space mode density induced by the cavity

[13]. This point of view is only appropriate in the broad cavity, weak coupling limit.

Note also that the above treatment assumes single mode interaction and neglects the

effect of all other cavity modes. Within these limits, these results agree with the

perturbation calculations and experimental results for decay rates and level shifts.

Note also that, using 2yp = Afree(1 - f), Eq. 2.111 can be expressed in terms of Afree

to obtain the decay rate for large solid angle (degenerate) resonators:

FP Afree -f + 2g2/7cAfree ) (2.113)

which corresponds to our previous results [14, 12, 13]. The first term on the right

hand side is the contribution to the decay rate due to spontaneous emission out the

sides and the second term is the contribution due to emission out the ends of the

resonator.

b. Narrow Cavity Limit. In a similar manner we obtain, for the narrow cavity limit

(y < ~ yp), (E = p) case

p'=P(t) ; Poe-r-tcos_t (2.114)

Ec=P(t) M a 2(e-r-t - e-r+t)sinO+t,

where

/ 0 , 2P (2.115)

Sg(wc - w + p) (2.116)

(w_ - wp)2 + Yp'

Af g2y ^P (2.117)
(W_ - P+)2 + y,

and we have again kept terms only to first order in (go/y,) 2 . The cavity field is now

determined by the resonator properties after a short time of order F - 1 7- 1y' and its



power decay rate, F, is

2g /'r = 2r÷ 2y, + 29h (2.118)
[(we - wp)/'yp]2 + (

A frequency shift also arises, the oscillation occurring at Q_ = w, + Sw,, where

6w,, a -2-,yP - W)/yp (2.119)

This regime can be termed "enhanced/suppressed cavity decay". The cavity oscilla-

tor's decay rate and oscillation frequency are perturbed by the atomic oscillator. In

the narrow cavity limit (E = p), the atom is dominated by the r_ decay rate ( -y)

but the cavity decays at 17+ (e 'y) after a short time of order 171. In this case the

decay rate out the side is different from the decay rate out the end of the cavity,

whereas in the broad cavity limit, atom excitation case the decay rate out the side

equals the decay rate out the end. Therefore, in the broad cavity limit, (6 = p) case,

one decay rate can be associated with the atom-cavity system as a whole. This is not

so for the (e = p) case in the narrow cavity limit.

Because of the symmetry between the two oscillators, the results for the cavity

excitation case (e = c) in the weak coupling regime may be obtained by simply

exchanging the atom with the field in the above arguments. Note that, in any case,

the weak coupling condition always leads to pure exponential decay in the time domain

of both oscillators.

2. Intermediate Coupling

In this section, as well as the following section for strong coupling, we specialize to

the case of zero atom-cavity detuning for simplicity (wP = wp = w). If the coupling

strength is less than 7y 1, case (1), (over-damped regime, Eq. 2.36) the oscillation

frequencies are degenerate and there are two normal mode decay rates:

-Y+ - , 
(2.120)

Ri:-4- - ,
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Figure 2-5: Intermediate coupling regime with lineshape splitting but no ringing.
(a) The time behavior of the atom and cavity field for case (1) of the intermediate
coupling regime, c = p. (b) The spectra of the atom and cavity field. In this plot,
go/yp = 0.3, 7/7p = 0.3, and w_ = 0.

where

7S = 7- gg. (2.121)

Using the above, we obtain the following solutions for the e = p case from Eqs. 2.42

and 2.43:
p'=P(t) . [(', - 7-)e - r -t - (7s + 7-)e-r+t]coswt,

2y rt rsnt(2.122)
Ec =P(t) ---wPp (ep- r- t  e-r+t)sinwt.

The power emitted out the sides and ends of the cavity are again given by Eqs. 2.56

and 2.59, respectively. Equations 2.122 hold in both the weak and intermediate cou-

pling regimes, case (1), which we discuss here. The atom-cavity system again exhibits

exponential decay at two slightly different rates (since go is comparable to 17-1, 7, is

small compared to -y7), Fig. 2-5(a). There is, of course, no ringing. Note that the sign

of y, must be chosen in accordance with the convention discussed in Sec. 2.2.1. De-
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Figure 2-6: Intermediate coupling regime of atom-cavity emission. (a) The time
behavior of the atomic population (oc P,"-'(t)) and cavity field energy (oc P~' 8 (t))
for the intermediate coupling regime, e = p, with go/'yp = 0.9 and %y/yp = 1 (case 2).
(b) The corresponding emission spectra.

spite the lack of ringing, the atomic emission spectrum (or excitation spectrum) shows

splitting. Hence, the presence of splitting in the emission or excitation spectrum is

not a sufficient condition for ringing.

If the coupling strength is greater than 17_ - (under-damped regime), then Io = 0

in Eq. 2.34 and power decay rates for the two normal modes (from Eqs. 2.28 and

2.34) are equal, whereas the oscillation frequencies (from Eqs. 2.29 and 2.33) are

nondegenerate:

r = 2r, = 2 y+, (2.123)

± = w 4 gs,

where

gI = ns 9Agl v- 7y. (2.124)

In this under-damped regime the solutions given by Eqs. 2.42 and 2.43 (e = p) for



the (real) atomic dipole moment is:

p=' (t) = Re[pEP(t)] = Po(cosgst + -singst)coswte-7+t, (2.125)
gs

and for the (real) cavity field is:

2ar w Po0Ec'=P(t) = Re[E7=P(t)] = sinwtsingste-t+t. (2.126)
Vg8

The power emitted out the sides and ends of the cavity are again given by Eqs. 2.56

and 2.59, respectively. These equations hold for both the intermediate coupling

regime, case (2), and the strong coupling regime, discussed below. Case (2) of the

intermediate coupling regime requires that 2_ < go2 < 7 . This condition implies

that g2 < 7_ and normal mode ringing is negligible and obscured by damping. As an

example, we consider the case where the coupling, atomic and cavity decay rates are

comparable, 7/ = 7p, go = 0. 97p. Figure 2-6 shows the side and end power emitted as

functions of time. Note the presence of splitting in the atomic emission spectrum but

not the cavity field. In this case ringing is negligible and is not clearly observable in

the time domain. These cases are discussed further in the frequency domain analysis

(Sec. 2.3.2).

When the atom-cavity detuning is large compared to j•y_ , Eqs. 2.120 and 2.123

are no longer appropriate. In this case, the system becomes simply an empty cavity

and free atomic dipole, i.e., the +/- modes resemble the empty cavity/atomic dipole,

respectively, and the atom and cavity field behave as though the other were not

present.

3. Strong Coupling: Normal Mode Ringing

We now consider the regime of strong coupling (go > 7-y). As in Eqs. 2.108 and 2.109,

the time-averaged power emitted from each oscillator is proportional to the squares
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Figure 2-7: Ringing regime of atom-cavity emission. (a) The transient atomic pop-
ulation and cavity field energy and (b) the corresponding emission spectra in the
underdamped regime, E = p, with go/yp = 4 and Yc/'Yp = 1. Note the larger splitting
in the atomic lineshape, P,((Q), due to the Lorentzian factor in the numerator.

of Eqs. 2.125 and 2.126 and the relative phases differ by ir:

P2 (t) a hw2pe-2+tcos2Cgst, 
(2.127)

and

Pfd' (t) 02L hwA,ae -2-tSin2gst, (2.128)

where we have neglected terms of order 7y/g, or higher. As can be seen in the solu-

tions for the dipole and cavity field, Eqs. 2.125-2.128, normal mode ringing physically

represents the energy exchange between the cavity oscillator and the atomic oscillator.

This process continues until the energy is dissipated. The loss of energy occurs via

radiative coupling of the oscillators to the surrounding free-space modes. The decay

rates of the normal modes are the average of the decay rates of the two uncoupled



oscillators. This may be physically explained by the fact that each normal mode

consists of an equal contribution of a cavity oscillator and an atomic oscillator. As

the energy is exchanged, the damping rate of each oscillator shares equally in leaking

energy to the surroundings. Note that the condition, go > 7_, is not a sufficient

condition for observing normal mode ringing in any practical sense. For example,

as seen in Fig. 2-6(a), the oscillations in the transient behavior of both the atom,

Pside(t), and the cavity field, Pend(t), in case (2) of the intermediate coupling regime

are negligible. Significant ringing requires that go > (,2 + 2y,)/2. This condition

can be derived by requiring g, > y+ in Eqs. 2.127 and 2.128; it insures that more

than one oscillation occurs before the emitted power decays to e- 21 of its initial value

(Fig. 2-7(a) illustrates this case). When defined in this way, the condition for strong

coupling is identical to that given in the frequency domain (Sec. 2.3.2).



2.3.2 Excitation and Emission Spectra

We now turn to the study of steady state lineshapes obtained in the frequency domain

analyses. As discussed in the introduction (Sec. 2.1), steady state emission exper-

iments and scattering experiments provide equivalent information; they exhibit the

same spectral profiles and, thus, can be analyzed together. Therefore, the results of

the following lineshape analyses of the excitation spectra obtained in a scattering ar-

rangement are equally applicable to the spontaneous emission spectra obtained in an

emission arrangement. Note, however, that in the case of scattering K/ = -No = -1.

The spontaneous emission spectrum for an atom coupled to a cavity mode has been

calculated in the QED framework (see Eq. (6) of [47]), and the result is equivalent

to Eq. 2.58.

1. Weak Coupling

In the weak coupling limit, where g2 <« (y- y) 2/4, the spectral features of the power

spectra, P endside() (compare Eqs. 2.58 and 2.61) are determined by the narrower of

the two Lorentzian factors, E+(Q).

a. Broad Cavity Limit. If we assume the broad cavity limit (y, > 7p), we get from

Eqs. 2.86, 2.87, 2.95, and 2.96:

Pnd(r) A • a ( - W--
2 -' 2 ('_ )_2 [ 1 (2.129)

2(,u2) y, (P - )2 + (Q •- _)2 + r 2

Pe'(__) _____wp2__p ( E _)2 +r (2.130)

(g - wJ)2 + y2-o ( a1Cav1L·[(n - w,)" + y• ' (2.131)

S'2y(Q) -- [2d( l.. 2+2 ] [ L ] (2.132)
P ~- R 2 (-1- -)R (21, (Q -) _)2 + r2_

where r_ and 0_ are given in Eqs. 2.105 and 2.106 and terms only to first order

in (go/ly) 2 and IL/II have been kept. In Eqs. 2.129 and 2.132 the broad cavity



lineshape is slowly varying over the atomic lineshape, hence the lineshapes are es-

sentially determined by the atomic properties (i.e., by £_-(Q), see Fig. 2-2(b)); the

spectral linewidth and frequency shifts are given by Eqs. 2.111 and 2.112 respectively

(see Figs. 2-3 and 2-4). Changes in the emission rate and frequency manifest them-

selves in the spectral linewidth and center frequency of the excitation spectrum. The

suppression (enhancement) arises from the destructive (constructive) interference, re-

spectively, of the multiply reflected fields within the cavity. Note that the empty

cavity lineshape in Eq. 2.130 has been approximated by unity because y, > -_. For

the driven-cavity case, the scattering lineshape observed from the sides of the cavity,

Eq. 2.132, is the same as that observed out the cavity end in the driven-atom case,

Eq. 2.129. In contrast, the forward scattered lineshape out the end of the cavity,

Eq. 2.131, is approximately constant near the atomic frequency, because the factor

l£p(Q)/L'_(~- )(2 in that equation is approximately unity (since F_ ; y, and Q2_ ; wp).

In this regime the cavity simply acts as a broadband transmission filter, with a slight

modification induced by the atom. However, when we consider the strong or inter-

mediate coupling regimes below it will be seen that the transmission lineshape can

be altered dramatically by the coupling.

Rewriting Eqs. 2.98 and 2.99 in this limit, we obtain:

N(P( ) 2 ( ;(2.133)

V ((2.134)S( ) - RR 21, (Q- Q_) 2 + r2

As expected, the atomic state population follows the slightly perturbed atomic line-

shape. If Eqs. 2.133 and 2.134 are used in Eqs. 2.130 and 2.132, respectively, then

the power scattered out the side is simply proportional to the average excited state

population induced by the excitation field (as in the emission case). Also note that

given the intensity at the atom for E = c, I,=c = cIE =c 2/87r, we can write

Ne= C( () (Ie I2()) ( )2  (2.135)Is (Q -U)2 + '



which exhibits the expected relation between the atomic population and the (weak)

cavity field intensity.

b. Narrow Cavity Limit. In the narrow cavity limit (y « < -y), we obtain from

Eqs. 2.86, 2.87, 2.95, and 2.96:

______, 2 -, (2.136)
Pej 8 (M ; t! 2 k - W,)2 +y2 (P- Q+)2+ r 1+

pP=p( ( •) ;z, , ) -L_/, 2 (2.137)
S1 - , (- p) + W) 2 + 2

PernI~dac[ (92) 1%c2I a + (2.138)

P" !icav h -2'y ( [ (Q - WP)2 + 7yP] [Q - Q++)2 + (2.139)

where Fr+ and Q+ are given in Eqs. 2.115 and 2.116, respectively, and we have again

kept terms only to first order in (go/y•) 2 and IL/Is. The lineshapes out the ends of

the resonator are now determined by the resonator properties, C£+(). The cavity

oscillator's decay rate and emission frequency are perturbed by the atomic oscilla-

tor, and in the excitation spectrum this manifests itself as changes in the resonator

linewidth and center frequency. This can be seen, for example, in the case E = c of

Eq. 2.138, where the lineshape of the transmitted power is perturbed from that of

the empty cavity (again I£,()/£L_(()()2 1 1). The emission out the side shows a

lineshape, Eq. 2.139, with a narrow cavity-like structure, since the atom can scatter

light only when the cavity field builds up in the resonator. For the driven-atom case,

however, the scattered lineshape out the side of the cavity, Eq. 2.137, is approximately

that of the atomic lineshape ( lc(2)/C+(Q)j 2 w 1), and the lineshape out the end is

approximated by the modified narrow-cavity lineshape on top of the much broader

atomic lineshape.

We summarize briefly the results of this section for the special case of the resonant

atom-cavity system (we = wp = w). In the regime of weak coupling and broad or

narrow cavity limits, the 4p,C(D) Lorentzian factors in the numerators of Eqs. 2.95



and 2.87 are approximately canceled by the appropriate Lorentzian factors, £+(Q) or

£_ (Q), in the denominator. In general, the linewidths (half-widths) F± are

F = 7+ 7- 1 + A 90 , (2.140)

so that in the broad or narrow cavity limit with weak coupling we get

r+ +(2.141)
rI_ e4 - 0 (nr ).

In the broad cavity limit the Lc(Q) Lorentzian factor is canceled by £+(Q2) and in the

narrow cavity limit the L,,(Q) Lorentzian factor is canceled by £_(Q), as described

above.

2. Intermediate Coupling

In the intermediate coupling regime (Eq. 2.101) lineshape distortions can arise, and

two-peaked spectra can occur, even in the absence of ringing. For case (1) of the

intermediate coupling regime in either the broad or narrow cavity limit, if go2 < KY,

i.e., the coupling strength is slightly less than -y_, then the normal mode oscillation

frequencies are degenerate and the decay rates are approximately equal (Eq. 2.120).

Therefore, in the narrow cavity limit P'2(Q), given in Eq. 2.95, will exhibit lineshape

splitting, since the square of a broad Lorentzian (with full width 2-y+ M yp centered

at frequency, w) is divided by a narrow Lorentzian (with full width 27Y < 2 y,p, also

centered at frequency, w) (see Fig. 2-5(b)). Note that for this case, the dip in the

lineshape at resonance provides another example of the suppression of fluorescence

for an atom in a cavity similar to that studied in the weak coupling, broad cavity

limit. In the ideal limit that 70 -+ 0, no scattering of light out the side occurs for

Q = w, = wp. Furthermore, from Eq. 2.83 we obtain

E•P(Q = wc) = -Er, (2.142)



so that a non-zero field persists in the resonator. From Eq. 2.142, we can see that

the cavity field has the same amplitude as the driving field, but is shifted 1800 out

of phase. Thus, the total field at the position of the atom is zero and the atom

stops radiating (see Eq. 2.80). With the laser probe frequency far off resonance

(Q2 > wc = wp, for example), the atom radiates out the side and no scattering into

the cavity mode occurs. As the probe laser frequency approaches the cavity frequency

within the cavity resonance bandwidth, (enhanced) scattering into the cavity mode

increases with a resulting suppression in scattered light out the resonator side. Also

note that this argument holds regardless of the coupling strength. This effect has also

been interpreted in the dressed-state picture [62].

Similarly, in the broad cavity limit P--c(Q), given in Eq. 2.87, will exhibit line-

shape splitting. As discussed in Sec. 2.3.1, this case gives rise to pure exponential de-

cay with no ringing. Thus, a two-peaked lineshape is possible even in the over-damped

regime (go < 7-) in which normal mode ringing cannot occur. Again, lineshape split-

ting may occur without ringing. For this case, the suppression of transmission near

resonance that gives rise to the dip in the lineshape has a simple interpretation. It is

simply due to the loss of light via scattering by the atom out the side of the resonator.

(Note that a similar effect has been discussed in a paper by Rice and Carmichael in

connection with squeezing appearing in the spectrum of transmitted light of a weakly

driven cavity containing a single atom [46].) We can conclude this study of the over-

damped regime in intermediate coupling by noting that in order to observe splitting

in a regime where no oscillatory energy exchange is possible, one must drive/excite

and observe the oscillator with the greatest damping.

Case (2) of the intermediate coupling regime always gives rise to two nondegen-

erate frequencies and equal decay rates for the normal modes of the resonant atom-

cavity system. Because decay dominates, normal mode ringing is negligible. In either

the broad or narrow cavity limit, the emission or scattering lineshape of one oscil-

lator may exhibit splitting while the other oscillator's lineshape does not. Since the

linewidths are broader than the frequency separation in the L±' () Lorentzian factors,
P'=C(), Eq. 2.96, and P,'P(2), Eq. 2.86, will not exhibit two peaks but, rather, a



distorted squared-Lorentzian lineshape. On the other hand, P '(2), Eq. 2.95, in

the narrow cavity limit and Pj- 8 (Q), Eq. 2.87, in the broad cavity limit will ex-

hibit lineshape splitting. For the special case y, = 7, = -, Eqs. 2.95 and 2.87 will

exhibit splitting if go > 0.3y2. Equations 2.127 and 2.128 are valid in this limit,

and we plot the emitted power of the atom and cavity field and the corresponding

emission (or excitation) spectra in Fig. 2-6 with go2 = 0.872. As can be seen, even

though the atom exhibits a prominent splitting in its emission/excitation spectrum,

the cavity spectrum does not, and ringing in the transient evolution of the oscillators

is negligible.

