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Abstract 

Effective management of groundwater contaminant plume migration 
needs new approaches that reduce or eliminate the inefficiencies of current 
treatment / containment methods such as pump-and-treat and concrete barrier 
containment. The system proposed in this work consists of hollow fiber 
membrane bundles, containing a copolymer solution, implanted directly into the 
aquifer of concern. Hydrophobic contaminant diffuses through the membrane 
and is solubilized by the amphipathic copolymer. The copolymer is retained 
within the membrane tube, and the contaminant-saturated copolymer solution 
may be intermittently flushed for copolymer regeneration and/or waste 
incineration The system takes advantage of the high molecular weight (i.e. 
1,000,000 g/mol), high organic solubilization capacity, non-toxicity, and low cost 
of the copolymer as well as the long-term nature of groundwater contaminant 
plume migration. The proposed system filters the contaminant from the 
groundwater as the plume slowly moves past the treatment area. 

The objectives of this thesis were threefold - first, to quantify the 
enhanced solubilization of several aromatic compounds in solutions of 
N-vinylpyrrolidone/styrene copolynier (NWS); second, to measure the 
transmembrane diffusion rates of aromatic solute through polysulfone 
membrane into copolymer solution; and third, to demonstrate and model the 
proposed aromatic solute extraction system on a lab scale. 

Values of polymer-water partition coefficient, K p ,  were obtained for 
systems of NWS copolvmer and the aromatic solutes toluene, naphthalene, and . , . . 
ihenanthrene from solubility experiments. Kpw is defined as the mass of solute 
in polymer per mass polymer divided by the mass of solute in water per mass 
water. Values of log Kpw obtained were 3.39 f 0.04,3.38 f 0.01, and 4.69 f 0.02 
(to a 95% confidence level) for toluene, naphthalene, and phenanthrene, 
respectively, in aqueous NVPS solution. A relationship between log Kpw and 
log hW, odanol-water partition coefficient, based on a Flory-Huggins activity 
coefficient model was proposed to extend predictive analysis to other solute- 
polymer systems. 



Transmembrane diffusion rates of naphthalene and phenanthrene were 
determined from transport experiments with anisotropic polysulfone 
ultrafiltration membranes. Careful experimental set-up insured negligible 
transmembrane convection effects. Transport of solute from the exterior to the 
interior of the membrane tubes was determined by on-line concentration 
measurements using W-VIS spectrophotometry. Values of total membrane 
resistance, Rbt, were determined from experiments using two different 
membranes. Measured values of RtOt agreed well with modeled values. The 
major source of molecular diffusive resistance was posed in all cases by the 
membrane support stucture, not the membrane skin itself. Although its pores 
are far more restricitve to diffusion than the support layer pores, the membrane 
skin layer posed negligible resistance due to its thinness (the skin layer was 0.1 to 
0.23.m thick, the support layer was 0.275-mm thick). The resistance posed by the 
interior and exterior fluid boundary layers was modeled in addition to the above 
membrane resistances. 

The proposed groundwater solute extraction system was modeled on a 
laboratory scale using the solutes, copolymer, and membranes that were 
characterized in the solubility and transport experiments. The lab-scale 
extraction experiments involved a constant-temperature rank filled with Ottawa 
sand, designed to allow a constant, slow flow of aqueous solution from end to 
end. The tank dimensions were 50 an length, 38 an width, and 30 cm depth. 
One experiment demonstrated the decrease in naphthalene concentration of 
solution in a rectangular well in which the proposed extraction system operated. 
An aaueous solution of constant. saturated navhthalene concentration 
conti&ously flowed through th;. pre-naphthaiene-saturated tank. The well 
naphthalene concentration was monitored via on-line UV-VIS 
s~ctrophotometry. A model for the decreased well concentration was posed. 
Another experiment demonstrated the movement of a naphthalene plume 
through and around a cylindrical well. Both the mixed well concentration and 
the 2-D concentration profile behind the well was modeled as a function of time, 
and concentration predictions agreed well with experimental data. 

F i y ,  designs of various full-scale system applications were modeled to 
determine system feasibility. It was concluded that the proposed membrane/ 
copolymer &stem is a mor;! effective contaminant barriir fir  contaminated 
aquifers with lower groundwater velocity, higher con taminant hydrophobicity, 
and higher soil organic carbon fraction. The modeled case studies show the 
proposed system is a promising means of contaminant remediation and 
containment for a wide variety of contaminated aquifers. Areas of further work 
needed for process development were suggested. 
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1. Summary 1 Digest 

1.1. Introduction 

The world is faced today with a myriad of organic, metallic and 

radioactive chemical wastes. Many early disposal practices are now deemed 

inadequate, and chemical waste containment and remediation is becoming a 

necessity as more cases of groundwater contamination become apparent. The 

technology at present is underdeveloped, and remediation times and costs seem 

overwhelming. The Department of Energy has estimated the cost of remediation 

of the United States' contaminated nuclear weapons production sites alone at 

$130 billion, and remediation will take about 50 years (Crawford, 1989). These 

bleak figures prompt a movement to newer, less expensive, and more efficient 

technologies for hazardous waste site containment and remediation. This paper 

desaibes a new concept in hazardous waste site containment and remediation. 

The concept involves an aqueous amphipathic copolymer solution in hollow 

fiber membrane tubes placed in wells in the contaminated aquifer. Since the 

remediation takes place directly in the aquifer, the system allows cleanup 

without removal of contaminated soil to a treatment facility. The proposed 

technique offers containment of organic chemical waste and long-term, passive 

removal of the waste. 

Figure 1-1 is a schematic of the proposed system. It shows a aoss- 

sectional view of a region of contamination in an aquifer. As in many 

contaminated groundwater situations, it is important, first, to provide 

contninm~nf of the plume to prevent contaminant leaching to drinking water or 

irrigation supplies. 
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As pictured, the plume is located in the watersaturated region of the 

aquifer (below the water table) and is assumed to contain dissolved or 

suspended organic contaminant. In the case of a chemical spill of pure organic 

liquid (such as gasoline), there is generally a layer of the pure organic floating on 

the water table. This layer is most easily removed by pumping, but leaching of 

the organic to the groundwater up to that organic species' solubility in water will 

have taken place. Even though most organics have low solubility in water (such 

as PAH's and pesticides), many remain toxic at even lower levels. For example, 

the organic pesticies endrine, lindane, and toxaphene have water solubilities 0.2, 

7, and 3 mg/L, respectively; but they are hazardous to human health at much 

lower concentrations - 0.0002,0.004, and 0.005 mg/L, respectively (Freeze and. 

Cherry, 1979). 

The treatment wells in Figure 1-1 are cylindrical monitoring-type wells 

from 2 to 6 inches in diameter. These wells are arranged in lines perpendicular to 

the direction of groundwater flow. In the case of non-unidirectional 

groundwater flow, the wells would be arranged in such a way as to intercept all 

of the passing contaminant. A variation of the system replaces the cylindrical 

wells with a long, rectangular well extending perpendicularly to the direction of 

groundwater flow. 

Figure 1-2 shows a aoss-section of one of the treatment wells from 

Figure 1-1. Inside each well is placed a bundle of hollow fiber membrane tubes 

(each approximately 1 mm in diameter) filled with an aqueous, maaomolecular 

copolymer solution. Contaminant travels through the membrane wall via 

molecular diffusion and adsorbs to hydrophobic sites of the copolymer. The 



Fieure 1-2 : Pro~osed Process -- Sinele Well C r ~ s s - S e h  
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copolymer effectively enhances the solubilization of the organic species in 

aqueous solution. The copolymer solution may be recirculated intermittently 

when it becomes sufficiently loaded with contaminant for copolymer 

regeneration or waste incineration. The pore size of the membrane is chosen 

large enough to allow passage of contaminant into the copolymer solution, but 

small enough to prevent passage of copolymer out of the membrane interior. 

Contaminant removal takes place passively as the plume slowly moves through 

the cleanup area. In this way, immediate containment of the contaminant plume 

is achieved as is eventual removal of the contaminant. Intermittent replacement 

(i.e. monthly) of the copolymer solution is the only required operational 

procedure following installation. 

Operating specifications to be determined for such a system include 

copolymer and membrane type, membrane average pore size, copolymer 

concentration, well spacing and configuration, and membrane configuration in 

each individual well. Factors affecting the optimum choices for the above 

specifications include groundwater flowrate and flow direction (governed by 

aquifer properties such as conductivity and hydraulic gradient), contaminant 

type and properties (solubility, molecular diffusion coefficient in water, 

molecular weight), and remediation requirements. These factors and operating 

specifications are discussed in this work. 

The membranes used in this work are Supelco's polysulfone ultrafiltration 

membranes. The membranes used are anisotropic and have nominal molecular 

weight cutoffs of 2000 and 50,000 g/mol. The membrane skins are 0.1 - 0.2- 
thick and are bound to a membrane support structure 0.275mm thick. 

Membranes best suited to the groundwater remediation system are those that are 



sufficiently resistant to microbial attack, chemical degradation, and fouling. 

Work is currently being done to develop coatings which make industrial 

ultrafiltration membranes more resistant to fouling (Brink and Rornijn, 1990, and 

Nystrom, 1989). This is a topic of concern in ultrafiltration technologies as well, 

where harsh environments are often encountered. 

The copolymer used was N-vinylpyrrolidone/styrene (NVPS), a high 

molecular weight (3.4 million g/mol) random-structured copolymer, supplied by 

Scientific Polymer Products, Inc. The basic molecular backbone and structure is 

depicted in Figure 1-3. NVPS is nontoxic and has both hydrophobic and 

hydrophilic properties. Thus, it is an effective organic solubilizer, and it forms a 

stable suspension in water. The key features of the copolymer chosen for the 

system are its hydrophobicity (organic-solubilization capacity) and its molecular 

weight. The latter attribute is important since membrane pore size must be 

considerably less than the size of the copolymer molecule to prevent leakage. 

1-3 : S- N - V i n v l u v m l i d o ~ e  (NVPS) 
A random sequential arrangement of ring structures x and y on 
the copolymer chain with x to y weight ratio of 60:40 is depicted. 



The hydrophobic model organic compounds used in this study were 

toluene (99.8% pure), naphthalene (99+Y0 pure), and phenanthrene (98% pure). 

Toluene was obtained from Aldrich Chemical Company, Inc., and the 

naphthalene and phenanthrene were obtained from Sigma Chemical Company. 

These chemicals were used without further purification. 

1.2. Thesis Objectives and Approach 

The objectives of this thesis are threefold. The first two objectives invo1;e 

the experimental and theoretical study of fundamental phenomena - solubility 

and diffusive transport - important to the remediation system proposed in 

Section 1.1. The third objective addresses a lab-scale demonstration of the 

proposed system. 

The first objective of this work was to quantify the enhanced solubilization 

of three aromatic compounds - toluene, naphthalene, and phenanthrene - in 

aqueous amphipathic copolymer solution. Solubility experiments were 

conducted and a thermodynamic analysis was completed. The results tell how 

well contaminant may be concentrated in copolymer solutions used in the 

proposed process. 

The second objective dealt with characterization of the rate of molecular 

diffusive transport of the aromatic solutes through anisotropic hollow fiber 

membranes into an aqueous copolymer solution. Diffusive transport 

experiments were conducted and a scaling analysis to determine controlling 

mechanisms was carried out. The results tell how quickly the contaminant 



diffuses through the membrane and into the copolymer solution used in the 

proposed process. A comparison of experimental and modeled results gives 

insight into what parameters could be altered to decrease mass transfer 

resistance, and increase the performance of the proposed remediation system. 

The third objective was the demonstration of the proposed system on a 

laboratory scale. The extraction of solute from an aqueous naphthalene plume 

moving through a model soil matrix was demonstrated in two different 

experimental configurations. Data from the solubility and transport experiments 

were used as inputs in the theoretical modeling of the laboratory-scale 

experiments. Finally, a copolymer/membrane remediation system was 

developed and evaluated for hypothetical contaminated aquifers. 

13. Enhanced Solubility of Aromatics in Amphipathic Copolymer Solution 

Experiments were performed to quanbfy the enhanced solubility of three 

aromatic solutes - toluene, naphthalene, and phenanthrene - in aqueous 

solutions of N-vinylpyrrolidone/ styrene copolymer. A thermodynamic analysis 

was used to develop a methodology for generalizing the results so that the 

solubilization capacities of NWS and other copolymers could be estimated for 

various hydrophobic compounds of interest. 

Since organics tend to adsorb onto solid surfaces such as the containers 

used in concentration measurements, careful handling techniques must be 

employed. 25-mL glass flasks were filled with aqueous NWS copolymer 



solutions of known concentration and about 8 g of either solid naphthalene or 

phenanthrene. Other 25-mL glass flasks were filled with aqueous NVPS solution 

and about 10 mL of liquid toluene. Very low headspace was allowed in the 

flasks (< 2 mL). The flasks were covered, shaken, and allowed to equilibrate at 

23.0 f O.l°C in a constant-temperature water bath. 

Solution concentrations of naphthalene, phenanthrene, and toluene were 

determined by absorbance measurements from a Perkin-Elmer Lambda 38 

W/VIS spectrophotometer, using quartz Suprasil cells. Measurements were 

made at maximum absorbance wavelengths for each compound: 

276 nm (2760 A) for naphthalene, 293 nm for phenanthrene, and 261 nm for 

toluene. Extinction coefficients for the solutes and NVPS copolymer were 

measured at the above wavelengths so that the concentration of all species in 

solution could be determined. 

The saturated equilibrium concentrations of toluene, naphthalene, and 

phenanthrene in solutions of NWS are given in Table 1-1 and are plotted in 

Figure 1-4 as a function of NVPS to water weight ratio. Each concentration 

measurement for a solute is given as a multiple of the solute's saturated 

concentration in pure water at 23.0°C (Table 1-2). For example, a solution with 

an NVPS to water weight ratio of 0.04 will solubilize about 100 times the 

naphthalene, or about 2000 times the phenanthrene that an equal amount of pure 

water will solubilize. Figure 1-4 shows a linear relationship between the solute 

concentration and the NVPS to water ratio for each of the three solutes. Such 

linear equilibrium relationships have been observed for systems of solid solute 

partitioning between two immiscible liquids (Prausnitz et al., 1986). 



lutes ' Table 1-1; Saturated Concentrations of SO ~n Aaueous NVPS 

Toluene 

g NVPS I e w w  C/Cw,~at - 
.0069 19.0 

.0104 25.1 

.0197 46.6 

.0234 47.6 

.0243 59.0 

.W06 89.9 

.0793 204.5 

NaDhthalene 
g NVPS I e w u  C/Cw,sa' - 

.005 1 13.9 

.0101 25.9 

.0152 38.9 

.0205 51.1 

.G256 62.1 

.0309 78.6 

.0362 87.9 

.@I16 99.8 

.@I72 1 10.7 

C = solute concentration in NVPS solution 

Cw,sa~ = saturated concentration of solute in pure water 
(=constant for each solute at system temperature and 

pressure, given in Table 1-2) 

C/Cw,sat = factor of solute concentration "enhancement" provided by the NVPS 



1-4 : -Sol of Phenant . . hrene. N p  
of NVPS:Water W- 

A Naphthalene 
Toluene 

0.00 0.02 0.04 0.06 0.08 

g NVPS / g water 

T ab 1 e 1-2. , C o m uarison of Surfactant Partition Coefficients for Model S o l u e  

Solute Water Log Kou, Log Kpw Log Kw Log KSW Log Kw Log Kw Log K w  
Solubility (conc. ratio) (NVPS) (PlO3) (Brij 30) (Igepal CA-720) (Tergitol NP-10) (Triton X-1000) 

Csat. (WL) (this work) 

Toluene 627 2.73 3.39 f .04 -- --- ---- ---- --- 

Naphthalene 31.2 3.37 3.38 + .01 3.31 3.29 3.02 2.99 3.10 

Phenanthrenc 1.29 4.46 4.69 f .02' 4.60 4.27 4.07 4.14 4.16 

Sources: ( a b )  (c) (this work) (d) (-9 (el (e) (e) 

(I) B o h 0 . d ~ .  1951 
(b) May U d.. 1978 
(c) H.DELdLtQ.1979 
(d) H u m  d llmm, 1992 
(c) Wrdr ad.. 1991 



A surfactant-water partition coefficient may be derived for each solute- 

surfadant system, and because the saturation behavior is linear, each partition 

coefficient will be constant. The overall amount of solute in the solution is 

divided into solute associated with the water and polymer pseudophases. Here, 

a pseudophase is defined as one of two separate interspersed phases. The water 

and polymer pseudophases are intimately mixed on an approximately 1-rn size 

scale as a miaoemulsion, but remain chemically and physically distinct below 

this size level. The concentration basis defined as follows is used to express the 

partitioning of solute between these two pseudophases: 

where C = g solute per ml solution, Cp = g solute in "polymer" pseudophase per 

ml solution, C, = g solute in "water" pseudophase per rnl solution, and CWgsat = 

g solute in pure water at saturation per mL water. Kp, and NVPS to water 

weight ratio are defined as follows: 

g solute in NVPS polymer / g polymer 
K p w l  

g solute in water / g water 

g m  M= - 
g water 

Then for C, z Cw,sat, the relationship between measured solute concentration 

and NWS to water weight ratio becomes the following: 



Values of Kp, for =water partitioning for the three solutes are given in 

Table 1-2 with 95% confidence intervals given 

Values from the literature of loglo K S ,  surfadant-water partition 

coefficient, with the same concentration basis as Kpw are shown in Table 1-2 for a 

variety of surfadants with naphthalene and phenanthrene solutes. The organic 

solubilization capacity of the NVPS copolymer compares well with that of the 

widely-used surfactants. Table 1-2 also lists values of loglo & ,  the octanol- 

water partition coefficient, for the solutes defined for an odanol-water binary as 

follows: 

g solute in octanol-rich phase / mL octanol 
KJw = g solute in water-rich phase / mL water (1-5) 

Thermodynamic analysis of twephase equilibrium was used to predict the 

relationship between Kpw and K,,, for the solute-water-NVPS systems, as 

follows: 

where v, is the molar.volume of pure octanol at system temperature and 

pressure [L/mol];$ is the activity coefficient of solute i in the obanol-rich phase 

of an octanol-water binary in equilibrium with solid solute; ip .is the activity 

coefficient of solute i in the polymer-rich phase calculated on a weightfraction 

basis; MW,1 is the molecular weight of the solute [g/mol]; and Rp is the ratio of 



polymer mass to polymer phase mass [g/g]. Another expression for Kpw was 

derived as well: 

*P W MWml 
log Kpw = log Vw - log % + 1% 'Yi - 1% 1000 - log % (1-7) 

where vw is the molar volume of pure water at system temperature and pressure 

[L/mol], andf is the activity coefficient of solute i in the water-rich phase of 

the water-polyn?er binary. Estimates for Kpw from Equations 1-6 and 1-7 are 

within about a factor of two of the experimental Kpw values (Table 1-3)- very 

reasonable agreement considering estimated error of parameters. 

Table 1-3: Activity Coefficients and Other Parameter Inputs for Equations 
1-7: NVFS-So- 

(1) 

Solute Log Kow Log< ~og\biw L o g e  Log 
loo0 

LogP LogK, LogK, LogKpr 
(Equ. 1- 7) equ 16) (mud) 

Toluene 2.73 0.34" 3.99 0.17 -1.04 -0.41 3.53 3.55 3.39 

Naphthalene 3.37 0.53") 4.93 0.41 -0.89 -0.03 3.70 3.61 3.38 

v [=] Umol 

(a) V.*cr .tCr h Hrrwh nd Lao. 1979. 
(b) V.hri . tahaThaMel l l . .1982.  
(c) V h  cjhrmal wing UNIFAOUNIQUAC muhcd Byma a ll.. 1990). 



1.4. Transmembrane Diffusion of Organic Solute in Aqueous Solution 

Fundamental to the efficacy of the proposed barrier/remediation system 

is the speed at which contaminant can diffuse through the membrane into the 

copolymer solution. Figure 1-5 shows a schematic diagram of a transmembrane 

transport experiment involving transfer of solute from an exterior aqueous 

solution to an interior aqueous, copolymer solution. This set-up more closely 

demonstrates the proposed groundwater contaminant barrier system, since 

solute diffuses into a copolymer solution. Initially, an aqueous, copolymer 

solution is introduced to the interior of a membrane tube of volume Vt at zero 

solute concentration. The exterior solution is maintained at a constant, saturated 

solute concentration. Molecular diffusive transport from the exterior to the 

interior is allowed until the copolymer solution has an aqueous pseudophase 

concentration equal to the exterior phase concentration. The governing equation 

and initial conditions for this experiment are as follows: 

Governing Eauatioa 

Cmtaq(t=O) = 0 (1-9) 

Cext = CSat = constant at all time t (1-10) 

where Vt is the membrane tube interior volume [an3]; Cmtaq is the interior 

aqueous pseudophase solute concentration [g/cm3]; Gxt is the exterior solution 

solute concentration [g/cm3]; Cmt is the saturated concentration of solute in 
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water [g/an3J; At is the membrane tube surface area [cmz], Rbt is the overall 

membrane tube resistance [s/cm]; M is the ratio of polymer to water mass in the 

interior copolymer solution [g/g], and Kpw is the polymer-water partition 

coefficient of the solute [dimensionless]. The governing equation follows from a 

mass balance on the interior aqueous pseudophase. The term on the left-hand side 

of Equation 1-8 is the accumulation of solute in this phase, the first term on the 

right-hand side is the net transport of solute into this phase, and the second term 

on the right-hand side is a "reaction" term describing the transfer of solute out of 

the interior aqueous pseudophase and into the interior polymer pseudophase. 

The measured interior phase solute concentration is the sum of the solute's 

concentration in the two pseudophases: 

where Cht is the measured interior concentration [g/cm3 solution]; Erntrq is the 

solute concentration in the aqueous pseudophase [g/cm3 solution]; and CmtpP is 

the solute concentration in the polymer pseudophase [g/cm3 solution]. 

Assuming equilibrium exists between the pseudophases, we may solve Equation 

1-8 with respect to 1-9 and 1-10 for measured interior solution concentration, 

Chb as follows: 

where B = At 
VtRtot(1 + M Kpw)' 

Equation 1-12 can be expressed as follows: 



where R(t) = - ln [ 1 - ' ] /b  , 
(1 + M Kpw) 

b = At 
Vt(l+ M Kpw) 

Values of R (t) can be graphed with time t to obtain Rbt for a given system. The 

experimental Rtot values can then be compared to values predicted from 

literature correlations. The experimental set-up for all diffusion experiments in 

this work is shown in Figure 1-6. The system consists of a membrane tube 

cartridge through which solution is pumped both interior and exterior to the 

hollow membrane fibers, teflon-lined piston-diaphragm pumps which are used 

to transport the fluid, and a PAH column through which the exteriorside 

solution is passed to keep the solution saturated with organic solute. When a 

given parcel of solution is not in transit through the membrane or PAH column, 

it resides in the interior or exterior soluton reservoir. The solutions in these glass 

flasks are sealed from the surrounding air and are well-mixed by magnetic 

stirrers. Side-streams from both the interior and exterior solution lines are sent 

through quartz flow cells in the W/VIS spectrophotometer for on-line 

concentration measurement. Then the solutiom are returned to their respective 

storage reservoirs. 

Normalized naphthalene concentration, R(t), from Equation 1-13 are 

plotted versus time in Figure 1-7 for the naphthalene runs using both the 2000 

and 50,000 molecular-weight-cutoff membranes. Slopes and corresponding 

resistances are shown in Table 1-4. Normalized concentrations from the 
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Table 1-4: Slopes of Normalized Concentration Versus Time Plots 

Solute Membrane MW Cutoff Slooe of R vs. t R t m )  

Naphthalene 2000 (2.01k0.05) x 10-4 cm/s 4980 5 120 

Naphthalene 50,000 (2.16+0.10) x 10" cm/s 4630 k 210 

Naphthalene Pooled Data (2.0z0.04) x 10" cm/s 4950 +_ 100 

All variations in dWdt and Rtot cited to 95% confidence. 

Table 1-5: Slopes of Normalized Concentration Versus Time Plots 

Solute Membrane MW Cutoff Slope of R vs. t Rw 
Phenanthrene 2000 (1.66f0.03) x 10" cm/s 6020 f 100 

Phenanthrene 50,000 (1.68+0.04) x 104 cm/s 5950 f 140 

Phenanthrene Pooled Data (1.67k0.02) x 104 cm/s 5990 k 70 

All variations in dQ/dt and Rtot cited to 95% confidence. 



phenanthrene runs are plotted versus time in Figure 1-8 and corresponding 

resistances are shown in Table 1-5. 

The modeled resistance (Rtot = 1) approximates the measured overall 
dQ/dt 

resistance for both the naphthalene and phenanthrene diffusive transfer 

experiments with less than 10% error. This is within the collective error of model 

inputs for these experiments. The dominant resistance is the membrane support 

layer. The experimental data reflect the fact that phenanthrene has a slightly 

lower difhsivity in water than naphthalene; since D~~(phen . )  < D~~(naph.), the 

overall resistance for phenanthrene transport is greater than for naphthalene 

transport. The model also shows that the resistance of the membrane skin layer 

is negligible compared to overall resistance. This explains the negligible 

difference between the experimentally-measured resistances using the 2000 and 

50,000 MW membranes. The membranes were identical except for their skin 

layers. 

1.5. Aquifer Simulator Experiments 

The basic purpose of the aquifer simulator experiments was to 

demonstrate the removal of naphthalene from water flowing through a lab-scale 

soil matrix by means of the proposed membrane/copolyrner system. The 

rectangular well experiment demonstrates the removal of naphthalene from a 

pre-contaminated aquifer. The cylindrical well experiment demonstrates the 

interception of naphthalene from a plume moving through a previously- 

uncontaminated soil matrix. 



The goal of the well-mixed rectangular well experiment was to 

demonstrate and model the removal of naphthalene from a pre-contaminated 

lab-scale aquifer with a constant contaminant source using the proposed 

membrane/copolymer system. Figure 1-9 shows the soil tank set-up used in the 

rectangular well experiment. Sections 3 and 5 were filled with Ottawa sand. The 

entire tank was filled with distilled water and flow was initiated through the 

tank by maintaining constant water levels in sections 2 and 6 such that the level 

in section 2 was slightly above (by about 0.1 an) the level of section 6. The 

overall flowrate through the tank was 0.419 an3/s, and remained constant 

throughout the experiment. The seepage velocity of the water through the soil. 

corresponding to this volumetric flowrate was 4.0 un/hr (0.067 an/s). The tank 

was kept at 23.0°C by means of an externally insulated, constant temperature 

bath. The liquid in section 2 was continuously saturated with naphthalene by 

pumping through a column filled with solid naphthalene. The naphthalene 

concentration of the fluid in both section 2 and the well (section 4) was 

determined by on-line W-VIS spectrophotometry absorbance readings at 276- 

nrn wavelength. The well concentration increased to saturated concentration as 

naphthalene reached the well. The membrane/copolymer system was placed in 

the well prior to the naphthalene saturation of the well, but copolymer solution 

had not been circulated through the interior of the membrane tubes. This 

allowed for the naphthalene to adsorb to all materials in the well area before the 

experimental run began. Any measured decrease, then, in the measured well 

concentration after the interior copolymer solution began circulating through the 

membrane would be due to naphthalene transport through the membrane into 

the copolymer solution, not adsorption onto a surface newly-introduced to the 

well fluid. 
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The governing equations for the well solution naphthalene concentration 

consists of two mass balances - one on the membrane interior solution and one 

on the well solution: 

Membrane Tube Interior Mass Balance: 



where Vt is the membrane tube interior volume [cm3]; Vw is the well volume 

[a$]; At is the membrane tube surface area [cm2]; Rtot is the overall membrane 

tube resistance [s/cm]; M is the polymer to water mass ratio (in copolymer 

solution) [g/g]; Kpw is the polymer-water partition coefficient of solute 

[dimensionless]; Q is the fluid flow rate into the well [cm3/s]; N is the number 

of membrane tubes; Co is the solute concentration of fluid entering the well 

[g/cm3]; CUItrq is the interior aqueous pseudophase solute concentration 

[g/cm3]; and Cwell is the solute concentration of the well fluid [g/cm3]. The 

initial conditions are as follows: 

The solution using Equations 1-14 to 1-17 is as follows: 

N A  where a =-; P = AtVw 
Q R ~ O ~  Q R ~  + MK~,)' 



Figure 1-10 shows the experimental results of the well-mixed rectangular well 

experiment. The well concentration deaeases as naphthalene diffuses into the 

copolymer solution. 

Using the experimentally-determined membrane diffusive resistance, 

bt = 5000 s/cm, the model predicts a bigger concentration decrease than was 

seen experimentally. The data is more closely predicted using an Rbt between 

15,000 and 20,000 s/cm in the Equation 1-18 model. This significantly higher ht 
is probably due to the dynamic desorption of naphthalene adsorbed to the solid 

surfaces in the well and not a change in support/membrane resistance. 

'on of Well Fluld Rectangular Well Experiment -- Navhthalene Concentsat1 

Q = 0.419 gls 
At = 2.06 cm2 /tube. 
Vt = 0.665 an ' /tube. 
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----. Rt= 15000 s/cm 
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The goals of the 2-D cylindrical well experiment were to experimentally 

demonstrate the decreased concentration plume of solute leaving a cylindrical 

membrane/copolymer system treatment well, to model the well's naphthalene 

concentration as a function of time, and to model the plume profile as a function 

of length, width, and time. 

The domain for the 2-D experiment modeling is shown in Figure 1-11. 

