

13th INTERNATIONAL CONFERENCE ON ENGINEERING DESIGN
August 2001,Glasgow, Scotland, UK

TOWARDS A THEORY OF COMPLICATEDNESS:
FRAMEWORK FOR COMPLEX SYSTEMS ANALYSIS AND

DESIGN

Victor Tang, Vesa Salminen

Keywords: theory of technical systems, complexity management, adaptive design

1. Introduction

Global, dynamic, and competitive business environment has increased the complexity in
product, service, operational processes and human side. Much engineering effort goes into
reducing systems complexity. We argue that the real issue is reducing complicatedness. This is
an important distinction. Complexity can be a desirable property of systems provided it is
architected complexity that reduces complicatedness. Complexity and complicatedness are not
synonyms. Complexity is an inherent property of systems; complicatedness is a derived
function of complexity. We introduce the notion of complicatedness of complex systems,
present equations for each and show they are separate and distinct properties. To make these
ideas actionable, we present a design methodology to address complicatedness. We show
examples and discuss how our equations reflect the fundamental behavior of complex systems
and how our equations are consistent with our intuition and system design experience. We
discuss validation experiments with global firms and address potential areas for further
research. We close with a discussion of the implications for systems design engineers. As
engineers, we believe our strongest contributions are to the analysis, design, and managerial
practice of complex systems analysis and design.

We illustrate the difference between complexity and complicatedness. Relative to a manual
transmission, a car’s automatic transmission has more parts and more intricate linkages. It is
more complex. To drivers, it is unquestionably less complicated, but to mechanics who have to
fix it, it is more complicated. This illustrates a fundamental fact about systems; decision units
act on systems to manage their behavior. Complexity is an inherent property of systems.
Complicatedness is a derived property that characterizes an execution unit’s ability to manage
a complex system. A system of complexity level, Ca, may present different degrees of
complicatedness, K, to distinct execution units E and F; KE=KE(Ca) ≠ KF=KF(Ca).

We summarize relevant literature on systems complexity in Figure 1. Columns [1] to [15] are
keyed to the references. Rows identify key areas of research results; e.g., metrics,
complicatedness, etc. We make four observations about the locus of results. One, there is a
dearth of quantitative frameworks or metrics. There is no research on complicatedness and
complexity as distinct properties of systems. Two, research seems to cluster around
engineering management and physical products. The focus is on modularization and
interactions with a bias to linear systems and qualitative metrics. Three, there are efforts on
methodologies and tools, but theory, foundations and software have a demonstrably lesser
presence. Ferdinand’s work in software systems complexity is a happy exception [1]. It is
analytical, rigorous and elegant. Three, services and enterprise solutions are barely addressed.

This is a serious omission given the high proportion of services in industrialized economies.
Fourth, although layering of abstract systems and reintegration have a long history; the
literature is skewed to decomposition rather than integration.

 Reference [1] [2] [3] [4] [5] [6][7][8][9][10] [11][12][13][14][15]
 Main Focus of Investigation
 Foundations & Theory � � � � � � � � � � � � � � �
 Linear Systems Engineering � � � � � � � � � � � � � � �
 Non-linear Systems Engineering � ���� � � � ���� � � ���� � � � ���� ���� �
 Systems Architecture/Structure ���� � � � ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ����
 Management ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ����
 Design Methodology � � � � ���� � ���� ���� � ���� ���� ���� ���� ���� ����
 Design Tools � � � � � � ���� � � � � � � � ����
 Complicatedness ���� � � � � � � � � � � � ���� � �
 Strategy to Address Complexity
 Modularization & decomposition ���� � ���� � ���� ���� ���� ���� � ���� ���� ���� ���� ���� ����
 Interactions and Dependencies ���� ���� ���� � ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ����
 Layering & Abstraction ���� � � � � ���� � � � ���� � � ���� � �
 Integration � � � � � � ���� � � � � � ���� � �
 Complexity Metrics
 Quantitative ���� � � � � � � ���� � � � � � � ����
 Qualitative � ���� ���� ���� ���� ���� ���� � ���� ���� ���� ���� ���� ���� ����
 Domain
 Physical Products & Systems � � ���� � ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ����
 Software Products & Systems ���� � � � ���� � � � � � � � ���� � �
 Services � � � � � ���� � � � � � � ���� � �
 Enterprise Solutions � � � � � � � � � � � � ���� � �
 Social & Organizational � ���� � ���� ���� � � � � � � � � ���� ����
 Applications
 Engineering � � ���� � � ���� ���� ���� ���� ���� ���� ���� ���� ���� ����
 Organizational Theory � ���� � ���� ���� � � � � � � � � ���� �
 Quality Management ���� � � � � � � � � � ���� � � � �

 ���� Indicates a strong element in the publication. � Indicates a lesser or absent element.