We now summarize the results of this section. The presence of a two-peaked struc-

ture in the excitation or emission spectrum is not simply correlated with the existence

of normal mode ringing in the time domain. As pointed out in Sec. 2.2, and as is

seen in the excitation spectra above, when one observes the power scattered/emitted

by the oscillator which is initially excited or which is being driven (Eqs. 2.50 and

2.54, or Eqs. 2.87 and 2.95, respectively), the spectrum of power scattered or emit-

ted contains an extra factor, Ic,P(Q) 12, in the numerator which is not present in the

spectrum of the oscillator which is not being driven or excited, respectively. This

factor depends upon the initial conditions, i.e., on which oscillator is initially excited

or on which oscillator is being driven. The presence of 1Ic,,(p) 12 in the numerator can

create a two-peaked spectrum, even when normal mode ringing cannot occur. These

numerator factors may be viewed as artifacts of this type of coupled oscillator system

that. are manifested in particular choices of the excitation and observation scheme.

They arise from interference effects between the dipole, cavity, and excitation fields

independent of the atom-cavity coupling strength. They have obvious effects on line-

shape splitting, but do not effect the actual normal mode frequency separation (see

also the next section). To illustrate, Fig. 2-5 is a plot of spectra in the intermediate

coupling regime for the case e = p, in which go/7p = 0.3 and y//y, = 0.3 and no

ringing can occur. However, it should be noted that in the broad or narrow cavity

limits, the results of this section show that no two-peaked spectra can occur in either

oscillator for intermediate coupling, case (1), if one drives (excites) the narrowest (or
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Figure 2-8: Strongly coupled atom-cavity system. The normal mode frequencies
(a) and the corresponding decay rates (b) as functions of atom-cavity detuning. In
this case go/7y = 3 and y,/yp, = 2. Note that the normal mode frequencies are
nondegenerate and the associated decay rates are equal at zero atom-cavity detuning.

least damped) oscillator.

3. Strong Coupling

We now turn to the strongly coupled system, where the normal mode frequencies differ

substantially and their linewidths (equal to the decay rates) are equal, as discussed

in Sec. 2.3.1. Equations 2.123 apply to this case as well, but now g, > 7'+. In this

case the normal modes are split by 2g8. For large atom-cavity detuning the excitation

spectrum exhibits two peaks in all cases. The condition for observing a two-peaked

structure in the excitation and emission spectra of both oscillators is gg > (y2 +7y)/2.

This condition is determined by requiring that there be three distinct frequencies at
which the slopes of PjP,(Q) and Pde(,2) (i.e., the function ) become zero.

(This is the same condition in th e domain for observing more than one oscillation
(This is the same condition in the time domain for observing more than one oscillation

(a)

-I



period before the emitted power decays to e-2" of the initial power emitted.) In this

regime the lineshapes of the emission/excitation spectra for both the atomic and

cavity field oscillators exhibit splitting regardless of which oscillator is being excited

and ringing is observed. With increasing coupling strength the effect of the £c,p(Q)

factor on P~,f((Q), Eq. 2.87, and P',((), Eq. 2.95, decreases. Figure 2-7 shows the

transient behavior and spectral lineshapes of the atom and cavity field oscillators for

the case e = p, with go/7, = 4 and %/yp = 1. Note that the £c(Q) factor causes the

atomic lineshape splitting, PgeP((), to be slightly larger than the lineshape splitting

for the field, P'dP,(2). Figure 2-8 shows the normal mode frequencies and linewidths

(equal to the decay rates) of the emission spectra.

To summarize, the presence of splitting in P•f8 (Q), Eq. 2.86, and Pg(02),

Eq. 2.96, is directly correlated with non-negligible normal mode ringing. Therefore,

in order to study the direct manifestation of normal mode ringing via a lineshape

splitting in the frequency domain in an unambiguous manner, one should either drive

the atom and observe the power scattered out the cavity mirror ends, or drive the

cavity and observe scattering from the atom out the cavity sides.

4. Single Normal Mode Excitation

In the scattering analysis of Sec. 2.2.3, we assumed that either the atom or the cavity

was excited by a coherent laser field, and Eq. 2.83 for the cavity field was written

to reflect these two choices. However, it is also possible to excite both the atom and

field simultaneously. Under the appropriate conditions, it is then possible to excite

only one of the two normal modes of the atom-cavity system. We briefly consider

this possibility. Notice that both terms of Eq. 2.83 are then present, and that one

probe field may differ from the other in both amplitude and phase. The single mode

excitation condition occurs when the two probe fields, EL7p and E"-c, satisfy the

following relation:

goE E'~ + £,p(Q)E`c = =~•_2 ), (2.143)



with C a constant of proportionality. For a resonant system, this gives:

_ 27cavc ei, (2.144)

with the relative phase of the two fields given by:

=tan- ( . (2.145)

The choice of sign (±) selects the normal mode with lineshape proportional to

[C+ (q2)1-2, respectively. The cavity field lineshape then follows a Lorentzian line-

shape, even in the strong coupling limit, with Lorentzian factor £4+() or £_(Q). In

other words, we can selectively excite either one of the normal modes of a strongly

coupled atom-cavity system and study its lineshape. Instead of two peaks, a single

Lorentzian would be seen either up-shifted or down-shifted relative to the uncoupled

(degenerate) oscillator frequencies. In the time domain, this corresponds to choosing

the initial conditions so that only the symmetric or anti-symmetric mode of a coupled

oscillator system is excited. Note that for -y_ ; 0 we obtain 0 = 7r/2.

2.3.3 Stimulated Emission and Absorption

Insight into the effects of stimulated emission/absorption and its relation to enhanced

spontaneous emission in the atom-cavity system can be obtained from the emission

results. We now investigate the consequences of positive, as well as negative, inversion

on the emission power and spectral linewidth. Note that to attain positive steady

state inversion, we must select an atomic system with an unstable lower state which

decays more rapidly than the upper state. In the following discussion we will continue

to restrict our analysis to the small signal regime, so that No JVO, in order to avoid

the effects of population saturation.

From the photon rate equation, Eq. 2.72, together with Eqs. 2.71 and 2.73, it

can be seen that G accounts for stimulated emission and absorption. Note that the

numerator of Eq. 2.70, the spontaneous emission term, is just NuhwAcav. We can



thus identify spontaneous emission, as well as stimulated emission and absorption,

and their effects on the average number of photons in the cavity, i.e., the steady state

emitted power. We also have expressions for the expected spectral linewidths of the

emitted power in various regimes of interest (Sec. 2.3.2). Therefore, we can study the

relationship between the total emitted power and the emission linewidth, as well as

elucidate the roles played by stimulated and spontaneous emission processes.

According to Eq. 2.61 the emission spectrum in a resonant atom-cavity system

exhibits a lineshape described by the product of two Lorentzian functions with widths

Fr_and F+, respectively (see Eq. 2.140). Note from the discussion below Eqs. 2.33

and 2.34 that a resonant atom-cavity system with positive inversion exhibits only

one emission frequency, regardless of coupling strength. As seen in Eq. 2.140, the

emission linewidth of the atom-cavity system exhibits narrowing if the inversion is

positive and exhibits broadening if the inversion is negative. (See Appendix C for

discussion and proof.)

We may write the total emission rate per atom of the atom-cavity system using

Eqs. 2.62 and 2.70 as follows:

A = Pend + Pside 2 + Aca (2.146)
N,,hw 1 -G'

with the emission rate out the ends (using Eq. 2.70) given by

Aends cav. (2.147)
1- G

Note that for small multi-pass gain and to first order in (gO/7yyp), Aends a Acav. It is

interesting to compare the emission rate, A, to the atom-cavity linewidth. As shown

below, the two are equal only under special circumstances.

In the broad cavity limit of a weakly coupled, resonant atom-cavity system (yc >

^y, g7 <g -Y), stimulated processes are negligible compared to spontaneous emission:

From Eq. 2.72,
stimulated emission rate

= v; (2.148)
spontaneous emission rate



but v from Eq. 2.70 in this limit is

=N, , , N, ; (2.149)

and thus
stimulated emission rate 9go

spontaneous emission rate < 1. (2.150)

Similarly, for the absorption processes we have

absorption rate N,1 (-) v  90(go)
S- N1  «<1. (2.151)

cavity loss rate 2=yv N I .

The multi-pass gain, Eq. 2.71, is small, IGI < 1, and the total emission rate is simply

the enhanced spontaneous emission rate. The linewidth is given by Eq. 2.105, which

we may write in the following form, to first order in (gO2/7cp):

F = 2r_ ; 2yp(l - G'). (2.152)

For A! -1, the emission linewidth (see also Eq. 2.111) is equal to the total emis-

sion rate, Eq. 2.146. For any other value of the inversion, the total emission rate is

not the same as the linewidth. Also note that if the inversion is positive, the emis-

sion linewidth narrows. This process can be identified as spontaneous emission line

narrowing, since stimulated emission and absorption are negligible.

In contrast, in the narrow cavity limit (y, > y,) the stimulated emission rate can

be comparable to, or even greater than, the spontaneous emission rate regardless of

the coupling strength, and the gain can be non-negligible. The linewidth is now given

by r+ (Eq. 2.115) rather than r_, and is similar in form to Eq. 2.152. In this case

G' - G, and the (1- G) term in the denominator of Eq. 2.146 can significantly depart

from unity. For positive inversion, the emission rate increases with gain, becoming

larger than that for pure spontaneous emission, and the resulting emission linewidth

is further narrowed. This is a manifestation in the atom-cavity system of stimulated

emission line-narrowing. For negative inversion, the total emission rate is reduced



compared to that for spontaneous emission; again, only for K = -1 and IGI < 1 is

the (broadened) linewidth the same as the total emission rate. Of course, when the

gain becomes appreciable, Kf may deviate from ao, giving rise to further interesting

behavior.

As mentioned above, in the narrow cavity limit stimulated emission can become

appreciable, and can produce significant line narrowing. One might expect that stim-

ulated emission and line narrowing are always correlated, just as they are in a laser.

However, this notion breaks down in a strongly coupled atom-cavity system. For ex-

ample, consider a two-level atom, the lower level of which is allowed to decay, but at a

rate larger than that of the upper level. In the narrow-cavity limit (go, % > Y), the

mean photon number can be much larger than 1, as discussed above, so that photons

are emitted mostly by stimulated emission. However, if the atom-cavity coupling is

sufficiently strong (go > yp > 7y) and we assume that f < 1 so that Afree e 2yp,

the spontaneous emission rate into the resonator mode can exceed even the free-space

spontaneous emission rate of the upper level by a factor

Acav - 9 >) p I 1. (2.153)
Afree Airee yp)

In this case the upper-state total spontaneous emission rate (A , Afree + Aends) can

be made greater than that of the lower state, resulting in a negative steady-state

inversion. (The inversion is slightly negative because the atom is strongly saturated

by :the large number of resonator-mode photons. In fact, a single photon in the

mode is enough to saturate an atom which is coupled to it.) Therefore, we can have

the remarkable situation in which an atom emits photons primarily by stimulated

emission, even though its inversion remains negative.

2.4 Summary

We have developed a semiclassical model to study the emission and scattering prop-

erties of an atom-cavity system in which the atom(s) are fixed and the resonator



mode function is uniform. The semiclassical picture describes the properties of a

single atom-cavity system, averaged over a series of successive events. The inclusion

of damping gives rise to a host of interesting effects. In a normal mode analysis, the

model describes decay rates and oscillation frequencies of the atom and cavity field

in the time domain and their associated power spectra in the frequency domain. The

model thus provides the normal mode structure for the system. Manifestations of

coupling were seen in the spectral lineshapes in the weak, intermediate and strong

coupling regimes. The results of enhanced and suppressed spontaneous emission and

vacuum radiative level shifts were derived. The relationships between normal mode

ringing and lineshape splitting were studied. The spectral lineshapes observed in

the frequency domain are directly connected to the oscillator decay rates observed in

the time domain. However, the relationships exhibit subtle behavior. For example,

lineshapes exhibiting two symmetric peaks can be obtained in the absence of normal

mode ringing. Therefore, the presence of a two-peaked structure in the excitation or

emission spectra is not necessarily an indication of normal mode ringing. An emission

analysis using the time domain results and their Fourier transforms provides emission

rates as well as the lineshapes of the emission spectra.

The scattering formalism applied to the atom-cavity system in its ground state

provides lineshapes which contain information about normal mode structure. We

found that the same lineshapes are obtained in the emission analysis for the special

case with inversion, N = -1. The scattering lineshapes therefore provide atom-cavity

spontaneous emission information as well. In particular, we studied the relationship

between emission rates and linewidths. It was shown in the Wigner-Weisskopf limit

(broad cavity, weak coupling) that emission rates and excitation linewidths are equal

with enhanced spontaneous emission occurring in the N" = -1 case. In general,

however, the emission rate and linewidth are not the same. When the steady state

inversion does not equal -1, the linewidth associated with enhanced spontaneous

emission is reduced, and for positive inversion a line narrowing occurs, despite the

absence of stimulated emission and absorption.

The emission picture enables us to study the atom-cavity system for positive, as



well as negative, inversion, and thus to discuss the possibility of stimulated emission

in an atom-cavity system and distinguish it from enhanced spontaneous emission.

Only spontaneous emission (enhanced or suppressed) occurs in an atom-cavity system

with negligible gain. In this case the linewidth is broadened for zero atom-cavity

detuning and narrowed for large atom-cavity detuning. The resonant system exhibits

a linewidth which is broadened (narrowed) if the inversion is negative (positive).

With significant gain and positive inversion, however, the emission rate is further

increased compared to the spontaneous emission rate and the linewidth is further

narrowed by stimulated emission. Stimulated emission can play an important role in

the atom-cavity radiation process and we have discussed the conditions under which

stimulated emission line narrowing can occur. We also considered the system excited

with broadband light and derived a photon rate equation identical to the equation

obtained in the incoherently pumped system (see Appendix B).

Interestingly, in the strong coupling regime it may also be possible to experimen-

tally observe (excite) each normal mode separately by properly chosen laser fields

(amplitudes and relative phases) that drive both the atom and cavity simultaneously

in a scattering arrangement. The resulting excitation spectrum would then exhibit a

single Lorentzian in the strong coupling regime. This lineshape is just the particular

normal mode which was chosen to be excited and is characterized by the Lorentzian

factor £ +(Q) or C-£_(). Later we will discuss the experimental difficulties associated

with this proposal.



Chapter 3

Theory II

The model described in the previous chapter assumes that all atoms interacting with

the cavity are equally coupled to the mode and that fluctuations in the number of

atoms are negligible. In experiments which utilize semiconductor microcavities, for

example, the radiators can be fixed in position at the node or anti-node to within

small fractions of a wavelength. The results of the previous chapter may then be

applied without any additional assumptions. In this case one needs only to replace

Vg'g ---+ -Ng2o (N ; -N) in the results of that chapter to generalize to the case

of many atoms (or radiators). Additional examples to which the simple model of the

previous chapter may be applied without further modification include those experi-

ments with degenerate resonators (eg., concentric or confocal). Section 3.4 describes

the two kinds of resonators that have been used in cavity QED studies (degenerate

and nondegenerate) and discusses their fundamental and practical differences.

In the experiments to be described in the next chapter, however, an atomic beam

interacts with a single SW mode of an open optical resonator. Either the atoms

or the cavity mode is weakly driven by a coherent laser probe (both schemes are

performed) and the power scattered out the side and out the end of the resonator are

measured as functions of the probe frequency. Since the atomic beam extends over

many optical wavelengths of the standing-wave mode structure, the coupling strength

for each interacting atom is no longer the same. In this chapter, we extend the theory

of the previous chapter to model these experiments.



During the course of the experiment, the number of atoms in the mode and their

positions fluctuate. Since each atom's coupling strength to the cavity is dependent

upon its position, these fluctuations may be manifested in the measured lineshapes.

In Sec. 3.1 the semiclassical equations for many, fixed atoms interacting with a SW

mode are introduced. For a fixed distribution of N atoms in the mode, a convenient

parameter, the intracavity atomic number, N, is defined. The lineshapes obtained

in the various schemes all depend upon this parameter. With the above mentioned

fluctuations, N becomes a continuous random variable with an associated distribu-

tion function. It is therefore necessary to perform an average over the fixed-atom

lineshapes in order to realize the results of the experiment.

Fluctuations become important and can have a dramatic effect on the resulting

lineshapes when the number of interacting atoms is small. In particular, we study

the regime for which (N) ; 1 where the brackets indicate the average of N over the

distribution. As will be verified below, the total number of atoms interacting with the

mode at any given time, N, must be greater than one to realize (N) P 1 so that such

experiments do not constitute single atom experiments. We will discuss this point in

Sec. 3.2.5.

Expressions for the excitation spectra, the power scattered as functions of coherent

probe laser frequency, are derived in all schemes. In Sec. 3.2, simple examples are

presented to elucidate certain aspects of the spectra in intermediate, as well as strong

coupling regimes. A brief investigation of saturation and its effects is conducted in

Sec.3..3.3.