The modeling scheme is divided into two parts. First, the well concentration, 

Cw,ll(t), is modeled analytically as a function of time given an experimentally- 

determined functional form for incoming fluid concentration Co(t). Secondly, 'the 

naphthalene concentration of the region behind the well is solved for numerically 

using Cwell(t) and &(t) as boundary conditions. The governing equation, 

boundary conditions, and initial conditions used to determine the 2-D 

naphthalene concentration profile in the domain 0 5 x I L, 0 I y S W in Figure 

1-11 are as follows: 

C(t) is known along x=O 



C(x,y) = 0 at t=O for all x, y (1-24) 

where u~(x,Y) is the i component of velocity [cm/s]; Di is the dispersion 

coefficient in the i direction [cm2/s]; Kd is the solute soil-water partition 

coefficient [(g/g)/(g/mL)]; pb is the soil bulk density [g/cm3]; n is the aquifer 

porosity [dimensionless]; and C is solute concentration of aqueous solution in 

the domain, a function of x, y, and t [g/an3]. Functional values of u,(x,y) and 

uy(x,y) were obtained from the flow field solution shown in Figure 1-12. The 

domain in Figure 1-11 was discretized, and nodal equations written using an 

explicit finite difference approximation of Equation 1-19. The discretization used 

was found to provide a stable, convergent solution over the problem domain. 

e 1 - 1 1 : 2-D C-1 Well E x m t  -- M- 

Overhead View of Soil-Filled Tank: 

A Boundary I (hrck line) 
y=W 

____t 

Q=const. 
C=Csat __t - 

I 

: G=wrcll(,) 

c K - i  I 

Y=O 
I 

t 
x=o x=L 



Figure - 1-12: Solution for Flow Field About a Cvlindncal Well 
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A graphical representation of the well concentration solution and plume 

profile at t = 2 hours using the experimental input parameters is shown in Figure 

1-13. The contour plot shows that fluid concentration is diminished by the 

presence of the treatment well up to a width twice the diameter of the well. The 

slight '%bulgev in solution concentration along the center of the well is due to the 

flow field solution shown in Figure 1-12. The seepage veloaty in the x-direction 

at the middle of the well is faster than the velocity at the far sides of the well; 

hence, the concentration "dips" on each side of the well. 

The naphthalene concentration of solution samples at various positions in 

the tank were measured off-line at t = 2 hours. These values are shown 

superimposed over the modeled concentration profile in Figure 1-14. The data 

values agree with modeled concentration values within 20% for all points. Note 

the data plot shows the 'bulge" at the center of the well seen previously in the 

model. The data support the conclusions of the scaling analysis -namely, that 

the decreased concentration plume leaving a cylindrical treatment well has a 

width about twice the diameter of the well. 
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1.6. Hypothetical Full-Scale System Application 

A hypothetical contaminated aquifer is shown in Figure 1-15. Figure 1-16 

shows the solution of Cwell/C, for the case of both naphthalene and 

phenanthrene contamination of the hypothetical well in Figure 1-15 with given 

inputs. The resistance, Rtot and partition coefficient, K p ,  for each case is as 

determined in the lab-scale experiments. The effective contaminant velocity into 

the well, = u,/&, is chosen as 2cm/day. The number of membrane tubes in 

the well is 600 per square-foot of the wall area; this corresponds to an 

approximately 1.4-inch diameter bundle of the 0.5-mm-ID polysulfone 

membranes per foot of well length. In Figure 1-16, the solute concentration in the 

well initially decreases over a time period of one or two days, the concentration 

stays low for an interval of 10 to 30 days, then the concentration increases as the 

copolymer becomes saturated with solute. Thus, Figure 1-16 demonstrates a 

workable containment system where copolymer solution is replaced every 10 to 

30 days. Increasing the number of membrane tubes used in the well results in 

decreasing the minimum concentration reached, and thus enhancing the 

efficiency of the system. 

1.7. Conclusions and Recommendations 

(11 Ouantification of enhanced solubilization for three model aromatics: 

The first objective of this work was to q u a n w  the enhanced solubilization 

of three aromatic compounds - toluene, naphthalene, and phenanthrene - in 

aqueous amphipathic copolymer solution. The amphipathic copolymer used 

was N-vinylpyrrolidone/styrene (NWS), a high molecular weight (3.4 million 

g/mol) random-structured copolymer (Figure 1-3). The experiments showed 
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&ure 1-16: Cwel~ICo Versus Time in a Rectangular Well 
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there is evidence of greatly enhanced solubilization of the organics in aqueous 

NVPS solution. Constant values of Kpw were determined from equilibrium data 

at 23.0°C for the three solutes in NVPS solutions, and are as follows: 

log Kpw (toluene) = 3.39 f 0.04 (1-25) 

log Kpw (naphthalene) = 3.38 f 0.01 (1-26) 

log Kpw (phenanthrene) = 4.69 f 0.02 (1-27) 

The deviations &en correspond to the 95% confidence interval of the data set. 

These values of partition coefficient for NVPS systems compare favorably to 

partition coefficients for other, lower molecular weight surfactant systems 

(Table 1-2). 

(2) Total mass transfer resistance measurements and modeling 

Values of Gt were obtained from the diffusion data for the polysulfone 

membrane tubes (each tube has 0.1-0.2~-thick skin layer bound to a 0.275mm- 

thich support structure), as follows: 

Table 1-6: Measured Membrane Resistances 

s!!u Membrane MW Cutoff 

Naphthalene 2000 

Naphthalene 50,000 

Naphthalene Pooled Data 

Phenanthrene 2000 

Phenanthrene 50,000 

Phenanthrene Pooled Data 



The variances shown are 95% confidence intervals determined from the data fits. 

The experimental values for Rt,t correspond very closely to the independently- 

predicted resistances for the experimental systems. 

The membrane skin layer resistance to solute transmembrane molecular 

diffusion was much less than the resistance posed by the thicker membrane 

support structure for the systems studied here. This statement is supported by 

both the resistance data and the resistance models. Therefore, using a thinner 

support structure can significantly decrease the resistance to transmembrane 

solute diffusion, thus increasing system efficiency. 

L31 Demonstration of the ~roposed svstem on a laboratorv scale: 

The third objective of this work was the demonstration of the proposed 

membrane/copolymer remediation system on a laboratory scale. The extraction 

of solute from an aqueous naphthalene plume moving through a soil matrix was 

demonstrated in two types of system set-ups - one with a rectangular well, and 

one with a cylindrical well. 

In the rectangular well experiment, the capture of naphthalene from an 

initially naphthnlene-saturated labscale aquifer was demonstrated experimentally, 

and well concentration was modeled as a function of time. The match of the well 

concentration data with the modeled values was affected by desorption of 

naphthalene from well surfaces. 

In the cylindrical well experiment, the capture of naphthalene from an 

initially clean lab-scale aquifer was demonstrated experimentally and well 

concentration was modeled as a function of time. Also, the naphthalene 



concentration of the plume leaving the cylindrical treatment well was modeled as 

a function of time and two-dimensional space. Well concentration data agreed 

well with model predictions. The 2-D concentration data also agreed well with 

model predictions. The modelled 2-D concentration profile of the plume leaving 

the well was more strongly influenced by the velocity field solution than by the 

soil dispersion coefficients. Thus, for groundwater flow through a cylindrical 

well of diameter D, the decreased concentration plume has width approximately 

2 times the diameter. 

Recommended future work related to this thesis includes the development 

of the proposed system from lab scale to field scale. The effects on the proposed 

remediation system of naturally-occurring humic substances, multicomponent- 

contaminant systems, and membrane fouling and degradation should be 

investigated before implementation of the proposed system on a field scale. The 

application of the proposed system to cases where contaminated groundwater is 

actively pumped is another possible area of research. 

A study of the improvement of transmembrane diffusion rates and system 

efficiency should be undertaken; of concern is the minimum required thickness 

of the membrane support structure for system durability. Membranes with 

thinner support structures have the potential for improving system efficiency 

sigruhcantly. 

Further solubilization studies of systems using NVPS and like copolymers 

should be undertaken. This study has shown NVPS is a very effective organic 

solubilizer (compared with currently-used surfactants), and it is available in 

extremely high molecular weights (over 3 million g/mol). This allows for great 



flexibility in filtration techniques for solute separation. Thus, the use of NVPS 

and similar amphipathic copolymers as easily-separable organic filtrants should 

be investigated for organic solute system not studied in this work. Also, studies 

of ways to regenerate organic-saturated NVPS and like copolymers would be 

important in improving the cost efficiency of a proposed organic filtration 

system. Possible regeneration techniques include solvent extraction and organic 

solute evaporation. The latter of these may be a feasible means of removing 

volatile organics from the copolymer. 
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2. Introduction 

2.1. Background 

The world is faced today with a myriad of organic, metallic and 

radioactive chemical wastes. Many early disposal practices are now deemed 

inadequate, and chemical waste containment and remediation is becoming a 

necessity as more cases of groundwater contamination become apparent. The 

technology at present is underdeveloped, and remediation times and costs seem 

overwhelming. The Department of Energy has estimated the cost of remediation 

of the United States' contaminated nuclear weapons production sites alone at 

$130 billion, and remediation will take about 50 years (Crawford, 1989). These 

bleak figures prompt a movement to newer, less expensive, and more efficient 

technologies for hazardous waste site containment and remediation. This thesis 

desaibes a new concept in hazardous waste site containment and remediation. 

The concept involves an aqueous amphipathic copolymer solution in hollow 

fiber membrane tubes placed in wells in the contaminated aquifer. S ice  the 

remediation takes place directly in the aquifer, the system allows deanup 

without removal of contaminated soil to a treatment facility. The proposed 

technique offers containment of organic chemical waste and long-term, passive 

removal of the waste. Current methods for remediation and containment of 

contaminated aquifers are briefly discussed below. 

One of the most widely-used methods for contaminated aquifer 

remediation is the purnp-and-treat process. This process works by extracting 

contaminated groundwater by pumping, and treating it with a suitable technique 

such as solvent extraction or carbon adsorption, to remove the contaminant 



before reinjecting the water into the soil. Factors such as high contaminant 

binding to organic material of the aquifer and large pumping requirements make 

this method inefficient, particularly for removing hydrophobic, sparingly water- 

soluble contaminants such as polycydic aromatic hydrocarbons (PAH's) (James 

and Sanning, 1989, and MacKay and Cherry, 1989). 

Contaminant concentrations on soil can be orders of magnitude higher 

than their concentrations in the surrounding liquid water phase due to 

preferential partitioning. This effect is primarily due to the attraction of 

hydrophobic organic contaminant to the organic components of the soil. The use 

of surfactants such as sodium dodecylsulfate to facilitate transfer of soil-adsorbed 

contaminants into a mobile aqueous phase is under investigation for application 

to pump-and-treatment-type processes (Valsaraj and Thibodeaw, 1989 and 

Edwards et al., 1991) 

The goal of the treatment part of the pump-and-treat process is the 

concentration of the organic contaminant into an easily-mobilized phase. As 

mentioned, current methods of liquid waste concentration include carbon 

adsorption and solvent extraction. In carbon adsorption, organic contaminant is 

filtered from water passing through an activated carbon bed. Bulk handling and 

pumping concerns have made this technique unattractive for some applications 

(Ackerman, 1983). The solvent extraction technique attempts to remove the 

organic contaminant by contacting the contaminated water with an organic 

solvent, dowing the organic contaminant to preferentially partition into the 

organic phase. The use of traditional solvents such as benzene and toluene in 

this technique is not favorable, since counter-contamination of the water with 

solvent may be a problem (Mackay and Medir, 1983). More desirable routes of 



aqueous waste separation and concentration which employ nontoxic, easily 

separable compounds are currently under investigation. One such process 

proposed by Prof. T. Alan Hatton at MIT involves ultrafiltration with high 

molecular weight copolymer surfadants (Hurter and Hatton, 1992). 

Off-site incineration of soil to remove contaminant is also a widely-used 

aquifer treatment method, especially in cases where there is a high degree of 

adsorption of organic contaminant to the soil. Soil is excavated and moved off- 

site to an inanerator, where organic is vaporized from the soil. 

Supercritcal water oxidation as a means of treating organics in aqueous 

wastes and soils is currently under development at MIT (Tester et al., 1993). The 

process makes use of the enhanced solubility of organics and oxygen in water at 

supercritical conditions (T > 374OC and P > 220 bar). The organic contaminant is 

oxidized readily at temperatures in the 400" to 600°C range since both the organic 

component and oxygen are in the same phase and the kinetics are relatively fast. 

Bwrernediation (also called biorestoration) is a relatively new in-situ cleanup 

procedure based on the stimulation of natural microbial degradation processes 

that occur in the soil (Staps, 1989). High pressure soil washing as an on-site 

technique was used in Berlin by Kloeckner Umuelttechnik to remove organics 

and heavy metals (James and Sanning, 1989). The concept behind thermal heating 

is the extraction of contaminants from in-sifu-heated soil by evaporation. Steam 

injection is a related technique which involves the volatilizaton of organics and 

other contaminants by injecting steam into the aquifer. A treatment technique 

proposed for on-site use at the Wide Beach Superfund site in the U. S. is chemical 

treatment with the substance potassium polyethylene glycol (KPEG). KPEG 

causes a change in the structure of PCB's (polychlorinated biphenyls) (James and 



Sanning, 1989). Electro-reclamation is an in-situ cleanup method based on the 

electrokinetic phenomena which occur when a direct current is introduced to the 

soil. Electro-reclamation has been used to remove light metal contaminants from 

groundwater. In one case, 74% of the initial lead and copper content of 

contaminated soil was removed by this technique (Lageman et al., 1989). The 

application of electrokinetic phenomena to the removal of organic wastes from 

soils is also under investigation (Renaud and Probstein, 1987). 

The cost estimates obtained from the given sources for the remediation 

procedures described above are summarized in Table 2-1. Note that not every 

technique works for a given waste situation. Variation in cost will be due to 

factors such as site location, labor costs, and contaminant type. 

In cases where direct groundwater treatment is not economically feasible, 

containment of the contaminated groundwater to prevent leaching into streams 

and drinking water supply lines is the immediate goal. Two currently-used 

containment procedures are solidification (also called grouting) and slurry wall 

construction. In grouting, a solidifying agent such as cement is injected into the 

aquifer to reduce its permeability and slow contaminant leaching. Costs for 

gouting can range from $90 to $200 per ton (James and Sanning, 1989). Slurry 

walls canbe constructed to shield an underground contaminant source from 

moving groundwater (Figure 2-1). The walls are constructed by digging trenches 

and backfilling them with a material with low permeability, such as cement, soil, 

bentonite, or a mixture of these. This method is only effective if an adequate seal 

can be made between the cement and a low permeability layer at the base of the 

aquifer. Costs of construction vary widely depending on the type and 

availability of fill material and depth of slurry wall. Approximate costs have 
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been reported by Spooner et al., 1982, to range from $2 to 235 (1979 dollars) per 

square foot of wall. 

It would be desirable in PAH-contaminated aquifers to initiate a cleanup 

procedure that both fulfills the immediate requirement of containment and 

eventually removes the contaminant from the aquifer. In the cleanup of various 

organic wastes, the pump-and-treat method has been shown to be inefficient 

(Mackay and Cherry, 1989) due to organic adsorption onto aquifer material. 

Containment procedures such as slurry wall construction require permanent 

monitoring and maintenance. A guarantee of complete containment is difficult, 

if not impossible, to obtain due largely to the potential for leakage under the base 

of the wall. 



2.2. Proposed Process Description 

The proposed system provides immediate containment, and eventual 

removal of contaminant from groundwater. The system is passive in that 

groundwater is not pumped, it is filtered of contaminant as it moves naturally 

through a series of treatment wells. Figure 2-2 is a schematic of the proposed 

system. It shows a cross-sectional view of a region of contamination in an 

aquifer. The contaminant plume has been elongated in the direction of 

groundwater flow. As in many contaminated groundwater situations, it is 

important, first, to provide cuntainment of the plume to prevent contaminant 

leaching to drinking water or irrigation supplies. 

As pictured, the plume is located in the water-saturated region of the 

aquifer (below the water table) and is assumed organic in nature. In the case of a . 

chemical spill of pure organic liquid (such as gasoline), there is generally a layer 

of the pure organic floating on the water table. This layer is most easily removed 

by pumping, but leaching of the organic to the groundwater up to that organic 

species' solubility in water will have taken place. Even though most organics 

have low solubility in water (such as PAWS and pesticides), many remain toxic at 

even lower levels. For example, the organic pesticides endrine, lindane, and 

toxaphene have water solubilities 0.2,7, and 3 mg/L, respectively; but they are 

hazardous at much lower concentrations - 0.0002,0.004, and 0.005 mg/L, 

respectively (Freeze and Cherry, 1979). Other examples include volatile organic 

components of gasoline. For instance, the amount of benzene and toluene in 

gasoline is generally 2-5% and 6-7% by volume, respectively (Cline et al., 1991); 

these are significantly high levels. The U.S. Environmental Protection Agency 

primary drinking water regulations set maximum permissible levels of benzene 
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and toluene at 0.005 and 2 mg/L, respectively (Cotruvo and Vogt, 1990). 

However, the solubility of benzene and toluene in water is much higher - 1790 

and 627 mg/L, respectively (May et al., 1978). Thus, a relatively small spill of 

gasoline can result in contamination of a large amount of water above legal 

concentration limits. 

The treatment wells in Figure 2-2 are cylindrical monitoring-type wells 

from 5 to 15 cm in diameter. These wells are arranged in lines perpendicular to 

the direction of groundwater flow. In the case of non-unidirectional 

groundwater flow, the wells would be arranged in such a way as to intercept a l l  

of the passing contaminant. A variation of the system replaces the cylindrical 

wells with a long, rectangular well extending perpendicularly to the direction of 

groundwater flow. 

Figure 2-3 shows a crosssection of one of the treatment wells from Figure 

2-2. Inside each well is placed a bundle of hollow fiber membrane tubes (each 

approximately 1 mm in diameter) filled with an aqueous, macromolecular 

copolymer solution. Contaminant travels through the membrane wall via 

molecular diffusion and adsorbs to hydrophobic sites of the copolymer. The 

copolymer is chosen to greatly enhance the solubiluation of the organic species 

in aqueous solution. The copolymer solution may be recirculated intermittently 

when it becomes sufficiently loaded with contaminant for copolymer 

regeneration or waste incineration. The pore sue of the membrane is chosen 

large enough to allow passage of contaminant into the copolymer solution, but 

small enough to prevent passage of copolymer out of the membrane interior. 

Contaminant removal takes place passively as the plume slowly moves through 
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the cleanup area. In this way, immediate containment of the contaminant plume 

is achieved as is eventual removal of the contaminant. Intermittent replacement 

(i.e. monthly to yearly) of the copolymer solution is the only required operational 

procedure following installation. 

Operating specifications to be determined for such a system include 

copolymer and membrane type, membrane average pore size, copolymer 

concentration, well spacing and configuration, and membrane configuration in 

each individual well. Factors affecting the optimum choices for the above 

specifications include groundwater flowrate and flow direction (governed by 

aquifer properties such as conductivity and hydraulic gradient), contaminant 

type and properties (solubility, molecular diffusion coefficient in water, 

molecular weight), and remediation requirements. These factors and operating 

specifications will be discussed in this work. 

The membranes used in this work are Supelco's polysulfone ultrafiltration 

membranes, described in more detail in Chapter 5. The membranes used are 

anisotropic and have nominal molecular weight cutoffs of 2000 and 50,000 

g/mol. Membranes best suited to the groundwater remediation system are those 

that are sufficiently resistant to microbial attack, chemical degradation, and 

fouling. Work is currently being done to develop coatings which make industrial 

ultrafiltration membranes more resistant to fouling (Brink and Romijn, 1990, and 

Nystrom, 1989). This is a topic of concern in ultrafiltration technologies as well, 

where harsh environments are often encountered. 

The copolymer used in this experiment is N-vinylpyrrolidone/styrene, 

discussed in detail in Chapter 4. It is nontoxic and has both hydrophobic and 



hydrophilic properties. Thus, it is an effective organic solubilizer, and it forms a 

stable suspension in water. The key features of the copolymer chosen for the 

system are its hydrophobicity (organic-solubilization capacity) and its molecular 

weight. The latter attribute is important since membrane pore size must be 

considerably less than the size of the copolymer molecule to prevent leakage. 



2.3. Previous Investigations of Enhanced Solubilization of Aromatic 
Compounds in Aqueous Solution 

One important aspect in the design of the proposed groundwater 

remediation system is the ability of the filtrate (copolymer solution) to 

accumulate contaminant. In many contaminated aquifers, pure organic liquid 

contaminates groundwater up to its saturation limit, which for many organic 

compounds is very low (c 1 ppm). But as mentioned before, many of the 

contaminants are harmful at even lower levels. The copolymer chosen for the 

system in effect enhances the solubility of contaminant in aqueous solution, and 

thus enables its concentration, quite analogous to the phase partitioning that 

occurs with carbon adsorption and solvent extraction, discussed in Section 2.1. 

Recently, the use of surfactants whose molecules form micellar structures 

has been investigated for the enhanced solubilization of hydrophobic organic 

compounds in water (Valsaraj and Thibodeaw, 1989, Edwards et al., 1991, and 

Hurter and Hatton, 1992). In light of new membrane separation techniques 

(Hurter and Hatton, 1992), the use of easily separable, high molecular weight 

surfactants provides an alternative to carbon adsorption and solvent extraction. 

The molecular weight of the surfadants used in the above studies range from a 

few hundred to 13,000 g/mol. The copolymer used in this paper, 

N-vinylpyrrolidone/styrene (NWS), is of approximate molecular weight 

3.4 million g/mol. 

The general method for quantifying the ability of a surfactant to 

concentrate a contaminant in aqueous solution is by means of a partition 



coefficient. A surfactant-water partition coefficient, hW, is determined for a 

given surfactant-water-solute system, as defined by the following: 

g solute in surfactant pseudophase / g surfactmt 
Ksw g solute in aqueous pseudophase / g water (2-1) 

The surfactant solution is thought of as a combination of two interspersed 

"pseudophases" - a surfactant pseudophase and a water pseudophase - 
between which the solute (contaminant) molecules partition. How well a 

surfactant works depends on how large its partition coefficient is, and hence, 

how much the solute favors being in the surfactant rather than the water. The 

partition coefficient is generally modeled as a constant over a wide range of 

solute concentrations. 

Values of partition coefficients of solutes (model contaminants) used in 

this work in a variety of surfactants are shown in Table 2-2. The values listed are 

logarithms of sufactant-water partition coefficient and are based on solubility 

measurements where the aqueous pseudophase was saturated with solute. A 

goal for this study was to choose a copolymer whose polymer-water partition 

coefficients are as high as the values in Table 2-2 for the solutes chosen. The 

polymer-water partition coefficient, Kpw, is completely analogous to surfactant- 

water partition coefficient, GW, (Equation 2-1) and is defined as follows: 

g solute in polymer pseudophase / g polymer 
Kpw g solute in aqueous pseudophase / g water 



Solute Water Log K W Log K W  Log K.w Log KW Log K w  Log Ksw 
Solubility (conc. ratio) (P103) (Brij 30) (Igepal CA-720) (Tergitol NP-10) (Triton X-1000) 

Csat. (mg/L) 

Naphthalene 31.2 3.37 3.31 3.29 3.02 2.99 3.10 



2.4. Previous Investigations of Transmembrane Transport of Organic 
Compounds in Aqueous Solution 

An important part of this project is the study of molecular diffusive 

transfer through anisotropic membranes. Most transmembrane diffusion studies 

deal with membranes of well-characterized geometries, such as track-tched 

membranes whose pores are of uniform diameter. The membranes used in this 

work are asymmetric, anisotropic membranes whose geometries are not easily 

characterized. Only average effective pore size and membrane thicknesses are 

known. However, these asymmetric membranes are important in the application 

of the proposed system, since they are easier to produce and are generally less 

expensive than track-etched membranes. The asymmetric membranes have been 

used in industrial ultrafiltration processes for years. 

Some of the studies of transmembrane molecular diffusion using track- 

etched membranes are discussed here. Deen et al. (1981), studied solute 

diffusion through microporous membranes. The pore sizes used in this study 

were large compared to the solute sizes. Other diffusion studies using large pore 

to solute size ratios (above 2.0) include those by Beck and Schultz (1972), and 

Bohrer et al. (1984). Baltus and Anderson (1983) studied asphaltene diffusion in 

mica membranes. Studies of more hindered transmembrane diffusion of solute 

include Malone and Anderson (1978) and Wong and Quinn (1976). 

Robertson and Zydney (1990) studied hindered molecular diffusion of 

bovine serum albumin (size 39A x 139A) through anisotropic ultrafiltration 

membranes of average pore diameters between 5521 and 1000A. Resistances 

were measured in a well-stirred diffusion cell apparatus. An ultrafiltration 



membrane sheet of approximately 3-un2 surface area divided the cell. An 

aqueous solution of the albumin was initially introduced on one side of the cell, 

and was allowed to diffuse through the membrane to the other side for 12 to 24 

hours. The concentration of each cell after this time period was then recorded 

and resistances calculated. Membrane resistances could only be determined to 

within about an order of magnitude for most of their experiments. 

There were two important differences between the experimental 

procedure used in this thesis and the procedure in the Robertson and Zydney 

(1990) study in an effort to obtain more replicable results. First, a higher 

membrane surface area was used in this study (600 crn2 versus 3 cm2) since 

membrane variability was cited by Robertson and Zydney as being a possible 

source of error. Secondly, in this study concentration was monitored 

continuously via on-line UV-VIS spectrophotometry. In the Roberson and 

Zydney procedure, only one data point could be obtained per run. The diffusion 

experiments and modeling techniques used in this study are discussed in detail 

in Chapter 5 of this work. 



3. Thesis Objectives and Approach 

The objectives of this thesis are threefold. The first two objectives involve 

the experimental and theoretical study of fundamental phenomena - solubility 

and diffusive transport - important to the membrane/copolymer remediation 

system proposed in Section 2.2. The third objective concerns a lab-scale 

demonstration of the proposed system. Information from the first two objectives 

were used in modeling the lab-scale demonstration of objective three. 

The first objective of this work was to quantify the enhanced solubilization 

of three model aromatic contaminants - toluene, naphthalene, and phenanthrene 

- in aqueous amphipathic copolymer solution. The copolymer used was N- 

vinylpyrrolidone/styrene, a high molecular weight (3.4 million g/mol) random- 

structured copolymer. Solubility experiments were conducted and a 

thermodynamic analysis was completed. This work is discussed in Chapter 4, 

and the results tell how well contaminant may be concentrated in copolymer 

solutions used in the proposed process. 

The second objective of this thesis was to quantify the rate of molecular 

diffusive transport of the aromatic solutes from the contaminated aqueous phase 

through anisotropic hollow fiber membranes used to contain the aqueous 

copolymer solution Diffusive transport experiments were conducted and 

analysis completed, both discussed in detail in Chapter 5. The results tell how 

quickly the con taminant diffuses through the membrane and into the copolymer 

solution used in the proposed process. A comparison of experimental and 

modeled results gives insight into what factors are most important in decreasing 



mass transfer resistance, thus increasing the effectiveness of the proposed 

system. 

The third objective is the demonstration of the proposed remediation 

system on a laboratory scale. The extraction of solute from an aqueous 

naphthalene plume moving through a soil matrix is demonstrated in two types 

of model aquifer systems described in Chapter 6. Data from the solubility and 

transport experiments were used as inputs in the theoretical modeling of the 

objective three experiments. Finally, a copolymer/membrane remediation 

system is developed and evaluated for treating a hypothetical contaminated 

aquifer. 



4. Ehanced Solubility of Aromatics in Amphipathic Copolymer Solution 

This chapter describes the experiments performed to quantify the 

enhanced solubility of three aromatic solutes -- toluene, naphthalene, and 

phenanthrene - in aqueous solutions of N-vinylpyrrolidone/ styrene copolymer. 

Thermodynamic analysis was used to develop a methodology for generalizing 

the results so that the solubilization capacities of NWS and other copolymers can 

be estimated for various hydrophobic compounds of interest. 

4.1. Materials for Experiments 

The copolymer used in this study, N-vinylpyrrolidone/ styrene, was 

obtained as a 40 weight% copolymer solution in water. The supplier, Scientific 

Polymer Products, Inc., reported that the copolymer is composed of styrene and 

N-vinylpyrrolidone monomers in a weight ratio of 60 to 40. The hydrophilic 

character of the copolymer allows it to form a stable suspension in water, and its 

hydrophobic nature lends it organic solubiiization capacity. NWS is nontoxic 

and is generally no more expensive than sodium dodecylsulfate, a commonly 

used surfactant; research quality NVPS is about $40 per kg of 40wt.96 solution 

(Scientific Polymer Products, Inc., 1991). The average molecular weight was 

reported as approximately 3.4 million g/mol. NVPS is a random copolymer as 

shown in Figure 4-1. The hydrophobic model organic compounds used in this 

study were toluene (99.8% pure), naphthalene (99+% pure), and phenanthrene 

(98% pure). These were chosen as representative I-, 2-, and 3-ring aromatic 

compounds. The toluene was obtained from Aldrich Chemical Company, Inc., 



and the naphthalene and phenanthrene were obtained from Sigma Chemical 

Company. These chemicals were used without further purification. 

