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Abstract

The goal of computer vision is to use an image to recover the characteristics of a scene,
such as its shape or illumination. This is difficult because an image is the mixture of
multiple characteristics. For example, an edge in an image could be caused by either
an edge on a surface or a change in the surface's color. Distinguishing the effects of
different scene characteristics is an important step towards high-level analysis of an
image.

This thesis describes how to use machine learning to build a system that recovers
different characteristics of the scene from a single, gray-scale image of the scene.
The goal of the system is to use the observed image to recover images, referred
to as Intrinsic Component Images, that represent the scene's characteristics. The
development of the system is focused on estimating two important characteristics of
a scene, its shading and reflectance, from a single image. From the observed image, the
system estimates a shading image, which captures the interaction of the illumination
and shape of the scene pictured, and an albedo image, which represents how the
surfaces in the image reflect light. Measured both qualitatively and quantitatively,
this system produces state-of-the-art estimates of shading and albedo images. This
system is also flexible enough to be used for the separate problem of removing noise
from an image.

Building this system requires algorithms for continuous regression and learning
the parameters of a Conditionally Gaussian Markov Random Field. Unlike previous
work, this system is trained using real-world surfaces with ground-truth shading and
albedo images. The learning algorithms are designed to accomodate the large amount
of data in this training set.
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Chapter 1

Introduction

Figure 1-1: The world is a complicated place. Even a picture of a typical scene
exhibits the many characteristics of a scene that affect its appearance.

An often underappreciated characteristic of the world is that it is a complicated

place. Viewing an image of a real world scene, such as the image shown in Figure 1-1,

shows how many different characteristics of the scene contribute to the image of that

scene. The illumination of the scene and the shape of the fabric affect the appearance

of the folds and shadows of the fabric. The collar of the shirt and the stripes on the

socks are caused by changes in how the fabrics reflect light. In addition, there can be

noise in the camera from the sensor.

The goal of computer vision is to analyze images such as Figure 1-1 and recover

characteristics of the scene. Characteristics of interest include the shape of surfaces



(a) Image (b) Reflectance Image (c) Shading Image

Figure 1-2: Example of shading and albedo intrinsic images. (a) Image of a scene (b)
The albedo intrinsic image. This image contains only the reflectance of each point.
(c) Shading intrinsic image. The shading image results from the interaction between
the illumination of the scene and the shape of the surface.

[80], the reflectance of the surfaces, and the objects present in the scene [73]. Unfortu-

nately, the image captured by the camera is the combination of these characteristics.

Recovering the characteristics of a scene from an image requires the ability to distin-

guish and represent each characteristic's effect on the image. For example, recovering

the shape of a surface from an image requires the ability to distinguish changes caused

by shading from changes in the surface's reflectance.

This thesis will focus on representing and recovering the characteristics of a scene

with an image-based representation, which I will refer to as "Intrinsic Component

Images." This representation is motivated by the fact that an image of a scene

can be represented as a composition of a number of different images. At the image

formation level, the image can be represented as the sum of a noise image and the true

image of the scene. The scene image itself can also be represented as the composition

of images that describe the characteristics of the surfaces in the scene. Figure 1-2

shows how an image of a painted surface can be represented as the product of an

image representing just the shading of the surface and a second image representing

the albedo of each point on the surface.

This thesis describes a system that uses a single image of a scene to recover

images that represent the characteristics of the scene. The machinery presented in

this thesis is flexible enough to be used to recover different scene characteristics. In

particular, I will focus on the problem of estimating the shading and albedo of a scene

and the problem of estimating a clean "scene" image from a noisy observation. The

system described in this thesis achieves state-of-the-art performance on the shading



and albedo task and is competitive with state-of-the-art algorithms for denoising

images.

Below, Section 1.1 discusses relevant background information, including intrinsic

images and the definition of shading and albedo images. Section 1.2 discusses previous

work, focusing on the task of estimating shading and albedo images.

The basic strategy for estimating images is described in Section 1.3. Section 1.6

describes the basic notation that will be used throughout this thesis and Section 1.5

gives a roadmap for the remaining chapters.

1.1 Background

This section begins by describing the intrinsic image representation and its relation-

ship to intrinsic component images. Sections 1.1.2 and 1.1.3 then describe the specific

types of intrinsic component images that this thesis will focus on.

1.1.1 Intrinsic Images

This chapter began by pointing out that a scene possesses many characteristics and

that the observed image is the combination of these characteristics. In [9], Barrow

and Tenenbaum propose representing each characteristic that is intrinsic to the ap-

pearance of the scene with a separate image. These images are known as intrinsic

images because each image represents one intrinsic characteristic of the scene. The

initial set of intrinsic images proposed in [9] includes an image for each physical char-

acteristic of the scene that could be measured, such as the surface normal at each

point and the illumination of each point in the scene.

This thesis focuses on a special type of intrinsic image, which will be referred to

as an intrinsic component image. An intrinsic component image is an image that

captures an intrinsic component of the scene and is combined with other intrinsic

component images, using pointwise operations such as addition or multiplication, to

produce the observed image.

The goal of this work is to decompose a single image of a scene into intrinsic com-

ponent images that represent various characteristics of the scene. In particular, I will

focus on two specific types of decompositions: shading/albedo and clean image/noise

image.