3.1 Atoms in a Standing Wave Cavity

The scalar form of the Maxwell-Schr6dinger equations (see Eqs. 2.75-2.77) may be

used since all dipole and field vectors will be parallel (we assume no birefringence in

the cavity mirrors):

Pi (t) + 2ypj(t) + p(t)= - h .[Ec(, t) + t)], (3.1)



Ec(rf t) + 2-yEc(r t) + w2 Ec(F, t) = -4rP(F, t) + 5,,aE(f, t), (3.2)

,Aj + 2y,(•Nj - N') = 2[pi3(t) + ,ypj(t)][Ec(-F, t) + 6 ~pEPL(F, t)] (33)
hwP

with the polarization field, P(f, t), and the cavity field, Ec(f, t) = Re[Ec(', t)] where

P(i, t) = Re pj(t)63(f- i_) , Ec(F, t) = Eo0(rf)(t), (3.4)

with pj(t) the (complex) dipole moment and f the position of the jth atom (j =

1,..., N), and with N the total number of atoms. All assumptions and conditions

made in Chapter 2 regarding the domain of validity of this model are in effect here as

well. The end excitation field is El (f', t) = Re[E,(r-, t)], and the side excitation field

is E~(f, t) = Re[E(rf, t)] where

EL(e, t) = EL(t)(r(, E (r*, t) = EL(t)¢(r), (3.5)

with mode functions

O(r =e esinkz, )(rj=e , (3.6)

where r2 = X2 + Z2. We assume that the atoms interact with only the TEMoo cavity

mode. The orientation of the coordinate axes, assumed throughout the text, is de-

picted in Fig. 3-1. Note that the end excitation field is mode-matched to the (SW)

TEMoo cavity mode, with waist wo, whereas the side excitation field is a TEMoo

traveling wave with arbitrary waist, wl. Furthermore, we neglect dipole-dipole in-

teractions since atomic beam densities are low. Shown in Fig. 3-2 is a "snapshot"

of the situation represented here. The height of each atom in the figure (dots) is

a representation of its coupling strength to the mode. Normalization of the cavity

mode field yields

(rr 2dV = Eo-= - , (3.7)
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Figure 3-1: Orientation of the coordinate system used in the text. The optical axis
defines the z axis.

with V = ! 1rwoL the mode volume.

Multiplying Eq. 3.2 by E"0( and integrating over all space we obtain

ij (t) + 2-ypj (t) + w,~p(t) = - Vj[Eo (j)E8(t) + JEfL(t)(9j)], (3.8)

&(t) + 2'y$c(t) + w2 (t) - 2E (t) + (39)• P(t() +;o7•_L, (3.9)j=1 E0

Aj + 27p(Afr --Af0P) = 22[pj (t) + yppj (t)][Ec(', t) + 6,,E~,(fj, t)] (310)
hwP

Note that Doppler and transit time broadening effects can be studied if atomic motion

through the cavity mode is included by assuming the appropriate time dependence

for the "F's. For simplicity, however, we neglect such effects since these will be small

in the experiments to be described.

We now assume coherent driving fields and the slowly varying envelope approx-

imations, as in Eqs. 2.80-2.82 of Sec. 2.2.3, by replacing E(t) -+ £(t)eint, E']P(t) -+

Ef'P(t)eint, and p (t) -+ p3 (t)ei' t to obtain (keeping the same notation for the slowly

varying amplitudes)

i 2
P - C(Q)pj = -- A[Eo#(o)e(t) + 6,pEte(r3)], (3.11)



TEMoo Mode Function W2(r,z)=sin2(kz) e-2(r/wo) 2
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Figure 3-2: Atoms coupled to a TEMoo standing-wave cavity mode with mode func-
tion /(r, z). z is along the optical axis and r is the radial distance from the mode
center with waist w0

&(t) - 4(6i2)S(t) =

A.';(t) + 2 yp(Vj(t) - ,o) =

NO Eo
iEoN
S Epj(t) () + J=1h j=1

Im[pj(t)(EoO(Fj)E(t) + cp,ELqs(F))*]

where Q represents the driving field's frequency.

3.1.1 Cavity Excitation.

Before obtaining the steady state solutions of Eqs. 3.11-3.13, note that a coherent,

weighted sum of the dipoles (a "macroscopic" dipole) excites the cavity mode (Eqs. 3.9

and 3.12) for the driven cavity case. Multiplying Eq. 3.11 by ('Fi) and summing over

j gives

P(t) - £(C)P(t) = i[EoN (t)],fi (3.14)

for the "macroscopic" dipole oscillator,

P(t)= E Ppj(t)0(fl),=
j=1

(3.15)

(3.12)

(3.13)

N2

j/fY·Y



and

(t- %cE(OP)£(t) - Eo P(t) + 6c( a (3.16)

for the cavity field oscillator. Therefore for the E = c case, Eqs. 3.11 and 3.12 reduce

to two simple, coupled oscillator equations.

The steady state solutions for the driven cavity case, which are generalizations of

Eqs. 2.83 and 2.84 with E = c, are

ip 2 a- E(cE(3
C(Ql) h 2i\ Lp,()c(Q) + Ng_2 _(3_17)

and

=(L [ ) =() 1 (3.18)2iQ Eo0_ + 'c

where
N _ g (3.19)

j=1

In these expressions we assume weak excitation so that level populations do not

change significantly and the inversion equation (3.13) may be neglected (KAj ;, -1 for

all j). Solutions which include the population equation will be discussed later when

considering the role of saturation (Sec. 3.3).

Intra-cavity Atomic Number

As mentioned in the introduction to this chapter, we define N to be the number of

intra-cavity atoms when N atoms, an integer number, are randomly dropped in the

atomic beam volume which overlaps the cavity mode volume (for an illustration, see

Fig. 3-2). Details of this will be provided below. It should only be noted here that, on

average, N will not be the same as the total number of atoms in the experiment (i.e.,

the number of atoms in the atomic beam, N). To obtain N = N all atoms must fall

at anti-nodes along the cavity axis so that P(r') = 1 for all j. This is an extremely

unlikely occurrence.

During the course of the atomic beam experiment, both N and the atomic po-

sitions will fluctuate. Thus N is a continuous random variable which will have an



associated probability distribution. We must therefore perform an ensemble average,

described below in Sec. 3.2.2, to compare theory with experiment. The power emitted

out the end therefore follows from

PEc (Q) = avhw2 IfEob(rje=c(Q) 12dV.20)
end\() = UcTW2% (3.20)87r ave

Evaluating the integral using Eq. 3.7 and substituting Eq. 3.18, we obtain

Pe'.d ( =) = To hw/c ,P(£ )-C q + Ng2  '(3.21)

with

To = 27, IL ', (3.22)

the empty cavity peak transmission and where ()ve now denotes the required ensem-

ble average (compare Eq. 2.87).

To obtain the total power scattered out the side of the cavity, however, we must

incoherently add each dipole's contribution, using Larmor's formula (Eq. 2.92). The

random positions of the dipoles imply random relative phases of their fields emitted

out the side. Thus,

Pd(P) = 3c IP=( (1 -- f), (3.23)

with pj= (Q) given in Eq. 3.17. Substitution gives

P= C(Q 21 (1 ) I (3.24)
eCI(Z),Cc(2) + N9g2 120 ave

with IL and I, defined following Eq. 2.86 (compare Eq. 2.96). Since the experiments

to be described are performed with cavities for which f P 10-4, we will suppress

the (1 - f) factor henceforth. Of course, any discussions involving the degenerate

resonators, concentric or confocal, cannot neglect this term since typically f ; 10- 1.

However, as pointed out in the introduction, the results of this chapter do not apply



to degenerate cavities.

3.1.2 Atom Excitation.

The steady state solutions for the driven atom case, which are generalizations of

Eqs. 2.83 and 2.84 with e = p, are

p - (=2E' ,r ' go Ek=1 r )( 'k) ] (3.25)
0 Ai)2,(E) [,(C0)C)(Q) + NNg -

and

E P(2)= =( (3.26)
h 4 (f2)4C(f)+ NgO2

Using Eq. 3.20 with the appropriate e = p terms, the total power emitted out the

cavity ends is (compare Eq. 2.86)

IL N'2g2
P Q = ?7cav L jhw7Yc I(n( + Ng( (3.27)

Similarly, the total power scattered out the cavity side is (compare Eq. 2.95)

SL PhW ,,2 N N'go [2Re(c(2)f.p(Q)) +Ng0] '(3.28)
P ~ 2dep () , p() 12 Nexc p()c() + Ng 2  ae

where
N N 2

NeX = 0~2(r), N'= ( () . (3.29)
j=1 =1

In comparing these results with the fixed atom results of Sec. 2.2.3, the interference of

the individual dipoles has a significant effect on the sidelight lineshapes for the dipole

emission out the side. This point will be further dramatized in the experimental

results.

To simplify the above expressions, we consider the special case in which all atoms

are excited uniformly (0(') = 1). In this case Nexc - N. Furthermore, we can write

N 2

N' =j N+ Z 4( r)¢(f). (3.30)
=1 j~k



Figure 3-3: Nec = 2, N' = 0, N = 0.

In performing the ensemble average, the second term in Eq. 3.30 will occur with

alternating signs so that any term which it multiplies will average to zero. Thus N'

may be replaced by N to get:

QIL()=. W -2 2 (3.31)
'en8 iVs 1,C,(Q)Cc,(Q) + VNg12 ave

and

Ps(ap) = _y, [ (N)ave - 1 + C()• (3.32)
asde 218 W 1,Cp(Q)12 1,Op(Q)Lc (Q) +Ng 212 ae

The lineshape for the sidelight, when exciting the atoms, contains a contribution

from two terms: A free-atom lineshape proportional to (N) - 1 and a "single atom"

lineshape with an effective coupling given by VWgo.

3.2 Discussion

To elucidate the results of the previous section, we consider simple cases of two atoms

fixed at various positions along the SW cavity mode axis and neglect fluctuations.

If both are located at the nodes and equally excited (4('?) = 1 for j = 1, 2), then

N = N' = 0 in the above equations (Fig. 3-3). For the driven cavity case only the

transmitted (empty cavity) signal survives (Eq. 3.33) and for the driven atom case



Figure 3-4: Ne,, = 2, N' = 1, N = 1.

only the side signal survives (Eq. 3.34):

PIe n) = • 2, P=•(f) = 0; (3.33)

2
Pen=dps() 0= 0, Ps p(Q) = NeXC, hW1  2 . (3.34)

For E = c, atoms not coupled to the cavity mode give rise to an empty cavity trans-

mission lineshape and for e = p, they give rise to a free atom lineshape signal out the

side.

Now consider one atom at a node and the other at an anti-node (Fig. 3-4). The

resulting expressions for the various observable signals are:

2 1 2

P:• C) g2 'P-() o+ 2 (3.35)

1 2 c 2
Pepnde (Q2) O 4(~)c + g P 'DP(Q) +c,( )gc(P) +g + ((+g I£j,()2 " (3.36)

In this case both side and end signals for e = c as well as the end signal for e = p,

(Eqs. 3.35 and 3.36), give rise to the expected single-atom lineshapes, similar to

those derived in the previous chapter. However, the side signal for the driven atom

case (e = p) contains an additional term. It arises from the uncoupled atom which

nonetheless is excited by the side probe and radiates as a free atom. Thus, excitation

of the atom-cavity system from the side includes the contribution of uncoupled atoms



Figure 3-5: Nex. = 2, N' = 0, N = 2.

to the sidelight signal.

Placing two atoms at consecutive anti-nodes of the resonator, Fig. 3-5, gives

(ri) = -¢(ri2) because r = 0 and sinkzl = -sinkz 2 . We therefore have

£ (0) 2 2 2

Pends £(),() + 2g02 e c,(2)c(Q) + 2g• (3.37)

'(2)= 0, P ) (3.38)

The driven cavity results, Eqs. 3.37, exhibit an effective coupling parameter (V2go)

which is larger than the single atom coupling, go, because of the cooperative nature

of the interaction (coherent). The driven atom case, Eqs. 3.38, on the other hand,

gives quite different results which are explained as follows: The side probe forces the

dipoles to oscillate in phase. However, since they are located at two consecutive anti-

nodes, they must oscillate out of phase with respect to each other for their respective

scattered fields to constructively interfere with the cavity field. The net result is no

scattering into the cavity because of destructive interference. Since the scattering out

the side is incoherently added, free atom lineshapes occur as in the previous dipole

configuration, but no contribution due to the presence of the cavity arises since there

is no cavity field.

Finally, the solutions for two atoms located at alternate anti-nodes, see Fig. 3-6,



Figure 3-6: Nec, = 2, N' = 4, N = 2.

are

P ()c ()(Q) 2 + 2 (3.39)Pends' A Oc Lp(Q)£Cc(Q) + 2g02 I sI e(() Oc £,(Q)Lc(Q ) + 2g9 '

2 2 2l c(Q) 12( .
Pe=dZ(. (Q) v()C()+ 2c P, (Q) oc CI4(Q)£() + 2g212  (3.40)

In this case all fields add constructively and a non-zero cavity field exists in the driven

atom case, Pefd 8,(f), in contrast with the previous example.

In describing the various lineshapes recorded, the notation "CC", "CP", "PC",

or "PP" will be used to denote a particular "excitation-observation" scheme. For

example, "CP" implies the arrangement in which the cavity (C) is excited by the probe

and the light scattered out the cavity side by the atom (P) is measured. Similarly,

"PC" refers to excitation of the atom directly by a side probe and observation of the

light scattered out the resonator end. Note that the PEdsc,(2) and P',(,() lineshapes

(schemes labeled as CC and PP, respectively) can give rise to nonzero signals in the

absence of atom-cavity coupling: In the PP scheme, an atom at a node radiates

out the side as though no cavity is present. The same situation for the CC scheme

gives rise to an empty cavity signal. The CP and PC signals (Pj(,2) and PJdP(0),

respectively), on the other hand, arise only when the atom is coupled to the cavity.



3.2.1 Coupling Regimes

In Sec. 2.3, three regimes were defined in order to characterize lineshapes for a fixed

atom(s): (1) Weak coupling in which single-peaked lineshapes result from exponential

decay, (2) Intermediate Coupling for both single and two-peaked lineshapes, and

(3) Strong Coupling in which two-peaked lineshapes result from oscillatory energy

exchange. In this chapter, we desire a single parameter to characterize the coupling

regimes under study. Given the complexities introduced by fluctuations, we define

this parameter for a single, optimally coupled atom. It therefore is dependent only

upon the properties of the cavity and atom, and not the atomic location or number:

( 27)2 (3.41)

Three regimes may then be characterized as follows: (1) strong coupling ( >» 1);

(2) intermediate coupling ( z 1) and (3) weak coupling ( <« 1). Note that ( also

determines the mathematical condition for the existence of two nondegenerate normal

modes of oscillation, i.e., < 1 and ( > 1 give rise to degenerate (overdamped) and

nondegenerate (underdamped) normal mode frequencies, respectively (see Eqs. 2.35

and 2.36).

3.2.2 Ensemble Averages

The required ensemble averages for the lineshapes derived in Sec. 3.1 are performed in

a computer simulation: Many trials, each consisting of random placement of a large,

but fixed, number of atoms (oc po, the atomic beam density) in a volume defined by

the atomic beam, are performed. In each trial, only those atoms, N, falling within a

small fraction of the atomic beam, centered on the cavity mode axis, are included in

the sum to estimate N (Eq. 3.19). The volume of this fraction is chosen large enough

so that all atoms outside, if included, would make a negligible contribution to N.

As an example, the situation depicted in Fig. 3-2 may be considered. However, the

atomic beam in this case spans only two wavelengths whereas the atomic beam spans



400 nodes in the actual experimental setup!

From trial to trial, both the number of atoms, N, and their positions will fluctuate

(i.e., from "snapshot" to "snapshot"). The lineshapes derived in Sec. 3.1 depend

upon intra-cavity atomic number, N, and therefore may be sensitive to fluctuations

in N, particularly when N is small. To clearly see this, note that these fluctuations

are characterized by two distribution functions, P(N) and P(N). The distribution

for the intra-cavity atomic number is shown in Fig. 3-7(a) for several values of po

(oc (N)). The distribution for N follows the usual Poissonian distribution function

as expected and is not shown. These computer generated curves are determined by

the number of times a particular value of N occurs in the simulation, divided by the

total number of trials. The curves in (b-e) are lineshapes for specific values of N, i.e.,

with no fluctuations. They are obtained from the appropriate fixed-atom equations

in Sec. 3.1, in which A'g2 is replaced by -Ng2. (Also see the discussion for the two-

atom cases in this section, above.) For a given (N), the resulting ensemble averaged

lineshape is calculated as a weighted average of these lineshapes with the appropriate

P(N) distribution in (a).

3.2.3 Intermediate Coupling Regime

To investigate lineshapes in the intermediate coupling regime, we asssume the follow-

ing values for the system parameters: F = 2.7 x 104, L = 1 mm, R = 150 cm, and

A = 553.5 nm. These values correspond to those used in Fig. 2-5 of Sec. 2.3.1 for

the single, fixed atom case, where go/yp = 0.3, and y/y,p = 0.3 (( = 0.86, narrow

cavity limit). In this regime, the two normal mode frequencies are degenerate and no

oscillatory exchange of energy can occur with one atom. Nonetheless, a two-peaked

lineshape arises, as seen in Fig. 2-5(b) for an optimally coupled atom. To see the

effects of fluctuations, we now compare this result with the computed lineshapes for

several values of beam density, shown in Fig. 3-8 for the driven atom case (E = p).

Several points should be noted in Fig. 3-8. First, trace (a) exhibits a splitting (barely

visible) in the sidelight lineshape of the atom (light scattered out the resonator side).

This surprising feature has been discussed in Sec. 2.3.1 and again in Sec. 2.3.2 with
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regard to a fixed atom. It arises from the fact that the atom undergoes enhanced

emission into the resonator mode within the cavity's bandwidth. With this enhanced

emission, the excited state population decreases (in comparison to the free atom case)

and the sidelight, which is a measure of this population, also decreases. Note, how-

ever, that the corresponding total spontaneous emission rate is only slightly enhanced

(= go,/P) 7% increase). A related interpretation was given in Sec. 2.3.2: The

intra-cavity field is out of phase with the driving field so that as it builds up, the total

field at the atom is reduced with subsequent suppression of the atomic radiation out

the side.