4-1: Structure of C e e r .  N-Vinvl-ne (NVPS) 
A random sequential arrangement of ring structum x and y on 
the copolymer chain with x to y weight ratio of 60:40 is depicted. 

where x = @ 



4.2. Experimental Procedures 

Since organics tend to adsorb onto solid surfaces such as the sample 

containem used in concentration measurements, careful handling techniques 

must be employed. Plastic, polyethylene, and polypropylene bottles are 

particularly troublesome. To avoid this potential problem, 25-ml glass flasks 

were filled with aqueous NVPS copolymer solutions of known concentration and 

about 8 grams of either solid naphthalene or phenanthrene. Other 25-11-11 glass 

flasks were filled with aqueous NVPS solution and about 10 ml of liquid toluene. 

Very low headspace was allowed in the flasks (< 2 ml). The flasks were covered, 

shaken, and allowed to equilibrate at 23.0 f 0.1T in a constant-temperature 

water bath. 

Solution concentrations of naphthalene, phenanthrene, and toluene were 

determined by absorbance measurements from a Perkin-Elmer Lambda 38 

W/VIS spectrophotometer, using quartz suprasil cells. Measurements were 

made at maximum absorbance wavelengths for each compound: 

276 nm (2760 A) for naphthalene, 293 nm for phenanthrene, and 261 nm for 

toluene. 

Extinction coefficients for the absorbance of naphthalene and 

phenanthrene were measured as follows. A saturated aqueous solution of the 

organic solid was created by circulating water through a generating column 

filled with organic solid as described in the literature (Hurter and Hatton, 1992). 

The solution was held at 23.0 f 0.1T with a constant temperature bath. A 

fraction of the circulating solution was diverted to the spectrophotometer 

through a la-pathlength flow cell where its absorbance was read on-line. 



Constant circulation ensured a saturated solution of solute was maintained, 

regardless of any solute adsorbed to the tubing or container walls. All tubing 

was made of Teflon. The Beer's law extihaion coefficients were experimentally 

determined at solute absorbance peaks and agreed to within 2% of published 

values (Bohon and Claussen, 1951, and Wauchope and Geken, 1972). 

The absorbance of NVPS must be taken into account in sample 

concentration determination, since aqueous NVPS absorbs light at ultraviolet as 

well as visible wavelengths. The extinction coefficient of aqueous NWS was 

experimentally measured at the solute absorbance peaks - 276,293, and 261 nm. 

The extinction coeffiaent was also measured at 400 nm, a wavelength at which 

the organic model compounds we selected have zero absorbance. Thus, the total 

polymer-water-solute solution absorbance at the three lower wavelengths equals 

that from both NWS and the organic compound present in solution. The exact 

NWS concentration of the sample was measured by solution absorbance at 400 

nm. All measurements were made using a 1-cm-pathlength reference cell filled 

with pure water. The above technique was experimentally justified by direct 

measurement of naphthalene dissolved into concentrated NVPS solutions of 19 

and 23 weight percent, respectively. 

Three sets of NVPS solutions were maintained in contact with the model 

organic compounds to allow equilibration for one day before the initial 

absorbance measurement. Absorbance measurements of one test sample from 

each of the naphthalene, phenanthrene, and toluene sample sets were taken daily 

to determine when equilibrium concentrations had been reached (assumed when 

absorbance readings changed < 2% from the previous day's reading). An 

additional three days of equilibration were allowed after it was determined 



equilibrium had been reached for a given sample set before all samples were 

analyzed. 

The sampling technique was as follows. Solute-contacted NVPS solution 

samples were first passed through Schliecher and Schwell brand filter paper to 

remove any visible solid organic particles. Each solution was then pipetted and 

diluted so that the absorbance reading, A = lnb ,  in a 1-cm-pathlength cell never 
I 

exceeded 1.5. At least six replicate absorbance readings were taken at each 

wavelength to insure precision. Before a reading was taken, the withdrawing 

syringe was contacted repeatedly with solution to allow any adsorptive 

equilibrium between the solution and the syringe wall. The absorbance was then 

measured at the wavelength of maximum absorption of the given solute and at 

400 nm. The concentrations of both NVPS and the organic were then calculated. 



4.3. Experimental Results 

The saturated equilibrium concentrations of toluene, naphthalene, and 

phenanthrene in solutions of NWS are given in Table 4-1 and are plotted in 

Figure 4-2 as a function of NVPS to water weight ratio. Each concentration 

measurement for a solute is given as a multiple of the solute's saturated 

concentration in pure water at 23.0°C (Table 4-2). For example, a solution with 

an NVPS to water weight ratio of 0.04 will solubilize about 100 times the 

naphthalene, or ;bout 2000 times the phenanthrene that an equal amount of pure 

water will solubilize. Figure 4-2 shows a linear relationship between the solute 

concentration and the NWS to water ratio for each of the three solutes. Such 

linear relationships have been observed for systems of solid solute partitioning 

between two immiscible liquids (Prausnitz et al., 1986). 

A surfactant-water partition coefficient may be derived for each solute- 

surfadant system, and because the saturation behavior is linear, each partition 

coefficient will be constant. The overall amount of solute in the solution is 

divided into solute associated with the water and polymer pseudophases. Here, 

a pseudophase is defined as one of two separate interspersed phases. The water 

and polymer pseudophases are interspersed, but remain chemically separate and 

undissolved in each other. The concentration basis defined as follows is used to 

express the partitioning of solute between these two pseudophases: 



Table 4-1: Saturated Concentrations of So lutes in Aqueous NVPS S o w  at 2, 
7°C 

Toluene 

g NVPS I e w a y l  C/Cw,sat - 
.0069 19.0 

.0104 25.1 

.0197 46.6 

.0234 47.6 

.0243 59.0 

.0406 89.9 

.0793 204.5 

C = solute concentration in NVPS solution 

Cw.sat = saturated concentration of solute. in pure water 
(=constant for each solute at system temperature and 

pressure, given in Table 1-2) 

C/Cw,sat = factor of solute concentration "enhancement" provided by the NVPS 



. . 
re 4-2: E n h a n c e d S o v  of Phena 

400 4000 /', 
A Naphthalene 

g NVPS / g water 

Table 4-2: Com~arison of Surfactant Partition Coefficients for Model Solutes 

Solute Water Log KW Log K p  Log K r  Log Ksw Log Ksw Log Krw Log K r  
Solubility (conc. rdo )  (NVPS) (P103) (Brij 30) (Igepal CA-720) (Tergitol NP-10) (Triton X-1000) 

Cat ,  (mgLl (this wok) 

Toluene 627 2.73 3.39 f .04 -- -- --- --- -- 
Naphthalene 3 1.2 3.37 3.38 f .O1 3.31 3.29 3.02 2.99 3.10 

Soulus: (a, b) (c) (this work) (d) (e) (e) (e) (e) 

(3 B o h o . . I o w  1951 



where C = g solute per rnl solution, C g solute in "polymer" pseudophase per P =  
ml solution, C, = g solute in "water" pseudophase per ml solution, and = 

g solute in pure water at saturation p e r d  water. 5 and NVPS to water 

weight ratio are defined as follows: 

g solute in NVPS polymer / g polymer 
K,+ 

g solute in water / g water 

MI gNVPS 
g water 

Then for Cw z Cw sat, the relationship between measured solute concentration 

and NVPS to water weight ratio becomes the following: 

Values of $w for NVPSwater partitioning for the three solutes are given in 

Table 4-2 with 95% confidence intervals. 



4.4. Thermodynamic Solubility Analysis 

Values from the literature of log K,,, surfactant-water partition coefficient, 

with the same concentration basis as Kp, are shown in Table 4-2 for a variety of 

surfactants with naphthalene and phenantlvene solutes. Table 4-2 also lists 

values of log q ,  the octanol-water partition coefficient, for the solutes. The 

similarity and apparent correlation of values of qw and K,, has been noted by 

each of the investigators. AU the surfactants in Table 4-2 except NWS are 

reported to form micelles whose hydrophobic cores attract and concentrate 

hydrophobic solutes in aqueous solution. However, NWS, which is too large 

and unstructured (it is a random, not a block copolymer) to form micelles, 

displays a very similar Kp,- Kow correlation for the naphthalene and 

phenanthrene data. The values of Kp, for NVPS are higher than the Ks, values 

of the other surfactants. This may be due to the high relative hydrophobicity of 

the aromatic styrene monomer which makes up 60 weight% of the copolymer. 

The relative hydrophile of NWS, N-vinylpyrrolidone, exhibits some 

hydrophobic character as well due to its hydrocarbon ring (Molyneaux, 1984). 

Thermodynamic analysis of twephase equilibrium was used to predict 

the relationship between Kpw and K,,w for the solute-water-NWS systems. 

Consider a system consisting of a polymer surfactant phase in contact with an 

aqueous phase. A solid solute is added and allowed to dissolve until both the 

water and NVPS phases are saturated with solute. At saturation, the liquid 

phases are in thermodynamic equilibrium, and the solute component fugacities 

in each phase are equal: 



where superscripts w and p denote the aqueous and polymer phases, 

respectively, and subsaipt i denotes solute i. The fugacity of the solute in each 

phase can be expressed as a liquid-phase fugacity. Expressed in terms of activity 

coefficients, Equation 4-5 becomes the following: 

where, in general, y? denotes the aqueous-phase activity coefficient of solute i in 

phase a, x 4 deliotes the mole fraction of solute i in phase a, andf :denotes the 

reference fugacity of pure solute i in a liquid state at the temperature and 

pressure of the mixture. Since the reference state is pure solute i, y4 approaches 

1.0 as x 4 goes to 1.0. The value of the polymer phase activity coefficient may be 

estimated using a conventional Flory-Huggins model for the excess Gibbs free 

energy (Prausnitz et al., 1986). For polymer solutions of high chain length, it is 

more convenient to use a weight basis for this calculation (Patterson et al., 1971); 

therefore, we can rewrite Equation 4-6 noting that the same reference state is 

selected for solute i: 

'P where Yi is the activity coefficient of solute i in the polymer phase calculated on 

a weight fraction basis, and w f' is the weight fraction of solute i in the polymer 

phase. We define , an alternate form of polymer-water partition coefficient, 

as follows: 

. wp solute in polymer/g polymer phase 
P W  [=I ~ J I  :lute in aqueous p t u s e / ~  aqueous pbse xi /vw 



where V, is the molar volume of the aqueous phase in units of L/mol, assumed 

equal to the molar volume of water at system temperature and pressure. The 

relationship between measured qW reported in Table 4-2  and^& above is: 

where MWsol is the solute molecular weight [g/mol] and Rp is the ratio of 

polymer mass to polymer phase mass, the latter term including the mass of the 

solute partitioned into the polymer pseudophase. Using Equation 4-7, we may 

substitute activity coefficients for mass and mole fraction into Equation 4-8 to 

obtain. 

Using Equation 4-9, log Kp, can be expressed as: 

All of the terms on the right side of Equation 4-12 can be calculated and appear in 

Table 43. All logarithms are base 10. 



Table 4-3: Actlvitv Coeftic . . 
ients andQther Parameter ~ D U W  - 

NVPS-Solute-Water 

(.) 

I 
MWd L o ~ P  LogKpr LogKp*, L o g K p  Solure ~ o g  KOW b g  ~ o g y V   LO^ xy ~ o g  

(Equ. 4-12) (Equ. 4- 26) (measured) 

Toluene 2.73 0 . 3 4 ~ )  3.99 0.17 -1.04 -0.41 3.53 3.55 3.39 

Naphthalene 3.37 0.53"' 4.93 0.41 -0.89 -0.03 3.70 3.61 3.38 

Phenanthrene 4.46 0.82"' 6.43 0.41 -0.75 -0.03 5.06 4.85 4.69 

v [=] Umol 

(a) V ~ ~ I m n H n r ) l m d L m . I 9 7 9 .  
(b) Vduc &ken Imn Tiianm n J.. 1962. 
(c) Vd- a imaa l  using UNIFAGUNIQUAC cnakod Bpm a d., 1990). 

-- - 

"p Values of log Yi were calculated using the following modified Flory- 

Huggins equation (Patterson et al., 1971): 

where subscript i represents the solute, subscript p represents the copolymer, ai 

is the solute activity, $ i and $ are volume fractions of the solute and polymer 

respectively, r is the ratio of average copolymer molar volume to solute molar 

volume, and X is the so-called Flory parameter that is typically fit to data. X 

reflects the intermolecular forces between solute and polymer. For solutes with 

molecular structure similar to the copolymer monomers, X approaches zero and 

the solution becomes athermal indicating near ideal solution behavior (Prausnitz 



et al., 1986). Lacking data, we set X = 0. Calculation of requires an estimate 

of 4 i , which we obtained from the solute-NVPS solubility data. Values of ~y do 

not vary considerably from 1.0 as expected from the molecular similarity 

between the solutes and copolymer monomers. A conservative error estimate for 

values of YT in Table 4-3 is 50%. 

Values of y; for the three solutes were obtained as follows. Consider first 

the binary system of liquid toluene and water at thermodynamic equilibrium at 

T = 23.0 OC and P = 1 atm. The fugacities of toluene in the toluene-rich phase and 

the water-rich phase can be equated to yield: 

fL * fL Ygluene Xtoluene toluene = elme Xtoluene toluene (4-14) 

where superscript to1 represents the toluene-rich liquid phase andfkl,, is the 

reference fugacity of pure toluene in its liquid state of aggregation at system 

temperature and pressure. Assuming the solubility of water in the toluene phase 
1 to1 is negligible,filU, 1.0, Xtolme G 1.0, and Equation 4-14 reduces to the 

following: 

where x&,- is the solubility of toluene in water (expressed as a mole fraction) 

at system temperature and pressure (T = 23 OC, P = 1 atm), as listed in Table 4-2. 

Since naphthalene and phenanthrene are solids at the system temperature 

and pressure, we must modify the above approach somewhat to detennine ~7 



for naphthalene and toluene solutes. Equate and express fugaaties of the solute 

in the solid and liquid phases of the solute-water binary as follows: 

L 
where fi,ref denotes the reference fugacity of pure solute i in a liquid state at 

system temperature and pressure, V i F t  P&J is the fugacity coefficient of pure i 

vapor at system temperature and vapor pressure of the solid P&;, and v: is the 

molar volume of solute i in the solid phase. The fugaaty ff does not have an 

overbar (") because the solid phase is assumed to be pure. The exponential term 

in Equation 4-18 is the Poynting correction factor as described in the literature 

(Modell and Reid, 1983) and accounts for expressing ff at system pressure (1 

atm) in terms of ff at the vapor pressure of solute i. For pressures around 

atmospheric and temperatures below the solute's critical point, as is the case with 

our system, the Poynting correction factor is very near 1.0 (Modell and Reid, 

1983). Assume the vapor of solute i is an ideal gas such that pure component 

fugacity coefficient Vi(T, P&;J = 1.0. Then, Equations 4-16 to 418 yield the 

following: 



The reference liquid phase fugacity of solute i, fbef , may be expressed as 

follows: 

wherephj denotes the vapor pressure of pure subcooled liquid i at system 

temperature, and the exponential term is the Poynting correction factor, again 

assumed approximately equal to 1.0. Note the subcooled liquid reference state 

may not be practically accessible in that the system may enter an unstable region. 

By substituting Equation 4-20, Equation 4-19 becomes: 

Values of P&j at T = 23.0 OC were obtained for naphthalene and phenanthrene 

using an Antoine equation curve fit for pure solid solute over a temperature 

range that includes 23.0 OC (Stephenson and Malanowski, 1987). Values of p&,i 

were obtained by extrapolating the liquid phase Antoine equation cwves to the 

subcooled temperature, 23.0 OC (Stephenson andMaliinowski, 1987) (Figure 43 

qualitatively shows how this was done). Solubilities of naphthalene and 

phenanthrene in water at system teniperature and pressure were obtained from 

the literature (May et al., 1978). The resulting values of calculated from 

Equation 4-21 are shown in Table 4-3. 



1DemMstraflne 
Extramlatlon Below the Tri~le Point to Obtain P& i 

We can now bring octanol-water partition coefficient KO, into the 

correlation. Assume a solute is introduced into a liquid-liquid two-phase system 

of odanol and water until both phases are saturated with solute i and the system 

is in equilibrium. If we assume both phases are immiscible - that is, there is a 

negligible concentration of octanol in the water-rich phase (and vice-versa) - we 

may define K, as follows: 

=S.[=] g solute i in octanol-ridr phase / mL octanol 

g solute i in water-rich phase / mL water 

Assuming neghgible volume changes upon mixing, Kow can be written as 

follows: 



where superscripts o and w denote the oaanol and aqueous phases, respectively, 

and vo and vw are the molar volumes of pure octanol and water, respectively, at 

system temperature and pressure in units of L/mol. Equating liquid-phase 

fugaaties or activities as in Equation %: 

Combining Equations 4-23 and 4-24 yields the following expression for water- 

phase solute activity coefficient: 

log yp = log + log yp - log = 
vo 

Since the aqueous phases in both the polymer-water and octanol-water solute 

systems are modeled as binary mixtures of water saturated with solute (we 

assumed no solubility of the polymer or odanol in the water-rich phase), the 

aqueous-phase solute activity coeffiaentyr is the same for both systems. By 

substituting Equation 4-25 into Equation 4-12 we obtain a linear relationship 

between log Kp, and log K, : 

log qw= log K, + log yp + log vo -log y p -log (MW SO' - 1% Rp (4-26) 
loo0 



Values of all the terms on the right of Equation 4-26 are shown in Table 43 for 

the solutes toluene, naphthalene, and phenanthrene and the NVPS copolymer. 

Values of log KO, in Table 4-3 are the medians of experimental values at 

T = 25OC and P = 1 bar (Hansch and Leo, 1979). Standard deviations of these 

experimental KO, values are 14% and 29% for toluene and naphthalene, 

respectively. Only one value of KO, for phenanthrene was listed. 

The value of yy for toluene is an experimental value at infinite dilution of 

toluene and standard temperature and pressure (Thomas et al., 1982). This vaiue 

of yp is relatively close to 1.0, and will not change considerably at higher toluene 

mole fraction; therefore, estimated error of yg for the toluene system considered 

here is below 25%. Values of yg for naphthalene and phenanthrene at system 

temperature and pressure and saturated solute mole fraction were obtained 

using the UNIFAC/UNIQUAC activity coefficient estimation method (Lyman et 

al., 1990). The source quotes an average 25% error estimate for this method. 

All estimates from Equations 4-12 and 4-26 are within about a factor of 

two of the experimental Kpw values - a good agreement considering estimated 

errors in required parameters. Equations 4-12 and 4-26 give very similar s, 
predictions. All parameters in Table 4-3 were calculated independently of the 

experimental NVPS solubility data with the exception of log y? and log 5 
which required an estimate of solute mole fraction in the polymer phase. These 

two terms account for about 15% of the total log I& estimate. 



Within a given class of solutes, a dear linear relationship is generally 

observed between surfactant-water solute partition coefficients, &,'s, and 

octanol-water solute partition coefficients, Kow's (Edwards et al., 1991). A linear 

&, -KO, empirical relationship does not dearly exist for all three NVPSsolute 

systems investigated here, since the experimental If, for toluene is too high for 

such a relationship to be valid. However, toluene is a substituted benzene and 

does not strictly fall in the dass of unsubstituted polycyclic aromatic 

hydrocarbons as do naphthalene and phenanthrene. A more accurate 

relationship between %w and 16, (for example, Equation 4-12 or 4-26) would 

account for variations of the solute activity coefficients in the octanol and 

polymer (or surfactant) phases. The traditional linear &,-KO, relationship 

assumes both the solute-octanol and solute-surfactant activity coefficients f l f  
and Y ?) are the same for compared solutes. This assumption, however, may be 

valid for chemically similar solutes within a given dass. For example, the 

difference between the log 5,'s of naphthalene and phenanthrene (both non- 

substituted polyaromatics) in NVPS is similar to the difference between their log 

KOw1s (1.31 versus 1.01, respectively). 

We can estimate values of X ,  the Hory-Huggins parameter from Equation 

4-13, using the differences between experimental log G s  and log q W ' s  

calculated from Equation 4-26. We must use the error estimates of Equation 426 

inputs listed in this section to obtain ranges of X for the three solute systems. We 

obtain X = 2.4 f 1.5,0.61 f 0.26, and 0.42 f 0.26 for the toluene, naphthalene, and 

phenanthrene solute-NVPS systems, respectively. The X values for naphthalene 

and phenanthrene in NVPS solution are somewhat similar t o r s  calculated for n- 

decane/polyethylene and ndodecane/polyethylene systems (Patterson et al., 



1971); these are 0.32 f 0.005 and 0.27 f 0.01, respectively. The X found for the 

toluene/NVPS system is somewhat higher. 



5. Transmembrane Diffusion of Organic Solute in Aqueous Solution 

5.1. Transmembrane Mass Transfer Modeling 

There are two fundamental pieces of information that must be 

quantitatively known to determine how well the proposed membrane/ 

copolymer barrier system will work in a given application. First, how 

concentrated the contaminant can become in the copolymer solution must be 

known. This requires equilibrium solubilization measurements and theory, 

discussed in Chapter 4. Secondly, how quickly the contaminant can diffuse 

through the microporous membrane and into the copolymer solution must be 

quantified. The modeling of this transport phenomena is the topic of this section. 

Models are developed here to show what information can be obtained from 

experiments, and how that information can be extended to more generalized 

cases. 

As proposed in Chapter 2, the barrier process consists of membrane tubes 

filled with copolymer solution placed in either a cylindrical or rectangular well. 

The solution can be pumped out and replaced when it becomes sufficiently 

concentrated with contaminant. In this applicationof the system, there is 

negligible convection of contaminant into the copolymer since there is negligible 

convective flux of contaminant-containing water into or out of the membrane 

tubes. The primary means of transport of the contaminant through the 

miaoporous membrane and into the copolymer solution is molecular diffusion. 

The goal, then, of the transport experiments is to measure the rate of aqueous- 

phase molecular diffuson of a given speaes of organic contaminant through an 

asymmetric, microporous membrane into a given copolymer solution. 



In most experimental measurements of diffusivity, there will be some 

convective flux of diffusing speaes caused by a finite pressure gradient existing 

between the two compartments through which transport occurs. The goal in 

these experiments is to minimize the convective flux contribution by minimizing 

the transmembrane pressure gradient. Also, if aqueous phase molecular 

diffusion is slow enough, transport may occur by solid-phase surface diffusion 

(Bitter, 1991). In summary these three modes of solute transport may occur 

simultaneously to a greater or lesser degree in these experiments. They can be 

defined in terms of unidirectional fluxes across the membrane in the x direction 

as follows: 

Aqueous phase molecular diffusion: 

Convection: 
ap F conv --k-c - 

v ax 
Surface molecular diffusion: 

where Fmd Fconv, and Fd are the solute flux contributions by molecular 

diffusion, convection, and surface diffusion, respectively [g/im2 s]; DmdbB is 

the aqueous-phase molecular diffusion coefficient of solute A through solvent B 

[cm2/s]; D ~ , A B  is the surface diffusion coefficient [cm2/s]; k is the membrane 

permeability [cm2]; p is the solution viscosity [g/an s], P is the solution pressure 

[g/an s2]; aP/ax is the transmembrane pressure gradient; q is the adsorbed 

concentration of solute A in the membrane [g/cm3]; and C is the liquid-phase 



concentration of solute A [g/an3]. Expressions 5-1 and 5-3 assume a Fickian 

model of diffusion in which the diffusive solute flux is directly proportional to 

the solute concentration gradient, the constant of proportionality being the 

diffusion coefficient (Treybal, 1987). 

Section 5.3 of this chapter discusses the justification of neglecting 

convection and surface molecular diffusion (Equations 5-2 and 5-3) as sources of 

solute flux in the experiments. The models in this section assume solute 

transport occurs solely by aqueous-phase molecular diffusion following 

Equation 5-1 such that: 

where Fbt is the total measured solute flux [g/cmZ s]. 

Film theory is used to describe aqueous-phase transport of solute 

molecules from the outside of the membrane tube to the inside of the tube. 

Figure 5-1 shows a crosssection of a membrane tube wall with a hypothetical 

aqueous-phase concentration profile of the diffusing species. As assumed in 

Equation 5 1 ,  diffusion of solute from the outer to the inner aqueous solution is 

driven by a concentration gradient. Resistance to this diffusive transport is 

posed both by the fluid and the membrane wall through which the solute 

diffuses. Film theory suggests that each of these layers of resistance can be 

characterized by an effective thickness, &, through which the solute diffuses. 

The thicknesses of the fluid layers 61 and 64 are assumed to be functions of the 

flow characteristics of the bulk fluid away from the membrane wall. Estimates of 

these thicknesses can be obtained from correlations in the literature (Kakac, 1985 



Figure 5-1: Concentration Profile -- Membrane Tube Cross-Section 

6 1 = interior fluid boundary layer 

6 2 =membrane skin thickness 

6 3 = membrane suppon layer thickness 
64 =exterior fluid boundary layer 

Note: Boundary layers not drawn to scale. 



and Treybal, 1987). The resistance to diffusive transport of solute A of each of 

the film layers can be defined as follows: 

where Rj is the resistance of film layer i [s/cm]; &is the effective film thickness 

of layer i [an]; and DAB is the diffusion coefficient of solute A through solvent B 

[an2/s]. From Figure 5-1, the diffusive transport resistances appear in series, so 

the overall resistance equals the sum of the individual film layer resistances: 

where bt is the total diffusive transport resistance [s/cm]. WithaC/ax 

approximated as ACh, the overall flux can then be described by the following: 

where Fbt is the total flux of solute A from the membrane exterior to the interior 

[g/anz s]; Cext is the concentration of solute A in the exterior bulk solution 

[g/an3] and Cinta4 is the aqueous phase concentration of solute A in the interior 

bulk solution [g/an3]. 

The goal of the diffusion experiments is to obtain values of bt for given 

systems and compare those values to predicted values from literature 

correlations. One such experiment is diagrammed schematically in Figure 5-2. 



i - -- 
Solute T w o r t  into Aaueous S o w  

me brane partition 3 

Cit = 0 Cut = CQ Cht = Ccqu &t = Cequ 

Co Vext 
Cequ = Vit + Vut 

Solute A is introduced to a well-mixed aqueous phase of volume V,* exterior to 

a membrane partition, at concentration C,. The aqueous solution interior to the 

membrane partition initially has no solute A present. The solute is allowed to 

diffuse from the exterior to the interior by means of a concentration gradient 

driving force. Eventually, that driving force ceases to exist (represented in 

Figure 5-2 by t+-) when the concentration of solute A in the interior and 

exterior solutions become equal. Experiments involving transmembrane 

transport of solute from an exterior aqueous solution of initial concentration Co 

to an interior aqueous solution of inital zero solute concentration have the 

following governing equations and initial conditions: 



govern in^ Equations; Interior Solution 

where Vmt is the interior solution volume [cm3]; Vex' is the exterior solution 

volume [cm3]; Abt is the overall surface area of membrane [cm*]; and Rbt is the 

total diffusive transport resistance [s/cm]. Concentrations are functions of time 

only, since the exterior and interior solutions are assumed well-mixed. Equations 

5-8 and 5-9 are simple mass conservation expressions; the left-hand terms are net 

accumulations of solute into the given solution and the right-hand terms are the 

net fluxes into the given solution. Solving the coupled equations with respect to 

the initial conditions, the following expressions for interior solutions solute 

concentration is obtained: 

This can be expressed as follows: 



where Q(t) = - 1 

~ t o t ( - - L  + 4 Vext 
> 1 

Vint Vext 

Thus, for a given experiment, values of Rl(t) can be graphed with time t to obtain 

Rt,t, the overall diffusive transport resistance for the experimental system. These 

experimental values can then be compared to values predicted from literature 

correlations. 

The interior aqueous phase concentration, Chtaq, cannot exceed Cea for 

net solute transport into the membrane to occur. In the proposed membrane/ 

copolymer barrier system, the interior phase contains both water and 

arnphipathic copolymer. As described in Chapter 4, the aqueous copolymer 

solution comprising the interior solution is modeled as a mixture of two separate, 

yet interspersed pseudophases - an aqueous pseudophase and a copolymer 

pseudophase. The solute concentration pertinent to transmembrane transport is 

the aqueous pseudophase concentration; it is the concentration that is "seen" by 

the exterior solution solute molecules. Transport from the exterior solution to the 

interior aqueous pseudophase will occur until their solute concentrations are 

equal. 

As described in Chapter 4, an equilibrium is assumed to exist at all times 

between the solute concentration of the interior aqueous pseudophase and the 

interior polymer pseudophase. This equilibrium is characterized by the polymer- 

water partition coefficient, Kpw, of the polymer-water-solute system. Therefore, 

a "reaction" term can be derived which describes the transport of solute out of the 

aqueous pseudophase and into the polymer pseudophase. Let L be the mass of 



solute in the polymer per mass of polymer and M be the polymer to water mass 

ratio. Then the product M . L is the mass of solute in polymer per mass of water. 