Figure 1. Systems Complexity Summary of the Literature

2. Complexity

Overwhelmingly, the literature considers a system with a large number of elements as
complex. Very few address the linkages among the elements and no one, to our knowledge,
considers their bandwidth. All these factors are inherent characteristics of systems. Therefore,
we argue that the number of elements, the number of interactions among them and the
bandwidth of these interactions determine complexity of the system. As any of these increases,
we expect complexity to increase. For example, a system N={ni}i=1,2,…,p with binary
interactions among the elements. Complexity, CN, of this system does not exceed p2, we
denote this by CN=O(p2). System M={mj}j=1,2,…,p can have complexity CM=O(pk) where k>2.
When M admits {mjxxxxmr}jr and {mjxxxxmrxxxxms}jrs interactions, CM=O(p3). If M admits
{mjxxxxmrxxxxmsxxxxmt}jrst interactions, CM=O(p4). This characterization of complex systems admits
systems with feedback loops of arbitrary nesting and depth, and high bandwidth interactions

among system elements. Complexity is a monotonically increasing function as the size of the
system size, number of interactions increases, and bandwidth of interactions increase. In the

limit, complexity→∞. We define complexity by C=XnΣΣΣΣb Bb

where X is an integer denoting the number of elements {xe}e=1,…,p

 n is the integer indicated in the relation O(pn)
and B1=Σijλijβij

λij is the number of linkages between xi and xj
βij is the bandwidth of the linkages between xi and xj

 B2=Σkλk
ij βk

ij

λk
ij is the number of linkages between xk and (xi,xj)

βk
ij is the bandwidth of the linkages between xk and (xi,xj) and in general,

 Bn=Σnλp
ijk…n-1 βn

ijkl…n-1
λn

ijkl…n-1 number of linkages among xk and (xi,xj),(xi,xj,xk),…,(xi,xj,xk,xk,…,xn-1)
βn

ijkl…n-1 linkage bandwidth among xk and (xi,xj),(xi,xj,xk),…,(xi,xj,xk,xk,…,xn-1)

B is a measure of the information capacity among the elements of the system. Note that the
monotinicity properties are not violated. In Figure 2 we give an example.

a 4

a 3

a 2

a 1 a 5

b 4

b 3

b 2

b 1

A = {a 1,a 2 ,a 3 ,a 4 ,a 5}

B = {b 1,b 2 ,b 3 ,b 4}

ββββ ij= b a n d w id th b e tw een {a i,a j}
L et ββββ ij= 1 b it
B =ΣΣΣΣ i ΣΣΣΣ j λ ij β ij= 7
C = X nB n = (5)2(7)2= 1 2 2 5

ββββ ij= b a n d w id th b etw een {b i,b j}
L e t ββββ ij= 2 b its
B =ΣΣΣΣ i ΣΣΣΣ j λ ij ββββ ij=1 0
C = X nB n=(4)2(1 0)2= 1 6 0 0

Figure 2. Complexity Example of Two Systems

3. Complicatedness

Complicatedness is the degree to which a decision unit for the system is able to manage the
level of complexity presented by the system. The decision unit can be another system or a
person. Complicatedness is a function of complexity, K=K(C). Let us explore the properties
we expect from a complicatedness function. We expect monotonicity of complexity is
imposed on complicatedness, but do not expect that they are identical. Clearly at C=0, K=0.
Consider K when C→∞. Intuitively, there is a level of complexity at which the decision unit
can barely cope with the system. The system is becoming unmanageable. For example, most
people can visualize a graph, g=g(x,y) of Cg=O(p2), but it is harder for h=h(x,y,z) with
Ch=O(p3). Few can visualize a surface four variables, although complexity has only reached
O(p4). Consider, equally incomprehensible systems A and B where CA=O(p100) and

CB=O(p100,000) respectively; KA≳KB although O(p100,000)>>O(p10,000). Therefore, when C=0,
K=0 and when C→∞, K→Kmax asymptotically.