The density for the curves in (a) and (e) of Fig. 3-8 corresponds to the situation

in which no more than one atom is in the mode at a time (N = 1 or N = 0), and

the atom's position over the active volume is randomly varying. Trace (a) exhibits a

significantly reduced splitting in comparison with the sidelight trace of Fig. 2-5 for the

single fixed-atom case. The diminished, or lack of, splitting in traces (a-d), however,

occur because the contribution of free atoms to the sidelight is significant, and washes

out the two-peaked lineshapes arising from the coupled atoms (see Eq. 3.32). Trace

(b), with a much larger atomic beam density so that there is now one intra-cavity

atom, (N) = 1, exhibits no splitting. Similarly, traces (e-g) do not exhibit splitting

but, as the intra-cavity atomic number increases, the "effective coupling", (N• 9 0,

becomes larger and the system eventually becomes strongly coupled. Therefore, the

cavity lineshape in trace (h) exhibits splitting as expected. The lack of splitting in

traces (e-f) is consistent with the lack of oscillatory energy exchange. The equation for

the cavity lineshape in the driven atom case has no Lorentzian factor in the numerator

and any splitting arises only as a result of nondegenerate normal mode frequencies

(Eq. 3.31).
We now consider the following values for the system parameters: F = 5.8 x 103

R = 10 cm, L = 240 / m, and A = 553.5 nm. These parameters give go/"yp = 1.75

and y,/y, = 5.7 and correspond to the broad cavity, c = c case which should also

exhibit lineshape splitting with degenerate normal mode frequencies (compare with

the above narrow cavity, E = p case). Shown in Fig. 3-9 are the resulting lineshapes.



An experiment to demonstrate these effects is performed for these parameters in

which the cavity mode is excited in the intermediate, broad cavity regime, and is

described in Chapter 4. Similar to the discussion in the driven atom case, above,

lineshape splitting in the CP scheme indicates oscillatory energy exchange whereas

the splitting in the CC scheme, trace (f), arises only from the "blocking" action of

the atoms in the cavity mode. With increasing atomic beam density enough atoms

will eventually be coupled to the mode to place the system in the strong coupling

regime so that splitting appears in both the CC and CP lineshapes (traces (h) and

(d), respectively).

3.2.4 Strong Coupling Regime

In the strong coupling regime, the sidelight and transmission lineshapes for the E = c

scheme, are shown in traces (a-d) and (e-h), respectively, of Fig. 3-10, for several values

of Po oc (N). We choose the values go/yp = 1.28 and %/lyp = 0.36, corresponding to

those in the experiment performed by Thompson et al. [21]. Note that only cavity

transmission was measured in this study. The two-peaked lineshapes in transmission

are evidence for oscillatory energy exchange. (Note that the notation N in that work

corresponds to (N) used here.) In light of the splitting described in the previous

paragraph for intermediate coupling, this interpretation is unambiguously confirmed

by the two similar peaks in the sidelight, traces (b-d). Note that as (N) -+ 0,

the lineshape splitting is seen to reduce. Furthermore, the lineshapes for (N) = 1,

traces (b) and (f), exhibit a reduced splitting when compared with the corresponding

lineshapes derived from Eqs. 2.96 and 2.87, respectively, for the single fixed-atom

case. In order to explain this, refer again to Fig. 3-7. For (N) : 1, trace (a)

exhibits the probability that a given N occurs. The effective coupling parameter

that determines the lineshape is Ng2. For small N the system is weakly coupled

with a single lineshape and for large N it is strongly coupled with a two-peaked

lineshape. Averaging these possible outcomes together can reduce the magnitude of

the splitting, as seen in traces (e-g) of Fig 3-10. Again, curves (a-d) exhibit less

splitting than the corresponding curves (e-h) of this figure because of the Lorentzian
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factor in the numerator, as discussed in Sec. 2.3.2.

3.2.5 Single Atom Regime

An important consequence of the standing wave nature of the resonator mode, when

used in atomic beam experiments, is the inherent fluctuations induced in the intra-

cavity atomic number, N. As discussed above, (N) ; 1 is a regime in which the

fluctuations are as large as the mean value and resulting lineshapes can be dramat-

ically altered. These fluctuations can arise from a single atom whose position is

allowed to change or from several atoms that are also allowed to change positions.

The lineshapes associated with these two cases are dramatically different, as will be

shown below.

In fact, the purpose of this section is to demonstrate that several atoms interacting

appreciably with the resonator mode are required, on average, to obtain (N) ; 1. To

demonstrate this, consider the total number of atoms in a given volume, V, within

both the atomic beam and the cavity mode:

N = f podxdydz = J J por'dr'ddz = irr2 lpo, (3.42)

with Po the atomic beam density, assumed uniform, and where 1 extends over many

SW mode wavelengths along the optical axis of the cavity (- z axis). The number of

intra-cavity atoms in this volume at any instant is given by

N = 'p0o 2 (r', z)r'dr'ddz. (3.43)

Therefore, the ratio N/N of the number of intracavity atoms to total number of

atoms is
N
N (1- e2"2)/(2u)2, (3.44)

with u = r/wo. Choosing u = 1, N ; 4.6 atoms are required to obtain N

1. One must therefore conclude that (N) ; 1 does not constitute the true single

atom regime. Furthermore, models based on extensions of the Jaynes Cummings
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Figure 3-11: Single atom lineshapes for the parameters of the previous figure. In
traces (a) and (d) the upper limit for the integral is NMAX = 1.

theory to many atoms assume a uniform mode function [44, 40] and do not strictly

apply to experiments of this type. In the true single atom regime, the atom samples

all positions within the volume specified above, and (N) -- + 0.2. The resulting

lineshapes would not exhibit splitting for our parameters, as the trend in Fig. 3-10

suggests.

To realize the true single atom lineshapes experimentally, the atomic beam density

should be decreased to a value low enough that never more than one atom is in the

atomic beam at a time. In this case, no atoms will interact appreciably with the

resonator for a significant part of the signal acquisition time. Note, however, that the

CC scheme always gives a lineshape even with no atom at all in the resonator (the

empty cavity Lorentzian), whereas the other schemes give signals only when atoms are

present (signals cc N). Therefore, for the CP, PC, and PP lineshapes, the averaging

procedure only needs to include those cases in which a single atom is present, and
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the resulting experimental lineshapes may be calculated by simply integrating the

appropriate fixed-atom lineshapes over N. Since a single atom may be positioned

anywhere within the mode volume with equal probability, we have:

(L(, N))ave = L(Q, N)P(N)dN, (3.45)

where L(Q,N) is the appropriate term of Eq. 3.31, 3.32, or 3.24 (PC, PP, or CP,

respectively), where P(N) is an appropriate distribution function. If the cavity mode

function were simply a standing plane-wave mode with no radial gaussian function,

then P(N) = 1 for all N. With a radial gaussian mode function, however, the

probability that the atom is in the tails of the gaussian function (with small N) is

larger than that for which the atom is optimally coupled at the mode center (N = 1).

(The atom is equally likely to be anywhere in the atomic beam so that the probability

for a given N scales as the ratio of the area for which N has the specified value to

the total atomic beam area.) Note that for PP, (N) = 1, and only the second term

in Eq. 3.32 is needed. (We assume a probe waist much larger than the cavity and

atomic beam waists so that 0('~) = 1.)

This averaging procedure will apply to the CC scheme only if the atomic beam

density is large enough so that there is one, and only one, atom within the mode

during the course of the experiment, a situation impossible to realize. As the atomic

beam density is reduced further, zero-atom signals dominate and the limiting signal

becomes simply the empty cavity lineshape. The above integrals are performed for

the pane-wave case (P(N) = 1) and the resulting single-atom lineshapes for the PC,

PP, and CP schemes are shown in traces (a) and (d) of Fig. 3-11. The lack of splitting

in trace (d) for the PC or CP schemes (both give the same result) is not surprising.

However, the splitting in trace (a) may be explained by noting that the strength of

the signal for a given lineshape (for a given N) is proportional to N. For smaller

values of N the single-peaked lineshapes do not contribute much to the overall signal.

To approximate the gaussian mode case, the upper limit in the integral over N is

reduced to simulate the modification in P(N) in traces (b,e,c,f).
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Lineshapes obtained in the CC scheme for (N) = 1, eg., curve (f) of Fig. 3-10,

when compared with the fixed-atom lineshapes for various values of N, see (b) of

Fig. 3-7 (note the different scan widths), suggest that their dominant contribution

arises from the N = 1 fixed-atom lineshape. This is also demonstrated by P(N) in

Fig. 3-7. Furthermore, these fixed-atom lineshapes depend only on N and do not

discriminate between the various ways that N = 1 can arise. Therefore, it may be

argued that the results of this type of experiment can be interpreted as arising from a

single atom optimally coupled to the cavity mode. However, as we have argued above

N = 1 can occur in many ways which involve several atoms coupled to the cavity

mode. An experiment which can definitively discriminate between the situation in

which a single atom is optimally coupled and the situation in which several atoms

are all coupled in such a way that N = 1, is the PP scheme. In this case, the true

single atom optimally coupled lineshape would exhibit the anticipated two peaks. The

alternative case with several atoms, however, can exhibit only a single peak lineshape,

as can be seen in Eq. 3.32 (if, for example, (Ne,,) = 4 and (N) = 1; for a related

discussion see also Eq. 3.36). Experiments have been performed to demonstrate this

and are discussed in the next chapter.

3.3 Saturation

An important issue to address is the effect of the atom-cavity interaction on atomic

level populations. In previous sections, the atomic level population equation was

neglected and all atoms were assumed to remain essentially in their ground states. In

this section this assumption is relaxed.

We seek the condition for which the atomic population is perturbed to first order.

For simplicity, we assume a single atom located at a fixed position, r7, in the SW res-

onator mode. The results of the previous chapter then apply with N = 1. Neglecting

the driving terms, Eqs. 3.11-3.13 may be solved for the inversion in the steady state

to obtain

.' - 1+ , (3.46)
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where 1 (go 2 Eo0(F4)C2
= E (3.47)2 ^p J|Eol2

Note that I£12 depends on the square of the inversion. However, since we desire effects

only to first order, we assume r• 0 No = -1 in the expression for le12 and demand

that j~l «< 1. The number of photons, v, in the cavity mode at the driving frequency

is given by
vhw = 2f IEogC(r)l 2dV - IEoE1 2V
v8i = 2= (3.48)8r 4r

Therefore

E ( = go2(Y) (3.49)

so Eq. 3.46 may be rewritten as

1 + v/' (3.50)1 + v/V,
with the saturation parameter, v,, given by

V= (s = ) 2  (3.51)90 0rM)

The saturation parameter is a measure of the number of photons required in the

resonator mode to effect the atomic population. As is easily seen, an atom more

strongly coupled to the mode with larger 0('I) has a smaller saturation parameter

than an atom closer to the cavity nodes. An optimally coupled atom therefore exhibits

saturation effects before a weakly coupled atom.

3.4 Optical Resonators

Several different kinds of resonators are being used to study various aspects of cavity

QED; (1) closed, low order (the superconducting boxes of Kleppner's and Walther's

groups), (2) open, low order (the micro-cavities and Fabry-Perots of Haroche, DeMar-

tini, Yamamoto, etc.), (3) open, high order, degenerate (the concentric and confocal
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cavities of Mossberg's and our groups), and (4) open, high-order, nondegenerate cav-

ities (of Kimble's and our groups). In open or closed resonators, the atom can or

cannot, respectively, spontaneously decay to free space modes. High or low order

refers to the size of the axial quantum number of the participating mode. Degeneracy

means that more than one mode of the resonator field, described by a suitably chosen

mathematical basis, interact with the atom. For the cavity used in this work the

atom interacts with the TEMoo mode only and is considered nondegenerate. This

type of resonator is spherically symmetric with the mirror separation much smaller

than the mirror radius of curvature (for a discussion of such resonators see [63, 64]).

In the concentric and confocal cavity, the atom interacts with many spherical har-

monic modes simultaneously, and is thus degenerate (see below). Interestingly, one

study utilizes the confocal cavity geometry, but excites only a single TEMoo mode in

a transmission (absorption) experiment [20]. In this setup, an intra-cavity aperture

may be employed to restrict atom-field interaction to this mode only. If no aperture

is used, the atom can interact with all the degenerate modes of the cavity to which

it couples. Used with a restricting, intra-cavity aperture, the degenerate, confocal

resonator becomes equivalent to a nondegenerate cavity similar to our's, but with a

much shorter free spectral range (FSR=c/2L) and much smaller coupling constant.

Note that FSR=c/4L for the confocal cavity with no restricting aperture (i.e., allow-

ing for interaction with all degenerate modes). To overcome the smaller coupling,

many atoms are required to observe normal mode splitting.

An illustration of this situation can be given by comparing our nondegenerate

supercavity with the confocal or concentric resonators. The coupling constant may

be written as

g9 = 2f x FSR x -y,, (3.52)

with the free spectral range FSR = ( for the nondegenerate and degenerate cavities

(TEMoo mode only), and FSR = S for the confocal cavity without the aperture, and

with

f = 302, (3.53)
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where
b

0 = b (concentric or confocal) (3.54)
L

and

0= A, (nondegenerate or degenerate with aperture), (3.55)
Irw0

with 2b the open aperture diameter of the degenerate cavity mirrors, L the mirror

spacing, and wo the TEMoo cavity mode waist. In terms of the mirror parameters,

W 2 = L R _ (3.56)

with R the mirror radius of curvature and A the atomic transition wavelength (reso-

nant with the mode). For the confocal cavity R = L but for the nondegenerate cavity

L < R, so that the TEMoo mode waist is

AL
wO = , (3.57)7r 2

for the degenerate confocal resonator with intra-cavity aperture and

A RL
2 = - (3.58)7r 2

for the nondegenerate cavity.

We compare the confocal cavity with (TEMoo mode) and without the intra-cavity

aperture. The ratio of the two coupling constants (squared) is therefore

sconf fcn(359)

9TEMoo JTEMoo

Assuming b = 0.5 cm, R = 2.5 cm, L = 2.5 cm, and A = 553.5 x 10- 7 cm, we obtain

fcoan = 0.12 and fTEMoo = 4 x 10- 5 so that the ratio is 3 x 103.

Initial attempts to realize a strong coupling resonator naturally involved the con-

centric resonator which had been successfully used to demonstrate enhanced and
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suppressed spontaneous emission in our laboratory. The coupling constant is large,

thanks to the large f factor. Recall that this factor is a measure of the solid angle

subtended by that part of the mirror which bounds the diffraction limited mode with

which the atom interacts. To achieve the required conditions of strong coupling (the

atom chosen was sodium, explained below, with 2y, = 10 MHz), a finesse of only

F e 120 is required. However, this large solid angle factor has two disadvantages; (1)

doppler broadening and (2) low finesse.

(1) Atoms in an atomic beam moving through the resonator mode will emit light

into the mode at angles which significantly deviate from 900 relative to their direction

of motion. The resulting Doppler shift of the emitted or scattered light is a source

of Doppler broadening which would obscure the normal mode splitting we wished to

observe. In parallel with a search for the desired mirrors, therefore, a slowing and

cooling apparatus, with an atomic beam of sodium, was built. We employed a scheme

similar to that introduced by Prentiss et al. [65] and succeeded in slowing the atoms

to a 5% of thermal velocity, which was sufficient to eliminate the Doppler effect.

(2) The concentric resonator mirrors, on the other hand, proved to be very ex-

pensive to manufacture, with only a guaranteed minimum finesse of 60! Although

the value of the required finesse is by no means extraordinary for conventional Fabry

Perots, it is very difficult to realize for the concentric and confocal resonators when

used in this type of experiment. The overall finesse is determined by two factors,

mirror reflectivity and surface quality. (For a general discussion of spherical mirror

Fabry-Perot interferometers, see [66].) Existing technologies for surface coatings, with

multi-layered dielectric materials, can provide the required reflectivities for very low-

loss resonators. The serious problems, however, arise with surface quality. Roughly

speaking, the surface quality may be divided into two regimes scaled by the dimen-

sions over which the surface irregularities occur, surface roughness and surface figure.

For the concentric and confocal cavities, which use a very large portion of the mirror

surface (1 - 3 cm 2), the overall surface figure quality is limiting.

For the nondegenerate cavities with length much smaller than the mirror radius

of curvature, however, surface roughness is limiting. In this case, the spot size of
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the participating portion of the mirror is on the order of 10- 3 mm2 and overall

surface figure deviations from the desired figure are negligible over this spot size.

Super-polishing techniques which minimize surface roughness have been successfully

developed, and extremely smooth surfaces are possible with RMS deviations on the

order of Angstroms (A/1000). In this case, the resonator finesse becomes reflectivity

limited.

In Sec. 3.1, we described how the coupling constant depends on the atom's location

in the mode of a nondegenerate cavity. Furthermore, we mentioned that several atoms

within the mode communicate their presence to one another via the cavity field (recall

the macroscopic dipole of Eq. 3.15). In a concentric resonator, on the other hand,

both of these situations are altered: (1) All atoms within the "interaction" volume,

see below, are equally coupled to the mode, regardless of their positions, and (2) all

atoms act independently.

Recall, from earlier results, the ray picture of atom-cavity interaction in a con-

centric resonator [67]. In this picure, the interaction volume is defined by that region

within which a radiating atom will constructively interfere with its own radiated fields

that are reflected back by the mirrors, and is much larger than the diffraction-limited

mode volume used to calculate the interaction strength. A brief argument for the

plausibilty of (1) invokes the boundary value solution to the complete spherical res-

onator using spherical harmonics, described in [67]. In this work, it was shown that

the atom interacts simultaneously with many, degenerate spherical harmonic modes,

each proportional to mode functions given by

S= v21 +ljl(x), (3.60)

where j (x) is the spherical Bessel function of order 1 and x is the position of the

atom. These modes include the many high-order transverse mode functions resonant

with the atom. The zeroes for these functions occur in varying positions so that,
for any position within the interaction volume, the atom is always coupled to some

modes. Hence no anti-nodes exist since the atoms are always coupled to the resonator
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via some, possibly high-order transverse, spherical harmonic modes. We may loosely

ascribe all these degenerate spherical harmonic modes to a single diffraction-limited

mode whose waist remains at the location of the radiating atom during its passage

through the interaction volume. All positions within this volume of degeneracy may

be viewed as identical from the point of view of the overall coupling to the resonator.

An argument for the plausibility of (2) relies on the above mentioned approxima-

tion: An atom interacts with a diffraction-limited field mode (which may be described

as a sum over the above mentioned spherical harmonics) whose waist is on the order

of a micron. All other atoms within the (much larger) interaction volume generate

their own "modes" and only those atoms located' within this mode waist, or at its

mirror image, (a very unlikely occurrence, given the low atomic beam density) can

know of that atom's presence and act cooperatively.

Following this argument, the only way to inhibit spontaneous emission into a

concentric resonator mode is to detune the cavity. In this case, all positions within the

volume of degeneracy are essentially at a "node" (destructive interference of reflected

waves). In the nondegenerate cavity, on the other hand, one can inhibit spontaneous

emission into the mode by placing the atom at a node or by detuning the cavity. To

study true single atom effects, therefore, the degenerate resonator would be ideal if

the required finesse could be met.