The partition coefficient, Kpw, was shown to be a constant for the polymer-water- 

solute systems under investigation here, and the following relation holds: 

where Cintaq is the interior aqueous pseudophase concentration of solute A 

[g/an3]. It is assumed equilibrium between the aqueous and polymer 

pseudophases is maintained at all times. The transfer of solute from the interior 

aqueous pseudophase to the interior polymer pseudophase can be expressed by 

the following "reaction" term, which is simply the time rate of change of solute 

mass in polymer per unit volume of water: 

where r is the rate at which solute is transferred from the aqueous pseudophase 

to the polymer pseudophase [g/an3 s]. Substituting Equation 513 into Equation 

514 above, we get 

r=MKpw dciitaq 
'dt 

In this way, the model states the solute passes through the membrane and enters 

the interior aqueous pseudophase, then immediately comes to equilibrium with 

the interior polymer pseudophase. The maintenance of this equilibrium condtion 

behaves as a "reaction" of or disappearance of solute from the interior aqueous 

pseudophase. In this way, the concentration of solute in the interior solution 



which is many times its normal saturated aqueous phase concentration can be 

properly modeled. This enhancement of solubility is characterized by the 

polymer-water partition coefficient, Kpw 

An implicit assumption in the use of this "reaction" term is that the 

transfer of solute form the interior aqueous pseudophase to the interior polymer 

pseudophase occurs on a faster time scale than transfer of solute from the 

exterior phase solution to the interior aqueous pseudophase. This can be 

justified by noting the respective diffusion lengths in the two cases. Diffusion 

from the exterior to the interior of the membrane occurs over a length of about 

0.275 mm for all experiments described in this chapter. Diffusion from the 

aqueous pseudophase to the interspersed polymer pseudophase occurs over a 

much smaller, molecular length scale (i.e. 1 nanometer). Therefore, the 

transmembrane diffusion would easily be the rate limiting process of the two. 

Figure 5-3 shows a schematic diagram of a transmembrane transport 

experiment involving transfer of solute from an exterior aqueous solution to an 

interior aqueous, copolymer solution. This more closely demonstrates the 

proposed groundwater contaminant barrier system, since solute diffuses into a 

copolymer solution Initially, an aqueous copolymer solution is introduced to 

the interior of a membrane tube of volume Vt at zero solute concentration. The 

exterior solution is maintained at a constant, saturated solute concentration. 

Molecular diffusive transport from the exterior to the interior is allowed until the 

copolymer solution has an aqueous pseudophase concentration equal to the 

exterior phase concentration The governing equation and initial conditions for 

this experiment are as follows: 



Fi~ure 5-3: Schematic Diagram - of Transmembrane Transoort Ex~eriment -- 
Solute Transport Into Copolvmer Solution 

interior 

CCXI = constant = Cm 

Cinsaq = 0 

Cinsp = 0 

Note: Not to scale. 

adsorbed solute 

CCXI = constant = CSS 

Cinw = Cut 

C i s p  = MKpw Gxt 



Governine Equation: 

Cint,aq(kO) = 0 (5-17) 

Cat = Csat at all time t (5-18) 

where Vt is the membrane tube interior volume [ad]; Cmtaq is the interior 

aqueous pseudophase solute concentration [g/cm3]; Cext is the exterior solution 

solute concentration [g/cm3]; Cat is the saturated concentration of solute in 

water [g/an3]; At is the membrane tube surface area [cmz], Rbt is the overall 

membrane tube resistance [s/cm]; M is the ratio of polymer to water mass in the 

interior copolymer solution [g/an3], and Kpw is the polymer-water partition 

coefficient of the solute [dimensionless]. The governing equation follows from a 

mass balance on the interior aqueous pseudophase. The term on the left-hand side 

is the accumulation of solute in this phase, the first term on the right-hand side is 

the net transport of solute into this phase, and the second term on the right-hand 

side is the "reaction" term from Equation 5-15, describing the transfer of solute 

out of the interior aqueous pseudophase and into the interior polymer 

pseudophase. The measured interior phase solute concentration is the sum of the 

solute's concentration in the two pseudophases: 

where Cmt is the measured 'interior concentration [g/cm3 solution]; Cmtaq is the 

solute concentration in the aqueous pseudophase [g/an3solution]; and Cmt,p is 



the solute concentration in the polymer pseudophase [g/an3 solution]. It is 

assumed equilibrium exists between the pseudophases such that: 

Using this relationship along with Equation 5-19, we may solve Equation 5-16 for 

measured interior solution concentration, Cht, as follows: 

where B = At 
VtRtot(l+ MKpw) 

As with Equation 5-12, the above equation can be expressed as follows: 

where q ( t )  = - ln [ 1 - Cint/Cext 
(1 + M Kpw) 

I /b fl 

b =  At 
V t ( l +  M Kpw) 

Similarly, values of Qz(t) can be graphed with time t to obtain Rtot for a given 

system. As in the previous case, the experimental Rbt values can then be 

compared to values predicted from literature correlations. 

Experiments will show that the effect of solute adsorption onto membrane 

material does not appreciably affect bt determination, and that the assumption 



of fast assimilation of solute into the copolymer pseudophase with respect to 

transmembrane transport holds true. 



5.2. Materials for Experiments 

The copolyer used in this study, N-vinylpyrrolidone/styrene (NWS), was 

obtained as a 40 weightoh copolymer solution in water. The supplier, Scientific 

Polymer Products, Inc., reported that the copolymer is composed of styrene and 

N-vinylpyrrolidone monomers in a weight ratio of 60 to 40. NVPS is a random 

copolymer as shown in Figure 4-1. As explained in Chapter 4, the hydrophilic 

character of the copolymer allows it to form a stable suspension in water, and its 

hydrophobic nature lends it organic solubilization capacity. In the diffusion 

experiments of this chapter, aqueous solutions of less than 3 wt.% NVPS were 

used. The average molecular weight of NWS was reported as approximately 

3.4 million g/mol, and its radius of gyration approximately 940 A. By contrast, 

naphthalene, one of the model organics used in this study, is approximately 5 A 
in length and 3 A in width and depth (Fessenden and Fessenden, 1986). Thus, a 

membrane can readily be chosen whose average pore diamter is less than 

copolymer molecular size, but greater than solute size. 

The hydrophobic model organic compounds used in the diffusion 

experiments were naphthalene (99+% pure) and phenanthrene (98% pure), 

obtained from Sigma Chemical Company. These chemicals were used without 

further purification 

The membranes used in the diffusion experiments were Supelco, Inc.'s 

polysulfone ultrafiltration hollow fiber membranes. The membranes were 

furnished in 8-inch-long cartridges each containing 308 individual hollow fiber 

tubes of 0.5mm internal diameter. The bulk of the membrane thickness, 



0.275 rnrn, is made up of a support structure for the microporous membrane 

layer. This microporous layer, reported as between 0.1 and 0.2 micrometer in 

thickness, is called the "skin" layer and gives the membrane its molecular sieving 

properties. The reported effective surface area of each membrane tube is 

2.06 cm2. The membranes have a porosity of 86% as determined from water 

displacement experiments. The cartridge of membranes has ends potted in 

epoxy such that flow through the interior of the tubes can be separated from flow 

exterior to the membrane tubes. The cartridge itself is made of the same material 

as the membrane tubes - polysulfone. Membrane cartridges of two different 

nominal molecular weight cutoffs were used - 2000 and 50,000 g/mol. These 

correspond to membranes of approximate average "skid' layer pore diameters of 

10 A and 50 A, respectively. These sizes were chosen to allow the passage of 

model organic contaminant (naphthalene or phenanthrene) from the exterior to 

the interior of the tubes while preventing the leakage of NWS copolymer from 

the interior to the exterior of the tubes. Two sizes were chosen so that the effect 

of different "skin" layer pore diameters might be observed during measurements 

of the total membrane tube resistance, Rbt. 

All pumps used in the diffusion experiments were teflon-lined piston- 

diaphragm pumps supplied by Cole Parmer Company. The teflon lining was 

required to minimize adsorption of organic solute onto the pump surfaces. All 

tubing used in the diffusion experiments was 1/4"- and 1/8"- internaldiameter 

teflon tubing. Swagelok stainless steel and brass fittings were used for all 

connections. 

Solution concentrations of naphthalene and phenanthrene were 

determined by absorbance measurements from a Perkin-Elmer Lambda 38 



W/VIS spectrophotometer, using quartz Suprasil flow-through cells. 

Measurements were made at maximum absorbance wavelengths for each 

compound: 276 n m  for naphthalene and 293 n m  for phenanthrene. 

Extinction coefficients for the absorbance of naphthalene and 

phenanthrene were measured as follows. A saturated aqueous solution of the 

organic solid was aeated by circulating water through a generating column 

filled with organic solid as desaibed in the literature (Hurter and Hatton, 1992). 

The solution was held at 23.0 f 0.1 OC with a constant temperature bath. A 

fraction of the circulating solution was diverted to the spectrophatometer 

through a 1-cm-pathlength flow cell where its absorbance was read on-line. 

Constant circulation insured a saturated solution of solute was maintained, 

regardless of any solute adsorbed to the tubing or container walls. The Beer's 

law extinction coefficients were experimentally determined from absorbance 

measurements of organic-solutesaturated solutions at solute absorbance peaks 

using a 1-cm-pathlength cell and agreed to within 2% of published values (Bohon 

and Claussen, 1951 and Wauchope and Getzen, 1972). Higher concentrations of 

organic can be accurately measured by using flow cells of lower pathlength (0.02 

an and 0.001 cm pathlength cells were also used in this work). Beer's law states: 

where A, is the spectrophotometer absorbance reading [dimensionless]; q, is the 

Beer's law extinction coefficient [cm2/g]; C is the concentration of solute in 

solution [g/cm3]; and L, is the spedrophotometer cell pathlength [an]. 



The extinction coefficients of aqueous NVPS were also experimentally 

measured at the solute absorbance peaks - 276 and 293 nm - as well as at 

400 nm, a wavelength at which the organic model compounds have zero 

absorbance. Plots of NVPS concentration versus absorbance used in determining 

its extinction coefficients at the above wavelengths are shown in Figure 5-4. 

Thus, the total absorbance of a polymer-water-solute solution at the two lower 

wavelengths equals that from both NWS and the organic compound present in 

solution. The exact NVPS concentration of the sample was then measured by 

solution absorbance at 400 nm, and organic solute (naphthalene or 

phenanthrene) absorbance and concentration was then computed. This 

technique was experimentally justified by direct measurement of naphthalene 

dissolved into concen&ated NVPS solutions of 19 and 23 wt.%. 

Fi~ure 5-4: Absorbance Versus NVpS Concentratipn 
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5.3. Transmembrane Pressure Gradient Measurement 

The experimental set-up for all diffusion experiments in this work is 

shown in Figure 5-5. The system consists of a membrane tube cartridge through 

which solution is pumped both interior and exterior to the hollow membrane 

fibers, teflon-lined piston-diaphragm pumps which are used to transport the 

fluid, and a PAH column through which the exterior-side solution is passed to 

keep the solution saturated with organic solute. When a given parcel of solution 

is not in transit through the membrane or PAH column, it resides in the interior 

or exterior soluton reservoir. The solutions in these glass flasks are sealed from 

the surrounding air and are well-mixed by magnetic stirrers. Side-streams from 

both the interior and exterior solution lines are sent through quartz flow cells in 

the UV/VIS spectrophotometer for on-line concentration measurement. Then the 

solutions are returned to their respective solution reservoirs. 

As discussed in Section 5.1, three modes of solute transport (aqueous 

phase molecular diffusion, convection, and surface molecular diffusion) from the 

exterior solution to the interior solution are possible. These are aqueous phase 

molecular diffusion, convection, and surface molecular diffusion. This section 

describes under what exterior and interior solution flowrates transport via 

convection is much less than transport via molecular diffusion In order to use 

Equation 5-2 for transmembrane convective flux, we must know the 

transmembrane pressure gradient as a function of m e n t  exterior and interior 

solution flowrate. The gradient term in Equation 5-2 is approximated as follows: 
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where Aptm is the transmembrane pressure difference (difference between fluid 

pressure in the interior and exterior of the membrane at a particular point along 

the length of the membrane) [inches water]; and Lrn is the thickness of the 

membrane [an]. The transmembrane pressure gradient changes along the length 

of the membrane. 

Figure 5-6 shows the pressure drop from the entrance to the exit of the 

interior side of the membrane plotted as a function of interior side flowrate. The 

difference in the pressures, AP, was measured using a water manometer. The 

straight line represents A P  predictions using the Hagen-Poiseuille equation for 

pressure drop under laminar flow conditions as a function of flow velocity 

through a cylinder of length L and diameter D (Bird et al., 1968): 

where Lt is the tube length [an]; V is the velocity of fluid flowing through the 

tube [an/s]; and D is the tube diameter [an]. Reynolds number ranged from 0 

to 41.3, well below 2100 where turbulent flow would occur. The measured 

pressure drops agree to within the accuracy of the parameters used in the Hagen- 

Poiseuille equation as shown by the dotted lines in Figure 56. The figure shows 

the method of pressure difference measurement is accurate and can be used to 

measure transmembrane pressure difference as a function of exterior and interior 

flowrate. For simplicity, the exterior and interior flowrates are kept equal to each 

other in these tests. 
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Figure 5-7 shows measured transmembrane pressure difference as a 

function of exterior and interior solution flowrate. Meausrement of AP, was 

made at both the entrance and exit of the membrane tube cartridge. These are 

shown as solid and open circles on the graph. These data were correlated to 

express transmembrane pressure gradient at the entrance and exit of the 

membrane cartridge as empirical functions of flowrate. Because the Hagen- 

Poiseudle equation predicts a linear pressure profile along the length of a tube, it 

was assumed that the average transmembrane pressure difference along the tube 

equals the arithmetic average of the pressure differences at the entrance and the 

exit of the cartridge. Thus, an experimentally-determined empirical expression 

for average transmembrane pressure gradient is given as a function of flowrate: 

APmvg(in. water) = 0.00749 Q (mL/min) + 6.05 x l o 5  @ (mL/min) (5-26) 

where APtm4vg is the average transmembrane pressure difference [inches water]; 

and Q is the interior solution flowrate (set equal to the exterior solution flowrate) 

[mL/min]. Note that for all flowrates and at all positions along the membrane 

the interior pressure is greater than the corresponding exterior pressure. 

Now, the ratio of molecular diffusive flux to convective flux can be 

determined as a function of flowrate, Q, and overall membrane diffusion 

resistance, Rmt. All diffusion is assumed to be aqueous-phase molecular 

diffusion (this assumption is justified later), whose flux is given by Equation 5-1. 

The concentration gradient is approximated as follows: 



Fieure 5-7: Measured Transmembrane Pressure Gradients 
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where Co is the concentration of exterior solution [g/cm3]; the concentration of 

the interior solution is 0; and &, is the membrane thickness [an]. Then 

equation 5-1 becomes: 

where F d  is the molecular diffusive flux of solute through the membrane 

[g/an2 s]; and D ~ , A B  is the diffusion coefficient of solute A through water. As 

shown in equations 5-5 to 5-7, the above flux may be written as follows: 

Using Equations 5-2 and 5-24, the following expression for convective flux is 

obtained: 

The ratio of convective to diffusive flux can be written as follows: 

The manufacturer's values for permeability and membrane thickness are as 

follows: 



be,= 0.275 rnm (5-33) 

The value of p in Equation 5-32 is from Streeter and Wylie (1985). Substituting 

Equations 5-32,5-33, and 5-28 into Equation 5-31, we obtain a practical 

expression for our system of the ratio of convective to diffusive flux as a function 

of flowrate and overall membrane diffusive resistance: 

where Q is the flowrate in units of [mL/min]; and ht is the total diffusive 

resistance in units of [s/cm]. Curves of this flux ratio are plotted as functions of 

Q in Figure 5-8 for various overall membrane diffusive resistances. From the 

figure, it is clear that convective flux is negligible to diffusive flux as long as 

flowrate is below 40 mL/min and membrane tube diffusive resistance, Rbt is 

below 10,000 s/cm. From later data, it will be shown that bt is indeed below 

10,000 s/cm for all diffusion experiments in this study. Also, interior and 

exterior solution flowrate is kept below 40 mL/min for all experiments. Note 

that convective flux can be calculated directly by Equation 5-30 and in all 

experiments is negligible to diffusive flux. Convective flux is less than 1% of 

total measured flux for all experiments. 

We have assumed that all diffusion is due to aqueous phase molecular 

diffusion and have neglected the possibility of solid phase surface diffusion. In 

general, surface diffusion is important in solute transport through membranes 

only when the average pore size of the membrane is much less than the size of 
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the solute molecule (Bitter, 1991). However, the solutes used in this study are all 

smaller than the average pore sizes of the membranes used. Also, solute surface 

diffusion coefficients are generally around 1 x 10-8 cm2/s (Treybal, 1987), about 3 

orders of magnitude lower than aqueous phase molecular diffusion coeffiaents 

of the solutes used in this study. Thus, it is expected aqueous phase molecular 

diffusion will dominate and surface diffusion effects can be safely neglected. 



5.4 NVPS Leakage Test 

Tests were conducted to determine any detectable transport of NVPS 

copolymer from the interior side of the membrane to the exterior using each of 

the 2000 and the 50,000 molecular weight cutoff membranes.. Very little or no 

leakage was expected since the radius of gyration of the NVPS molecule is so 

much larger than the average pore sizes of the skin layers of the membranes used 

(940 A versus 10 to 50 A). The experimental set-up used is pictured in Figure 5-5. 

First, a solution of approximately 2 wt.% NWS in water was placed in the 

exterior solution reservoir, and circulation through the membrane tube cartridge 

was begun There was no flow through the PAH column pictured in Figure 5-5. 

At the same time, circulation of distilled water was begun through the interior 

side of the cartridge. The flowrate for both solutions was 40 mL/min. A side- 

stream from the interior solution flowed through a 1-an-pathlength flow cell in 

the W spectrophotometer which measured absorbance at 400 nm wavelength. 

Flow was continued for about four hours. 

No absorbance of the interior solution was detected at 400 nm at any time 

during either experiment. Therefore, according to the accuracy of the 

spedrophotometer measurement (M,001 absorbance unit) and the extinction 

coefficient of NVPS at 400 nm, the maximum leakage of NVPS that could have 

occurred was 0.002% of the charged NVPS in the exterior solution. This is a 

negligible amount, thus the assumption of no NWS leakage is satisfactory. 



5.5. Naphthalene Diffusion into Copolymer Solution 

The experimental set-up for the naphthalene diffusion experiments is 

shown schematically in Figure 5-5. The purpose of these experiments is to obtain 

a measure of the total membrane resistance to aqueous phase molecular 

diffusive transport of naphthalene from the exterior to the interior solutions. The 

experimental technique minimizes the problem of naphthalene adsorption onto 

solid apparatus surfaces by maintaining a constant exterior naphthalene 

concentration and by allowing transport into a copolymer interior solution, not a 

pure water interior solution. The copolymer solution provides more attractive 

(hydrophobic) and more available "adsorption" sites to naphthalene molecules 

than do solid apparatus surfaces; thus there is a negligible loss of naphthalene 

from the interior solution to the solid surfaces. The experiment also employs a 

large surface area membrane (over 600 crnz), which reduces irregularity errors 

reported in small surface area stirred-cell experiments (Robertson and Zydney, 

1990). 

5.5.1. Experimental Procedure 

The exterior solution reservoir shown in Figure 5-5 was filled with a 

known volume of water (approximately 200 mL). The PAH column was filled 

with solid naphthalene crystals and flow of the exterior solution through the 

column was maintained at a minimum of 150 mL/min. The exteriorside 

naphthalene solution was pumped through the membrane cartridge at 

40 mL/min. A side-stream of the exterior solution was sent on-line to a quartz 

flow cell in the W spedrophotometer for naphthalene concentration 



measurement at 276 nm wavelength The concentration was monitored until the 

exterior solution became saturated with naphthalene - allowing for any 

adsorption onto the solid surfaces of the apparatus. Adsorption was not a 

problem since the exterior solution was maintained at saturated naphthalene 

concentration throughout the experiment, in adsorptive equilibrium with all 

apparatus solid surfaces. The fast flowrate of exterior solution through the 

naphthalene column provided sufficient mixing such that all exterior solution 

concentration readings were stable to within the precision of the 

spectrophotometer. The magnetic stirrer in the interior solution reservoir was 

turned on to provide well-mixed conditions. Throughout the experiment, 

flowrates of the exterior and interior solutions through the membrane cartridge 

were fixed at 40 mL/min each. 

Distilled water was flushed through the membrane tube interior for 30 

minutes (while exterior solution was held at saturated concetration) in an effort 

to allow the naphthalene concentration profile in the membrane to become linear 

before the experiment was begun (Figure 5-9). It was later found that since the 

residence time of a diffusing solute molecule in the membrane was less than two 

minutes, this step was unnecessary and had negligible effect on the experimental 

results. 

After the flushing step, the interior solution was allowed to recirculate and 

a known amount of NVPS copolymer was added into the interior solution 

reservoir. A sidestream of the interior solution was continuously sent on-line to 

a quartz flow cell in the UV spectrophotometer for naphthalene and NVPS 

concentration measurement at 276 nm and 400 rim wavelengths. As discussed 



previously, NWS absorbs light at both 276 nm and 400 nm, while naphthalene 

only absorbs at the 276 n m  wavelength; therefore, using the solute extinction 

coefficients, the concentrations of naphthalene and NVPS of the interior solution 

were determined as a functions of time. The NVPS concentration did not change 

during the experiment (as determined to the precision limit of the 

spectrophotometer). The naphthalene concentration increased in the interior 

solution as it diffused through the membrane. The naphthalene concentration 

increased to many times the saturated naphthalene concentration in water, about 

31 mg/L (May et al., 1978). 

After the experiment, the exterior solution concentration and temperature 

were measured and were unchanged from their values before the introduction of 

NWS to the interior solution. 

Before Fl-rior Solutioq 
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5.5.2. Experimental Results 

The data for all naphthalene diffusion runs conducted with the 2000 and 

50,000 nominal molecular weight cutoff membranes are listed in Appendix A. A 

sample run using the 2000 MW cutoff membrane is shown in Figure 5-10. The 

naphthalene concentrations of the interior solution (shown as multiples of the 

saturated concentration of naphthalene in pure water - 31 mg/L) are plotted 

versus time. For example, after 100 minutes, the naphthalene concentration of 

the interior copolymer solution was about 10 times naphthalene's saturated 

concentration in water. The interior solution's copolymer concentration in this 

particular experiment was 2.66 wt.%. The exterior solution concentration is 

given by the dotted line at C/Csat = 1, constant for the entire experiment. 

Eieure 5 - 10: Na~h€h&ne Diffus ion Through 2000 MW cutoff ~~~b~~ 
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We now wish to determine ht, the total resistance to molecular diffusive 

transport of naphthalene from the exterior to the interior solution for this 

experiment. This can be determined by using Equation 5-22: 

where R(t) = - ln ( 1 - Cint(t)/C,t 
(1 + M Kpw) 

/ b  

b =  At 
Vt (1 + M  Kpw) 

A plot of normalized concentration, Q(t), versus time is shown in Figure 5-11 for 

this experiment. This curve is dearly linear and was fitted using a least-squares 

regression. The inverse of the slope is 5000 s/cm, which is the value of ht for 

this experiment. 

The experiment was repeated twice using the 2000 MW cutoff membrane 

and NVPS copolymer interior solution concentrations of below 3 wt.%. The 

experiment was also conducted twice using the 50,000 MW cutoff membrane and 

NVPS concentrations of below 3 wt.%. The normalized data from these 

experiments are shown in the R(t) versus time plot of Figure 5-12. It is clear that 

the slopes for the 2000 and 50,000 MW membrane data are very close. Linear 

regressions of the data yield slopes shown in Table 5-1. The slope corresponds to 

a total resistance, bt, of between 4880 and 5030 s/cm (9590 confidence interval). 
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Table 5-1: S l o ~ e s  of Normalized Concentration Versus Time Plots 

Solute Membrane MW Cutoff S i o ~ e  of R vs. t RtOt (s /cm) 

Naphthalene 2000 (2.01k0.05) x lo4 cm/s 4980 f 120 

Naphthalene 50,000 (2.16f0.10) x l o4  cm/s 4630 f 210 

Naphthalene Pooled Data (2.0s0.04) x 10-4 cm/s 4950 f 100 

All variations in d W d t  and Rtot cited to 95% confidence. 

A pooled variance of estimate t-test on data from the 2000 and 50,000 MW 

membrane runs was conducted (Volk, 1958). From the test it was determined 

that the statistical chance the slopes determined from the two data sets are the 

same is 22%. This means that the existence of any real difference between the 

true 2000 and 50,000 MW membrane run slopes is uncertain. The only difference 

between the two types of membranes was the average pore size of the thin, 0.1- 

0.24un skin layer. The support structures of the membranes were identical. It 

will be shown in Section 5.7 that the membrane support structure is the expected 

primary contributor to ht according to diffusion models, since it is much thicker 

than the miaoporous skin layer. The data in Figure 5-12 supports this statement, 

since the membrane support structures of the membranes used in the two data 

sets were identical, and approximately the same Rb;s were determined for both 

membranes. 



5.6. Phenanthrene Diffusion into Copolymer Solution 

5.6.1. Experimental Procedure 

The experimental procedure followed for the phenanthrene diffusion 

experiments was identical to the naphthalene diffusion experimental procedure 

described earlier in Section 5.5.1. with the following exceptions. The PAH 

column was filled with solid phenanthrene-coated glass beads instead of solid 

naphthalene. Also, measurement of NVPS and phenanthrene concentration das 

determined by UV spectrophotometer absorbance readings at 293 and 400 nm 

wavelengths, not 276 nm. 

The phenanthrene concentrations of the interior solution were measured 

on-line as a function of time. These concentrations rose according to the 

Equation 5-22 model as phenanthrene diffused from the constant-concentration 

exterior solution, through the membrane, and into the interior NVPS copolymer 

solution 

5.6.2. Experimental Results 

The data for all phenanthrene diffusion runs conducted using the 2000 

and 50,000 nominal molecular weight cutoff membranes are shown in Appendix 

8. A plot of normalized concentration, R(t), versus time is shown in Figure 5-13 

for all phenanthrene diffusion experiments. The curve is clearly linear and was 

fitted using a least-squares regression. Slopes using only 2000 and 50,000 
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Solute Membrane MW Cutoff S l o ~ e  of R vs. t b&Qd 

Phenanthrene 2000 (1.66f0.03) x 104 cm/s 6020 f 100 

Phenanthrene 50,000 (1.68f0.04) x 104 cm/s 5950 f 140 

Phenanthrene Pooled Data (1.67+_0.02) x 10" cm/s 5990 f 70 

All variations in dR/dt and Rtot cited m 9546 confidmce 



membrane run data were also determined using least-squares linear regression 

The slopes are listed in Table 5-2. The pooled slope corresponds to a total 

resistance, RtDb of between 5920 and 6020 s /an  (95% confidence interval) for 

phenanthrene diffusive transport from exterior to interior solutions. 

A pooled variance of estimate t-test on the 2000 and 50,000 membrane run 

data slopes was conducted for the phenanthrene diffusion experiments. From 

the test, it was determined that the statistical chance the slopes determined from 

the two data sets are the same is 68%. Therefore, the existence of any real 

difference between the true 2000 and 50,000 membrane run experimental slopes 

is unlikely. As with the naphthalene diffusion tests, this result was not 

surprising, since the expected primary contributor to diffusive resistance, the 

membrane support layer, was identical in both the 2000 and 50,000 membrane 

tests. 



5.7. Comparison of Experimental Results with Model Predictions 

kt, the total resistance to aqueous phase molecular diffusion of solute 

from the exterior to the interior solution, can be divided into the following four 

sources in series: 

1. Membrane support layer 

2. Membrane skin layer 

3. Interior fluid boundary layer 

4. Exterior fluid boundary layer 

These are depicted in Figure 5-1. In this section, the contribution of each layer to 

Rtot will be predicted from literature models and will be compared to the 

experimental bit's from Figures 5-12 and 5-13. 

Since the pore sizes of the membrane support layers for all experiments 

are orders of magnitude larger than the solute molecular sizes, there is no size- 

exclusion factor for the molecular diffusive resistance of the membrane support 

layer. Thus, the resistance through the layer is equal to the mass transfer 

resistance of the average water-filled pore length determined as follows: 

where R1 is the mass transfer resistance of the membrane support layer [cm/s]; 

DAB is the molecular diffusion coefficient of solute A in water [cm2/s]; bUp is 



the support layer thickness [cm]; TsuF is the support layer tolosity 

[dimensionless]; and E~~~ is the support layer porosity [dimensionless]. 

The membrane skin layers, on the other hand, have average pore sizes 

comparable to the solute sizes. An approach for approximating the diffusive 

resistance of such an anisotropic membrane layer is given by Roberts and 

Zydney, 1990, as: 

where R;? is the mass transfer resistance of the membrane skin layer [an/s]; and 

$ is the ratio of pore solute concentration to bulk phase concentration 

[dimensionless]. Values of $ can be approximated for various solute-membrane 

systems using a technique developed by Bungay and Bremer, 1973, for 

anisotropic membranes. The technique involves modeling the membranes as 

intersecting matrices of random planes. The diffusion coefficients of solutes in 

water used in this study were determined using the Hayduk and Laudie method 

as described in Lyman, 1990. The method has a reported 5.8% average absolute 

error and is generally used to estimate diffusion coefficients of organic 

compounds in water. 