Systems are designed to operate and be managed around at an optimal point of complexity,
say C*. For C<C*, although complexity increases, it is well within the interval of
manageability. At C=C* the system complexity is optimal for the decision unit. For C>C*,
complexity is increasing and the decision unit can manage the system with decelerating
effectiveness. Mathematically, dK/dC>0 in the open interval (0, ∞). At C=C*, dK/dC=0 and
d2K/dC2=0. Complicatedness has reached an inflection point. So that for C>C*, d2K/dC2<0,
i.e., complicatedness is reaching saturation. The decision unit’s ability to manage complexity
has reached diminishing returns. For C<C*, d2K/dC2>0, complexity is growing faster than
complicatedness. Because the logistic function is one of the simplest mathematical expressions
that has all the above properties, figure 3. We adopt it to express complicatedness.
K(C)=Kmax/(1+e-αC)

where e is the transcendental number e=3.2718 2818 284…

α is a constant specific to the decision unit
C is the complexity of the system

K =K m ax/(1+e-αααα C)

co mplexity

co
m

p l
ic

at
ed

n e
ss

K m ax

C*

d 2K /dC 2=0

d 2K /dC 2>0

d 2K /dC 2<0

dK /dC>0K *

Figure 3. Complexity and Complicatedness

Without loss of generality, we set Kmax =1 to indicate abject complicatedness. There are other
functions that can be used; such as, the Gompertz curve, Weibull distribution, log-reciprocal
function, etc. The major differences are the location of the inflection point, the growth pattern
before and after the inflection point, and the symmetry around the inflection point.

4. Examples of Uncomplicated Complex Systems

Earlier we presented the automobile transmission as a complex system that is uncomplicated.
Neural networks are more interesting as a systems engineering example. Typically they are
applied to situations where there are an intractable number of data points to analyze in order to
set a course of action. To solve this difficulty, the neural network is layered, Figure 4. The
complexity has increased relative to the input vector. Many new elements, new interactions

and their bandwidth have all increased the initial complexity. But architected complexity has
reduced an intractably complicated input vector to an output vector that now makes the system
manageable. This approach has proven effective for engineering paper machines [16]. This is
a non-trivial example. The purchase price of paper machine ranges around $50 M. The mill
generates about 109 data points, which are processed in real-time by adaptive and distributed
neural networks embedded in the machine.

input
layer

pattern
layer

summation
layer

output
layer

...
......

s

d

s

....

s

in
pu

t v
ec

t o
r

o u
tp

ut
 v

ec
to

r

s-summation unit
d-division unit

Figure 4. Use of Neural Network as Architected Complexity

The telecomm infrastructure is one of the most massive systems in the world. On demand, it
interoperates an immense array of networks, products and computers. The system complexity
is enormous, yet we routinely make transcontinental telephone calls and download music and
pictures from the Web. Architected complexity has made telecomm networks manageable.
Engineers created the OSI Reference Model by partitioning the network functions into distinct
layers. This architectural innovation creates, at each level, a distinct presentation of the
network that is more abstract at each successive layer. Each layer presents to decision units a
specific system image of the network that is vastly less complicated. Layering system images
is a widely adopted doctrine in computers; e.g. programming languages. With the first
computers, applications programming was very difficult. Programmers had to embed arcane
hardware details into their algorithms. High Level Languages were invented to present an
abstract, but domain specific, system image for programming. A layer of software hid and
encapsulated, transparently to the programmer, all machine specificities. Architected
complexity is a very effective complexity management strategy; it reduces complicatedness.

5. Examples of Complicated Complexity

It suffices to present three examples. The typical VCR control panel is a classic example of
complex and complicated design. Another example is PC software or “bloatware.” So many
application packages are functionally so extravagant that the average person can learn only a
fraction of their functionality. Cellular phones are in danger of becoming examples of complex
and complicated products.

6. Calibrating Complicatedness

Consider a car’s transmission. The automatic transmission presents the well known system
image of A={P,R,N,D1,D2,D3}, λij=24 with βij=1; thus CA=62(24)(1)=864. The manual
transmission presents a system image of M={P,R,N,D1,D2,D3,F} where F is the foot clutch. It
needs to be engaged and disengaged, so F’s interaction bandwidth is 2. λij=10 with βij=1, and
λmn=14 with βmn=2, thus CM=72[10+(14)2]2=38416. For the novice driver, C* ≈ CA=864. At
C ≈ 40000, we can say that Kmax=1. Therefore, we can create instruments to determine the
analytic form of the complicatedness function. For a system with complexity C, and a decision
unit K, we design an instrument to perform these functions:

[1] determine the optimal complexity, C* that K can manage optimally
[2] in the (C,K) space, at C* set K*=1/2
[3] solve for α using equation 1/2=1/(1+e-αC*), recall that and Kmax=1
[4] get K(C)=1/(1+e-αC).