To summarize, we have presented a comparison between degenerate and nonde-

generate resonators and demonstrated that true single atom effects could be realized

in the degenerate cavity. This resonator is more stable against vibrations and thermal

drifts, but the large solid angle demands a slowing and cooling scheme for the atoms

in the atomic beam due to the doppler shifts. Furthermore, attaining the required

surface figure quality is quite challenging but may be possible. Note that with the

required finesse, the interaction volume's diameter (which is dependent upon finesse)

is ? 10 /im with the diffraction limited mode waist ; 1 pm. Therefore, atoms would

still interact independently for atomic beam densities in which, on average, one atom

is in the interaction volume at a time.
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Chapter 4

Experimental Studies

This chapter describes the setup and results of several experiments that study the

atom-cavity system. Section 4.1 discusses the schemes used to study the normal mode

structure of the atom-cavity system. Section 4.2 provides details of the experimental

apparatus and atomic system, the optical layout, and instrumentation. Section 4.3

describes the results for the strong coupling and Sec. 4.4 describes the intermedi-

ate coupling results. Section 4.5 presents lineshape data taken with probe powers

exceeding saturation.

4.1 Schemes

The experimental investigation of strong and intermediate coupling in the atom-cavity

system may be performed with two excitation arrangements. The cavity mode may

be excited by a laser beam coupled directly into the cavity mode or the atoms may

be excited directly by a laser beam incident from the side of the resonator (Fig. 4-1).

In both excitation schemes, the probe polarization is carefully chosen to be parallel

with the direction of the atomic beam.

As depicted in Fig. 4-2, photon counts are simultaneously collected out the sides

(sidelight scattered by the atom) and end of the cavity (transmission), as functions

of the excitation laser frequency, with a photon counter, (SR400, Stanford Research),

and photomultiplier tubes, (Hamamatsu, R1635).
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Figure 4-1: Diagram of atomic beam intersecting cavity mode and the two possible
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Figure 4-2: Diagram of the two signals simultaneously observed in all experiments.
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Figure 4-3: (a) 138Ba Level Structure. (b) Ideal two-level system, Am=O transition.

4.2 Experimental Setup and Apparatus

4.2.1 Ba Level Structure

In choosing the ideal atomic system for study, several requirements had to be satisfied:

(1) Only a single, two-level transition can interact with the cavity mode, (2) the

excited state lifetime and transition wavelength should be consistent with technically

possible cavity geometries and mirror finesse to satisfy the various coupling strength

requirements (i.e., go > y, ,p for strong and go a (1ye - 7y,/2) for intermediate

coupling, and (3) the atomic transition's (as well as cavity's) linewidth should be

broader than the excitation laser linewidth.

Consistent with these requirements, the lowest lying electronic level structure of

s38 Ba (1So _-1 P1, Am=0, A = 553.5 nm), shown in Fig. 4-3, was selected as the

two-level atomic system. The nearest transition is the 1So (F=3/2)-+ 1P1 (F=5/2)

component of the 137Ba isotope, approximately 65 MHz away (higher frequency). Its

contribution to the signals is less than 1% and has a negligible effect on the lineshapes.

Finally, the branching ratio for the 1D2 state is quite large (a 400) so that the selected

transition makes an ideal two-level system. With a lifetime of 8.4 ns, the transition

linewidth is 2yp <19 MHz (FWHM).
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4.2.2 Atomic Beam

An effusive atomic beam is generated inside a vacuum chamber (a 10-6 - 10-7 Torr

using a 4 inch diffusion pump) by passing ;, 150 - 200 Amps through an SS-304

metal tube with P4-5 grams of Barium (isotopic purityz 72% for 13 8Ba). The tube's

dimensions are typically 6.75"x.5"x.024" (LxDxw) with a resistance of a few hundred

milliohms. Current through the tube is controlled by a 10 Amp variac through a

step-up transformer arrangement. This provides for oven temperature and, therefore,

atomic beam density control. Barium vapor escapes through a pinhole (a 1 mm in

diameter) in the side of the oven. The oven assembly is mounted in the oven vacuum

chamber via a bellows system so that the oven pinhole position can be controlled.

Three apertures are placed downstream to collimate the beam to L1.5 mrad, with the

final aperture a 25 pm pinhole. This pinhole is located a 30 cm from the oven pinhole

and ; 1.7 cm from the cavity mode waist. It is mounted on two translation stages

which are manually adjustable via vacuum feedthroughs so that precise positioning

(within a few microns) of the pinhole along the y and z axis is possible (Fig. 4-1).

With this arrangement, the atomic beam can be aligned to intersect the cavity mode

at 900 ± 0.5 mrad. At this point, the beam diameter is < 100 /tm. The maximum

beam density attainable at the cavity mode is po < 108 cm-3 so that the maximum

number of atoms possible in the interaction region (defined by the intersection of the

cavity mode with the atomic beam) is N ~ 10.

4.2.3 Optical Layout

Several laser beams are required for the following tasks; (1) a frequency reference

beam to stabilize the laser frequency, (2) an independently tunable reference beam

to stabilize the cavity frequency and also allow for adjustable atom-cavity detunings,

and (3) an independently tunable probe for exciting either the atoms from the side

or the cavity mode. Figure 4-4 shows how all these tasks are accomplished with a

single CR-699 (Coherent) dye laser (P 550 mW of single-mode power with frequency

bandwidth , 3 MHz at A=553.5 nm) and several Isomet acoustooptic modulators
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(AOM).

All AOM's except #5 and #6 are used in a double-pass configuration. In this

arrangement the input laser beam is focussed to - 50 jm waist at which the AOM

crystal is centered. This size waist is chosen so that the acoustic wave's transit time

across the laser beam (; 30 ns) is well outside the bandwidths of relevant interest

(e.g., the 1 kHz frequency correction bandwidth of AOM #1). In addition to time

response, small waist sizes are necessary to preserve the laser beam's mode quality.

The first-order diffracted beam is then reflected by a mirror (M) directly back upon

itself, through a second lens which is placed at a distance equal to its geometrical

focal length from the AOM. The back-reflecting mirror is then placed at the focus

of the beam so that the return beam, after being split-off from the input beam by

a 50:50 beamsplitter, is collimated with the same diameter as the input beam. The

double-pass configuration serves two purposes: (1) Laser beam motion due to RF

frequency changes is minimized, and (2) the tuning range of the exiting laser beam is

doubled from 45 MHz to 90 MHz. Note that a first order diffracted beam is selected

in AOM #1. This results in a 220 MHz (= 2 x 110 MHz) shift in frequency relative to

the output laser frequency. This beam is then split off several times to AOM's #2-5.

The opposite diffracted order of these AOM arrangements are selected so that the

exiting beams have ; 0 MHz net shift relative to the laser output frequency. Note

that SBC in Fig. 4-4, which consists of a cross polarizer followed by a Soleil Babinet

Compensator, serves as an optical isolator.

Frequency Stabilization

Acoustooptic modulator #1 (Isomet 1206C, center frequency of 110 MHz with 50 MHz

RF bandwidth), the first in the optical circuit, is used for both frequency and power

stabilization. The RF amplitude and frequency applied to the crystal are controlled

by two analog voltages to the ports of an Isomet driver (D323B-788). These voltages

are derived from two feedback circuits, a frequency correction circuit and a laser

power correction circuit. Laser frequency correction is accomplished with saturation

spectroscopy in a Ba cell. In this Lamb dip setup, the pump beam is frequency
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modulated (excursion : ±-9 MHz at 100 kHz) by a signal generator applied to the

RF driver (Isomet D302) of AOM #4 (Isomet 1206C). The probe beam traverses, in

a single pass, AOM #5 (Isomet 1250C, center frequency 200 MHz with 100 MHz RF

bandwidth) which is driven at 220 MHz by an RF circuit. This RF circuit uses an

Isomet 223A-1 driver (center frequency 110 MHz) as the RF source. The generated RF

signal is sent to a double balanced mixer (DBM-25) for frequency doubling, followed

by an amplifier before being sent to the crystal. The analog signal from a balanced

diode arrangement (FND #3), which monitors both the probe transmission signal as

well as incident probe power (thereby subtracting out power fluctuations), is sent to a

lock-in amplifier where it is mixed with the signal generator output for phase-sensitive

detection. Output of the lock-in, which is a measure of the excursion of the laser

frequency from the atomic transition frequency, is then fed to an integrator circuit

whose output is, in turn, sent to the frequency controlling port of AOM #1's driver.

The resulting laser frequency uncertainty is reduced from 3-4 MHz to - 0.75 MHz

within a 1 kHz bandwidth.

Power Stabilization

Power stabilization is accomplished by monitoring laser power with an FND-100 diode

detector (FND #4) and subtracting the resulting voltage from an adjustable, stable

reference voltage. The difference signal is then fed to an integrator whose output is fed

back to the RF amplitude controlling port of AOM #1's driver. With this arrange-

ment, power fluctuations are reduced from 15% to 2%. Most of the power fluctuations

monitored here arise from laser power fluctuations. However, two additional sources

of power modulation arise due to the nature of the acoustooptic modulator. The first

occurs because the Bragg diffraction angle changes with AOM frequency. Since the

crystal is not rotated to compensate for this, the diffraction efficiency also changes

(by as much as 40% over the entire bandwidth) giving rise to a variation in power.

The second source of power modulation (; 15%), also coupled to RF frequency, arises

from the fact that the crystal acts as an etalon to the incident acoustic wave. Since

either end of the crystal normal to the direction of propagation of the acoustic wave
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is not perfectly damped, multiply reflected interfering waves occur. The crystal then

acts as a lossy etalon with slighty larger intra-crystal acoustic power with RF fre-

quency resonant with the etalon than when it is not. A measurement of the period

(in frequency) of these power modulations is performed by scanning the RF frequency

and monitoring the laser power modulations. The result agrees very well with the

expected value 6v = v/2L r 180 kHz with v = 3.63 mm/ps, the sound velocity and

L • 1 cm the length of the crystal. Note that the amount of laser power modu-

lations in a single-pass arrangement is doubled in a double-pass configuration since

the optical beam interacts with the acoustic wave twice. Since these effects are most

important in AOM #3, (this is the source for the probe beam), an additional power

stabilization circuit, which monitors laser power at FND #2, is required. Correction

signals are applied to the driver of AOM #3 (also an Isomet D323B-788) and power

modulations are kept below 5% over the entire tuning range.

Cavity Stabilization

Acoustooptic modulator AOM #2 is used to control the cavity reference beam. The

cavity frequency is locked to this beam using an FM modulation technique similar to

that used in stabilizing laser frequency. In addition, the reference beam is chopped

off and on by TTL signals applied to AOM #2 at a 50 Hz rate, alternating between

data taking and cavity locking, respectively, with a 30% duty cycle. The same TTL

signals (derived from LM555 oscillators with supporting circuitry) are also inverted

(using an inverter chip) and applied to AOM #6. This causes AOM #6 to diffract the

cavity emission signal into the first diffracted order beam which is focussed onto PMT

#1 while the cavity reference (locking) beam is turned off (see Fig. 4-5). Following

the data collection period, AOM #6 is turned off and the cavity reference beam, now

on, is monitored by FND #1 as it travels undiffracted through the crystal.
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Figure 4-5: Timing sequence used for data taking and cavity locking.

4.2.4 Resonators and Mount

Two cavities, which differ only in finesse and throughput, were constructed to in-

vestigate the strong and intermediate coupling regimes. Each cavity consists of two

"supercavity" mirrors, all with radius of curvature 10 cm, separated by L = 247 Am

and 240 Am, respectively. The mirrors were specially fabricated to the required speci-

fications with multi-layered dielectric coatings on a superpolished substrate [68]. The

substrate of the strong coupling mirrors is fused silica with dimensions 5.5 mm di-

ameter and 8 mm thickness. The substrate of the intermediate coupling mirrors is

BK-7 with dimensions of 7.5 mm diameter and 4 mm thickness. This cavity geometry

gives a TEMoo mode with waist w0 - 25 tm. In addition, go/2ir = (16.6 - 0.5) MHz

for the coupling constant and 27c/27r = (2.4 = 0.2) MHz (F = 2.5 x 10s) for strong

coupling, and 2y,/27r = (108 ± 4) MHz (F = 5.8 x 103) for intermediate coupling.

The throughputs are 77 0.31 and 7r : 0.9 for the strong and intermediate coupling

cavities, respectively.

The specifications for the optical cavities required in the experiments are very

demanding. In attempting to obtain the largest coupling possible, the shortest cav-

ity length was chosen consistent with the technical challenges of the highest finesse

obtainable and the abilities of the experimenter to fit and align beams at the cen-

ter of the cavity mode. Note that curvature in the mirrors imply edge separations

smaller than the cavity lengths. In fact, the mirror separation at the edges are 170

pm and 100 pm for the strong and intermediate coupling cavities, respectively. These

dimensions are only slightly larger than the atomic and laser beams, so care must be
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Figure 4-6: Cavity design: (a) Side view of cavity and (b) end view of PZT.

exercised to prevent the beams from scattering off the mirror edges. Furthermore, ad-

ditional challenges with the shorter cavity lengths must be met. The cavity frequency

should be quite stable, but adjustable, and not significantly effected by either thermal

drifts or mechanical vibrations. To prevent a change in cavity frequency of 1 MHz,

for example, the length cannot change by more than 6L = L6v/v ; 5 x 10-13 m!

Neglecting external influences, thermal vibrations at room temperature of the mirror

substrates and coating surface could easily cause the mirror surface to vibrate with

amplitudes exceeding this value. However, the surface modes which are excited are

of high order (many nodes) so that no net global motion of the cavity occurs. Global

in this sense means net motion of an entire portion of the mirror surface, the active

spot, whose size is twice the TEMoo mode waist at the mirrors (a 50 pm).

To meet these requirements, a series of studies were conducted to determine the

most stable mounts possible. The best cavity design, shown in Fig. 4-6, is to sim-

ply cement (with Torr Seal) the mirror holders (to which the mirrors are carefully

cemented) to each end of a cylindrical piezoelectric transducer (PZT), which has 5

holes drilled in its side for beam access [69]. Two pair of diametrically opposite holes

are drilled at 900 relative to each other for laser and atomic beam entrance and exit.

A fifth hole, drilled along a line 300 from vertical (see (b) of Fig. 4-6), is for the

collection of sidelight scattered by the atoms. The vertical pair of holes is for the

side excitation laser probe and the horizontal pair is for the atomic beam. With this

design, voltages applied across the PZT control mirror spacing (; 1 MHz/mV). To

minimize mechanical and thermal coupling to the environment, the cavity is bolted
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Figure 4-7: Cavity alignment.

to the top of a massive SS-304 block (e 75 lbs). However, the cavity is supported by

two Viton O-rings so that it does not come into contact with any metal. The block

is placed on top of Viton O-rings inside the main vacuum chamber. Necessary optics

and aperture support assemblies are then mounted on top of the block. The resulting

stabilized cavity frequency, 6v, <: ±0.5 MHz, is locked to the cavity reference laser

beam to prevent slow drift that is always present. During the data taking intervals

the cavity drift is less than 0.5 MHz so that atom-cavity detuning, A = 0 ± 0.5 MHz.

This drift is measured by monitoring transmission by an unchopped probe, which was

initially resonant with the cavity, during the unlocked periods.

In the construction of the cavities, all metal pieces were machined with 5 mil

tolerances so that the mirror substrates fit snugly in their holder and the holders fit

snugly within the PZT cylinder. The tilt of the mirrors is not too critical. So long as

the center of curvature of the two mirror surfaces are reasonably close to the axis of

the PZT cylinder, an optical axis can be found which supports a TEMoo mode of the

required finesse. Figure 4-7 demonstrates why this is so. The thick line joining the

two centers of curvature (large black dots) intersects the mirror surfaces. This line

defines the optical axis of the cavity and will be centered on the TEMoo mode. The

only requirement is that it meet the mirror surfaces somewhat near the mirror centers,

where the coating and surface quality are as specified by the manufacturer [68]. The

most challenging aspect of the mirror alignment procedure is to obtain the desired

mirror spacing. Using specially built mounts, the cavity can be held together without

cementing. While coupling laser light into the TEMoo cavity mode and measuring the

transmitted fringes with the laser scanning, the beam is purposely misaligned slightly

to excite transverse modes of the same order. Identification of the modes is simplified
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by the fact that they can easily be seen on a piece of paper. For L = 245 im, for

example, 6 vtran, a 13.6 GHz and we adjusted the cavity length with micron screws

until this transverse mode spacing was obtained. Once the length was set, one end of

the mount could be unbolted and torr seal applied to the mirror holder. (The other

mirror holder was already cemented in place to the PZT.) The mount was then bolted

back in place. The mirror spacing was checked and adjusted, if necessary, before the

cement hardened (e 1 hour).

Birefringence

An important consideration when placing the mirrors in their SS-304 holders is the

minimization of mechanically induced stresses in the substrate and dielectric coatings.

Such stresses give rise to distorted surface figures and can lead to birefringence. In-

deed, the strong coupling resonator exhibits a two-peaked empty cavity lineshape for

certain input beam polarization orientations, attributable to birefringence, as shown

in the empty-cavity transmission lineshapes of Fig. 4-8. This probably arises from the

strain induced by the cured cement even though care was exercised in the construction

procedure by placing the cement symmetrically in the holder. However, the effect of

this birefringence may be minimized, since the c-axis (defined by that direction along

which the light wave should be polarized so that the polarization state of the multiply

reflected waves within the cavity is not changed) can be made parallel to the atomic

beam to within 100. Note that for the cavity driven (e = c) experiments, the incident

beam is polarized exactly along the c-axis, so that birefringence is eliminated. For

the atom driven experiments (6 = p), however, the laser probe polarization is ap-

proximately parallel to the atomic beam so that the atomic polarization is within the

above mentioned 100 of the c-axis. Shown in Fig. 4-9 is the empty cavity transmission

for the typical orientation used in the strong coupling experiment. Note that the fi-

nesse measurements are consistent with transmission and throughput measurements:

We obtained T = 5 ± .4 ppm and 7r = .31 which gives F ; 2 x 105 for the strong

coupling mirrors and T = 560 ± 40 ppm and r1 = .9 which gives F ; 5 x 103 for

the intermediate coupling mirrors. The slightly higher finesse measured in the cavity
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Figure 4-8: Empty cavity transmission for the TEMoo mode with incident polarization
orientated at the specified angle relative to horizontal. The vertical lines mark the
peak at higher frquency for reference with the two peaks separated by ; 2.2 MHz.