The remaining two boundary layers are fluid boundary layers interior and 

exterior to the membrane wall. In the diffusion experiments, the interior and 

exterior solutions flowed along the length of the membrane wall. The 

thicknesses of the fluid layers are assumed to be functions of the flow 

characteristics of the bulk fluid away from the membrane wall. For determining 



interior boundary layer resistance, we use the Graetz-Nusselt solution for 

laminar flow through a thermally-developing tube with specified wall 

temperature (Kakac, 1985). A relationship for the Nusselt number is given as 

follows: 

where Nu is the Nusselt number [dimensionless]; x* is nondimensional tube 

length ( = x/& Pe); x is the tube length [an]; Dh is the hydraulic diameter of 

the tube [an]; Pe is the Peclet number (= Dh V/a ) ;  V is the mean fluid velocity 

through the tube [an/s]; and a is the thermal diffusivity [anZ/s]. This relation 

is converted from a heat transfer to a mass transfer correlation using the 

analogous mass transfer nondimensional terms (Treybal, 1987). Note that the 

solution is now good for laminar flow through a concentratirmnlfy-developing 

tube with specified wall concentration. By mass transfer analogy, Equation 537 

becomes: 

where Sh is the Sherwood number [dimensionless]; x* is nondimensional pipe 

length ( = x/& Pe,,,); Pe, is the mass transfer Peclet number (= & V/DAB); 

DAB is the diffusion coefficient of solute A in water; andkt is the mass transfer 

coefficient ( = l /&(l+ Kpw)) [cm/s]. Solving Equation 538 for resistance, &, 

(inverse of mass transfer coefficient): 



where & is the mass transfer resistance of the interior fluid boundary layer 

[s/an]; Kpw is the polymer-water partition coefficient [dimensionless]; and M is 

the polymer to water weight ratio [dimensionless]. The polymer-water partition 

coefficient is required in the calculation of R3 since the interior solution is an 

aqueous copolymer solution. The Kp, term isrequired to scale the mass transfer 

coefficient of the interior solution to aqueous phase concentrations from which 

ht is defined. For example, in the interior solution, flux through a fluid 

boundary layer can be written as: 

where Fbl is the flux of solute through the fluid boundary layer [g/crn2 s]; ACht 

is the overall interior solution concentration difference between the ends of the 

boundary layer [g/cm3]; and k' is the mass transfer coefficient [an/s]. However, 

we have defined overall flux from the exterior solution to the interior solution in 

terms of Cmtrq, the aqueous phase solute concentration. The following holds true 

for our systems: 

where Chraq is the aqueous pseudophase solute concentration of the interior 

solution [g/an3 solution]; Chtp is the polymer pseudophase solute 

concentration of the interior solution [g/cm3 solution]; and Cht is the overall 



interior solution solute concentration [g/an3 solution]. C w  can be related to the 

aqueous phase concentration, Chtaq, as follows: 

Substituting this into Equation 5-40: 

Thus, the true mass transfer resistance of the interior solution fluid boundary 

layer is the inverse of the coefficient of ~ ~ h t a q  in Equation 5-44, or in other 

words: 

where k' is defined by Equation 5-38. 

A Nusselt number correlation from Kakac, 1985, is used in determining 

the resistance of the exterior fluid layer. The correlation was developed for heat 

transfer in the case of flow exterior to staggered tube bundles (>I6 tubes), good 

for Reynolds numbers, Re, between 1 and 500: 

where Re is the Reynolds number ( = dc GS/p); dc is the cylinder outer diameter 

[an]; G' is the average fluid mass flux [g/an2 s]; pis the fluid viscosity [g/cm 

s]; apd Pr is the Prandtl number. By mass transfer analogy, 
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where Sc is the Schmidt number ( = w/p DAB); and p is the fluid density [g/cm3]. 

Solving Equation 5-47 for resistance: 

where & is the mass transfer resistance of the exterior fluid boundary layer 

[s/cml. 

Values of boundary layer resistance as given by Equations 5-35,5-36,s-39, 

and 5-48 are given in Table 5-3 for the solute-copolymer systems studied here, 

under experimental conditions. The modeled resistance approximates the 

measured overall resistance for both the naphthalene and phenanthrene diffusive 

transfer experiments with less than 10% error. This is within the collective error 

of model inputs for these experiments. The dominant modeled source of 

resistance is the membrane support layer. The experimental data reflect the fact 

that phenanthrene has a slightly lower diffusivity in water than naphthalene, 

since DAB(phen) < D~~(naph.);  thus, the overall resistance for phenanthrene 

transport is greater than for naphthalene transport. The model also shows that 

the resistance of the membrane skin layer is negligible compared to overall 

resistance. This explains the negligible difference between the experimentally- 

measured resistances using the 2000 and 50,000 MW membranes. The 

membranes were identical except for their skin layers. 



Table 5-3: Mass T r a n s f e r e s  - Modeled Verswasured 

Type li) nce Ri ( s / m )  

2KnBL z2haX.L 50K mem. 

1. Membrane Support Layer 4100 4100 4900 4900 
(Equation 5-35) 

2. Membrane Skin Layer 90 0 200 50 
(Equation 5-36) 

3. Interior Fluid Boundary Layer 100 100 10 10 
(Equation 5-39) 

4. Exterior Fluid Boundary Layer 400 400 500 500 
(Equation 5-48) 

%,= Total Modeled Resistance: 4700 4600 5600 5500 

Rtot = Total Measured Resistance: 4980 f 120 4630 f 210 6020 f 100 5950 * 140 
(from Figures 5-12 and 5-13) 



6. Aquifer Simulation Experiments 

6.1. Mass Transfer of Organic Solute in an Aquifer 

One of the major goals of this thesis was to demonstrate the effective use 

of the proposed barrier system on a laboratory scale. Related specific objectives 

were to model the lab-scale system mathematically and to discuss applicability of 

models to larger scale systems with different contaminants, soil types, and 

treatment well configurations. All of these require an understanding of organic 

solute mass transfer in an aquifer. This section develops a general framework for 

the evaluation of contaminant transport in an aquifer. Properties of the aquifer 

and con tarninant that are important to transport are discussed as are several 

means of quantifying them. This overview is written with relevance to the 

proposed contaminant barrier system in mind. 

Conservation and Constitutive Equations 

A convection-dispersion model is generally used to describe contaminant 

transport in an aquifer. The model follows from a mass balance on a volume of 

contaminated fluid, V, shown in Figure 6-1 with surface S, normal vector n, and 

concentration C(x,y,z,t) expressed, for example, in rectangular coordinates. The 

mass balance follows: 

where Rv is the volumetric rate of formation of contaminant [g/cm3 s]; and F is 

the net flux of contaminant into volume V [g/cm2 s]. Quantities in bold 



represent vector quantities. Equation 6-1 states that the rate of accumulation of 

contaminant in volume V (left hand term) equals the net rate at which 

con taminant passes into the surface of the volume (first term on right-hand side) 

plus the rate at which contaminant is formed within the volume. Equation 6-1 

may be simplified by using the Gauss-Ostrogradskii Divergence Theorem (Bird 

et al., 1960) which states the following: 

Equation 6-2 becomes the following: 

6-1 : Volume of C-ed Fluid in a Rectanm- 



By allowing the volume to become differentially small, we obtain: 

The flux is generally expressed as follows: 

where u is velocity vector [cm/s]; and D, a function of position, is the dispersion 

coefficient to be discussed in more detail later. Equation 6-5 assumes that the 

conductive (Cu) and dispersive (DVC) parts of the flux can be separated. 

At this point, it is convenient to assume that density is constant 

throughout the volume. Most organic contaminants have low solubiity (ppm or 

less) in water, although the concentrations may be toxic at these low levels (i.e. 

endrine, lindane, and toxaphene) (Freeze and Cherry, 1979). Thus, the density of 

the contaminated water is generally very close to the density of pure water, and 

the assumption of constant density throughout the volume is valid. Cases where 

this assumption is invalid include multiphase contaminated aquifer systems and 

cases where temperature gradient is significant. The focus of this thesis is 

modeling contaminant transport in a single aqueous phase through the porous 

network of an isothermal aquifer, so the assumption of constant density is valid. 

We can thus apply the equation of continuity for an incompressible fluid of 

constant density: 



Substituting equation 6-5 into 6-4, we obtain: 

Simplifying using Equation 6-6: 

In all aquifer simulation experiments in this work, there is no variation in the z- 

direction; therefore, we may neglect the z-terms in Equation 6-8. Expressing 

Equation 6-8 for a 2-D rectangular coordinate system, we obtain: 

ac ac a c a  ac a ac -+u-+ uT=+D-) +4Dy- - )+  RV 
at ax ay a x  ax a y  a~ 

where Dx is the dispersion coefficient in the x-direction [cmZ/s]; Dy is the 

dispersion coefficient in the y-direction [cm2/s]; ux is the groundwater seepage 

velocity in the x-direction [cm/s]; and uy is the groundwater seepage velocity in 

the ydirection. All of the dispersion coefficient and velocity terms can be 

functions of position in the x- and y-directions as used in this equation Variation 

of any parameter in the z-direction is not accounted for in Equation 6-9. In 

aquifers made up of layers of varying permeability, the simplification of the 

problem from three to two spatial dimensions may not be justified. In many 

instances, Equation 6-9 may be simplified by assuming that D, and 4, are 

constants throughout the domain being modeled. Using this assumption we 

obtain the 2-D dispersion-convection equation for the continuous aqueous phase: 



Retardation Term 

The reaction term Rv in Equation 6-10 may be used to account for 

disappearance of contaminant from the aqueous phase by reaction to form 

another species, or it may be used to account for the transfer of contaminant out 

of the aqueous phase and onto the solid phase of the aquifer. For most 

contaminated aquifers of interest, the latter use of Rv is more important. This 

transfer of organic contaminant from the aqueous to the solid phase is called 

adsorption. Adsorption can be characterized by using a linear equilibrium 

adsorption isotherm for the partitioning of the contaminant between the aqueous 

phase and the solid material of the aquifer (Ball and Roberts, 1991). First, assume 

an equilibrium exists such that the following relation holds (Carberry, 1976): 

Kd = s = constant 
C (6-11) 

where Kd is the solid-liquid contaminant partition coefficient [cm3/g]; S is the 

mass of contaminant adsorbed to aquifer solids per mass of aquifer solids [g/g]; 

and C is the mass of contaminant in the aqueous phase per unit volume of the 

aquifer aqueous phase [g/cm3]. The aquifer properties bulk density, pb, and 

porosity, n, are defined as follows: 

mass of aquifer solids 
Pb =bulk volume of aquifer 



volume of aquifer pores n =  
bulk volume of aquifer 

Therefore, we can write: 

Pb-- 
'ii-- volume of solution 

We wish to define Rv, the term in Equation 6-10, as the rate at which mass leaves 

the aqueous phase and enters the solid phase by adsorption per volume of 

aquifer solution. In terms of o w  variables: 

Bulk density and porosity are assumed constant with time. Using Equation 6-11 

to write solid-phase-based concentration S in terms of aqueous-phase-based 

concentration C, the following is obtained: 

Substituting this expression into Equation 6-10 for Rv: 

The retardation coefficient, &, may be defined as follows: 



In using this term in Equation 6-17, it has been assumed that the equilibrium of 

contaminant between the aqueous and solid phases is maintained at all times, 

and that this equilibrium may be expressed in terms of a constant solid-liquid 

partition coeffiaent as given in Equation 6-11 over the complete range of 

concentrations encountered in the aquifer domain. This assumption becomes 

increasingly good for aquifers with slower groundwater flow, since more time is 

available for an adsorptive equilibrium to be reached. 

Solid-Liquid Partition Coefficient 

There is work in the literature which describes methods of estimating 

values of Kd for contaminants of interest given various aquifer soil properties 

(Lion et al., 1990). However, due to the complexity of some soil compositions, 

the most reliable determination of Kd for a particular soilsolute system is by 

experimental measurement. It is important, too, to note that values of Kd may 

vary spatially in a real aquifer due to nonhomogeneity of the soil material (Bakr 

et al., 1978). 

It is well-known that hydrophobic organic contaminants in aquifers 

partition preferentially onto the organic (as opposed to the inorganic) portions of 

the solid material in contact with the solution (Freeze and Cherry, 1979). More 

specifically, for aquifer materials whose organic matter fraction, f,, is greater 

than 0.002, it is generally assumed partitioning of nonpolar organic solutes 

occurs primarily on the organic portion of the soil (Karickoff et al., 1984 and 

Schwarzenbach and Westal, 1981). Empirical relationships have been developed 

to describe solute partitioning between soil and aqueous solutions in terms of the 

solute's preference for dissolving in nonpolar organic solvents rather than in 



water. This preference is reflected in the solute's octanol-water partition 

coefficient, &. Values of &, have been determined for many organic solutes. 

The relationship between Kd and K,,, for a given class of solutes often takes the 

following form: 

log Kd = log f,, + a log'&,w + b (6-19) 

where mass ; a and b are empirically- 
mass solute in water / volume water 

determined constants; and fom is the fraction organic matter of the aquifer. 

Dispersion Coefficients 

Much work has been done to derive useful expressions for the 

determination of aquifer dispersion coefficients (i.e. Hatton and Lightfoot, 1982; 

Freeze and Cherry, 1979; Bear, 1972; and Houghton and Hatton, 1989). 

Dispersion coefficients for solute transport in porous media are commonly 

expressed as empirical functions of velocity as follows: 

where Q and Dt are longitudinal and transverse dispersion coefficients, 

respectively [an2/s]; a1 and at are longitudinal and transverse dispersivities, 

respectively [an]; ul is unidirectional groundwater velocity [an/s]; and D* is 

solute molecular diffusion coefficient [an2/s]. For most groundwater velocities, 

the velocity-dependent terms on the right of Equations 6-20 and 6-21 dominate 



the molecular diffusion coefficient. Thus, charaterization of the dispersivity 

parameters, a1 and at, above becomes primary to the determination of the 

dispersion coefficient. 

The dispersivity is a function of pore and particle size scales, orientation, 

and the type of geological material in an aquifer. The value for dispersivity may 

vary up to five orders of magnitude depending on the scale upon which the 

measurement is based. However, care must be taken in using the large so-called 

"maaodispersivities" as they often do not represent true mechanical dispersion. 

On a lab-scale, small values of dispersivity are obtained - in general, on the 

order of 0.1 to lcm (Freeze and Cherry, 1979). Measured values of dispersivity in 

the tank experiments of this thesis fall in this range. Even in full-scale 

application, the dispersivities on a well-diameter scale should be used in 

modeling - and these values should be near labscale values. On a scale 

representative of field dispersivity measurements (test wells from 4 to 100 meters 

apart), dispersivities from a few centimeters to hundreds of meters may be 

obtained (Anderson, 1979). Inadequate sampling techniques for dispersivity 

measurement in stratified aquifers may yield exaggerated dispersivity values 

(Hatton and Lightfoot, 1984). For example, if the variation of groundwater 

velocity with aquifer depth is not considered, well tests which average solute 

concentration along the depth of the well would wrongly attribute convection 

variations to longitudinal dispersion. This exaggerated "dispersion" effect has 

been demonstrated for stratified aquifers (Gelhar et al., 1979). 

Transverse dispersivity is smaller in magnitude than longitudinal 

dispersivity, and the difference between their values inaeases with inaeasing 

groundwater seepage velocity. Lab-scale values for q as functions of seepage 



velocity through porous media are given in the literature (Grane and Gardner, 

1961). These can be used to estimate at given a measured a1 for a particular lab- 

scale aquifer system. 

Porosity 

Porosity, n, is a dimensionless property defined as the ratio of the void 

space volume to the bulk volume of the porous medium. It gives a measurement 

of the relative volumes occupied by the solid and aqueous phases of the aquifer. 

There are direct and indirect methods of measuring porosity, including the 

mercury injection and gas expansion methods. Depending on the matrix 

material, values for porosity generally vary from 10 to 80% (Bear, 1972). 

Seepage Velocity 

Groundwater seepage velocity, u, [an/s], can be expressed as a function 

of the hydraulic conductivity, hydraulic gradient, and effective porosity of an 

aquifer. The values of seepage velocity are site-dependent and may vary from 

centimeters per day to meters per day (Codell et al., 1982). 



6.2. Materials for Experiments 

The experiments described in this chapter make use of a lab-scale aquifer 

simulator shown in Figure 6-2. The simulator consists of a glass tank separated 

into sections by glass partitions and stainless steel mesh and filled with Ottawa 

sand and water. Liquid flow through the tank is caused by a height difference in 

the glass partitions at either end of the tank. A sectionbysection description of 

the apparatus follows. 

Figure 6-2: Groundwater Flow Simulator 
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Liquid solutions are introduced to the tank in section 2 of Figure 6-2. 

Overflow from this section spills over the glass partition into section 1, where it is 

continuously siphoned out. In this way, a constant liquid level is maintained in 

section 2. Section 3 is filled with Ottawa sand, supplied by Gilson Company. 

The sand has low organic carbon fraction (f, = 0.00003 f 0.00002 as determined 

by Galbraith Laboratories, Inc., from Leco dry combusion and gas purge of 

aadified suspensions). The Ottawa sand has size distribution such that 100% 

passes a 2-mm sieve and below 3Y0 passes a 0.25-mm sieve. Thus, Ottawa sand is 

good for these experiments since it has very low organic carbon fraction (causing 

less solute retardation) and is well characterized. The sand is saturated with 

liquid and is separated from section 2 by a wall of size 80 mesh stainless steel 

(eighty 0.0055-inch wires per inch) with stitching tight enough to prevent flow of 

sand through it. The glass partitions were sealed to the sides of the tank using 

silicone sealant. The stainlesssteel mesh was sandwiched between thin strips of 

glass sealed to the sides of the tank using silicone sealant. Section 4 is the so- 

called "well" area where the membrane/copolymer system can be inserted. As 

pictured in Figure 6-2, this well area is rectangular and is separated from 

adjacent sections by stainlesssteel mesh. For the 2-D experiment described in 

Section 6.4., the well area is cylindrical. Section 5 of the tank is filled with Ottawa 

sand and is separated from adjacent sections again with stainless-steel 

mesh Sections 6 and 7 do not contain sand; a constant liquid level is maintained 

in section 6 by means of the glass partition separating it from section 7. Overflow 

liquid from section 6 spills into section 7, where it is siphoned out of the tank. 

Flow through the tank is driven by a difference in the glass partition levels 

at the front and the end of the tank. Figure 6-3 shows a schematic diagram of the 



tank where the level in section 2 is represented by hi, and the level in section 6 by 

h~ both of which remain constant with time. 

Firmre 6 - 3: C ~ ~ S & Q K I  of Ground water Row S m  

Since hi = h2 (the difference is about lmm in experiments), there is negligible 

flow in the zdirection (up or down). Darcy's law for unidirectional fluid flow 

through a porous matrix assumed to apply to this low Reynolds number (Re = 

P u D  < 0.001) laminar flow is as follows: 
cl 

where ux is the x-direction longitudinal fluid velocity [cm/s]; k is the porous 

matrix permeability [cmz]; p is the fluid viscosity [g/an s]; P is the fluid 

pressure [g/an s2]; and x is the position on the x-axis [an]. The boundary 

conditions for pressure as a function of y at both x=O and x=L are as follows: 



P(x=O) = ~ g ( h l -  Y) + Pat, (6-23) 

P(x=L) = pg(h2 - Y) + Pat, (6-24) 

where p is the fluid density [g/an3]; g is acceleration due to gravity [an/s*]; 

Pahn is atmospheric air pressure k/an sz]; hi is the water level at x=O [cm]; h2 

is the water level at x=L [an]; and L is the length of the tank [an]. The velocity in 

Equation 6-22 may be solved for given the pressure profile along the tank (from 

x=O to x=L). The conservation equation for flow of an incompressible, 

Newtonian fluid is as follows: 

where u is the fluid velocity vector [cm/s]. This simplifies to the following since 

it has been assumed that there is negligible fluid velocity along tank depth or 

width (u, = 0, uy = 0): 

Substituting the Darcy's law expression (Equation 6-22) for velocity u, into 

Equation 6-26, it follows that 

Integrating Equation 6-27 using conditions 6-23 and 6-24: 



ap pg - = constant = - - (hl - h2) 
ax L 

Substituting into Equation 6-22: 

Thus, liquid flow through the tank should be constant and unidirectional as long 

as the soil matrix is appropriately isotropic (i.e. negligible spatial variation of soil 

permeability). In the case of the rectangular well experiment, the flow will also 

be unidirectional and constant as prescribed by Equation 6-29; however, the 

effective permeability, k, will be greater since the amount of soil in the tank 

between x=O and x=L is less. In the cylindrical well experiment, there will be 

perturbation of flow near the well. The exact flow field solution for this case is 

derived in Section 6.4. 

The aquifer simulator must be kept nearly isothermal since naphthalene 

solubility in water varies with temperature and because we want to have a 

constant density system with no temperature gradients. This is done using a 

constant temperature bath around the tank. The tank in Figure 6-2 is placed in a 

larger tank which is filled with water and surrounded by 2"-thick fiberglass 

insulation The water in the larger tank is kept at a constant temperature by 

means of copper coiling placed around the sides of the large tank through which 

water circulates. The circulating water is maintained at a constant temperature 

by running it through a circulating bath supplied by Neslab Corporation. In this 

manner, temperature variations in the soil tank can be kept low. Figure 6-4 
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shows the temperature at various times and locations in the tank when the 

temperature of the water circulating through the copper tubing is set at 20°C and 

30°C. After six hours, the temperatures in the soil tank vary no more than 0.4OC 

using the 20°C circulating water. Using the 30°C circulating water, the 

temperature variation is about 0.6OC after six hours. The room temperature in 

both cases was about 23OC. The temperature used for al l  aquifer simulator 

experiments was 23.0°C, and at least 24 hours constant-temperature-water 

circulation was allowed before experimentation. Thus, no more than a 0.5OC 

temperature variation is expected throughout the soil tank. 

The tank in Figure 6-2 was covered with plastic wrap, then covered with a 

glass sheet with sampling holes drilled in it. There was also a large hole drilled 

in the glass cover to allow for the insertion of the membrane/copolymer system 

into section 4 of the tank. Liquid samples were drawn from sections 3 and 5 of 

the tank and analyzed by off-line UV-VIS spectrophotometry. 

Fluid from section 2 was saturated with naphthalene by pumping through 

a plastic generation column filled with solid naphthalene and capped with a 

glass frit. Naphthalene (99+% pure) was supplied by Sigma Chemical Company. 

The pumps used in the experiments were teflon-lined piston-diaphragm pumps 

supplied by Cole Parmer Company. All tubing was made of teflon, and tubing 

connections were constructed using brass and stainless-steel Swagelok fittings. 

Fluid from the "well" area, section 4 of Figure 6-2, was arculated through 

the membrane/copolyrner system and naphthalene concentration analyzed by 

on-line UV-VIS spectrophotometry (as discussed in Sections 6.3.1. and 6.4.1. of 



this paper). Both section 2 and section 4 were kept well-mixed either by high 

arculation rates or external mixing via a, teflon-coated mechanical stirrer. 

The membrane/copolymer system used in the tank experiments is exactly 

as described in Chapter 5. Polysulfone ultrafiltration membranes are filled with 

a circulating aqueous solution of N-vinylpyrrolidone/styrene copolymer. A.  in 

Chapter 5, the membranes were potted in a cartridge to enable the separate flow 

of well-mixed fluid both interior and exterior to the membrane tubes. Both 

interior and exterior solutions were well-mixed to simplify mass transfer 

analysis. Solution flowrates were kept below 40 mL/min through the cartridge 

so that the convective transmembrane flux of solute remained negligible to 

diffusive flux as determined by Section 5.3. of this work. Both the interior and 

exterior solutions were analyzed for naphthalene concentration via on-line UV- 

VIS spectrophotometry. 

The basic purpose of the aquifer simulator experiments was to 

demonstrate the removal of naphthalene from water flowing through a lab-scale 

soil matrix by means of the proposed membrane/copolymer system. The 

rectangular well experiment demonstrates the removal of naphthalene from a 

pre-contaminated aquifer. The cylindrical well experiment demonstrates the 

interception of naphthalene from a plume moving through a previously- 

uncontaminated soil matrix. 



6.3. Well-mixed Rectangular Well Experiment 

6.3.1. Experimental Procedure 

The goal of the well-mixed rectangular well experiment was to 

demonstrate and model the removal of naphthalene from a pre-contaminated lab- 

scale aquifer with a constant contaminant source using the proposed 

membrane/copolymer system. Figure 6-2 shows the soil tank set-up used in the 

rectangular well experiment. The entire tank was filled with distilled water and 

flow was initiated through the tank by maintaining constant water levels in 

sections 2 and 6 such that the level in section 2 was slightly above (by about 

0.1 an) the level of section 6. The overall flowrate through the tank was 0.419 

an3/s, and remained constant throughout the experiment. This was the lowest 

flowrate practically obtainable from the given tank system. The seepage velocity 

of the water through the soil corresponding to this volumetric flowrate was 4.0 

an/hr. This is fast for a groundwater flowrate (about 1 m/day) - most seepage 

flowrates vary from a few centimeters per day up to several meters per day 

(Codell et al., 1982). Thus, system efficiency should be higher in actual aquifers, 

where the groundwater flowrates may be much less than this experimental 

flowrate. 

The tank was kept at 23.0°C by means of the insulated constant 

temperature bath described in Section 6.2. The temperature bath was allowed to 

operate 12 hours before the experiment to allow for temperature equilibration 

The liquid in section 2 was continuously saturated with naphthalene by pumping 

through a column filled with solid naphthalene. The naphthalene concentration 

of the section 2 fluid was determined by on-line W-VIS spectrophotometry 



absorbance readings at 276-nm wavelength. The concentration in section 2 was 

monitored, and remained at a constant saturated level .after about thirty minutes 

of initial pumpthrough. The plume of naphthalene moved essentially 

unidirectionally through the simulated aquifer. The concentration of the well 

section, section 4 of Figure 6-2, was then monitored via on-line absorbance 

readings. The well concentration increased to saturation as the naphthalene 

plume reached the well. The membrane/copolymer system was placed in the 

well prior to the naphthalene saturation of the well, but copolymer solution had 

not been circulated through the interior of the membrane tubes. This allowed for 

the naphthalene to adsorb to all materials in the well area before the 

experimental run began. Any measured decrease, then, in the measured well . 

concentration after the interior copolymer solution began circulating through the 

membrane would be due to naphthalene transport through the membrane into 

the copolymer solution, not adsorption onto a surface newly-introduced to the 

well fluid. Figure 6-5 shows the naphthalene concentration of the well solution 

as a function of time before copolymer solution was introduced to the membrane 

interior. 

Figure 6-6 is a schematic diagram of the membrane/copolymer apparatus 

placed in section 4 of the tank. Fluid from the mixed well was circulated exterior 

to the membrane tubes by flowing up through a hole in the end cap which 

extended down into the rectangular well. Circulation of NVPS copolymer 

solution through the interior of the tubes was begun after the exterior solution 

(from the well) had become sufficiently saturated with naphthalene and its 

concentration was stable. The interior solution was circulated to and from a 200- 

mL reservoir beaker. The concentration of the well solution was monitored as a 



Fieure 6-5: Na~hthalene Concentration of Well Before Co~olvmer Inuoduction 
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function of time, where time zero was defined as the time that the copolymer 

solution was introduced to the membrane interior. The decrease in well 

concentration demonstrates the transport of naphthalene out of the exterior 

solution and into the interior solution, and hence, the concept of passive 

remediation using the membrane copolymer system for this application. These 

data are shown and analyzed in Section 6.3.3. We now wish to model the 

decrease in well concentration so that the analysis of the experimental results can 

be extended to other aquifer remediation situations with more realistic (i.e. 

lower) groundwater flowrates. 

6.3.2. Model Development 

This section describes a theoretical model for the concentrationof the well 

(section 4 of Figure 6-2) as a function of time in the rectangular well experiment. 

T i e  zero for the experiment is defined as the time at which circulation of the 

NVPS copolymer solution is begun through the interior of the membrane tubes. 

Prior to this time the entire tank was saturated with naphthalene such that all 

aqueous samples had a constant measured naphthalene concentration of 

31 mg/L, the saturated naphthalene concentration maintained in section 2 of the 

tank. Any deaease in naphthalene concentration of the well fluid is due to 

transport of naphthalene into the copolymer solution Both the well solution and 

the interior copolymer solution are well-mixed (justified by agreement within 1% 

of absorbance measurements of solution samples taken from different locations 

throughout the well). Therefore, the concentrations being modeled will be 

functions of time only. Transmembrane transport is assumed to be aqueous- 

phase Fidcian molecular diffusion as concluded from the Chapter 5 experiments. 



The governing equations for naphthalene concentration in the well region consist 

of two mass balances - one on the membrane interior solution and one on the 

well solution itseIf: 

Membrane Tube Interior Mass Balance: 

dC NA vW = Q (Co - C w q )  - (Cwei~ - Cint,aq) 
tot 

(6-31) 

where Vt is the membrane tube interior volume [cm3]; Vw is the well volume 

[a$]; At is the membrane tube surface area [ d l ;  Rbt is the overall membrane 

tube resistance [s/cm]; M is the polymer to water mass ratio (in copolymer 

solution) [g/g]; Kpw is the polymer-water partition coefficient of solute 

[dimensionless]; Q is the fluid flow rate into the well [cm3/s]; N is the number 

of membrane tubes; C, is the solute concentration of fluid entering the well 

[g/an3]; Chwq is the interior aqueous pseudophase solute concentration 

[g/an3]; and Cweu is the solute concentration of the well fluid [g/cm3]. The 

initial conditions are as follows: 



Equation 6-30 states that the net accumulation of solute in the aqueous 

pseudophase of the interior copolymer solution is equal to the net transport into 

the tube from the well fluid (via transmembrane diffusion) minus the transport 

of solute into the copolymer pseudophase of the interior copolymer solution. 