7. Engineering Complex but Uncomplicated Systems

There is good and bad cholesterol. Similarly, there is architected and unarchitected
complexity. The former reduces complicatedness; the latter does not. There are two important
principles in architected complexity: partition the system into modules, reintegrate them while
maintaining system integrity. Many decomposition schemes address the first principle.
Karnaugh maps for digital circuits, Djysktra architectures for computers, Design Structure
Matrix for mechanical products [15], etc. They are effective tools, but when the decomposition
creates a large number of new components and interactions, the result can now become
intolerably complicated and make reintegration impractical. Reintegration is less visible in
research, although widely practiced by engineers.

Consider system M={mj}j, CM>KM* for M’s decision unit, figure 5.

s y s t e m M = { m j}
la y e r e d s y s t e m MMMM

s u b s y s . L r ∪∪∪∪ r B r

la y e r r L r = { l j
r } j

K M > K *
d e c o m p o s e i n t o r la y e r s
M = { m j} j= ∪∪∪∪ r L r
fo r e v e r y la y e r r , c r e a t e
in t e r a c t io n s u b s e t B r = { b k

r } k

L r ∩∩∩∩ r B r = ∅∅∅∅

in t e g r a t in g
s u b s y s t e m I

f o r s y s t e m MMMM

c r e a t e I = { b k
r } k f o r a l l r

s u c h t h a t B = ∪∪∪∪ r B r

�

�

�

�

�

�

K I < K * < K M

�

�

B r
�

�

�

�

�

-
Figure 5. Architected Complexity to reduce Complicatedness

The goal is to architect complexity so that M is transformed into MMMM, such that KMMMM<KM*,
although CM>CM*. Partition M into layers, Lr={lj

r}j such that M=∪∪∪∪rLr, i.e., all the elements of

M appear in some specific layer. Functional decomposition is an engineering application of
this principle. For a paper mill, these can be the mechanical, control, and process domains
[13], or for a computer, the arithmetic unit, main memory, the I/O units, etc. Design the layers
so that there are only intra level interactions among the elements of a layer. Create Br={bk

r}k
for ever layer Lr , so that Lr∩∩∩∩rBr=∅. Design B so that οnly elements of B communicate with
each other. B=∪∪∪∪rBr is MMMM ‘s communications subsystem. For MMMM , design a system integration
unit T={tx}x, , , , which on one side interfaces with B and the other with the decision unit. Note
that T presents the decision unit with an image of the system MMMM. This is a hallmark of a good
architecture. Good design always presents a less complicated system image to a decision unit.

8. Areas of Potential Research

Complexity should be studied further with industry experiments. Begin by selecting a set of
simple systems with unambiguously matched by an identifiable class of decision units. Then
calculate the systems’ complexity and derive complicatedness functions for the set of decision
units. These experiments would serve as case studies for the behavior of the complicatedness
function and help determine whether our simple logistics function serves its purpose well. If
not, different analytic functions should be tried as suggested earlier. In addition, experiments
in an organizational setting should also be studied. The decision units are people with specific
complicatedness functions. An executive who must negotiate with a large number of
departments is such an example. In this case the system elements are the department heads, the
bandwidth of interactions is determined by the specific nature of the negotiations. The extent
to which organizational structures, communication styles and boundary objects are effective
architected complexity are fruitful areas of investigation [17].

9. Conclusions

Separating complicatedness and complexity improves the clarity by which systems can be
described and analyzed. In this way we can clearly separate what is an inherent property of the
system, complexity, from a derived attribute, which is complicatedness. The mathematical
expressions we formulate capture additional properties of systems that have heretofore
remained largely unaddressed. We are able to derive results that give us valuable insight into
the behavior of systems. These insights are useful in the analysis and design of very large
complex systems, and also move us towards a theory of complicatedness.

References
[1] Ferdinand, A.E., Systems, Software and Quality Engineering. New York: Van

Nostrand Reinhold, 1993.

[2] Kelly, S. and Allison, M-A, The Complexity Advantage. Business Week Books,
McGraw-Hill, 1998.

[3] Khurana, A., Managing Complex Production Processes. Sloan Management
Review, Winter 1999, pp.85-97.