0

U

Laser Frequency
(9 MHz/Div)

Figure 4-9: Empty cavity transmission with incident polarization along the c-axis.
Cavity linewidth (FWHM), 2y,/27r = 2.4 MHz, L = 247 jAm, F = 2.5 x 105
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linewidth measurements is not inconsistent with the throughput measurements. In

fact, the throughput is slightly larger than the value quoted because the laser was

not optimally coupled into the cavity mode when the measurements were performed.

Rough estimates imply that x 10% of the incident laser power was not coupled into

the TEMoo mode although the total incident laser power was used in the estimate.

Alignment Procedure

Excitation of the cavity mode is accomplished with a 30 cm lens mounted on x-y-z

translation stages. The lens focusses the probe and cavity reference beams to a waist

size less than the cavity mode waist for optimum coupling. Since the cavity mode

divergence angle is very small (0 = A/irwo - 7 mrad) any change in the angle between

probe beam and cavity mode during frequency scanning would result in variations

of the power coupled into the cavity mode. The double pass arrangement for the

AOM's, however, minimize angular movement of the probe and reference beams so

that this systematic variation in input power does not exceed 10%.

The optical arrangement for sidelight collection (with an image magnification

factor of 4) is also used to visually check alignment of the atomic beam, cavity mode,

and side probe. After locking the cavity to the atomic resonance, the atomic beam

position is varied, using the pinhole stages, until fluorescence is seen. This fluorescence

arises from the atomic beam interacting with the cavity mode which is excited by the

resonant reference beam. Excitation of the atom directly from the side is accomplished

by focussing the probe beam with a 25 cm lens which is located on top of the vacuum

chamber. The lens is mounted on x-y-z translation stages so that the focus (having a

waist approximately equal to the cavity mode waist) can be adjusted in the x-z plane

of Fig. 3-1 as well as positioned along the z axis. The sidelight probe is positioned

until it intersects the atomic beam (fluorescence seen) and then moved along the

atomic beam until the fluorescent spot overlaps that of the cavity mode which is still

excited.

The final alignment procedure is to make all beams perpendicular to one another.

The cavity mode and atomic beam are made perpendicular by essentially performing
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the transmission experiment (CC scheme) and optimizing the lineshapes. Once this

tedious procedure is accomplished, the side probe is introduced and its angle adjusted

for optimum lineshapes in the PC scheme.

4.2.5 Instrumentation

Data acquisition and control is automated using GPIB (PC-2A) and data transla-

tion (DT-2701) cards in an IBM PC-XT computer, together with an SR-400 photon

counter and an assortment of analog and digital circuits built to suit various special

needs. Hamamatsu photomultiplier tubes (R1635) are used for photon counting the

side and end emission signals, as well as the atomic fluorescence signal for density

calibration. They all were measured to have an efficiency of r 7%. The density

calibration PMT is used with a 10kQ? load, generating analog signals, since the fluo-

rescence signal is very large. Two lock-in amplifiers and several FND-100 detectors,

together with several circuits built in the lab, provided the feedback control circuits

for laser power and frequency, as well as the cavity frequency control. In addition,

vendor supplied software packages (ASYST) allowed for quick and easy programming

for data acquisition. All data analyses were performed on Sun and NeXT (rest its

soul) workstations.

As mentioned above, we can obtain length changes z 1 MHz/mV with the PZTs

used in the cavities. In order to initially place a TEMoo mode in resonance with the

atomic transition, it is necessary to have the capability of scanning the cavity length

over a free spectral range (c/2L , 612 GHz). This is accomplished with a 3 kV DC

Kepco power supply. However, the small increments in voltage required for frequency

correction can not be obtained from such a supply. We therefore applied a frequency

correction voltage (from the cavity locking circuit) to one side of the PZT and the

Kepco voltage to the other side. The entire PZT assembly is electrically floating,
since it is isolated from the environment by O-rings. An additional problem of several

millivolts of noise on the Kepco output required the connection of a large capacitor

across its output. Since the only available capacitors had a maximum rating of 200

volts, a power supply was built which allowed switching to a backup battery supply
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when necessary. This supply is extremely noise-free but gives rise to a uniform drift

of the cavity resonance (i 10 MHz/s) due to the slow discharging of the batteries.

This drift is not a problem, however, since frequency changes during the data taking

period (= 6 ms) do not exceed ; 0.5 MHz. Careful shielding of the cables leading

from the power supplies to the PZT is essential in preventing ground loop and other

external sources of noise from disturbing the cavity length.

4.3 Strong Coupling Results

To connect the theory of the previous chapter with the following experimental results,

the expressions for the power out the side and ends of the cavity, Pside(f) and Pend(Q),

must be multiplied by appropriate attenuation factors and constants. The recorded

photon count rates out the side is:

Vside = 7I7PMT F de fside .(, (4.1)

with rPMT the photomultiplier tube efficiency, Fte the total loss of all optical ele-

ments, and fside the fraction of free-space radiated power into the solid angle of the

sidelight optical collection system to the total power radiated in all space. Similarly,

the expression for the count rate out the cavity is

.Vend = 7PMTAOM FoPt end(• ) (4.2)

with ?7AOM the diffraction efficiency of the AOM. Pside(Q) and Pend(~) are the appro-

priate expressions for the power from the previous chapter. Values for these parame-

ters are given in Table 4.1.

An estimate for the expected signal strengths is based on the above parameters

and the saturation photon number, vs, calculated in Sec. 3.3. If v8 photons are in the

cavity mode, then Eq. 4.2 may be written as

V-end = 77PMTr7cav 7AOMF:enod'7c Vs. (4.3)
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parameter value

77PMT 7%
fside 7.0 x 10- 3

F1•t  70%
F,'ide 70%
Fend 75%
?7cav 0.31
T7AOM 80%

Table 4.1: Measured parameters for the strong coupling experiment.

In the strong coupling cavity, v, ;8 0.3 and, therefore, ipend ; 6 x 104 cps. End signals

in the CC and CP schemes are kept below this value to ensure that the atom is not

saturated. The peak sidelight signal with v = v, photons in the cavity and one atom

optimally coupled can be calculated using Eq. 4.1 to give iside ; 104 cps. Typically,

the end signals are on the order of 0.1v, so that "side - 103 cps. For the PP and PC

schemes, the side probe power is adjusted so that the intensity at the laser beam's

waist is less than the free space saturation intensity of the atom (Is, 15 mW/cm2).

With a probe laser waist of k 30 pm, the laser power for saturating a free space atom

is 0.4 /LW. If a free space atom is excited on resonance by a probe with intensity

IL = 0.11,, the estimated signal out the side is ; 103 cps. This signal provides

a reasonable estimate of the coupled atom signal. However, as the atom becomes

more strongly coupled, by moving away from the node, the peak signal decreases

slightly, as demonstrated in the curves for N = 0.01, N = 0.5, and N = 1 of Fig. 3-

7(e). The end signal exhibits similar behavior but with a larger change in the peak

signal as N gets small (see Fig. 3-7(d)): Not only does the peak signal first start

to grow as N gets small, but the linewidth (for the single-peaked lineshapes) also

decreases. However, as N continues to decrease and approach zero, the peak signal

stops increasing and eventually decreases to zero with the linewidth remaining at the

empty cavity linewidth: An uncoupled atom cannot radiate into the cavity. Note

that the strongly coupled atom has a larger saturation intensity than it does when

uncoupled because of the enhanced (reversible) spontaneous emission into the cavity

mode.
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4.3.1 Cavity Excitation

Lineshapes obtained for both sidelight and cavity transmission (E = c) are shown in

Fig. 4-10 in the strong coupling regime (ý ; 16) for various values of (N). Note that

the excitation laser beam, labeled "density reference" in Fig. 4-4, and controlled by

AOM #3, also excites the atomic beam in a region before it enters the cavity and

the resulting (free-atom) fluorescence is collected by photomultiplier tube PMT #3

to monitor the atomic beam density. This free-atom fluorescence signal determines

(N) as the atomic beam density, Po, is varied. However, uncertainties in overall

collection efficiency limit the accuracy of these estimates to a 50%. A more accurate

calibration is obtained by a fit (in which (N) is the only free parameter) to one

experimental data trace using the model described in the previous chapter which

incorporates fluctuations in atomic number and position. The resulting uncertainty

in (N) is ±t10%.

Considering the (N) = 1 case, the transmission lineshape, trace (g), exhibits the

two peaks expected with oscillatory energy exchange. This interpretation is unam-

biguously confirmed by the two similar peaks in the sidelight, trace (c). Interestingly,

a central third peak is also present in the transmission lineshape. Its origin can be

understood by considering Fig. 3-7 in Sec. 3.2.2. As discussed in that section, the

expected experimental lineshape can be calculated as a weighted average of the fixed-

atom lineshapes (from chapter 2) with the appropriate P(N) distribution (curve (a)

of Fig. 3-7). The two outside peaks in trace (g) of Fig. 4-10 are present because

the probability for the value N ;, 1 is largest. The third peak arises because: (1)

Although the probability for small N is low, the empty-cavity transmission signal

is large compared to the N s 1 lineshapes; and (2) the cavity resonance is narrow.

Note that the importance of the cavity resonance's width compared with that of the

atomic resonance, as well as the strength of the coupling, is emphasized by comparing

the results in Fig. 4-10 with those of Fig. 3-10. The third peak is present in that

figure although not prominent enough to see in the data: The disparity between the

widths is not great enough for the given coupling strength. There is no third peak
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Figure 4-10: Strong coupling (ý = 16) sidelight and transmission data with theoretical
fits (solid lines). Data was collected at 120 ms/point for traces (a) and (e) and at 300
ms/point for all other traces.
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Figure 4-11: Comparison of lineshapes averaged over a range of detunings, -0.25 <
A < 0.25 (solid curve) with the lineshape for A = 0 (dotted curve). The same strong
coupling parameters are assumed as in the experiment (ý = 16).

in the sidelight signal, trace (c) of Fig. 4-10, because empty cavity signals out the

side of the resonator are absent: An atom not coupled to the cavity mode will not be

excited.

Note the extreme sensitivity of the lineshapes (particularly the cavity transmission

lineshapes in traces (e-h)) to small changes in (N). As the atomic beam density is

increased, the probability for small N decreases and the "empty" cavity resonance

disappears, as in trace (h). The empty cavity effect dominates at the other extreme of

low atomic beam density, however, and washes out the normal mode splitting in trace

(e). The broadened pedestal of trace (e) arises, in fact, from the presence of splitting

due to the N ? 1 case. Note that traces (a) and (e) were taken after adjustments

in alignment, probe power, and count period were made. To compare with the other

traces, trace (e) counts should be multiplied by ; 14 (= 2.5 x 5.7 corresponding

to the count period and power adjustments, respectively), and trace (a) should be

multiplied by ; 28 (twice the endlight factor because the sidelight alignment had

changed). The splitting is seen to be slightly larger in traces (g) and (h) than in

(c) and (d) for the cavity and atomic oscillators, respectively. This is a particular

example of a general result that reflects the sensitivity of lineshapes to geometry:
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Figure 4-12: Atom with velocity, v, moving through the cavity mode at angle, 8,
no longer interacts with a standing wave. The atomic frequency is shifted by Q± =
wp+kv9.

Lineshape splitting measured by observing the oscillator which is not being driven

(atom) is smaller than that which is (cavity mode), but splitting in the former always

implies normal mode oscillation (Sec. 2.3.2).

The agreement between the data and computed lineshapes is quite good. The dis-

crepancies are due to atomic beam misalignment, atom-cavity detuning uncertainty,

and Doppler broadening. In order to demonstrate this, Fig. 4-11 compares a cav-

ity lineshape, obtained by performing an averaging of several, atom-cavity detuned

lineshapes, with the single lineshape for zero atom-cavity detuning, A = 0. Each of

the detuned lineshapes is computed using the model of the previous chapter with a

specified A. The range chosen satisfies -0.25 < A/y, < 0.25. The central peak is

reduced and broadened in both lineshapes. Note that an atom traversing the cavity

mode at an angle E - 0 relative to the optical axis is Doppler-shifted out of resonance

with the SW cavity field by an amount kvO with k the wavenumber and v the atom's

velocity. In the situation depicted in Fig. 4-12, for example, the atomic frequency, in

the resonator's frame, is shifted by kvO for the field traveling to the left and by -kve

for the field traveling to the right. For an atom moving at the thermal velocity, this

gives rise to ; 0.5 MHz/mrad shift in frequency. Neglecting homogeneous broadening

and cavity damping, the cavity may be tuned such that one of the traveling waves is

resonant with the atom. The coupling constant is reduced relative to the SW case,
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Figure 4-13: Demonstration of atomic beam misalignment for (N) a 1.2. (a) Cavity
transmission for optimum (90 degrees) atomic beam and cavity mode alignment. (b)
Same as (a) but with atomic beam-cavity mode angle changed by a .2 mrad. This
misalignment corresponds to a Doppler frequency shift of ; 0.1 MHz for atoms with
mean thermal velocity (; 2.5 x 104 cm/s).

but it is spatially more uniform since their are no nodes and anti-nodes along the

cavity axis. This fact is exploited in future single-atom laser studies. Although the

above mentioned averaging performed over various detunings does not account for

this reduction in coupling, it nonetheless provides a qualtitative explanation of the

discrepancies.

Figure 4-13 demonstrates the lineshape's sensitivity to alignment of the relative

angle between the atomic beam and cavity mode axis. The final 25 pim pinhole is

translated horizontally by f 50 fim to induce an ; .2 mrad (50 tm/30 cm) change

in atomic beam angle with all other parameters held fixed.

Similarly, sensitivity to atom-cavity detuning is demonstrated in Figure 4-14.

Again, all other parameters are held fixed during these two scans. The atomic side-

light signals behave similarly.

Transmission lineshapes for various atom-cavity detunings, A, are shown in Figure

4-15. The corresponding normal mode frequencies are plotted in Fig. 4-16 together

with the theoretical curves. The theoretical curves for the normal mode frequencies

are taken from the fixed atom model, Eqs. 2.29, with NA/' -+ N - 1.2. These frequency

shifts were measured comparing the frequency location of each peak in the data to the
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Figure 4-14: Sensitivity to atom-cavity detuning, A. The data are cavity transmission
lineshapes for (a)A k 0 MHz, (b) A s 2 MHz.

position of the atomic free-space resonance frequency. This is a somewhat inaccurate

method to determine the normal mode frequencies due to "shoulder" effects (the

influence of one normal mode resonance on another due to its proximity) as well

as the numerator Lorentzian factor in the CC scheme, discussed in Sec. 2.3.2. The

normal mode frequencies may also be taken from the fits (not shown) which were

performed on each lineshape. The actual normal mode frequencies obtained from the

fits are in better agreement with the theoretical curve than Fig. 4-16 suggests.

4.3.2 Atom Excitation

We now turn to the scheme in which we excite the atoms directly from the side of the

strong coupling resonator. The probe waist was chosen to be approximately the same

size as the atomic beam and cavity mode waists. In Fig. 4-17, the first demonstration

of normal mode splitting using this scheme is shown. As we have seen in Sec 2.3.2,

the lineshape splitting of trace (a) is indicative of normal mode oscillatory energy

exchange. The lack of splitting in trace (b) results from the contribution of uncoupled

atoms to the sidelight signal, dominating the two-peaked lineshapes which arise from

the coupled atoms (see Eq. 3.32). The coupled atom's presence may be inferred from

the non-Lorentzian character of trace (b) (i.e., a broadening of the base). Note that
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Figure 4-15: (a) Cavity transmission lineshapes in CC scheme for various detunings
and (b) Atomic lineshapes in CP scheme. In these plots, (N) = 1.2, and ý = 16.
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Figure 4-16: (a) Normal mode frequencies, QNM, for the lineshapes of the previous
figure with (N) = 1.2, and ( = 16.
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Figure 4-17: (a) Cavity signal (PC scheme) and (b) Side signal (PP) with (N) = 2.3
and zero atom-cavity detuning.
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the addition of the side probe gives rise to another source of misalginment broadening

which is responsible for the quality of fit with the theoretical curve, particularly in

trace (a). All sidelight lineshapes resembled that of trace (b) and will thus not be

shown in the remainder of this section.

To demonstrate the influence of the number of interacting atoms on lineshapes

for the PC scheme, several scans were performed at various oven temperatures (or,

equivalently, atomic beam densities). The results are plotted in Fig. 4-18 together

with the theoretical curves for the designated values of (N) (dotted lines). Note the

gradual increase in the linewidth, and the emergence of two peaks in traces (e-f) as a

result of strong coupling. The two theoretical curves shown in trace (f) demonstrate

the effect of slight changes in atomic beam density.

Trace (a) exhibits a lineshape which is closest to the true single atom regime,

discussed in Sec. 3.2.5, above. Comparison of this trace with trace (f) of Fig. 3-11

demonstrates that the rough approximation for P(N) assumed in the calculation of

trace (f) is fairly accurate. Unfortunately, limitations in the signal-to-noise ratio of

the present setup prohibits study of the PP lineshape (trace (a), for example, of

Fig. 3-11) in this regime. Nonetheless, the lineshape in Fig. 4-17(b) (which appears

in all PP scans) demonstrates that indeed the main contribution to the experimental

lineshapes arise from the situation in which several atoms are coupled to the mode,

as argued in Sec. 3.2.5. (The probe power is less during acquisition of traces (e) and

(f) in Fig. 4-18, by approximately a factor of 10, than that for traces (a-d). This

accounts for the reduction in the counts for these traces).

In Figure 4-19 we compare CC and PC schemes with consecutive data scans. In

the data shown, a CC lineshape scan is taken and immediately followed by a PC

scan. Trace (c) for the CC lineshape is fit with (N) = 1.7. Following the scan for this

trace, the atomic beam density dropped by 10%, resulting in a value for the intra-

cavity atomic number, (N) = 1.5. The first fit shown for PC in trace (f) assumes

this density. The second value of beam density gives a closer fit. In most of the

PC lineshapes taken, a similar, slight, reduction in (N) below that expected on the

basis of the CC fits is required to obtain a better looking fit. Again, misalignment
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Figure 4-18: Cavity signal for atomic excitation (PC scheme) for various atomic beam
densities.
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Figure 4-19: Comparison of CC scans with PC scans.