This latter transport term, derived in Chapter 5, accounts for the equilibrium of 

solute between the aqueous and copolymer pseudophases of the interior 

solution Equation 6-31 states that the net accumulation of solute in the well 

equals the net flux of solute into the well minus the flux of solute into the 

membrane tubes. The solution flowing into the well is at constant, saturated 

solute concentration, Cat. Initially, the well is saturated with solute up to its ' 

solubility limit, Cat. Also, the solution interior to the membrane is initially free 

of solute. The solution using Equations 6-30 to 6-33 is as follows: 

NA where a =-. AtV 
Q R ~ O ~  I ' =QR,,v,(I ~MK,) '  

A  plot of Equation 6-34 versus time using hypothetical inputs permits a 

better understanding of the model solution. Figure 6-7 shows plots of solute 

concentration for a hypothetical treatment well with the given parameter inputs 

(note logarithmic time scale). The solution flowing into the well is at the solute's 

saturated concentration Cmb and the well concentration is initially also equal to 

Cat. As solute transport procedes into the copolymer solution, the solute 
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concentration of the well decreases. The initial modeled decrease in well 

concentration (seen in Figure 6-7) depends on the magnitude of the resistance to 

solute mass transfer posed by the membrane. The eventual increase in well 

concentration back up to the solute concentration of incoming solution is caused 

by the loading of solute in the copolymer pseudophase of the interior solution 

The aqueous pseudophase solute concentration increases, and so the driving 

force for transport into the membrane, the quantity - Cintfiq), diminishes 

eventually to zero. Figure 6-7 shows the well concentration of two solutes - 
naphthalene and phenanthrene. Data from Chapters 4 and 5 of this work was 

used as input; namely the solute-NVPS partition coefficients and the overall 

membrane tube resistances to solute molecular diffusion In the naphthalene 



contamination case, the rate of solute concentration decrease in the well is 

slightly greater than in the phenanthrene contamination case. This is due to the 

slightly higher diffusivity (lower Rwt) of naphthalene through the membrane 

pores. The increasing part of the w e  in Figure 6-7 is primarily governed by the 

solute-copolymer coeffiaent, Kp,. The partition coefficient of the copolymer, 

IWPS, is much higher for phenanthrene than naphthalene solute, so the low 

interior solution solute concentration, and hence the transmembrane diffusion 

driving force, lasts longer. 

The flowrate through the well used in Figure 6-7 would correspond to a 

seepage velocity of 5 un/day through a rectangular well 8-inches long in an 

aquifer of 50% porosity. The membrane/copolymer system used in this well is 

modeled as a 1-inch diameter bundle of polysulfone membrane tubes, each of 1- 

mm diameter. The copolymer solution in the tubes is modeled as having an 

NVPS to water weight ratio of 0.20. The resistance to molecular diffusive mass 

transfer is as determined from the Chapter 5 experiments with naphthalene and 

phenanthrene, and the polymer-water partition coefficients used are as 

determined in Chapter 4 of this work. Figure 6-7 shows that the system would 

effectively reduce the solute concentration of the well solution to about 6% of the 

incoming concentration given the above inputs. The copolymer solution would 

have to be replaced approximately qvery 20 m 30 days for the case of 

phenanthrene contamination to provide sustained decrease in solute 

concentration. However, a higher Rbt may be realized in actual system 

application using these membranes if the copolymer solution and well solution 

are not circulated; thus, the decrease in well concentration may not be as 

pronounced as modeled. More pronounced decreases may be realized by 

increasing the amount of membrane tubes in the well, or by reducing the 



diffusive resistance of the membrane tubes. This could be done by using tubes 

with thinner support structure layers. 

6.3.3. Comparison of Experimental Results with Model Simulations 

Figure 6-8 shows the experimental results of the well-mixed rectangular 

well experiment. The naphthalene concentration of the well solution is plotted as 

a function of time elapsed from the introduction of copolymer solution to the 

membrane tube interior. The well concentration decreases as naphthalene 

diffuses into the copolymer solution. As described earlier, no other cause for the 

disappearance of naphthalene from the well solution was possible in this 

experimental set-up. The decrease in well solution concentration is not as great 

as in the hypothetical model of Figure 6-7. This is due to the much higher 

flowrate used in the experimental run (Figure 6-8). 

Figure 6-8 shows predicted well concentrations using Equation 6-34 and 

given experimental inputs. Using the experimentally-determined membrane 

diffusive resistance from Chapter 5, Rbt = 5000 s/an, the model predicts a bigger 

concentration decrease than was seen experimentally. The data are more closely 

predicted using an Rbt between 15,000 and 20,000 s / an  in the Equation 6-34 

model. This is probably due to the transient desorption of naphthalene adsorbed 

to the solid surfaces in the well. The well was saturated with naphthalene for 

about 100 hours before introduction of the copolymer solution to the membrane 

interior. The well solution concentration had stabilized, and had come to 

adsorptive equilibrium with all surfaces in contact with it. As the well 

concentation decreased after copolymer solution was introduced, some of the 



adsorbed naphthalene desorbed back into the solution, thus dampening the 

expected decrease in the well solution's naphthalene concentration This 

desorption effect is not a factor in the 2-D *ndrical well experiment since the 

tank is initially uncontaminated when copolymer solution is introduced at time 

zero. 

&re 6-8: Rectangular Well Ex~eriment -- Na~hthalene Concentration of Well Fluid 
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6.4. Well-mixed Cylindrical Well 2-D Experiment 

6.4.1. Experimental Procedure 

The 2-D cylindrical well experiment was designed to demonstrate the 

ability of the system to intercept an encroaching plume of naphthalene solute 

from a cylindrical well. The experiment differs from the rectangular well 

experiment in that the plume leaving the well is a function of position in two 

dimensions - length and width. Another difference is that initially, the tank is 

free of naphthalene in the 2-D experiment. The same copolymer/membrane 

system is used in the two experiments, as are the naphthalene saturation column 

and naphthalene concentration measurement systems. 

Figure 6-9 is a schematic diagram of the proposed experiment. The tank 

shown in Figure 6-2 is used in the 2-D experiment; however, the rectangular well 

(section 4) has been replaced with a cylindrical well 2-inches in diameter. Figure 

6-9 depicts overhead views of the tank at various stages of the experiment. The 

tank is filled with clean Ottawa sand of the same size distribution described in 

Section 6.3. Initially, the concentration of naphthalene is zero throughout the 

tank. A constant flow of saturated naphthalene solution begins travelling toward 

the well. This solution comes from section 2 of the tank (Figure 6-2) and is kept 

at naphthalene's saturated concentration in water, CSt, by means of circulation 

through a column filled with solid naphthalene. 

At time t=t2 (Figure 6-9), the naphthalene solution reaches the mixed well, 

and naphthalene begins to be filtered by the membrane/copolymer system. 

Note the streamlines in Figure 6-9 are bent inward toward the well. This is due 
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to the lower permeability of the well region with respect to the surrounding soil. 

An exact solution for this flow field is derived in the next section 

At time t=t3 (Figure 6-9), a plume of partially filtered naphthalene solution 

leaves the well area. On either side of this plume is solution of higher 

naphthalene concentration which has not passed directly through the treatment 

well. The shape of this 2-D concentration plume will depend on system 

parameters, such as membrane resistance and copolymer-water partition 

coefficient, as well as soil matrix properties such as dispersion coefficient and 

seepage velocity. 

The 2-D run was conducted under the following experimental conditions: 

1. Well volume, Vw = 573.4 an3 

2. Interior solution volume per tube, Vt = 0.67 an3 

3. Seepage velocity, u,= 0.001038 an/s  

4. Overall volumetric flowrate through the tank, Q = 0.333 cm3/s 

5. Soil porosity, n = 0.38 

6. Interior solution polymer to water mass ratio, M = 0.00362 

7. Napthalene's -water partition coefficient, Kpw = 2420 

8. Surface area per tube, At = 2.06 ap2 

9. Number of tubes, N=308 

Both the aqueous solution in the well and the interior copolymer solution were 

assumed to be well-mixed, justified by absorbance measurements of solution at 

various locations. Note that the well volume in this experiment was considerably 

less than the well volume in the rectangular well experiment, while the 



membrane system remained identical; so there are bigger concentration 

decreases of the well solution in the 2-D experiment. 

6.4.2. Model Development 

The goals of the 2-D cylindrical well experiment were to experimentally 

demonstrate the decreased concentration plume of solute leaving a 

membrane/copolymer system treatment well, to model the well's naphthalene 

concentration as a function of time, and to model the plume profile as a function 

of length, width, and time. The models can then be extended to predict system 

performance with realscale contaminated aquifers. 

Modeling conditions and parameters are shown in Figure 6-10. The 

modeling scheme is divided into two parts. First, the well concentration, Cwell(t), 

is modeled analytically as a function of time given an experimentallydetermined 

functional form for incoming fluid concentration C,(t). Secondly, the 

naphthalene concentration of the region behind the &ell is solved for numerically 

using Cwell(t) and Co(t) as boundary conditions. 

The concentration of the solution outside the well at x=O, C,(t), is obtained 

by off-line absorbance measurements taken at various times. This concentration 

increases from zero and asymptotically approaches CSb the saturated 

concentration of naphthalene in water, as the concentration front moves past x=O. 

The rate at which this inaease occurs depends upon both the mechanical 

dispersion of solute in the x-direction and the retardation of solute by adsorption 

onto the soil surfaces. An empirical expression for the increase in G(t )  with time 
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is determined by a fit of the experimental data. This is shown in Figure 6-11. The 

concentration profile of the plume before it reaches the well is a function of 

length only, not width. Such a profile was used to determine the x-direction 

dispersion coefficient, D, and retardation coefficient, &, for the lab-scale aquifer 

as will be discussed later. 

There are two assumptions that are made implicitly by using Co(t) as a 

function of time only, and not a function of position along the width of the tank. 

One is that the soil matrix is sufficiently isotropic such that flow is unidirectional 

and retardationeffects are the same along the width of the tank. The second 

assumption is that there is no back-mixing of the fluid from the treatment well. 

Both assumptions are justified experimentally, and their implications on a scale 

analysis of the problem are explained further in the next section 

Next, the empirical functional form of Co(t) is used as an input in 

determining the concentration of the well-mixed cylindrical well. The mixed 

well solute concentration model is similar to the model defined in Equations 6-30 

to 6-33 for the rectangular well experiment, but with important differences. One 

of the differences is that here, the naphthalene concentration of fluid entering the 

well, Co(t), is a function of time. Co(t) increases from zero up to Csat; it does not 

begin and stay at CWt as in the rectangular well experiment. Another difference 

is that the initial concentration of the well and membrane interior solutions are 

zero. Time zero in the model below is defined as the time at which naphthalene 

just reaches the well at x=O. The governing equations and initial conditions for 

the 2-D experiment are as follows: 



rane Tube Interior Mass B a l a w  

where Vt is the membrane tube interior volume [ad]; Vw is the well volume 

[ans]; At = membrane tube surface area [cm2]; Rt,t is the overall membrane tube 

resistance [s/cm]; M is the polymer to water mass ratio (of the copolymer 

solution) [g/g]; Kp, is the polymer-water partition coefficient of the solute 

[dimensionless]; Q is the fluid flow rate into the well [cm3/s]; N is the number 

of membrane tubes; Co(t) is the solute concentration of fluid entering the well 

[g/an3]; ChMq is the interior aqueous-pseudophase solute concentration 

[g/cm3]; and Cwell is the well fluid solute concentration [g/an3]. The solution 

defined by Equations 6-35 to 6-38 is shown below: 

where the parameters are defined as follows: 



So the naphthalene concentration in the well eventually increases to the saturated 

concentration of naphthalene in water. How fast this occurs is a function of rate 

of naphthalene transport into the well, rate of transport into the copolymer 

solution, and the naphthalene loading capaaty on the NVPS copolymer. 

Initially, the well naphthalene concentration is zero. 

Now we have an analytical expression for well-mixed well concentration 

as a function of time given the incoming fluid concentration &(t) and 

experimental input parameters. The expressions for G(t) and C,,ll(t) are used 

as boundary conditions in the governing equation for naphthalene concentration 

in the tank beyond the well at x=O. The governing equation has as its domain the . 
area defined by the following, shown in Figure 6-10: 



The governing equation for solute transport through this assumed isotropic 

domain is as follows: 

where u~(x,Y) is the i component of velocity [cm/s]; Di is the dispersion 

coefficient in the i direction [cmZ/s]; IGj is the solute soil-water partition 

coefficient [(g/g)/(g/mL)]; pb is the soil bulk density [g/cm3]; n is the aquifer 

porosity [dimensionless]; and C is solute concentration of aqueous solution in 

the domain, a function of x, y, and t [g/cm3]. Equation 6-41 was derived in 

Section 6.1. The boundary and initial conditions that apply for the problem are 

as follows: 

C(t) is known along x=O (6-45) 

C(x,y) = 0 at t=O for all x, y (6-46) 

The first two conditions dictate no flux across the tank walls. Condition 6-44 is 

the Danckwerts boundary condition (Danckwerts, 1953) for flow out of a porous 

medium. Condition 6-45 is the real driving force for solute entrance into the 



domain of the problem. Solute concentration is Co(t) along the dotted boundary 

in Figure 6-10 and Cwe~(t) along the edge of the well. Co(t) was determined in 

functional form from direct measurement, and Cwell(t) was solved for 

analytically from Equation 6-39. Condition 6-46 is the initial condition for all 

points throughout the soil matrix domain. 

Since the solute concentrations at all domain points and times in the 

experiment are low (below 31 ppm), the aqueous density throughout the 

experiment is approximately constant. Therefore, the flow field can be solved for 

separately from the concentration problem shown above. The x- and y- 

components of velocity obtained from the flow field solution are used in the 

solution to Equation 6-41. The well-known solution for fluid flow through a non- 

pumped well under natural hydraulic head can be derived as follows. Figure 

6-12 shows an overhead view of a well in a surrounding soil matrix. It is 

assumed Darcy's law applies both in the well (Domain I) and outside the well 

(Domain 11) such that: 

where q~ is the velocity field outside the well [cm/s]; qn is the velocity field in 

the well [an/s]; TI and Tn are the transmissivities of domains I and 11, 

respectively [cm2/s]; andVh is the gradient of hydraulic head (equal for both 

domains [an-l]. The conservation of mass states: 

a~ -+ V. (pnq) = 0 
at 
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which applies for both q~ and qn. Since density, p, and porosity, n, are constant, 

Equation 6-49 reduces to the following. 

Substituting equations 6-47 and 6-48 into Equation 6-50 yields Laplace's equation 

for hydraulic head: 

This is solved here using a cylindrical coordinate system (r, $1. Boundary 

conditions for both Domains I and II are finiteness of hydraulic head at r = 0 and 

as r +oo. Also, the flowrate is known far from the well (constant and 

unidirectional as shown in Figure 613). Equation 6-51 is solved using these 

boundary conditions for each of the two domains. The following assumption is 

made in the solution: 

This states the traNrnissivity of the well area of Domain I1 (where there is no 

soil-posed resistance) is much greater than the transmissivity of the soil are of 

Domain I (where soil-posed resistance is substantial). The resulting solution for 

velocity field outside the well is as follows: 



where R is the radius of the well [cm]; q, is the unidirectional velocity far from 

the well; and e, and e+ are unit vectors in a cylindrical coordinate system. The 

streamfunction for this flow field is as follows: 

Streamlines obtained from Equation 6-54 are shown in Figure 6-12. It is clear 

from the figure that all streamlines up to a distance of twice well radius from the 

center of the well pass through the well. In other words, a region of width twice 

the diameter of the well is intercepted by the well. Values of u, and uy can be 

obtained from Equation 6-54 by converting to a rectangular coordinate system: 

Note that this is valid for a rectangular coordinate system whose origin is at the 

center ofthe well. 

It is important to note that the simulator tank walls have negligible effect 

on the flow field solution in this experiment. Equation 6-54 yields the distortion 

length (maximum distance a streamline bends toward the well) of a streamline at 

a distance r directly beneath or above the well, given by the following: 



where h is the distortion length [an]. Thus, for the tank of half-width 6 and 

well radius I", the distortion length at the tank wall is less than 1/6.  

At this point, we are ready to solve Equation 6-41 numerically over the 

domain shown in Figure 6-10. An explicit finite difference procedure was used 

for the solution. First, a mesh is designed for the 2-D domain. The mesh sizing 

and time step interval are chosen such that a stable, convergent solution is 

achieved. The partial derivatives in Equation 6-41 are approximated by the 

centered and forward difference equations below: 

where Ci(m) is the solute concentration at node i and time step m [g/cm3]; 

CN$,E,W(~) is the solute concentration at nodes directly north, south, east, and 

west of position i [g/an3]; h is the time interval A t  [s]; k is the xdirection spatial 



interval Ax [cm]; and 1 is the y-direction spatial interval Ay [an]. Substitution of 

Equations 6-58 to 6-62 into Equation 6-41 yields the following explicit finite 

difference equation for concentration at node i: 

Pb where retardation coefficient Rd = 1 + Kd [dimensionless]; D, and Dy are . 
assumed constants throughout the solution domain, and vx and vy are evaluated 

at each node i. The approximation error of Equation 6-63 tends to zero in the 

limit as time and space intervals - h, k, and 1 - go to zero. The time 

discretization must be chosen with regard to the spatial discretization to prevent 

an unstable solution. The time interval is chosen such that: 

for the solution to be numerically stable. The grid Peclet number gives the 

maximum allowable choice of spatial inteval size for a diffusion-convection 

problem (Price et al., 1965). For an evenly-spaced 2-D grid, this condition is as 

follows: 

where Pe - % k* = k; 
g- D, L 

and L is the domain length [a]. 



Conditions 6-64 and 6-65 are met by the disaetizations used in the Equation 6-63 

numerical solution. Time interval convergence tests for modeling the 2-D 

experiment were performed and are detailed in Section 6.4.4. They show that 

time intervals chosen for all model outputs yield stable, convergent solutions. 

Decreasing the spatial node points in the half-domain from 12,553 to just over 

7000 nodes resulted only in a 0.2% average change in the solution using base case 

inputs (see Section 6.4.4.), so it was concluded spatial discretizaton is small 

enough to represent a convergent solution for all modeled cases. The code for 

the finite difference solution is listed in Appendix C. 

6.4.3. Scale Analysis 

Before discussing simulations using the 2-D model, it is helpful to see 

what a scale analysis of the experimental problem tells about the expected 

solutions. First of all, Peclet numbers are defined for the problem as follows: 

pex = Lux 
Dx 

where L is the characteristic length for the problem (here, the diameter of the 

well - 2 inches) [cm]; u, is the unidirectional seepage velocity far from the well 

[cm/s]; Dx is the dispersion coefficient in the xdirection [an2/s]; and %is the 

dispersion coeffiaent in the y-direction [cmZ/s]. ' 



Values of D, and Dy for the experiment model were estimated as follows. 

The profile of naphthalene concentration as a function of position along the x- 

axis before the naphthalene reached the well area is, shown in Figure 6-13. The 

elapsed time is 102 minutes and the position x given indicates distance from the 

start of the soil matrix. Concentration measurements were made using off-line 

W-VIS spectrophotometry and the accuracy of the measurements are indicated 

by the error bars. Samples could not be taken any closer together because of 

possible mixing, as a full milliliter of extracted fluid was needed for each 

concentration measurement. All samples were taken at equivalent depths. 

figure 6-13: Naphthalene Concentration Front Profile to Derive Disperslv,tv . . D, 
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The well-known solution for a concentration front moving through a porous 

medium is as follows (Freeze and Cherry, 1979): 

= 0.5 erf (h) 
Csat 14Dxt 

where û  is the effective solute seepage velocity ( =.%) [an/s]; ux is the 
Rd 

unidirectional fluid seepage velocity [an/s]; & is the retardation coefficient 

[dimensionless]; x is the distance from solute entrance [an]; and t is the time 

from introduction of constant concentration front to the porous medium at x=O 

[s]. This equation is fitted to the data in Figure 6-13. An  accurate value for 

retardation coefficient was determined by dividing actual seepage velocity by the 

apparent solute velocity$, which is equal to the position x where C/Cat equals 

0.5 divided by the elapsed time at which the profile was measured. For this 

experiment, &=1.4. Using the model for the x-diiection dispersion coefficient 

derived in Section 6.1., D, is defined by the following: 

where D* is the molecular difision coefficient for solute in water [an*/s]; ax is the 

dispersivity in the x-direction [an]; and ux is the unidirectional seepage velocity. 

If this form for Dx (constant in this experiment) is adopted, the dispersivity 

determined by the curve fit in Figure 6-13 is a, = 0.38 c a  The molecular diffusion 

coefficient is negligible to the first right-hand-side term in Equation 6-20. The 

value of dispersivity is in the normal range for this kind of sand (Freeze and 

Cherry,1979, report a range of ax from 1 to 10mm). The accuracy of the fit in 

Figure 6-13 is somewhat limited by the number and accuracy of data points used. 



It will be shown, however, that the exact value of the x-direction dispersivity is 

not critical to the solution of Equation 6-41. 

The value of Dy in this experiment was approximated using a correlation 

between D, and Dy for soil of various porosities as a function of seepage velocity 

ux (Grane and Gardner, 1961). For a medium of porosity 41% (0.25mm glass 

beads) at ux = 0.001 cm/s, the following relationship was obtained: 

For a medium of porosity 21.7% (Berea sandstone) at u, = 0.001 cm/s, the 

following relationship held: 

Both Equations 6-68 and 6-69 were used in the model for Equation 6-41, with 

very similar results, as will be shown Since the soil used in the 2-D cylindrical 

well experiment has 38% porosity, Equation 6-68 will be used as an 

approximation for 4, in the remainder of this section. 

From Equations 6-66 and 6-67, the Peclet numbers for the 2-D experiment 

can be estimated: 

Pe, = 13 (6-70) 

Pey = 25 05-71] 

The Peclet number gives information about the nature of the dispersion- 

convection problem. Most importantly, for the condition of our experiment, 



convection of solute in the x-direction is a much more dominant transport 

mechanism that dispersion in either the xdirection or y-direction. Thus, the 

solution of Equation 6-41 will not be particularly sensitive to values of 

dispersivity in either the x- or ydirection. The solution of Equation 6-41 will, 

however, be sensitive to the flow field solution given by Equations 6-55 and 6-56. 

Thus, we can expect the width of fluid affected by the treatment well to be about 

twice the diameter of the well. This is supported by the 2-D model results in the 

next section 

The assumption that there is no backmixing of the fluid from the 

treatment well to the region behind the well is related to the Peclet number 

analysis above. Experimental measurements of the concentrations just behind 

the well agreed with the concentrations along x=O away from the well (Fi'igure 

6-10) within 5%, which is below the error estimate of off-line measurements 

(about 8%). This could be predicted from Equation 6-70; for this experiment, 

convective flux dominates dispersive flux in the porous medium, so backmixing 

of well fluid does not occur. 

6.4.4. Comparison of Results with Model 

The steps followed thus far to model the 2-D cylindrical well are 

summarized here. F i t ,  C,(t) was determined by experimental measurement 

and was fitted by an empirical function (Figure 6-11). The naphthalene 

concentration of the well-mixed well was measured as a function of time and is 

plotted in Figure 6-14. The analytical model for well concentration given by 
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Equation 6-39 using experimental inputs (Figure 6-16) is also shown in Figure 

6-14. The model predicts the experimental well concentration within about 

0.1Csat. 

A sensitivity analysis was conducted on the inputs used in the model, 

Equation 6-39. Curve fits of the data by artificially varying input parameters are 

shown in Figure 6-15. Figure 6-15 shows how much the input parameters must 

be changed to obtain a close fit of the experimental data. Membrane resistance 

Rt,t would have to be decreased 60%, or membrane surface area NAt would have 

to be increased loo%, or well volume V, would have to be inmased 36% for 

Equation 6-39 to provide a close fit of the experimental data. It is not realistic 

that any of these input values are in this much error. If the well flow-through 

rate were decreased 38% in the model, Equation 6-39 would yield a close fit of 
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the experimental data. This error is not out of the question, since the well flow- 

through rate was predicted using both the overall tank flow-through rate 

measurement and the solution for flow velocity through the cylindrical well 

(Figure 6-12). 

Another possible reason for the disparity between the model predictions 

and the measured well concentrations is the adsorption of naphthalene to the 

surfaces in the well. This would cause an additional sink for naphthalene 

entering the well that is not reflected by the model. A mass balance of 

naphthalene transferred from the exterior to the interior solution doses within 

the error of the interior solution naphthalene concentration measurement (about 

40%), not accounting for solute adsorption. The uncertainty of this 

measurement, however, does not permit a conclusive dismissal of the possibility 

of the aforementioned adsorption effect. 

The model of C,,ll(t) and the input function Co(t) can now be used in the 

numerical solution of Equation 6-41. A graphical representation of the solution 

at t = 2 hours using the experimental input parameters is shown in Figure 6-16. 

The numerical solution was calculated for a halfdomain of 12,553 nodes. The 

concentrations at selected nodes are plotted as heights above an x-y grid, 

corresponding to the nodal positions. For example, the modeled well 

concentration after two hours has increased to about 0.42 Cmt. This is the level 

on the vertical axis of the semicircle plotted along x=O. The nearby higher level, 

about 1.0 Cat, corresponds to the incoming solution not influenced by the 

presence of the treatment well. A contour plot of the 3-D graph is shown to the 

right of Figure 6-16. The curves represent aquifer simulator positions of equal 

solution concentration. Note that the naphthalene plume has proceeded through 





only about a third of the length of the tank. The contour plot shows that fluid 

concentration is diminished by the presence of the treatment well up to a width 

twice the diameter of the well. The slight 'bulge" in solution concentration along 

the center of the well is due to the flow field solution. The seepage velocity in the 

x-direction at te middle of the well is faster than the velocity at the far sides of the 

well; hence, the concentration "dips" on each side of the well. 

Figure 6-17 shows the 2-D concentration profile predicted by the model at 

t = 2 hours using the same input parameters used in Figure 6-16 with the 

following exception. The time step length is halved and the number of time steps 

taken is doubled for the solution in Figure 6-17 in order to test for convergence of 

the numerical s~lution~with time. The solution in Figure 6-17 differs from the 

Figure 6-16 solution by only 0.1%, so sufficient convergence of the solution with 

time can be assumed. Decreasing the number of spatial node points in the half- 

domain from 12,W to just over 7000 nodes resulted in only a 0.2% average 

change in the solution; thus, there is sufficient spatial discretization for a 

convergent solution. 

Figure 6-18 shows the effect on the solution at t = 2 hours of decreasing the 

dispersion coefficient in the y-direction, Dy,.from 0.5Dx to O.llD, where Dx is 

the x-direction dispersion coefficient. All other model inputs remain the same. 

The only detectable change in the solution is a slight sharpening of the contours 

in the y-direction This agrees with the prediction in the scale analysis of Section 

6.4.3. that the 2-D solution is insensitive to the x- and y-direction dispersion 

coeffiaents due to the high Peclet number calculated for the experiment. 







Figure 6-19 shows the model solution using the base case experimental 

input parameters at a later time, t = 4 hours. At this time, the naphthalene plume 

has proceeded further along the tank length. Figure 6-20 shows the modeled 

concentration profile at t = 4 hours using increased polymer concentration and 

decreased membrane tube resistance inputs. This results in improved extraction 

performance, demonstrated by the deeper plume cavity in the 3-D graph of 

Figure 6-20. 

The naphthalene concentration of solution samples at various positions in 

the tank were measured off-line at t = 2 hours. These values are shown 

superimposed over the modeled concentration profile in Figure 6-21. The data 

values agree with modeled concentration values within 20% for all points. Note 

the data plot shows the "bulge" at the center of the well seen previously in the 

model. The experimental data and the modeling support the conclusions of the 

scale analysis - that the decreased concentration plume leaving a cylindrical 

treatment well has a width about twice the diameter of the well. 
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Firmre 6-21: 2-D Well Exveriment concentration D~~~ at - - 2 urn -- Data R e ~ r e s e n t ~  
Nauhthalene Concentration of Solution at Positions in the T a d  Domain 
Shown in Figure 6-1Q 



7. Scaling Up to Field Operations 

The purpose of this chapter is to model how well the proposed 

copolymer/membrane groundwater remediation system might work in an actual 

field application. Questions about which kinds of contaminated aquifers are best 

suited to cleanup by the proposed system are answered, as well as how to choose 

cleanup system parameters, such as the number of membrane tubes in a well, for 

a given contaminated aquifer. 

7.1. General Specifications 

Before the hypothetical problem is formulated, it must be known which 

contaminated aquifer properties are important to the problem and how these 

properties generally vary from site to site. How fast contaminant moves into the 

treatment well is obviously important -- if the contaminant moves through the 

well too fast, there will be inadequate time for sufficient contaminant diffusion 

into the copolymer membranes. As discussed in Chapter 6, the velocity at which 

contaminant moves into the treatment well can be expressed as a function of 

groundwater seepage velocity, u, [cm/s], given by Darcy's law and contaminant 

retardation factor, Q [dimensionless], which was defined in Equation 6-18 and is 

repeated here for a general case: 



where pb is aquifer bulk density [g/cm3], n is aquifer porosity [cm3/cm3], and 

Kd is the solid-liquid contaminant partition coefficient [cm3/g]. The properties 

in Equation 7-1 are averaged over the spatial domain of the aquifer. The 

retardation factor quantifies how much a solute's velocity through the aquifer is 

retarded due to adsorption onto aquifer solids. Adsorption of solute was shown 

empirically to be a function of aquifer solid composition (i.e. fraction organic 

carbon) and solute hydrophobicity as in Equation 6-19. An ejective solute 

(contaminant) seepage rate, u e ~  [cm/s], can be defined as follows using 

dimensional arguments on the conservation Equation 6-17: 

where both velocity of groundwater and adsorption of solute are accounted for. 