[4] Bar-Yam, Y., New England Complex Systems Institute (NECSI) home page:
http://www.necsi.org/

[5] Levitt, R., Thomsen, J., Christiansen, T., Kunz, J., Jin, Y., Nass, C., Simulating
Project Work Processes and Organizations: Towards a Micro-Contingency

http://www.necsi.org/

Theory of Organizational Design. Management Science, Vol. 45, No.11,
November 1999, pp.1479-1495.

[6] Salminen, V. and Pillai, B., Non-linear Dynamics of Interacting Mechanisms in
Distributed Product Development. International Conference on Complex
Systems (ICCS), May 21-26, 2000, Nashua, NH.

[7] Salminen, V., Yassine, A., Riitahuhta, A., Strategic Management of Complexity
in Distributed Product Development, NordDesign 2000, 24-25th August 2000.

[8] Suh, N.P., A Theory of Complexity, Periodicity, and the Design Axioms,
Research in Engineering Design, Vol. 11, 1999, pp. 116-131.

[9] Holland, J., Hidden Order: How Adaptation Builds Complexity. Addison
Wesley publishing Company, Reading, MA, 1995.

[10] Baldwin, C., Clark, K., Managing in an Age of Modularity. Harvard Business
Review, September-October 1997.

[11] Boppe, C., 16.880- Systems Engineering. MIT-report 1998.

[12] Warfield, J.N., A Structure-Based Science of Complexity: Transforming
Complexity Into Understanding. Kluver Publishing, Amsterdam, 2000.

[13] Tang, V., Salminen, V., Pillai, B, Extending DSM to Very Complex Systems.
Design Structure Matrix World wide-conference, 18-19 September 2000, MIT.

[14] Gharajedaghi, J., System Thinking: Managing Chaos and Complexity.
Butterworth- Heineman Publishing, 1999.

[15] Eppinger, S.D. Innovation at the Speed of Information, Harvard Business
Review, vol. 79, no. 1, pp. 149-158, January 2001.

[16] Pillai, B., Adaptation of Neural Network and Fuzzy Logic for the Wet-End-
Control and Process Management of Paper or Board Machines: A Tool Making
Approach. Acta Polytechnica Scandinavica, Mech.Engineering Series No. 138.

[17] Carlile, P., Lucas, B., Cross-Boundary Work as Cross-Boundary Development.
Case Study. ICRMOT Working Paper. MIT Sloan School of Management.

Contact Address
Victor Tang and Vesa Salminen
Massachusetts Institute of Technology, Center for Innovation in Product Development, CIPD
30 Memorial Drive, E60-236,
Cambridge, MA 02139 USA

Tel: +1.617.457.2741
Fax: +1.617.258.0485
Email: victang@mit.edu, vesas@mit.edu

mailto:victang@mit.edu
mailto:vesas@mit.edu

	Victor Tang, Vesa Salminen
	Keywords: theory of technical systems, complexity management, adaptive design
	
	Introduction

	Reference	 [1] [2] [3] [4] [5] [6][7][8][9][10] [11][12][13][14][15]
	Main Focus of Investigation
	Linear Systems Engineering	 (((((((((((((((
	
	
	
	Strategy to Address Complexity
	
	Modularization & decomposition	 (((((((((((((((
	Interactions and Dependencies	 (((((((((((((((

	Complexity Metrics
	
	
	Physical Products & Systems 	 (((((((((((((((
	Applications

	Complexity
	
	
	
	Figure 2. Complexity Example of Two Systems
	Examples of Uncomplicated Complex Systems

	Figure 4. Use of Neural Network as Architected Complexity

	Examples of Complicated Complexity
	
	It suffices to present three examples. The typical VCR control panel is a classic example of complex and complicated design. Another example is PC software or “bloatware.” So many application packages are functionally so extravagant that the average pers
	Calibrating Complicatedness
	Consider a car’s transmission. The automatic transmission presents the well known system image of A={P,R,N,D1,D2,D3}, ?ij=24 with ?ij=1; thus CA=62(24)(1)=864. The manual transmission presents a system image of M={P,R,N,D1,D2,D3,F} where F is the foot cl
	[1] determine the optimal complexity, C* that K can manage optimally
	[2] in the (C,K) space, at C* set K*=1/2
	[3] solve for a using equation 1/2=1/(1+e-aC*), recall that and Kmax=1
	[4] get K(C)=1/(1+e-?C).
	Figure 5. Architected Complexity to reduce Complicatedness

	Areas of Potential Research

	Conclusions
	
	References

	Contact Address