140



broadening of the side probe is the most likely cause. Nonetheless, the corresponding

CP lineshapes of Fig. 4-10 (traces (c) and (d)) are similar to the PC lineshapes for

the same values of (N) shown in Fig. 4-19, as expected.
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4.4 Intermediate Coupling Results

In this section, the experimental results for the intermediate coupling resonator are

presented. Both cavity excitation and atom excitation schemes are performed. The

experimental arrangement is identical to the strong coupling arrangement, with the

only exception the cavity finesse, as discussed at the beginning of this chapter. Note

that the empty cavity linewidth is 27y/2, = 108 MHz. However, the maximum tuning

range for the experimental probe is 90 MHz. This range is sufficient for the CP, PP,

and PC lineshapes since their linewidths are of the same order as the atomic linewidth

and, hence, do not exceed - 50 MHz (FWHM). The CC lineshape, however, exceeds

the available tuning range. Below, we present one CC lineshape for a scan which

is R 190 MHz. This is accomplished by detuning the AOMs appropriately above,

at, and below the atomic and cavity resonances and performing the 90 MHz scan

for each detuning. The three resulting 90 MHz scans, which overlap each other, are

then pasted together. Since the cavity lineshape is only altered in the vicinity of the

atomic resonance, only a single 90 MHz scan is shown in the rest of the data.

Estimates for the expected signals are similar to those in the strong coupling case

of Sec. 4.3 with only the cavity finesse different. This effects only the end signal which

may be estimated with Eq. 4.3 using the correct finesse in y,. Since the coupling is

independent of finesse, v, ; 0.3 (same as the strong coupling cavity), and the end

signal is zi ; 3 x 106 cps for v, photons in the cavity mode.

4.4.1 Cavity Excitation

In Fig. 4-20, lineshapes for CC and CP schemes in the intermediate coupling regime

are shown. For comparison, strong coupling lineshapes for the corresponding schemes

are presented with approximately the same atomic beam density. The intermediate

coupling sidelight, trace (a), exhibits a 45 MHz linewidth (FWHM, with . 3 MHz

Doppler and transit time broadening), twice the free-space value, providing a dramatic

demonstration of line broadening. In view of the single-peaked lineshape observed

out the resonator side, trace (a), the two peaks in trace (b) cannot be attributed to
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Figure 4-20: Atomic (a) and cavity (b) lineshapes for intermediate coupling with
(N) ; 1. For comparison, traces (c) and (d) show the corresponding lineshapes
for strong coupling and (N) - 1. Lineshape splitting does not necessarily imply
oscillatory energy exchange.
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Figure 4-21: Cavity (a) and atomic (b) lineshape data with fits (solid curves) for
intermediate coupling and (N) ; 1. For comparison, the two traces in (a) are with
and without atoms (empty cavity). Note that the cavity is detuned ~~ 9 MHz higher
than the atomic transition frequency (A/Ny, 1).

oscillatory energy exchange. Furthermore, ( m 0.6, which excludes the possibility of

two distinct normal mode frequencies. This splitting, instead, can be explained by

noting that when the excitation laser is near resonant with the atom, light is scattered

out the resonator side and, since yp < 1, a dip results in the cavity transmission

lineshape. A similar result is reported in [70].

Figure 4-21 displays typical CC and CP scans simultaneously collected, together

with fits based on our model. The parameters for the fits include the atomic and

cavity linewidths (2yp and 2-/), the end and side signal attenuation factors due to

collection efficiencies, incident probe power, atom-cavity detuning (A), atomic center

frequency location within the scan, atomic beam density (Po cc (N)), and end and

side background signal strengths. Values for these parameters are given in Table 4.2.

They are determined in the following way (note that similar procedures were applied

in the strong coupling experiment): Atom and cavity linewidths are independently

measured by laser scans. The atomic width is compared with independent measure-

ments in the literature and the cavity linewidth is checked for consistency with the

cavity throughput measurements. All the collection efficiency factors, such as PMT
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parameter value
7rPMT 7%

fside 7.0 x 10- 3

F•de 70%

ZF 75%
7rcav 0.9
7]AOM 80%

Table 4.2: Measured parameters for the intermediate coupling experiment.

efficiency, loss via scattering off intermediate optical components, AOM efficiency,

and cavity throughtput are independently measured. For the sidelight signal, the

solid angle collection factor is estimated. Correction factors for both end and side

signals are introduced to correct for slight deviations (particularly for the sidelight

signal solid angle estimate). They are adjusted in a best fit to a single scan for both

the end and side signals and thereafter left fixed. Incident probe power is determined

by measuring the CC signal for empty cavity scans, as in Fig. 4-21(a). Atom-cavity

detuning, A, is adjusted by the controlling voltage to the cavity reference AOM and

is measured by performing an empty cavity scan (CC scheme) as in Fig. 4-21(a). The

location of the peak of this scan is compared with the location of the peak of the free-

atom fluorescence signal (not shown), which is adjusted for any offsets due to Doppler

shifts caused by beam misalignment. (Location of the atomic center frequency within

the 90 MHz scan is fixed from scan to scan.)

Estimated uncertainty in the atom-cavity detuning is somewhat large, ±5 MHz,

because of the low finesse cavity. The atomic beam density is measured via the free-

space fluorescence signal for all scans. It is calibrated in a fit performed on CC and

CP lineshapes for a single scan in which all other parameters are known, as was done

in the strong coupling experiments. Estimated uncertainty for this measurement is

±10%. The sidelight signal for the empty cavity scan, CP (not shown), is also used

as a measure of the background signal out the side. The background signal out the

end is essentially zero in all CC scans. Also, the CC data is taken with a 1% filter

before the PMT and all counts displayed are actual counts. Therefore, to obtain the

actual signal strength, one should multiply the displayed counts by 102. In this scan,
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the total counting time per point is 120 milliseconds.

In Fig. 4-22, CC and CP lineshapes for various atom-cavity detunings are shown.

The fits are reasonable in view of the various broadening mechanisms discussed above.

Slight probe power variations, particularly at the ends of the scan, also contribute

to the degradation in fit quality. This power variation is not the result of actual

laser power changes but, instead, is due to the fact that the probe alignment changes

slightly during the frequency scan. The divergence angle of the TEMoo mode of the

cavity is 90 7 mrad, as mentioned in the alignment procedure discussion of Sec. 4.2.4,

so that very small changes in the probe angle can effect the coupling of the probe into

the mode. These variations are on the order of 10% and occur only near the ends of

the scans. Their effect on the lineshapes with widths smaller than that of the scan

is negligible (eg., in the strong coupling experiment). Note that the scan for traces

(d) and (i) was performed on a different day with slightly larger laser and, therefore,

probe power.

In Sec. 3.4, we compare the degenerate resonators used in previous studies of

enhanced and suppressed spontaneous emission [67] with the high finesse resonators

of the present work. In Fig. 4-23, CP lineshapes are presented for two cases: (a)

A = 0 and (b) A = 50y. The probe power is increased by a factor of 102 in

trace (a) to improve signal-to-noise. Note that this large power will not saturate the

system since the detuning is very large. The linewidth increases dramatically, from

% 25 MHz (natural width plus broadening) to ; 43 MHz, as does the peak height.

This is attributable to the enhanced spontaneous emission the atoms undergo when in

the resonator at or near anti-nodes. As a rough estimate, we calculate the enhanced

emission linewidth using r_ of Eq. 2.120. For the case of a single optimally coupled

atom, F_/-p F 1.84, so the full width is 21_ ; 35 MHz. This value is smaller than

the measured linewidth. There is therefore a significant contribution of spontaneous

emission by several atoms simultaneously coupled to the resonator mode, all driven

coherently by the cavity field (note that (N) = 1.4). This situation should not be

confused with superradiance since only one quanta of energy excites the system (at

most one atom is excited) and, more importantly, since the atoms must be treated
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Figure 4-22: Cavity (a-d) and atomic (e-h) lineshape data with fits (solid curves) for
intermediate coupling at various atom-cavity detunings. The time per data point is
300 ms.
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Figure 4-23: Two scans for CP with (a) A = 50py and (b) A = 0 together with fits

(solid curves) for intermediate coupling.

as distinguishable. This explanation also applies to the results shown in Fig. 4-18 for

the PC scheme in strong coupling. In comparison with the concentric cavity, in which

atoms cannot "communicate" their presence to one another, the expected linewidth

would be 35 MHz since all atoms act independently. For the detuned case, each atom

in the supercavity resonator, in effect, becomes weakly coupled to the resonator and

behaves as though it were in free space. Since the solid angle factor is very small,

no suppression of spontaneous emission (i.e., reduction in the linewidth below the

natural linewidth) is seen.

4.4•.2 Atom Excitation

Excitation of the atoms via a probe from the side of the cavity is performed as in the

strong coupling experiment. The probe is focussed to a waist approximately the same

size as the cavity mode waist, with polarization parallel to the atomic beam direction.

The separation of the mirrors at their edges (e 90 pm), however, is smaller than that

for the strong coupling resonator (; 170 pm). Although the cavity lengths and radii

of curvature are the same, the mirror diameters are not. With the increased scattering

of the probe off the mirror edges, the signal-to-noise ratio for the sidelight is reduced
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and systematic background drifts arise as the probe is scanned. Consequently, the

sidelight signals are not very reliable but they do exhibit the same qualitative features

observed in the strong coupling experiments, i.e., the dominant contribution is from

the uncoupled atoms. Shown in Fig. 4-24 are the PC and PP lineshapes for various

detunings. Fits from the model are also shown with the data and are in reasonable

agreement.

As another demonstration of the cooperative nature of the atom-cavity interaction

in the SW resonator, Fig. 4-25 shows PC and PP lineshapes obtained for two different

atomic beam densities at fixed detuning. All other parameters are the same. Note

that the linewidth increases with density. (A similar effect was observed in the strong

coupling experiment for the PC scheme in Fig. 4-18 of Sec. 4.3.2.) If the atoms inter-

acted with the cavity mode independently, as in the degenerate resonators, only the

signal strength would increase in proportion to the number of atoms. The linewidth

would not increase.

4.5 Saturation Study

The study of saturation in the SW mode experiment is complicated by the fact that

atoms at different locations have different saturation parameters. We have observed

three-peaked lineshapes in the strong coupling CC scheme (trace (g) of Fig. 4-10) and

identified various features of the lineshape with different coupling strengths. More

precisely, the central third peak of this lineshape arises due to weakly coupled atoms

and the outside two peaks arise from the strongly coupled atoms. Therefore, we may

expect that the two outside peaks will exhibit saturation before the central peak, i.e.,

deviate from linearity with laser probe power. This would give rise to a single peaked

lineshape as the laser power is increased for both the end and side signals. If, on the

other hand, the lineshapes do not change with increasing power but only increase in

size linearly, then we may conclude that this constitutes a demonstration that these

powers are not saturating the system. In Fig. 4-26 we demonstrate that the powers

used for obtaining data in the driven cavity scheme do not exhibit saturation effects.
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Figure 4-24: PC and PP lineshapes for various detunings.
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Figure 4-25: PC and PP lineshapes for two densities at fixed detuning.

In this figure, as in all previous data shown, the sidelight (CP) and cavity endlight

(CC) lineshape data are collected simultaneously (eg., traces (a) and (e) are simul-

taneously recorded). The probe power is then increased and the laser scan repeated.

Note that trace (d) suggests that saturation is beginning to occur (a deviation in the

lineshape), but in this scan the atomic beam density dropped, as seen in comparing

the values for (N) (as discussed previously, the atomic beam density is monitored

via measuring the free-space lineshapes from a region of the atomic beam before the

cavity). The solid curves are fits to the data. These fits do not include the effects

of saturation as they are simply the solutions obtained by assuming the inversion is

constant (i.e., the model of Chapter 3 is used). The count period for this data is

120 ms per point.

Finally, we increase the laser probe power by large amounts to demonstrate sat-

uration effects. Figure 4-27 is a plot of the CC and CP lineshapes in the strong

coupling regime demonstrating the variation in lineshapes as input probe laser power

is increased above saturation. Traces (a) and (e) were taken at probe powers close

to saturation. For very large powers, note the broadening in the pedestal of the
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sidelight lineshape, trace (d) (compare with trace (b)). Such broadening is probably

attributable to excitation of the so-called Jaynes Cummings ladder-state transitions.
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Chapter 5

Conclusion

5.1 Summary

A spectral lineshape study of the normal mode structure of an atom-cavity system

has been presented. This atom-cavity system consists of atoms in an atomic beam

interacting with a single standing-wave mode of a spherically symmetric optical cav-

ity. Two cavities were used, each with a different finesse so that both the strong and

intermediate coupling regimes could be investigated: All other essential dimensions of

the cavities were the same. The atomic beam density was chosen so that the number

of intra-cavity atoms was approximately one. Dramatic modifications of spontaneous

emission is inferred from the measured lineshape structures. Three-peaked, two-

peaked, and broadened single-peaked lineshapes arise in the strong coupling regime,

depending on the excitation scheme chosen. The two-peaked lineshapes arise be-

cause of the reversible spontaneous emission (much greater than the free-space rate)

and the three-peaked lineshapes arise for an additional reason: Large fluctuations

in intra-cavity atomic number cause the atom-cavity system to fluctuate between a

strongly coupled system and a weakly coupled system. Similarly, one and two-peaked

lineshapes have also been observed in the intermediate coupling regime. Sidelight (or

atomic) linewidths, as well as endlight (or cavity) linewidths, exceeding the natural

linewidth have been attributed to enhanced spontaneous emission rates twice that in

free space.
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The role of fluctuations in the intra-cavity atomic number has been demonstrated

in the various lineshapes. These fluctuations are attributable to the standing-wave

cavity mode and to the changes in the atomic positions. As mentioned above, the

number of intra-cavity atoms was kept near unity. Several atoms, on average, are

required to achieve this limit. This regime, therefore, does not constitute a true single

atom regime. The role of single atom effects in such a system has been described.

For the parameters of the strong coupling cavity (strong coupling, narrow cavity

limit), lineshape splitting which is attributable to oscillatory energy exchange could

not possibly occur for a single atom. Nonetheless, lineshape splitting in this regime

could be observed for the scheme in which the atom is excited and the sidelight (or

atomic) lineshape is measured. This splitting owes its existence to suppression of

fluorescence due to interference between cavity and probe fields at the position of the

atom. With modest improvements in the signal-to-noise ratio, these lineshapes could

also be measured.

The relationship between lineshape splitting and oscillatory exchange of energy

has been clarified. Reversible (and enhanced) spontaneous emission has been demon-

strated in the strong coupling regime via lineshape splitting, leading to oscillatory

exchange of energy between the atom and the cavity mode, in a scheme which can-

not exhibit splitting otherwise, i.e., measuring the spectral lineshape of the oscillator

which is not being probed. Also, conditions for which no oscillations can occur but

lineshape splitting nontheless is observed (intermediate coupling, CC scheme) were

realized and explained.

A brief study of saturation effects attributable to cavity photons has been pre-

sented. In such a system, these effects are quite complicated because of fluctuations

in intracavity atomic number: Atoms at different positions have different saturation

intensities. In the driven atom scheme, account must be taken of the probe field as

well. In this case, an optimally coupled atom is more difficult to saturate than a

weakly coupled or free atom because of its larger total spontaneous emission rate,

Att. In fact, we have
Ato _ 2yp + Aca, 1 (5.1)

Airee A•ree 1 -
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where the approximation assumes f < 1. For the optimally coupled atom in the

intermediate coupling cavity, P ; 0.31 so that Atot F 1.45 x Afree.

Finally, we briefly considered the possibility of exciting a single normal mode

of the strong coupling system, but this cannot be realized with the present setup.

Several atoms interacting with the mode are at different positions in the cavity field

as well as the side excitation field. They therefore see different relative phases of

the two excitation fields: The relative phases of the two fields is position dependent.

Therefore, the net effect would be to average over these relative phases, violating the

required condition that the relative phase for each atom should be fixed and the same.

Planes of constant relative phase can be found but the required confinement of the

atoms to these planes is technically difficult.
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Appendix A

Calculation of Cavity-Probe

Coupling

In this appendix we calculate a for the case E = c. From Eq. 2.81, if we assume no

atoms are present (go -+ 0), we get for the cavity field:

aELEc= -
2itL"

(A.1)

The intensity transmitted through the resonator, IT is:

1 (2,cVIEcl 2)
IT= 2cav2 87ra (A.2)

where a = V/L and rlcav is the cavity output coupling factor:

cav = T + AL '
(A.3)

where T is the transmission and AL is the loss of the cavity. Substituting gives

1=
IT = ?,cav2

(IL2aV 8 2L 2
81ra c LsI2,124 2 (A.4)

We calculate a in the following way. From simple interference arguments for calcu-

lating the transmitted intensity, IT, through an empty Fabry Perot resonator [71], we
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get:
IT 2 (A.5)
IL can (Q - Wc)2 + - '2

where IL = C|EL12/87r. This expression must agree with Eq. (A.4). Setting the two

equal gives:

2 = 2 2L 7ecav. (A.6)
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Appendix B

Broadband Excitation

In this appendix we consider the use of broadband excitation to study emission. This

source of excitation destroys the phase coherence of the scattering process and en-

ables the excited state population to be measured in an emission process. Consider,

therefore, an atom-cavity system in which the atom is excited by a weak, broadband

light source with intensity per unit bandwidth, iL(~2). We assume that each spec-

tral component is statistically independent, and that the bandwidth of the source

is much broader than any other linewidth of the system. Using the expressions in

the scattering section for N'=P (Q), P, dJ(0), and PP (), Eqs. 2.98, 2.86, and 2.95,

respectively, we can then write

Nu = Np()iL dQ%2o L f) N=~P(2)du2, (B.1)

Pend () --y- d -  -I f P• a,(Q)dQ2, (B.2)

and
Pside 0 Pa (( 0 )d', (B.3)

S Pide () IL IL side

where

j iL ()dQ = I•. (B.4)
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We can evaluate the integrals by the method of residues to obtain:

Pends = 7/cav r YiL( hw2",p (2-V) y + y 1G -^ (B.5)

Pside = N1 hw27y, (B.6)

with

Nu ,= pi(ujp)J [1 + .,c G' (B.7)

Comparing Eqs. B.5 and B.7 with Eqs. 2.69 and 2.66 respectively, it is clear that the

same results are obtained.