Inchapter 6 it was discussed that groundwater seepage velocity, u, typically 

varies from centimeters per day to meters per day in field applications (Codell et 

al., 1982). The retardation factor can vary from 1 to id or higher depending 

primarily on organic carbon fraction of the aquifer, f,, and solute 

hydrophobicity (reflected by K,,,). Thus, u d  may be as high as meters per day 

and as low as centimeters per year (nearly immobile). Another factor which may 

affect the solute transport rate through an aquifer is adsorption of solute onto 

mobile organic macromolecules (such as humic adds) already present in the 

groundwater (Magee et ai., 1991). Also, since no aquifer is completely isotropic, 

contaminant seepage rate may vary considerably within a single aquifer. Thus, 

the speed at which a contaminant moves into the treatment well in a given 

aquifer is very site-dependent and is a function of average aquifer properties, the 

degree to which they vary spatially, and the adsorptive characteristics of the 

contaminant within the porous media. 



Another important factor in determining workability of the proposed 

process is the polymer-water partition coefficient, Kpw, of the contaminant in 

copolymer solution. This factor tells how much the contaminant may be 

concentrated in the copolymer solution. This factor, like %fi above, may vary 

orders of magnitude depending on contaminant hydrophobicity and the specific 

copolymer used. The value of Kpw should be at least about I@ for a workable 

system. Equations 4-12 and 4-26 of Chapter 4 describe quantitatively how Kpw 

varies with solute and polymer properties. The contaminant-polymer systems 

discussed in this chapter will include the naphthalene-NVPS and phenanthrene- 

NWS systems. 

The overall molecular diffusive resistance of the membrane tubes, Rt,-,t, is 

of importance in the proposed system. Earlier in Chapters 5 and 6, Rt,-,t was 

described primarily as a function of a solute's diffusion coefficient in water and 

the thickness of the membrane support structure. Other factors which will affect 

the overall effective resistance to transmembrane solute transport include the 

degree of mixing in the well and the arrangement of membrane tubes in the well. 

For the sake of simplicity in this simulation, a bulk concentration model for the 

well fluid and the interior copolymer fluid will be used (as illustrated in Figure 5- 

1). This model assumes effective concentrations of both the well fluid and 

copolymer fluid will vary with time only, not position, and that bt is a constant. 

The critical factor in determining if a proposed system will be effective is 

the dean-up requirement for a given contaminant/aquifer situation. 

Requirements are normally set by regulatory groups such as the U.S. 

Environmental Protection Agency or comparable state or local agencies, which 



have determined concentration limits beyond which a contaminant is considered 

unsafe. 

The hypothetical field problem is posed as follows. We wish to know how 

many membrane tubes per square foot of wall area of the well are needed to 

maintain a given minimum concentration of contaminant in a treatment well. 

We also wish to know how long the contaminant concentration in the well can be 

maintained below a given concentration before the copolymer solution must be 

replaced for the above systems. Figure 7-1 is a diagram of the proposed 

application of the membrane/copolymer system, complete with values for well 

dimensions, copolymer solution properties, and membrane tube properties. The 

treatment well is rectangular and has a width of 6 inches (15 an). The membrane 

tubes used are identical in surface area and volume to the polysulfone tubes used 

in the experiments described in Chapters 5 and 6; thus, the transmembrane 

diffusion resistances (Rtot) are as listed in Tables 5-1 and 5-2. The rectangular 

well is initially saturated with contaminant at a concentration Co [g/cm3]. 

The first part of the problem is to determine how many membrane tubes 

per square foot of wall area are needed to obtain a given minimum contaminant 

concentration in the well. The required number of tubes is determined as a 

function of and bt for the case of phmnthrene contamination, where the 

minimum desired well concentration, Cweu,min/Co, is 0.1,0.05, and 0.01. The 

required number of tubes is also determined for naphthalene contamination, 

where Cweu,min/Co, is 0.10. The solute's effective velocity is varied from 

0.2 an/day to 20 cm/day and transmembrane diffusive resistance is varied from 

1000 to 10,000 s/cm for the above cases. 



Figure 7-1: Cross-Section of Hypothetical. Rectaneular Treatment Well 

Membrane tube 

. . 
I I . ............ ............) 
I I 

U,ff- ......... .) . ..( ........ ) Ue. 
........... 

Well ~~~ 
Wallareaofthewell=DxL 
Well width = 6 inches 
Well volume = 14,158 cm3/ ft2 wall area 
Initial contaminant concentration in well = 6 

Tube surface area, A = 4.788 cm2/ ft2 wall area 
Tube volume, V = 0.0598 cm3 / ft2 wall area 
Nominal MW Cutoff = 50,000 (average pore diameter = 50 A) 
Transmembrane molecular diffusive resistance = R m  [S/Cm] 

Type copolymer = N-vinylpyrrolidone/styrene 
Tube interior soluion polymecwater weight ratio, M = 0.20 
Polymer-water partition coefficient ,(naphthalene) = 2420 
Polyam-water partition coefficient $, (phenanthrene) = 49.100 

Pcrosity, n=0.50 
Ei fective solute transport rate = u, f [cm/s] 
Contaminant concentration of fluidentering well = c,, 

203 



The second part of the problem is to determine at what interval the 

copolymer solution must be replaced to keep the well concentration below a 

given value. The required replacement interval is determined for the 

phenanthrene remediation systems given in the first part of the problem with 

maximum allowable concentrations, Cwell,max/Co, of 0.2,0.1, and 0.02. 



7.2. Governing Equations 

The governing equations for the well solution contaminant concentration 

consist of two mass balances - one on the membrane interior solution and one on 

the well solution. The equations and initial conditions which follow are identical 

to those described in Section 6.3.2. of this paper. 

m r a n e  Tube Interior Mass Balanw 

Well M a & W m x  

where Vt is the membrane tube interior volume [cm3]; V, is the well volume 

[an3]; At is the membrane tube surface area [cmz]; Rmt is the overall membrane 

tube resistance [s/cm]; M is the polyiner to water mass ratio (in copolymer 

solution) [g/g]; Kpw is the polymer-water partition coefficient of solute 

[dimensionless]; Q is the fluid flow rate into the well [an3/s]; N is the number 

of membrane tubes; C ,  is the solute concentration of fluid entering the well 

[g/an3]; Cmtaq is the interior aqueous pseudophase solute concentration 

[g/an31; and Cwell is the solute concentration of the well fluid [g/cm3]. The 

initial conditions are as follows: 



The solution for contaminant concentration of the well fluid is as follows: 

N A where a =A; P = AtVw 
QRbt QRt~tVt(l  + 

Figure 7-2 shows the solution of Cwd/Co for the case of both naphthalene 

and phenanthrene contamination of the well in Figure 7-1 with given inputs. The 

resistance, Rbb and partition coefficient, Kpw, for each case is as determined in 

Chapters 5 and 6 for the lab-scale systems. The effective contaminant velocity 

into the well, w, is chosen as 2 cm/day. The number of membrane tubes in the 

well is 600 per square-foot of wall area; this corresponds to an approximately 1.4 

inch diameter bundle of the 0.5-mm-ID polysulfone membranes per foot of well 

length. 

Note the solution in Figure 7-2 for Cwe~/C, is independent of the exact 

incoming contaminant concentration, Co. This is becaw the partition 



Feure 7-2: C~ell/Co Versus T i e  in a Reg&neular WeU 

N = 600 tubes 
M = 0.20 g polymerlg water 
Ueff = 2 cmlday 
A, = 4.788 cm2/ft2 
V, = 0.0598 cm3/ftz 
Vw = 14,158 cm3/ft2 
Well width = 6 inches 

.............. Naphthalene 
K,, = 2420 
R, = 5000 slcm 

T i e  (days) 



coefficient, Kpw, is modeled as a constant. Although a higher loading of 

con taminant onto copolymer, S, (mass contaminant per mass polymer) is 

possible at higher aqueous solution concentration, Caqur this higher loading is 

not possible at lower aqueous solution concentrations since Kpw (which equals 

S/Caqu) must remain constant as modeled. 

In the contamination cases shown in Figure 7-2, the solute concentration in 

the well initially decreases over a time period of one or two days, the 

concentration stays low for an interval of 10 to 30 days, then the concentration 

increases as the copolymer becomes saturated with solute. There are essentially 

two mechanisms governing the shape of the solution in Figure 7-2. First, the 

concentration decrease at the beginning of the plot is primarily a function of how 

fast the solute diffuses through the membrane. Second, the concentration 

increase at the end of the plot is primarily a function of how quickly the 

copolymer solution becomes saturated with solute. It is the interplay between 

these two parts of the solution that determines the important system operability 

criteria - what minimum solute concentration is obtainable in the well, and how 

long the low well concentration can be maintained before replacing the 

copolymer solution becomes necessary. 

The hypothetical problem posed in Section 7.1. is somewhat conservative 

in that better system performance would be achieved in cases where the well is 

not initially saturated with contaminant. For example, the time allowable before 

initial replacement of copolymer solution given a maximum allowable well 

solute concentration is obviously greater if the well is initially free of 

contarrunant. 



7.3. Simulation Results 

The 3-D graph of Figure 7-3 plots solutions for N as heights corresponding 

to values of Rbt and ueff. The contour graph on the right of Figure 7-3 shows 

values of constant N (interpolated from the 3-D graph) as a function of RtM and 

w. It can be seen from the graphs that the higher the solute velocity and 

membrane resistance, the higher the number of tubes required for a minimum 

well phenanthrene concentration, Cweum/C0, of 0.1. All solutions for N, 

however, are physically reasonable; the highest plotted contour at N=2000 

corresponds to a membrane bundle of approximately 2.5-inches diameter per 

foot of well length. 

7-3: Required Membrane Tubes. N. for Given C u  

Cweu.min 
N required for 

Co 
@henm&ne) = 0.10 

lo, Ucrr(-)= CJ.30 055 0.80 1.0s 1.m 



Plots in Figure 7-4 show number of required tubes for different criteria. 

The first two plots show contours of N tubes required per square-foot of wall 

area for lower minimum well concentrations of phenanthrene. Only for the case 

of Cwell-/Co = 0.01 at high velocity and high membrane tube resistance do the 

requirements become physically unreasonable. The six-inch well width will 

contain up to 15,000 membrane tubes foot of well length, allowing for tube 

housing and spacing. From the Figure 7-3 and 7-4 (a) and @) plots, it appears 

that at a given ueff and Rbb the number of tubes required is approximately 

proportional to the inverse of the required minimum concentration. For 

example, about twice as many tubes are required at a given and bt to 

achieve Cwell,-/Co = 0.05 as are required to achieve Cweu,min/Co = 0.10. 

Figure 7-4 (c) shows the required number of tubes to achieve a minimum 

mphthdene concentration in the well, C,,u,-/Co, of 0.10. These values are 

higher than for the phenanthrene case, and less a function of resistance since the 

partition coefficient, Kpw, for naphthalene in the NWS copolymer is over an 

order of magnitude lower than the phenanthrene partition coefficient. Thus, the 

second part of the m e ,  governed by Kpw, (Figure 7-2) comes into play sooner 

for the case of naphthalene contamination in determining the minimum 

concentration obtainable. 

The second part of the hypothetical problem was to determine the 

required copolymer solution replacement time for the above cases given a 

maximum allowable well concentration, CWe~1,,,/C,. For example, it can be 

seen for the case in Figure 7-2 that the copolymer solution should be replaced 

after about 75 days to keep the well concentration, Cwe~/Co below 0.20. 





Figure 7-5 (a) shows the required replacement time for the case where the 

minimum well concentration, Cweu,-/Co, equals 0.05 and the maximum 

allowed well concentration, Cwen,,/Co, equals 0.10. The number of membrane 

tubes used for points in Figure 7-5 (a) corresponds with the values in Figure 7-4 

(a). The required replacement times vary from 20 to 240 days. Required time is a 

strong function of solute velocity; the higher the velocity, the quicker the 

copolymer becomes saturated with solute and the sooner the solution must be 

replaced. Figure 7-5 @), (c), and (d) shows required replacement times for given 

Cwell,min/Co and Cweu,-/Co The number of membrane tubes used in Figure 

7-5 (c) and (d) correspond to values shown in Figure 7-4 @). Longer replacement 

times are allowable for the cases of lower Cwell,,,j,,/Co because there is more 

copolymer solution present (due to higher values of N used); thus, it takes more 

time to saturate the copolymer. 

Conclusions from this hypothetical problem are drawn as follows. The 

membrane/copolyrner system is a more effective contaminant barrier for 

contaminated aquifers with lower groundwater velocity, higher contaminant 

hydrophobicity, and higher soil organic carbon fraction (more contaminant 

adsorption). However, these factors increase the overall remediation time, since 

it takes longer for the contaminant to travel through the aquifer to the treatment 

well, where it can be filtered. 

The results of this chapter can be extended to the case of cylindrical 

treatment wells. As shown in Chapter 6, cylindrical wells would have to be 

spaced about one well-diameter apart in order to intercept all incoming fluid. 

Average velocity into each well would be twice the observed groundwater 

velocity due to the sweeping-in effect (Figure 6-13). Using appropriate well 
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volume and effective solute velocity into the well, Equation 7-7 could be used to 

solve for solute concentration in the cylindrical well. 

Other options for further system improvement include increasing the 

copolymer concentration of the membrane tube interior solution, M; but this 

must be balanced with the easy-handling advantage of a lower-viscosity soluion 

Also, multiple well barriersmay prove effective in certain situations where one 

rectangular well cannot provide suffiaent concentration decrease. It should be 

emphasized that'other factors to be considered in determining system 

workability include knowledge of groundwater flow direction and aquifer 

anisotropy. Knowledge of where a contaminated region is and in what direction 

it is flowing is crucial to any containment or remediation scheme. 



8. Conclusions and Recommendations 

Basic conclusions of this paper are organized according to the three main 

thesis objectives. The first objective of this work was to quantify the enhanced 

solubilization of three aromatic compounds - toluene, naphthalene, and 

phenanthrene -- in aqueous amphipathic copolymer solution. The copolymer 

used was N-vinylpyrrolidone/styrene (NWS), a high molecular weight (3.4 

million g/mol) random-structured copolymer. The experiments showed there is 

evidence of greatly enhanced solubilization of the organics in aqueous NVPS 

solution. Values of polymer-water partition coefficient, Kpw, were determined 

for the three solutes above in copolymer solution to quantify the ability of the 

copolymer to concentrate solute. Kpw is defined as follows: 

g solute in NVPS polymer / g polymer Kpw 
g solute in water / g water 

Constant values of Kpw were determined from equilibrium data (Table 4-1) for 

the three solutes in NVPS solutions, and are as follows: 

log10 Kpw (toluene) = 3.39 f 0.04 (8-2) 

log10 Kpw (naphthalene) = 338 f 0.01 (8-3) 

loglo Kpw (phenanthrene) = 4.69 f 0.02 (8-4) 

The deviations given correspond to the 95% confidence interval of the data sets. 

These values of partition coefficient for NWS systems compare favorably to 

partition coefficients for other, lower molecular weight surfactant systems (Table 

4-2). Two theoretical expressions of Kpw for use in prediting Kpw for other 

copolymer-solute systems were derived in Chapter 4 and are repeated here: 



'p W log I!$" = log vw - log y, + log "Yi - log Mwsol 
1000 - 1% % (4-12) 

log I$,,= log Kw + log Y: + log VD - log Y? - log (MW so' ) - log Rp (4-26) 
1000 

where vo and vw are the molar volumes of pure octanol and water, respectively, 

at system temperature and pressure [L/mol]; superscripts p and w refer to the 

polymer and aqueous pseudophases, respectively; f denotes the aqueous-phase 

activity coefficient of solute i in phase a; 9 is the activity coefficient of solute i 

in the polymer phase calculated on a weightfraction basis; MW,I is the 

molecular weight of the solute [g/mol]; Rp is the ratio of polymer mass to 

polymer phase mass, the latter term including the mass of the solute partitioned 

into the polymer pseudophase; and GW is the octanol-water partition coefficient 

of the solute i, defined as follows: 

g solute in octanoi-rich phase / mL octan01 
&WE g solute in water-rich phase / mL water (8-5) 

Values of hW are available for a wide variety of solutes (Lyman, 1990). Values 

of Kpw were predicted for the NVPSsolute systems studied here. The 

predictions compared to within about a factor of two of the experimental data. 

It should be emphasized that this solubilization information is important 

to other organic-contaminated water treatment processes. Since NVPS is a very 

high molecular weight copolymer, it can be easily filtered from water, allowing 

concentration and separation of organic solute from an originally dilute aqueous 

solution. 



The second objective of this thesis was to quantify the rate of molecular 

diffusive transport of the aromatic solutes through anisotropic hollow fiber 

membranes into an aqueous copolymer solution. Diffusion experiments showed 

that mass transfer of naphthalene and phenanthrene through anisotropic 

membrane can be predicted using a Fickian, aqueous-phase molecular diffusion 

model. Experiments were conducted using a well-mixed solution exterior to the 

membrane tubes kept at constant solute concentration, CSt. The value of CSt 

refers to the concentration of solute in pure water at the solute's saturation limit. 

The solution for solute concentration in the interior copolymer solution, Cht, in 

contact with a constantly solute-saturated exterior solution is as follows: 

where B = At 
VtRtot(l+ MKpw)' 

M is the polymer to water mass ratio for the interior copolymer solution [g/g]; 

Kpw is the polymer-water partition coefficient for the solute; At is membrane 

tube surface area [anz], Vt is membrane tube volume [cm3]; and bt is the total 

resistance to molecular diffusive transport posed by the membrane [s/cm]. 

Values of Rtot were obtained from the diffusion data for the polysulfone 

membrane tubes used in these experiments (each tube has 0.1-0.2~-thick skin 

layer bound to a 0.275mm-thich support structure). These values are as follows: 



I& le 8- 1: Measured Membrane Resistances 

'&lUk Membrane MW Cutoff &l&bd 
Naphthalene 2000 4980 f 120 

Naphthalene 50,000 4630 f 210 

Naphthalene Pooled Data 4950 f 100 

Phenanthrene 2000 6020 f 100 

Phenanthrene 50,m 5950 f 140 

Phenanthrene Pooled Data 5990f 70 

The variances shown are 95% confidence intervals determined from the data fits. 

The experimental values for Ittd correspond very closely to the independently- 

predicted resistances for the experimental systems (to within 15%). 

The membrane skin layer resistance to solute transmembrane molecular 

diffusion was much less than the resistance posed by the thicker membrane 

support structure for the systems studied here. This statement is supported by 

both the resistance data and the resistance models. Therefore, using a thinner 

support structure can significantly decrease the resistance to transmembrane 

solute diffusion, thus increasing system efficiency. 

The third objective of this work was the demonstration of the proposed 

membrane/copolymer remediation system on a laboratory-scale. The extraction 

of solute from an aqueous naphthalene plume moving through a soil matrix was 

demonstrated in two types of system set-ups - one with a rectangular well, and 

one with a cylindrical well. 



In the rectangular well experiment, the capture of naphthalene from an 

initially naphthalene-saturated labscale aquifer was demonstrated experimentally, 

and well concentration was modeled as a function of time. The match of the well 

concentration data with the modeled values was affected by desorption of 

naphthalene from well surfaces. 

In the cylindrical well experiment, the capture of naphthalene from an 

initially "clean" lab-scale aquifer was demonstrated experimentally and well 

concentration was modeled as a function of time. Also, the naphthalene 

concentration of the plume leaving the cylindrical treatment well was modeled as 

a function of time and two-dimensional space. Well concentration data agreed 

well with model predictions (within 2096). The 2-D concentration data also 

agreed well with model predictions (within 20%). The modeled 2-D 

concentration profile of the plume leaving the well was more strongly influenced 

by the velocity field solution than by the soil dispersion coefficients. Thus, for 

groundwater flow through a cylindrical well of diameter D, the decreased 

concentration plume has width approximately 2 times the diameter. 

Recommended future work related to this thesis includes the development 

of the proposed system from lab-scale to field-scale. The effects on the proposed 

remediation system of naturally-ocwring humic substances, multicomponent- 

contaminant systems, and membrane fouling and degradation should be 

investigated before implementation of the proposed system in the field. The 

application of the proposed system to cases where contaminated groundwater is 

actively pumped is another possible area of research. 



A study in the improvement of transmembrane diffusion rates and system 

efficiency should be undertaken; of concern is the minimum required thickness 

of the membrane support structure for system durability. Membranes with 

thinner support structures have the potential for improving system efficiency 

significantly. 

Further solubilization studies of systems using NVPS and like copolymers 

should be undertaken. This study has shown NVPS is a very effective organic 

solubilizer (compared with currently-used surfactants), and it is available in 

extremely high molecular weights (over 3 million g/mol). This allows for great 

flexibility in filtration techniques for solute separation. Thus, the use of NVPS 

and similar amphipathic copolymers as easily-separable organic filtrants should 

be investigated for other model organic contaminants not studied in this work. 

Also, studies of ways to regenerate organic-saturated NVPS -type copolymers 

would be important in improving the cost efficiency of a proposed organic 

filtration system. Possible regeneration techniques include solvent extraction for 

non-volatile solutes and evaporation for volatile organic solutes. 



9. Nomenclature 

A = Absorbance reading of spectrophotometer [dimensionless] 

Abt = overall surface area of membrane [an21 

C = aqueous phase solute concentration [g/an3] 

Caqu = solute concentration in aqueous solution [g/an3] 

CE(m) = solute concentration at the node directly east of position i [g/an3] 

CeXt = concentration of solute in exterior bulk solution [g/an3] 

Ci(m) = solute concentration at node i and time step m [g/cm3] 

Cht = aqueous phase concentration of solute in interior bulk solution [g/cm3] 

cht,aq = aqueous phase concentration of solute in interior bulk solution [g/cm3] 

Chbp = polymer pseudophase concentration of solute in interior solution 

[g/m31 

CN(m) = solute concentration at the node directly north of position i [g/an3] 

Cs(m) = solute concentration at the node directly south of position i [g/cm3] 

Cw(m) = solute concentration at the node directly west of position i [g/cm3] 

C w e ~  = solute concentration in well fluid [g/cm3] 

Cweil,, = required maximum allowable solute concentration of well fluid 

[g/an31 

Cwell,- = required minimum solute concentration of well fluid [g/an3] 

D  = membrane tube inner diameter [an] 

D = dispersion coefficient [cm2/s] 

D* = molecular diffusion coefficient for solute in water [cm2/s] 

DAB = aqueous phase molecular diffusion coefficient of solute A in solvent B 

[an2/sl 

Dl = dispersion coefficient in longitudinal direction [an2/s] 

D m d b ~  = aqueous phase molecular diffusion coefficient of solute A in solvent B 



[an2/sl 

D ~ A B  = solid phase molecular diffusion coefficient of solute A in solid B [cm2/s] 

Dt = dispersion coefficient in transverse direction [cm2/s] 

D, = dispersion coefficient in the x-direction [an2/s] 

Dy = dispersion coefficient in the ydirection [an2/s] 

d, = membrane tube outer diameter [cm] 

Del P = pressure difference from entrance to exit of membrane interior [inches 

water] 

F = net flux of contaminant (flux vector) [g/cm2 s] 

Fconv = solute flux via convection [g/cm2 s] 

F&l= solute flux through fluid boundary layer [g/cm2 s] 

Fmd = solute flux via molecular diffusion [g/cm2 s] 

FA = solute flux via solid-phase diffusion [g/an2 s] 

F&t = total solute flux [g/cm2 s] 

fom = organic matter fraction of aquifer material [dimensionless] 

g = acceleration due to gravity [cm/s2] 

G' = average fluid mass flux [g/cm2 s] 

h = hydraulic head [cm/cm] 

h = time interval [s] 

h = water level in tank [cm] 

k = membrane permeability [an21 

k = x-direction spatial interval [an] 

g ig  Kd = solid-liquid contaminant partition. coefficient [-] 
g/an3 

g h 3  GW = octanol-water partition coefficient [-] 
g/an3 

Kpw = polymer-water partition coefficient 



&, = surfactant-water partition coefficient - c2 
1 = pathlength of spectrophotometer cell [an] 

1 = ydirection spatial interval [cm] 

L = length of tank [an] 

L = concentration (loading) of solute in polymer [g /g] 

ld = fluid flow distortion length [cm] 

Lt = membrane tube length [an] 

M = weight ratio of polymer to water [g/g] 

n = porosity of aquifer [dimensionless] 

P = fluid pressure [g/an s2] 

Pat, = atmospheric air pressure [g/an $1 

Pe = heat transfer Peclet number [dimensionless] 
Lux Peg = grid Peclet number =- [dimensionless] 
Dx 

Lux Pex = Peclet number calculated for the x-direction = - [dimensionless] 
Dr .. 

Pey = Peclet number claculated for the y-direction =& [dimensionless] 
DY 

Pr = Prandtl number [dimensionless] 

P, = solution pressure [g/cm $1 

Q = volumetric flowrate [mL/min] 

q = velocity field solved in cylindrical coordinate system [cm/s] 

q = membrane-adsorbed solute concentration [g/crn3] 

R = well radius [an] 

r = rate of solute transfer from aqueous to polymer pseudophase [g/an3 s] 

Q = retardation coefficient [dimensionless] 

Re = Reynolds number [dimensionless] 

R, = resistance of film layer i [s/cm] 

Rt = total diffusive transport resistance [s/cm] 



ht = total diffusive transport resistance [s/an] 

R, = volumetric rate of formation of contaminant [g/an3 s] 

R1= mass transfer resistance of membrane support layer [an/s] 

R;! = mass transfer resistance of membrane skin layer [cm/s] 

& = mass transfer resistance of interior fluid boundary layer [cm/s] 

& = mass transfer resistance of exterior fluid boundary layer [an/s] 

S = mass of contaminant adsorbed to aquifer solids per mass of aquifer solids 

[ d g l  

Sh = Shewood number [dimensionless] 

TI = transmissivity of domain I [an2/s] 

Tn = transmissivity of domain I1 [an2/s] 

u = velocity vector [an/s] 
û  = effective solute velocity through soil matrix = 3 [m/s]  

Rd 
&ff = effective solute velocity through soil matrix =% [cm/sI 

Rd 

ul = unidirectional groundwater velocity [an/s] 

u, = x-component of velocity vector [an/s] 

uy = y-component of velocity vector [an/s] 

V = average velocity of fluid through tubing [cm/s] 

Vext = volume of solution exterior to membrane [an31 

Vjt = volume of solution interior to membrane [cm3] 

Vt = volume of solution interior to wmbrane [an31 

W = width of tank [an] 

x = position along x-axis [an] 

x = membrane tube length [an] 

a = thermal diffusivity [cm2/s] 

a1 = longitudinal dispersivity [an] 

at = transverse dispersivity [an] 



& = effective film thickness [an] 

hrn = overall thickness of membrane tube [an] 

61 = membrane support layer thickness Icm] 

62 = membrane skin layer thickness [an] 

APt,  = transmembrane pressure difference [inches water] 

E = membrane support layer porosity [dimensionless] 

= Beer's law extinction coeffiaent [cm2/g] 

E2 = membrane skin layer poroisty [dimensionless] 

p = solution viscosity [g/cm s] 

$ = ratio of pure solute concentration to bulk phase concentration [d'less] 

p = fluid density [g/cm3] 

pb =bulk density of aquifer [g/cm3] 

p, = density of water [g/an3] 

T = membrane tortuosity [dimensionless] 

f2 = membrane skin layer tortuosity [dimensionless] 

R = normalized interior solution concentration [an] 



10. Appendices 

Appendix A - Data from Naphthalene Diffusion Experiments 

Data from each of the naphthalene transmembrane diffusion runs 

described in Chapter 5 are listed here in ~ables  A-1 to A-5. Graphs of the 

Cint/Cmt data versus time are in Figures A-1 to A-5 (figure numbers correspond 

to the table numbers). Curve fits of the data using Equation 5-21 are shown for 

each run. In all cases, the value of CeXt/Cst was maintained at 1.0 throughout 

the run. Tables include all constants used in determining the normalized 

concentration, R, and the expression of R for each run. 



Table A-1: Mav 19.1992 Run - Na~hthalene Diffusion Throueh 2000 MW 

cutoff Membrane 

ffi 

At = 2.06 cm2/tube 
Vt = 0.247 cm3/tube 
M = 0.00514 
Kpw = 2420 
N = 308 tubes 





Table A-2: Map 25.1992 Run - Na~hthalene Diffusion Through - 2000 MW 

Constants: 
At = 2.06 &/tube 

Vt = 0.315 cm3/tube 
M = 0.00441 

Kpw = 2420 
N = 308 tubes 





Table A-3: rune 29.1992 Run - Nabhthalene Diffusion Throueh - 2000 MW 

Cutoff Membrane 

Constants: 
At = 2.06 crn2/tube 

Vt = 0.252 cm3/tube 
M = 0.0273 

Kpw = 2420 

N = 308 tubes 





Table A-4: Tune 23.1992 Run - Na~hthalene Diffusion Throueh - 50,000 MW 

Cutoff Membrane 

At = 2.06 an2/tube 

Vt = 0.273 cm3/tube 

M = 0.00619 

Kpw = 2420 

N = 308 tubes 





Table A-5: lune 18.1992 Run - Naphthalene Diffusion Throueh 2000 W 

Cutoff Membrane 

At = 2.06 cmZ/tube 

Vt = 0.272 cm3/tube 
M = 0.00646 

Kpw = 2420 
N = 308 tubes 





Appendix B -Data from Phenanthrene Diffusion Experiments 

Data from each of the phenanthre'ne transmembrane diffusion runs 

described in Chapter 5 are listed here in Tables B-1 to 8-5. Graphs of the 

Cht/Cmt data versus time are in Figures 8 1  to B 3  (figure numbers correspond 

to the table numbers). Curve fits of the data using Equation 5-21 are shown for 

each run. In all cases, the value of CeXt/Cst was maintained at 1.0 throughout 

the run. Tables include all constants used in determining the normalized 

concentration, R, and the expression of R for each run. 