An experiment in the broad cavity limit with weak coupling was performed by

Heinzen et al., [12] with single 1'74Yb atoms weakly excited by a broadband laser field

(7Y - 11 MHz, y,,p 0.09 MHz, and go a 0.46 MHz). In this regime Eqs. B.5-B.7

may be used to obtain the emission rate out the cavity mirrors with KN e -1 and

" e n d , M 
7 P 9 2_2 

( B .8 )
Y% (w - p) 2 +'Y

with

NO • 7pi(wp) (B.9)
21,

Again note that Eqs. B.8 and B.9 are single mode results which give the correct

inhibition rate (when (w, - w,) f c/4L) so long as F > 1. In the experiment F ; 70,

so that this assumption is justified and the experimental results are found to be in

good agreement with these results.
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Appendix C

Stimulated Emission and

Linewidth Narrowing

We wish to consider the conditions under which atom-cavity emission is narrowed by

stimulated emission. First notice that the smaller linewidth exhibits gain narrowing

for positive inversion and broadening for negative inversion, as seen in Eqs. 2.105

and 2.115, when compared with the corresponding uncoupled linewidths, ,Y and 7y,

respectively. If, however, the normal mode frequencies are not degenerate (i.e., if

splitting occurs), the system cannot be characterized by a single linewidth. As seen

in Eqs. 2.28-2.36, the normal mode frequencies become equal when

w = 0 and > - ,)2  (C.1)

or

Y- = 0 and > ( ) 2 . (C.2)

In order to discuss the broadening/narrowing of the lineshape, the linewidth has to be

compared to that of uncoupled atom and cavity oscillators (go = 0). Furthermore, if

the atom-cavity detuning is not zero, there will be no well-defined single linewidth for

the uncoupled oscillators (although the coupled system can exhibit a single linewidth

if Eq. C.2 is satisfied). Therefore, we specialize to the case in which Eq. C.1 is
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satisfied. The linewidth formulae then take on simple forms (2.140):

Ng2
r_ = Y+ -y_ 1 + -7, (C.3)

Ngi
F+= 7++ _ 1 + l+ . (C.4)

However, the narrower of F+ is not the true linewidth of the atom-cavity emitter.

The true FWHM of the emission lineshape, F, is obtained from

1 2 ]p2
2 '+ + (C.5)2 r] + r2 rp2 + r]'

which gives

+4, (0 0 g(C.6)
F 2 - 2(Qy + 74 + Nf2g2) + 4-2.fgg - (_ + 72 + Ngi). (C.6)

This linewidth can be compared to that of an uncoupled atom-cavity emitter, Fo:

r V = (_4 + _Y4- (_ + Y_) (C.7)

We define a function, h(Jf) = F2 - F02 and examine its asymptotic behavior:

h NI' (I/ _- 1).Ng20, (C.8)

h J- •- +4 - 1 N'gV , (C.9)

where

- 1 = < 0 (C.10)

always. Actually, the steady-state inversion can not take on arbitrary positive values.

It is always limited by an upper bound

V < C hYP_ fh (C.11)
902
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or equivalently

' aFN CL ( p yp (single pass gain) . g2

SF 1 - R T\, + yp = (single pass loss) yp < 1. (C.12)

In other words, the saturated single-pass gain is always smaller than the single-pass

loss. (This is also true for a laser operating above threshold.) Therefore, the range

of inversion for a well-defined linewidth is

S < A < A4h.N (C.13)

In this range, we find

r < ro (A > ), (C.14)
r > To (A < 0).

Therefore, the emission linewidth of the atom-cavity system, whenever it can be

defined unambiguously, is broader than that of the uncoupled system if the inversion

is negative and narrower if the inversion is positive.
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Appendix D

PRL Manuscript

Normal Mode Lineshapes for Atoms

in Standing-Wave Optical Resonators

J. J. Childs, K. An, M. S. Otteson, R. R. Dasari, and M. S. Feld

Abstract

A high finesse standing-wave cavity mode resonantly interacting with a beam of two-
level 138Ba atoms is weakly driven by a tunable laser. Transmitted and side-light
scattered lineshapes are recorded. With mean intra-cavity atomic number, (N) - 1,
we observe one, two, and three-peaked lineshapes for strong coupling. In addition,
two-peaked spectra observed in intermediate coupling demonstrate that lineshape
splitting is not necessarily indicative of oscillatory atom-cavity energy exchange. Sev-
eral atoms are required for (N) z 1, so this is not a true single atom regime.

The study of an atom coupled to a single mode of a resonator, known as cavity

quantum electrodynamics (QED), has undergone significant advances since Purcell

first pointed out that a resonator could alter the atomic spontaneous emission rate

[7]. For the case of a weakly coupled atom-cavity system, enhanced and suppressed

spontaneous emission have been demonstrated in several experiments. Recent im-

provements in resonator design, however, have led to larger atom-cavity coupling

strengths, and several experiments have demonstrated single intra-cavity atom Rabi

oscillations [17], normal mode splitting [21], optical bistability [23] and single-atom
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maser and laser oscillation [19, 25]. Most of the above experiments employed atomic

beams, but enhanced spontaneous emission [26] as well as normal mode splitting

[27] have also been observed in semiconductor devices, where practical as well as

fundamental issues of cavity QED are studied [28, 29].

All of the above studies utilized standing-wave (SW) mode resonators, in which

the coupling of the radiator to the cavity mode is position dependent. The effect of

such mode structure on atom-cavity dynamics has both fundamental and practical

significance. For example, single-atom laser operation is critically dependent on the

location of successive atoms within the cavity mode volume [33]. Similarly, in micro-

cavities the spontaneous emission coefficient, 3, is position dependent. The larger the

3 parameter, the lower the threshold for laser oscillation. In the limit , -4 1 thresh-

oldless lasing occurs [28]. Low-threshold and, therefore, more efficient microcavities

have been demonstrated recently [32].

Many of the above mentioned phenomena are manifested in spectral lineshapes.

For example, two-peaked lineshapes result from oscillatory exchange of energy be-

tween the atom and cavity mode (normal-mode splitting), multi-resonance lineshapes

are predicted to arise from atomic motion through the cavity mode [34, 35], and broad-

ened and narrowed Lorentzians demonstrate enhanced and suppressed spontaneous

emission, respectively. These lineshapes are sensitive not only to the particular kind

of resonator (standing/travelling wave, open/closed and degenerate/nondegenerate)

and radiator (moving atoms in a beam or fixed excitons), but also to the particu-

lar excitation and observation geometry. In particular, normal-mode lineshapes in

an atom-cavity system with an open optical resonator may be obtained either by

exciting the atom from the side of the resonator, or the cavity mode through the

mirrors. In either case one may observe light scattered by the atom out the resonator

side (sidelight) or transmitted out the resonator ends. As shown below, the various

geometries can exhibit dramatically different lineshapes.

A single, two-level atom coupled to a cavity mode may be treated as two cou-

pled, damped harmonic oscillators when weakly excited. The atomic and cavity

oscillator's spectral lineshapes can be calculated in fully quantized or semiclassical
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treatments, with both giving the same results [47, 52]. Three regimes may be de-

fined by the parameter = 4gO/(7 ,- )2 where the atom-cavity coupling constant,

go = (pjh) 27rhwp/V, with p and wp the atomic dipole moment and frequency, re-

spectively, V the cavity mode volume, 2-y the cavity decay rate, and 2y,p the atomic

spontaneous emission rate to modes other than the cavity mode: (1) strong coupling

( »> 1); (2) intermediate coupling (( = 1) and (3) weak coupling (6 < 1). For

strong coupling, energy exchange implies two-peaked spectra for both oscillators. For

weakly coupled systems, on the other hand, exponential decay leads to single-peaked

Lorentzian spectra.

We present a study of lineshape splitting in an atom-cavity system comprised of

an atomic beam interacting with an SW mode resonator in intermediate and strong

coupling regimes. We are particularly interested in the case with mean intra-cavity

atom, (N) ; 1. Normal mode splitting for (N) ; 1 in the strong coupling regime

has been reported in a cavity transmission experiment [21]. We demonstrate that:

(1) lineshape splitting in the cavity transmission spectrum alone does not necessarily

imply normal-mode oscillations, but two peaks observed in both the sidelight and

transmission lineshapes do, (2) lineshape distortions can be dramatic and very sen-

sitive to fluctuations in the intra-cavity atomic number when (N) P 1, (3) details of

the lineshapes arising from these fluctuations are critically dependent on the choice of

the excitation/observation geometry . In addition, we wish to clarify the connection

between such experiments and the true single-atom Jaynes Cummings model [37].

In the present series of experiments, the cavity mode is weakly excited by fre-

quency stabilized, tunable light (6v - 0.5 MHz) from a dye laser (Coherent CR-699).

Photon counts are simultaneously collected out the sides (a measure of atomic ex-

citation) and end of the cavity (transmission), as functions of the excitation laser

frequency, with a photon counter, (SR400, Stanford Research), and photomultiplier

tubes, (Hamamatsu, R1635). An effusive atomic beam of 138Ba with collimation

±1.5 mrad and beam diameter ; 254m, intersects the optical axis of a high finesse

cavity at 900 ± 0.5 mrad. The first resonance transition 1So -+1 P1 , A = 553.5 nm,

2'y/2w P 19 MHz (FWHM), interacts with a single, SW field mode whose mode func-
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Figure D-1: Sidelight and transmission
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lineshapes for A = 0.

lineshapes for A = 0.

tion is 0(r, z) = e- () sinkz and mode volume V = ¼rw2L, with wo the cavity mode

waist and L the mirror separation. The optical axis defines the z axis. The stabilized

cavity frequency, vc < +0.5 MHz, is locked to a reference laser beam to prevent

slow drift. The laser is, in turn, locked with an accuracy 6v < +0.5 MHz within

a 1 kHz bandwidth to the atomic resonance using a Lamb dip cell and a frequency

modulation technique. The reference beam is chopped off and on by an acousto-optic

modulator (110 MHz Isomet) at 50 Hz, alternating between data taking and cavity

locking, respectively, with a 30% duty cycle. During the data taking intervals the

cavity drift is less than 0.5 MHz so that atom-cavity detuning, A = 0 ± 0.5 MHz.

Part of the excitation laser beam interacts with the atomic beam before it enters the

cavity, and the resulting (free-atom) fluorescence is collected to monitor the atomic

beam density, po0.

Two cavities, which differ only in finesse, F, and throughput, r7 (= TF/lr with

T the mirror transmission), are used to investigate the strong and intermediate cou-
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pling regimes. Each cavity consists of two "supercavity" mirrors, each with radius

of curvature 10 cm, with L = 247pm and 240pm, respectively (wo ; 251m). This

gives go/2r = 16.6 + 0.5 MHz for the coupling constant and 2y,/2ir = 2.4 ± 0.2 MHz

(F = 2.5 x 105, 71 ; 0.31) for strong coupling (6 ; 16), and 2y,/2r = 108 + 4 MHz

(F = 5.8 x 103, qrl 0.9) for intermediate coupling (6 ; 0.6). The spontaneous

emission coefficient 8 = 0.73/0.31 for the strong/intermediate coupling resonators,

respectively.

Lineshapes obtained for both sidelight and cavity transmission are shown in

Fig. D-1 for the intermediate (a,b) and strong (c,d) coupling regimes with (N) ; 1.

The free-atom fluorescence signal determines (N) as P0o is varied. However, uncer-

tainties in overall collection efficiency limit the accuracy of these estimates to ; 50%.

A more accurate calibration is obtained by a fit (in which (N) is the only free param-

eter) to one experimental data trace using an extension to our previous model [52]

which incorporates fluctuations in atomic number and position [72]. The resulting

uncertainty in (N) is 10%.

The intermediate coupling sidelight, trace (a), exhibits a single-peaked lineshape

of width 45 MHz (FWHM, with ; 3 MHz Doppler and transit time broadening), twice

the free-space value, providing a dramatic demonstration of cavity QED line broad-

ening. In view of this single-peaked sidelight, the two peaks observed in transmission

(b) cannot be attributed to oscillatory energy exchange. Furthermore, 6 - 0.6, which

excludes the possibility of two distinct normal mode frequencies. This splitting, in-

stead, can be explained by noting that when the excitation laser is near resonant with

the atom, light is scattered out the resonator side and, since 7, < y,, a dip results in

the cavity transmission lineshape. A similar result has recently been reported [70].

In the strong coupling regime, the transmission lineshape, trace (d), exhibits the

two peaks expected with oscillatory energy exchange. This interpretation is unam-

biguously confirmed by the two similar peaks in the sidelight, trace (c). Interestingly,

a central third peak is also present in (d). Its origin can be understood by considering

Fig. D-2. Lineshapes depend upon fluctuations in intra-cavity atomic number, de-

fined by N = Fj' '2 (rj, zj) with N the total number of atoms interacting with the
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Figure D-2: (a) Probability distribution, P(N). (b) Transmission lineshapes.

cavity mode and rj/zj the radial/axial position of the jth atom, respectively. During

the data taking intervals both the number of atoms and their positions fluctuate.

These fluctuations may be characterized by a distribution function P(N), shown for

several values of Po oc (N) in the computer generated curves (a). They are the result

of repeated random placements of a large but fixed number of atoms (oc po) in a

large volume defined by the atomic beam. Only those atoms, N, falling within a

fraction of the atomic beam, centered on the cavity mode axis, are used to estimate

N. The volume of this fraction is chosen large enough so that all atoms outside, if

included, would make a negligible contribution to N. The curves in (b) are lineshapes

for specific values of 7 (no fluctuations), obtained from the single-atom model [52]

by replacing g2 -_+ Ng2. For a given (N), theoretical fits are calculated by a weighted

average of these lineshapes with the appropriate P(N) distribution in (a). The two

outside peaks in trace (d) of Fig. D-1 are present because the probability for the value

N f 1 is largest. The third peak arises because: (1) Although the probability for

small N is low, the empty cavity transmission signal is large compared to the N - 1

lineshapes (note the log scale in (b)) and (2) the cavity resonance is narrow. There is
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Transmission

Figure D-3: Strong coupling (( = 16) sidelight and transmission data and theoretical
fits (solid lines).

no third peak in trace (c), because empty cavity sidelight signals are absent; an atom

not coupled to the cavity mode will not be excited.

Experimental lineshapes for various values of (N) are shown in Fig. D-3 together

with theoretical fits. Note the extreme sensitivity (particularly the cavity transmission

lineshapes in traces (d-f)) to small changes in (N). As Po is increased, the probability

for small N decreases and the empty cavity resonance disappears, as in trace (f). The

empty cavity effect dominates at the other extreme of low atomic beam density, and

washes out the normal mode splitting in trace (d). The splitting is seen to be slightly

larger for the cavity oscillator, trace (f), than for the atomic oscillator, trace (c). This

is a particular example of a general result that reflects the sensitivity of lineshapes to

geometry: Lineshape splitting measured by observing the oscillator which is not being

driven (atom) is smaller than that which is (cavity mode), but splitting in the former

always implies normal mode oscillation [52]. The agreement between data and fits

is quite good. The discrepancies are due to atomic beam misalignment, atom-cavity

detuning, and Doppler broadening.

None of the features in the data are attributable to saturation. The lineshapes did

not change over a large range of excitation laser intensities (~ two orders of magni-
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tude), even with intra-cavity photon number, n, somewhat larger than the saturation

parameter, no. For the case of a single atom located at (rj, zj), no = [-yp/(4i(rj, zj)g0)]2

and is position dependent. In the cavities studied here, no = 0.33 for an optimally

coupled atom. However, a single saturation parameter cannot be ascribed to the

lineshapes when fluctuations are important ((N) a 1); optimally coupled atoms sat-

urate before weakly coupled atoms. In the data presented here n never exceeded

no. Multi-resonance lineshapes have been predicted to arise from atomic motion

through the cavity mode [34, 35]. However, the three-peaked lineshapes observed

here are not attributable to this effect, since the maximum Doppler shift is 6vum, a 1

MHz< 27y/21r < go/2ir.

Normal-mode splitting for a single intra-cavity atom, (N) ' 1, requires, on av-

erage, the simultaneous presence of several atoms interacting with the cavity mode.

To demonstrate this, consider the total number of atoms in a given volume, N =

0f fo podV = r7r21po, with Po assumed uniform and where 1 extends over many SW

mode wavelengths. The number of intra-cavity atoms in this volume at any instant

is given by N = fo fr poo 2 (r, z)dV. Therefore, the ratio N/N of the number of in-

tracavity atoms to total number of atoms is ý (1 - e-2"2)/(2u)2, with u = r/wo.

Choosing u = 1, N e 4.6 atoms are required to obtain N ; 1. One must therefore

conclude that (N) - 1 does not constitute the true single atom regime. Furthermore,

models based on extensions of the Jaynes Cummings theory to many atoms assume a

uniform mode function [44, 40] and do not strictly apply to experiments of this type.

For a true single atom which samples all positions within the volume specified above,

(N) --+ 0.2. The resulting lineshapes would not exhibit splitting for our parameters,

as the trend in Fig. D-3 suggests.

In conclusion, these results demonstrate that care in interpreting the lineshapes

must be taken in order to extract information about the fundamental coupling mecha-

nism. We have demonstrated (1) lineshape splitting without normal mode oscillations,

(2) spectral lineshape features which are dependent on experimental geometry, and

(3) dramatic manifestations of intra-cavity atomic number fluctuations for (N) r 1.

We have described the role that these fluctuations play in studying atom and cavity
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lineshapes for various values of (N). Furthermore, we have shown that splitting in

one lineshape only is not necessarily an indication of oscillatory energy exchange.

We have also demonstrated that normal mode splitting for (N) a 1 requires several

atoms to be present in the cavity mode, and thus is not a true single atom effect.

Finally, the trend in our data suggests that lineshapes in the true single atom limit

would not exhibit splitting.

This work is supported by NSF Grant No. PHY-9112421 and No. CHE-9304251.
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