Table El: luly 17.1992 Run - Phenanthrene Diffusion Thmunh 2000 MW 

Cutoff Membrane 

At = 2.06 cmZ/tube 

Vt = 0.275 cm3/tube 
M = 0.00412 

Kpw = 49,100 

N = 308 tubes 



Constants: 
At = 2.06 cmZ/tube 
Vt = 0.231 cm3/tube 
M = 0.00587 
Kpw = 49,100 
N = 308 tubes 





Table B-3: lulv 24.1992 Run - Phe-rene Diffusion Throueh 2000 MW 

Cutoff Membrane 

At = 2.06 anZ/tube 
Vt = 0.263 a 3 / t u b e  
M = 0.00413 
Kpw = 49,100 

N = 308 tubes 





f utoff Membrane 

At = 2.06 cm2/tube 
Vt = 0.256 cm3/tube 
M = 0.00443 

Kpw = 49,100 
N = 308 tubes 
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Table B-5: lulv 31.1992 Run - Phenanthrene Diffusion Throueh - 50,000 MW 

Cutoff Membrane 

At = 2.06 anZ/tube 

Vt = 0.300 cm3/tube 

M = 0.00367 

Kpw = 49,100 

N = 308 tubes 





Appendix C - Computer Code for Numerical Solution of 2-D Concentration 
Profile 

Attached is the fortran computer code for the numerical solution of the 

two-dimensional concentration profile in Chapter 6. The concentration is solved 

at 12,553 nodes and at a given number of time steps. The numbering of the 

nodes in the problem domain is illustrated in Figure C-1. The solution was 

assumed symmetric about the y=O axis in order to reduce the required number of 

nodal equations to be solved. 



Fime C-1: Nodal arrangement for 2-D Numerical Soluti~n 

- T 
Well area 

x=L 
x (position along length of tank) 

Thenare 106nodesalongthex-direcnon, 
and 120 nodes along the y-directim. 
Thexe are 12.553 nodes in all. 

Nodes are numbered from the lower left-hand cornex 
hm left to right, then up to the next mw. 

The internal lengths are changeable. 

No@ are n u m M  around the well a m  as shown below. 



c  F o r t r a n  Proglram "2D.F" 
c by  B i l l  Haulbrook 
c F e b r u a r y  1993 

c  T h i s  program o u t p u t s  c/csat a t  v a r i o u s  l o c a t i o n s  w i t h i n  and on t h e  
c 2-D boundary  u s e d  i n  t h e  2-D t a n k  e x e r i m e n t  i n  J a n u a r y  1993.  The 
c l e a d i n g  e d g e  boundary  i n t r o d u c e s  con taminan t  t o  t h e  2-D f i e l d  f rom t h e  
c non-we l l - in f luenced  f l u i d  ( c o / c s a t )  and  t h e  w e l l  f l u i d  (cwel l /csat) .  
c  Va lues  o f  c o / c s a t  as a f u n c t i o n  o f  t i m e  are g i v e n  i n  t h e  program by a  
c p r e v i o u s l y - d e t e r m i n e d  c u r v e  f i t .  Va lues  o f  c w e l l / c s a t ( t )  a r e  c a l c u l a t e d  
c  by an  a n a l y t i c a l  s o l u t i o n  g i v e n  v a r i o u s  i n p u t s .  The v e l o c i t y  i s  
c d e t e r m i n e d  by  e v a l u a t i n g  a g i v e n  a n a l y t i c a l  f u n c t i o n  a t  n o d a l  p o s i t i o n s .  
c Outpu t  o f  c / c s a t  i s  o n l y  g i v e n  f o r  s p e c i f i e d  nodes .  There  a r e  12 ,553  
c nodes  u s e d  i n  t h e  f o l l o w i n g  f i n i t e  d i f f e r e n c e  scheme. 
C 

- 
c  S e c t i o n  I :  D e f i n e  i n p u t  v a r i a b l e s .  
C 

impl ic i t  r e a l * 8  (A-H, 0 - Z )  
r e a l * 8  c (12553) , a 2  (12553) ,  a 3  (12553) , a 4  (12553) , a 5  (12553) 
r e a l * 8  vy (12553) , x ( 1 2 5 5 3 )  , y  (12553) , c o l d ( 1 2 5 5 3 )  ,vx1(12553)  
r e a l * 8  vx(12553)  , x x ( 3 4 ) ,  yy (21) , c c ( 3 4 , 2 1 )  
w r i t e  (*, 1 0 )  
w r i t e  (*, 11) 

10 format  (/, l x ,  ' E n t e r  t h e  f o l l o w i n g  v a l u e s ' ,  / , ' l .  W e l l  volume, vw, [cm3] ', 
* / ' 2 .  S i n g l e  membrane t u b e  volume, v t ,  [cm21', / , ' 3 .  Average 
* s e e p a g e  f l o w r a t e ,  qx, [ c m / s I f ,  / , ' 4 .  Polymer-water p a r t i t i o n  
* c o e f f i c i e n t ,  p w ,  [ d ' l e ~ s ] ~ , / , ' 5 .  Weight r a t i o  po lymer :wa te r ,  
* p l ,  [ d ' l e s s ] ' )  

11 format  ( '  6.  O v e r a l l  t u b e  r e s i s t a n c e ,  r t ,  [ s / c m l  ' , /, ' 7 .  Number of  
* membrane t u b e s ,  p2, [ d ' l e s s I r , / , ' 8 .  S i n g l e  t u b e  s u r f a c e  a r e a ,  a t ,  
* [ c m 2 I r , / , ' 9 .  Domain w i d t h ,  domw, [ c m ] ' , / , ' l O .  Domain l e n g t h ,  doml, 
* [ c m ] ' , / , ' l l .  R e t a r d a t i o n  c o e f f i c i e n t ,  rd, [ d ' l e s s I r , / ,  
* ' 12 .  D i s p e r s i o n  c o e f f i c i e n t ,  x - d i r e c t i o n ,  d i s x ,  [ c m 2 / s I f , / ,  
* '13.  D i s p e r s i o n  c o e f f i c i e n t ,  y - d i r e c t i o n ,  d i s y ,  [ c m 2 / s ] ' , / ,  
* ' 1 4 .  Time step i n t e r v a l ,  t i n t ,  [ s I r , / , ' 1 5 .  Number of  t i m e  steps, 
* i n s t e p ,  [ d ' l e s s ] '  , / , ' 1 6 .  S o i l  p o r o s i t y ,  p o r ,  [ d ' l e s s ] ' , / ,  
* ' 1 7 .  W e l l  d e p t h ,  dep ,  [cml ' ) 

r e a d  (*, *) vw,vt ,qx ,pw,pl ,  r t , p 2 , a t ,  domw,doml, r d , d i s x , d i s y  
r e a d  (*, *) t i n t ,  i n s t e p , p o r ,  dep  

C 

c S e c t i o n  11: D e f i n e  x  a n d  y  f o r  e a c h  o f  t h e  nodes and  c a l c u l a t e  vx, vy, 
c a n d  n o d a l  e q u a t i o n  c o e f f i c i e n t s  f o r  e a c h  node.  
C 

do  20 i l = 1 , 9 3  
y ( i l ) = O . O  

20 c o n t i n u e  
do  22 i1=94,186 
y  ( i l ) = l . O  

22 c o n t i n u e  
do  24 i1=187,279 
y  ( i l ) = 2 . 0  

24 c o n t i n u e  
do 26 i1=280,372 
y ( i l ) = 3 . 0  

2  6  c o n t i n u e  
do  28 i1=373,465 
y ( i l ) = 4 . 0  

2  8 c o n t i n u e  
do  30 i1=466,558 
y ( i l ) = 5 . 0  

3  0  cc,:tinue 
do  32 i1=559,651 
y  ( i l ) = 6 . 0  

3  2  c o n t i n u e  
do  34 i1=652,744 



y ( i l ) = 7 . 0  
c o n t i n u e  
do 36 i1=745,838 
y  ( ' i l ) = 8 . 0  
c o n t i n u e  
do 38  i1=839,932 
y  ( i l ) = 9 . 0  
c o n t i n u e  
do  40 i1=933,1026 
y  (il) = l o .  0 
c o n t i n u e  
do  42 i1=1027,1120 
y  ( i l ) = l l . O  
c o n t i n u e  
do  44 i1=1121,1214 
y  ( il) =12.0 
c o n t i n u e  
do  46 i1=1215,1309 
y ( i l ) = 1 3 . 0  
c o n t i n u e  
do  48 i1=1310,1404 
y ( i l ) = 1 4 . 0  ' 

c o n t i n u e  
do  50 i1=1405,1499 
y  (il) -15.0 
c o n t i n u e  
do  52 i1=1500,1595 
y ( i 1 ) - 1 6 . 0  
c o n t i n u e  
do  54 i1=1596,1691 
y  ( i l ) = 1 7  . O  
c o n t i n u e  
do  56 i1=1692,1788 
y ( i 1 ) - 1 8 . 0  
c o n t i n u e  
do  58 i1=1789,1885 
y  (il) ~ 1 9 . 0  
c o n t i n u e  
do  60 i1=1886,1983 
y ( i l ) = 2 0 . 0  
c o n t i n u e  
do  62 i1=1984,2081 
y  ( il) ~ 2 1 . 0  
c o n t i n u e  
d o  64 i1=2082,2180 
y  ( i 1 ) - 2 2 . 0  
c o n t i n u e  
do  66 i1=2181,2280 
y  (il) -23.0 
c o n t i n u e  
do  68 i1=2281,2381 
y  ( i 1 ) - 2 4 . 0  
c o n t i n u e  
do  70 i1=2382,2483 
y ( i l ) = 2 5 . 0  
c o n t i n u e  
do  72 i1=2484,2589 
y ( i 1 ) - 2 6 . 0  
c o n t i n u e  
do  74 i1=2590,2695 
y  ( i l ) = 2 7  . O  
c o n t i n u e  
do  110 iy=28,120 
i1=2696 + ( iy -28)*106  
i2=2801 + ( iy -28)  * l o 6  
do  100 i 3 = i l , i 2  



y (i3)=l.O*iy 
continue 
continue 

do 120 il=0,94 
i2=2484+106*il 
x(i2)=0.0 
continue 
do 122 il=0,94 
i2=2485+106*il 
x(i2)=2.0 
continue 
do 124 il=0,94 
i2=2486+106*il 
x(i2)=4.0 
continue 
do 126 il=0,94 
i2=2487+106*il 
x(i2)=6.0 
continue 
do 128 il=0,94 
i2=2488+106*il 
x(i2)=8.0 
continue 
do 130 il=0,94 
i2=2489+106*il 
x(i2)=10.0 
continue 
do 132 il=0,94 
i2=2490+106*il 
x (i2) =12.0 
continue 
do 134 il=0,94 
i2=2491+106*il 
x (i2) =14.0 
continue 
do 136 il=0,94 
i2=2492+106*il 
x(i2) =16.0 
continue 
do 138 il=0,94 
i2=2493+106*il 
x(i2)=18.0 
continue 
do 140 il=O, 94 
i2=2494+106*il 
x(i2)=20.0 
continue 
do 142 il=O, 94 
i2=2495+106*il 
x(i2)=22.0 
continue 
do 144 il=0,94 
i2=2496+106*il 
x(i2)=24.0 
continue 
do 146 il=0,94 
i2=2497+106*il 
x(i2)=26.0 
continue 
x(2382)=8.0 
x (2281) =lo. 0 
x (2383) =lo. 0 
x(2181)=12.0 
x(2282)=12.0 





x(559)=26.0 
x(652)=26.0 
x(746)=26.0 
x(840)=26.0 
x(934)=26.0 
x(1028)=26.0 
x(1122)=26.0 
x(1217)=26.0 
x(1312)=26.0 
x(1407)=26.0 
x(1503)=26.0 
x (1599)=26.0 
x(1696)=26.0 
x(1793)=26.0 
x(1891)=26.0 
x(1990)=26.0 
x(2088)=26.0 
x(2188)=26.0 
x(2289)=26.0 
x(2391)=26.0 
do 220 ix=14,105 
do 202 il=0,7 
i2=ix-l2+i1*93 
x (i2) =2.0*ix 

202 continue 
do 204 il=1,5 
i2=ix-13+652+il*94 
x(i2)=2.0*ix 

204 continue 
do 206 il=1,3 
i2=ix-13+1122+il*95 
x (i2) =2.0*ix 

206 continue 
do 208 il=1,2 
i2=ix-13+1407+il*96 
x(i2)=2.O*ix 

208 continue 
do 210 il=1,2 
i2=ix-l3+1599+i1*97 
x(i2)=2.O*ix 

210 continue 
do 212 i=1,2 
i2=ix-13+1793+il*98 
x(i2)=2.0*ix 

212 continue 
i2=ix-13+2088 
x (i2)=2.0*ix 
i2=ix-13+2188 
x (i2) =2.0*ix 
i2=ix-13+2289 
x (i2)=2.0*ix 
i2=ix-13+2391 
x (i2)=2.0*ix 
do 214 i=0,94 
i2=ix-13+2497+il*106 
x(i2)=2.O*ix 

214 continue 
220 continue 

C 

C 

c Calculate well radius, wr, [crnl, x-direction interval, y-dir. interval 
C 

wr=(2.6/12.0)*dom 
wr2=wr*wr 254 
xint=doml/l05. 0 
yint=dornw/l20.0 . 



C 
c Calc. vx (i) and vy (i) , [cm/sl : 
c - 

do 250 i=1,12553 
vxl (i)=(x(i) *x (i) +y (i) *y (1) ) *wr2-2.0*y (i) *y (i) *wr2 
vx (i)=qx* (l+vxl (i) / (x(i) *x (i)+y (i) *y (i)) **2.0) 
vy (i)=qx* (2.O*wr2*x(i) *y (i)) / (x(i) *x(i)+y (i) *y (i)) **2.O 

C 

c Calc. nodal equation coefficients: 
C 

a2 (i) =tint*disx/ (rd*xint*xint) -tint*vx (i) / (rd*2.0*xint) 
a3 (i) =tint*disx/ (rd*xint*xint) +tint*vx (i) / (rd*Z.O*xint) 
a4 (i) =tint*disy/ (rd*yint*yint) -tint*vy (i) / (rd*2.0*yint) 
a5 (i) =tint*disy/ (rd*yint*yint) +tint*vy (i) / (rd*2.0*yint) 

250 continue 
al=l.0-2.0*tint*disx/(rd*xint*xint)-2.0*tint*di~y/(rd*yint*yint) 

C 
c Section 111: Nodal equations, time loop. At each time step cwell and co 
c are calculated (these appear in boundary Dl equations). Before time 
c stepping, set cold(i)=O.O for each node (initial condition). 
C 

do 260 i=1,12553 
cold (i) =O. 0 

260 continue 
qwell=qx*por*dep*4.O*wr 

C 

c Time stepping: 
C 

do 5000 itstep=l,instep 
C 
c Define time, t, [s], and nondimensional time, tau 
C 

t = tint*itstep 
tau = t*qwell/vw 

C 

c Calculate well concentration at time t. Also calculate Co(t) concentration 
c (conc. at x=O boundary away from well) at time t. 
C 

all=vt*qwell*rt* (l.O+pl*pw) / (p2*at) 
a22=vt* (l.O+pl*pw) * (1 . O+rt*qwell/ (p2*at) ) +vw/p2 
a33=vw/p2 
b22=0.000596*vw/qwell 
dll=( (-1.0*a22/all)+ ( (a22/all) **2.0-4.0" (a33Iall) ) **O. 5) 12 .o 
d22= ( (-1,0*a22/all) - ( (a22/all) **2.0-4. O* (a33jall) ) **O. 5) 12.0 
gll=(b22*all-a33)/(b22*b22*all-a22*b22+a33) 
a44=(gll* (b22+d22) +d22) / (dll-d22) 
a55= (gll* (b22+dll) +dll) / (d22-dll) 
terml=a44*exp(dll*tau) 
term2=a55*exp(d22*tau) 
term3=gll*exp(-l.O*b22*tau) 
cwell=terml+term2+term3+1.O 
co=l.O - exp (-0.000596*t) 

C 

c Nodal equations. 
C 

c Governing equations for points IN boundary. 
C 

do 310 i=95,185 
cl=al*cold(i) +a2 (i+l) *cold (i+l) +a3 (i-1) *cold(i-1) 
c2=a4 (i+93) *cold (i+93) +a5 (i-93) *cold(i-93) 
c (i) =cl+c2 

310 tor.-inue 
do 112 i=188,278 
cl=al*cold(i) +a2 (i+l) *cold (i+l)+a3 (i-1) *cold(i-1) 
c2=a4 (i+93) *cold (i+93) +a5 (i-93) *cold(i-93) 
c (i) =cl+c2 255 



continue 
do 314 i=281,371 
cl=al*cold (i) +a2 (i+l) *cold(i+l) +a3 (i-1) *cold(i-1) 
c2=a4 (i+93) *cold (i+93) +a5 (i-93) *cold (i-93) 
c (i) =cl+c2 
continue 
do 316 i-374,464 
cl=al*cold(i)+a2 (i+l) *cold(i+l) +a3 (i-1) *cold(i-1) 
c2=a4 (i+93) *cold(i+93) +a5 (i-93) *cold(i-93) 
c (i) =cl+c2 
continue 
do 318 i-467,557 
cl=al*cold (i) +a2 (i+l) *cold (i+l)+a3 (i-1) *cold(i-1) 
c2=a4 (i+93) *cold (i+93) +a5 (i-93) *cold(i-93) 
c (i) =cl+c2 
continue 
do 319 i-560,650 
cl=al*cold (i) +a2 (i+l) *cold (i+l) +a3 (i-1) *cold(i-1) 
c2=a4 (i+93) *cold(i+93) +a5 (i-93) *cold(i-93) 
c (i) =cl+c2 
continue 
do 320 i-653,7'43 
cl=al*cold(i) +a2 (i+l) *cold(i+l) +a3 (i-1) *cold(i-1) 
c2=a4 (i+94) *cold(i+94) +a5 (i-93) *cold (i-93) 
c (i) =cl+c2 
continue 
do 330 i=746,837 
cl=al*cold(i) +a2 (i+l) *cold(i+l)+a3 (i-1) *cold(i-1) 
c2=a4 (i+94) *cold(i+94) +a5 (i-94) *cold(i-94) 
c (i) =cl+c2 
continue 
do 332 i=840,931 
cl=al*cold(i) +a2 (i+l) *cold(i+l) +a3 (i-1) *cold(i-1) 
c2=a4 (i+94) *cold(i+94) +a5 (i-94) *cold(i-94) 
c (i) =cl+c2 
continue 
do 334 i=934,1025 
cl=al*cold(i) +a2 (i+l) *cold(i+l) +a3 (i-1) *cold(i-1) 
c2=a4 (i+94) *cold(i+94) +a5 (i-94) *cold (i-94) 
c (i) =cl+c2 
continue 
do 336 i=1028,1119 
cl=al*cold(i)+a2 (i+l) *cold(i+l) +a3 (i-1) *cold(i-1) 
c2=a4 (i+94) *cold(i+94) +a5 (i-94) *cold(i-94) 
c (i) =cl+c2 
continue 
do 340 i=1122,1213 
cl=al*cold(i) +a2 (i+l) *cold (i+l)+a3 (i-1) *cold (i-1) 
c2=a4 (i+95) *cold(i+95) +a5 (i-94) *cold(i-94) 
c (i) =cl+c2 
continue 
do 350 i=1216,1308 
cl=al*cold(i) +a2 (i+l) *cold (i+l) +a3 (i-1) *cold (i-1) 
c2=a4 (i+95) *cold(i+95) +a5 (i-95) *cold(i-95) 
c (i) =cl+c2 
continue 
do 352 i=1311,1403 - 
cl=al*cold(i) +a2 (i+l) *cold(i+l)+a3 (i-1) *cold(i-1) 
c2=a4 (i+95) *cold(i+95) +a5 (i-95) *cold(i-95) 
c (i) =cl+c2 
continue 
do 354 i=1406,1498 
cl=al*cold(i) +a2 (i+l) *cold(i+l) +a3 (i-1) *cold(i-1) 
c2=a4 (i+96) *cold(i+96) +a5 (i-95) *cold(i-95) 
c (i) =cl+c2 
continue 256 



do 370 i=1501,1594 
cl=al*cold(i) +a2 (i+l) *cold(i+l) +a3 (i-1) *cold(i-1) 
c2=a4 (i+96) *cold(i+96) +a5 (i-96) *cold(i-96) 
c (i) =cl+c2 
continue 
do 380 i=1597,1690 
cl=al*cold(i) +a2 (i+l) *cold (i+l) +a3 (i-1) *cold (i-1) 
c2=a4 (i+97) *cold(i+97) +a5 (i-96) *cold(i-96) 
c (i) =cl+c2 
continue 
do 390 i=1693,1787 
cl=al*cold (i) +a2 (i+l) *cold(i+l) +a3 (i-1) *cold (1-1) 
c2=a4 (i+97) *cold(i+97) +a5 (i-97) *cold(i-97) 
c (i) =cl+c2 
continue 
do 400 i=1790,1884 
cl=al*cold (i) +a2 (i+l) *cold (i+l) +a3 (i-1) *cold (i-1) 
c2=a4 (i+98) *cold(i+98) +a5 (i-97) *cold(i-97) 
c (i) -cl+c2 
continue 
do 410 i=1887,1982 
cl=al*cold(i)+a2 (i+l) *cold(i+l) +a3 (i-1) *cold(i-1) 
c2=a4 (i+98) *cold(i+98) +a5 (i-98) *cold (i-98) 
c (i) -cl+c2 
continue 
do 420 i=1985,2080 
cl=al*cold(i) +a2 (i+l) *cold(i+l) +a3 (i-1) *cold(i-1) 
c2=a4 (i+99) *cold(i+99) +a5 (i-98) *cold(i-98) 
c (i) =cl+c2 
continue 
do 430 i=2083,2179 
cl=al*cold(i) +a2 (i+l) *cold(i+l) +a3 (i-1) *cold(<-1) 
c2=a4 (i+100) *cold (i+100) +a5 (i-99) *cold(i-99) 
c (i) =cl+c2 
continue 
do 440 i=2182,2279 
cl=al*cold (i) +a2 (i+l) *cold(i+l) +a3 (i-1) *cold(i-1) 
c2=a4 (i+lOl)*cold(i+lOl) +a5 (i-100) *cold(i-100) 
c (i) =cl+c2 
continue 
do 450 i=2282,2380 
cl=al*cold(i) +a2 (i+l) *cold(i+l).+a3 (i-1) *cold(i-1) 
c2=a4 (i+102) *cold(i+102) +a5 (i-101) *cold(i-101) 
c (i) =cl+c2 
continue 
do 460 i=2383,2482 
cl=al*cold(i) +a2 (i+l) *cold(i+l) +a3 (i-1) *cold (i-1) 
c2=a4 (i+106) *cold(i+106) +a5 (i-102) *cold(i-102) 
c (i) =cl+c2 
continue 
do 470 i=2488,2588 
cl=al*cold(i) +a2 (i+l) *cold(i+l) +a3 (i-1) *cold(i-1) 
c2=a4 (i+106) *cold(i+106) +a5 (i-106) *cold(i-106) 
c (i) =cl+c2 
continue 
do 480 i=2591,2694 
cl=al*cold(i) +a2 (i+l) *cold(i+l) +a3 (i-1) *cold (i-1) 
c2=a4 (i+106) *cold(i+l06) +a5 (i-106) *cold(i-106) 
c (i) =cl+c2 
continue 
do 51 0 j=1,92 
jl=2591+106* j 
j2=2694+106* j 257 
do 500 i=jl, j2 
cl=al*cold(i) +a2 (i+l) *cold(i+l) +a3 (i-1) *cold(i-1) 
c2=a4 (i+106) *cold(i+106) +a5 (i-106) *cold(i-106) 



c (i) =cl+c2 
500 continue 
510 continue 

C 
c Governing equs. for points ON boundary: 
C 

c (l)=cwell 
c (94)=cwell 
c (187) =cwell 
c (280) =cwell 
c (373) =cwell 
c (466) =cwell 
c (559)=cwell 
c (652) =cwell 
c (745)=cwell 
c(839)=cwell 
c (933) =cwell 
c (1027)=cwell 
c (1121) =cwell 
c (1215) =cwell 
c (1310) =cwell 
c (1405) =cwell 
c (1500) =cwell 
c (1596) =cwell 
c (1692) =cwell 
c (1789) =cwell 
c(1886)=cwell 
c (1984)=cwell 
c (2082) =cwell 
c (2182) =cwell 
c (2281) =cwell 
c (2382) =cwell 
c (2487) =cwell 
c (2486) =cwell 
c (2485) =cwell 
c (2484) =cwell 
do 515 i=0,93 
il=2590+106*i 
c (il) =co 

515 continue 
do 520 i=12449,12552 
cl=al*cold(i) +a2 (i+l) *cold(i+l) +a3 (i-1) *cold(i-1) 
c2=a4 (i-106) *cold (i-106) +a5 (i-106) *cold(i-106) 
c (i) =cl+c2 
cl=al*cold(12553) +(a2 (12553)+a3 (12553) ) *cold(l2552) 
c2=(a4 (12477)+a5(12477) )*cold(12477) 
c (12553)=cl+c2 

520 continue 
do 530 i=2,92 
cl=al*cold (i) +a2 (i+l) *cold(i+l) +a3 (i-1) *cold(i-1) 
c2=a4 (i+93) *cold(i+93) +a5 (i+93) *cold (i+93) 
c (i) =cl+c2 

530 continue 
cl=al*cold(186) +a2 (186-1) *cold(186-1) +a3(186-1) *cold(l86-1) 
c2=a4 (186+93) *cold(l86+93) +a5 (186-93)*cold(186-93) 
c (18 6) =cl+c2 
cl=al*cold(279)+a2 (279-1) *cold(279-l)+a3(279-1) *cold(279-1) 
c2=a4 (279+93) *cold (279+93) +a5 (279-93) *cold (279-93) 
c (27 9) =cl+c2 
cl=al*cold(372) +a2 (372-1) *cold(372-1) +a3 (372-1) *cold(372-1) 
c2=a4 (372+93) *cold(372+93) +a5 (372-93) *cold(372-93) 





c (2589) =cl+c2 
cl=al*cold (2695) +a2 (2695-1) *cold(2695-1) +a3 (2695-1) *cold(2695-1) 
c2=a4 (2695+106) *cold(2695+106) +a5 (2695-106) *cold(2695-106) 
~(2695)-cl+c2 

do 550 j=1,92 
jl=2695+106*j 
cl=al*cold( jl)+a2 (jl-1) *cold(jl-l)+a3 (jl-1) *cold( jl-1) 
c2=a4 (j1+106) *cold( j1+106) +a5 ( jl-106) *cold( jl-106) 
c ( jl) =cl+c2 

550 continue 
C 
c put new calcs. into cold: 
C 

do 1000 i=1,12553 
cold(i) =c (i) 

1000 continue 
C 
c End of time step. 
C 

5000 continue 
C 
c Section IV: Writing out solution at selected nodes. 
C 

c Define cwell points (not in boundary but in well). 
cc (l,l)=cwell 
cc (l,2) =cwell 
cc (1,3)=cwell 
cc(l,4)=cwell 
cc (1,5)=cwell 
cc (2,l) =cwell 
cc (2,2)=cwell 
cc (2,3) =cwell 
cc (2,4) =cwell 
cc (2,5) =cwell 
cc (3,1)=cwell 
cc (3,2) =cwell 
cc (3,3) =cwell 
cc (3,4 ) =cwell 
cc (4,1)=cwell 
cc (4,2)=cwell 
cc (4,3)=cwell 
cc (5,l) =cwell 
cc(5,2)=cwell 
do 6100 i=0,33 
xx (i+l)=i*6.0 

6100 continue 
do 6110 i=0,20 
yy (i+l)=i*6.0 

6110 continue 
do 6120 i=0,28 
j=3+i*3 
cc(i+6,1)=c(j) 

6120 continue 
do 6130 i=0,28 
j=561+i*3 
cc(i+6,2)=c( j) 

6130 continue 
do 6140 i=0,29 
j=1121+i*3 
cc(i+5,3)=c( j) 

6140 continue 
dc, 6150 i=0,30 
j=..692+i*3 
cc(i+4,4)=c( j) 

6150 continue 
do 6160 i=0,31 



j=2282+i*3 
c c ( i + 3 , 5 ) = c ( j )  

61 60 c o n t i n u e  
do  6170 i = 0 , 3 3  
j=2908+i*3 
c c ( i + l , 6 ) = c ( j )  

6170 c o n t i n u e  
ib=O 
do  6190 i i = 1 , 1 5  
ib= ib+63  6  
do  6180 i = 0 , 3 3  
j=ib+2 908+i*3 
cc (i+l, 6 + i i )  =c ( j )  

6180 c o n t i n u e  
61 90 c o n t i n u e  

C 

c Write o u t  s o l u t i o n  
C 

do  6400 i=1 ,21  
i i = 2 2 - i  
w r i t e ( 6 , 6 3 5 0 )  (cc ( j , i i ) ,  j=1,34) 

6350 format  ( / , 3 4 ( l k , f 8 . 6 , 2 ~ ) )  
6400 c o n t i n u e  

do  6500 i = 1 , 2 1  
w r i t e ( 6 , 6 4 5 0 )  (cc( j , i ) ,  j=1,34) 

6450 format  ( / , 3 4  (1x , f8 .6 ,2x)  ) 
6500 c o n t i n u e  

e n d  
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