1.1.2 Shading and Albedo Images

The meaning of shading and albedo images can be understood by considering a sim-

ple model of image formation. In this model, a shading image is formed from the

interaction of the illumination of the scene and its geometry, or shape. An example

of a shading image is shown in Figure 1-2(c). The observed image is produced by

multiplying each point with its albedo. The albedo of a point is the fraction of light

reflected from that point . Figure 1-2(b) shows the albedo image that, combined with

the shading image in Figure 1-2(c), yields the final image in Figure 1-2(a). In this

model, darker points in the albedo image should reflect less light than lighter points.

1.1.3 Scene and Noise Images

An image from a sensor can also be viewed as the combination of the true image of

the scene and the noise from the sensor. In simple models of camera noise, this noise

is additive. The observed image can thus be modelled as the sum of a scene image

and a noise image.

1.2 Prior Work

1.2.1 Estimating Shading and Albedo

Much of the early work on decomposing an image into shading and reflectance images

was motivated by the study of human lightness perception. When viewing a scene,

the human visual system may attempt to remove the effects of illumination in order

to accurately judge the reflectance of a surface [3]. Given the right stimulus, this can

lead to illusions. A powerful example of this is Adelson's Checker-Shadow illusion,

shown in Figure 1-3.

An influential algorithm for separating the effects of a surface's shading and albedo

is the Retinex algorithm of Land and McCann [43]. The Retinex model is designed

for lightness perception in a simplified world of "Mondrian" images. These images

consist of a collage of patches, each with a different reflectance. The patches are lit

with a slowly varying illumination. Figure 1-4(a) shows an example of a Mondrian

image illuminated with smooth illumination.

In this simplified world, computing the illumination of each point in the scene

requires several simple steps. These are easiest explained using a one dimensional



Figure 1-3: This illusion, produced by Edward Adelson, demonstrates how the human
visual system attempts to correct for shading effects in a scene. The two squares,
marked "A" and "B", are actually the same intensity, as revealed by the intensity
reference bars on the right.

(a) An example of a Mondrian
image.

(b) The reflectance pattern of
the image.

(c) The illumination pattern
of the image.

Figure 1-4: An image from the Mondrian world, along with the reflectance and illu-
mination patterns used to create it.
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Figure 1-5: A one dimensional example of the Retinex process. Figure (a) shows the
log image intensity along one row in the image. The first step in Retinex is to compute
the derivatives, shown in (b). The albedo changes in the image are characterized by
the spikes in (b). Setting these to zero and reintegrating leads to the estimate of the
log albedo image in (c).

example. Figure 1-5(a) shows a plot of one row taken from the image in Figure 1-4(a).

Because the observed image is the product of the albedo image and the illumination,

the log is taken first to make the two components additive. The true reflectance of

each patch, within a constant scale factor, is found by examining the derivatives of

the log of the observation, shown in Figure 1-5(b). As can be seen in Figure 1-5(b),

large magnitude derivatives coincide with changes in albedo, because the illumination

varies slowly. On the other hand, derivatives with a small magnitude are probably

caused by the illumination. The albedo can be recovered by setting derivatives with

small magnitudes to zero, then re-integrating. This leads to a good estimate of the

albedo, shown in 1-5(c).

Retinex was originally proposed to work along lines in the image, but did not

specify how an albedo image could be recovered properly. Later, Horn [36] proposed

a method that, while relying on this same heuristic, is able to reconstruct an image

representing the albedo at each point. Since then, a number of other researchers have

proposed systems based on similar assumptions [38, 40]. It is important to note that

while much of the previous work uses the term "illumination" instead of "shading",
the two can be viewed as equivalent.

A second heuristic, which is related to Retinex, is that the shading and reflectance

images can be found by filtering the log of the input image [51]. This approach

assumes that the shading component is concentrated in the low spatial frequency

bands of the log input, while the reflectance image can be found from the high spatial
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Figure 1-6: These high- and low-pass filtered versions of the log of Figure 1-2(a) show
the infeasibility of solving this problem with simple filtering. Presumably, the image
on the right would be the shading, while the image on the left would be the albedo
of the scene. However, neither the shading nor the reflectance changes in this image
are band-limited, so band-pass filtering cannot isolate one or the other.

frequencies. Like the assumption underlying Retinex, this assumption also tends not

to be true in real images. Figure 1-6 shows high- and low-pass filtered versions of the

log of the image shown in Figure 1-2(a). Shading and reflectance changes appear in

both images because neither are band-limited. This makes it impossible for band-pass

filtering to isolate either shading or reflectance changes.

1.2.2 Discriminative Approaches

Retinex and related algorithms rely on the assumption that the changes in the re-

flectance of a surface will lead to large derivatives, while illumination, which varies

slowly, causes small derivatives. However, this assumption may not hold in real im-

ages. The image of the paper surface in Figure 1-7 is a good example of how Retinex's

basic assumption can fail. This image has many sharp edges that are caused by shad-

ing. Under the Retinex assumption, these edges should be caused by changes in the

surface's albedo.

To overcome this weakness in the basic model of Retinex, models have been pro-

posed to better discriminate shading from albedo changes. Freeman and Viola [27]

used a smoothness prior on the inferred shape in an image to classify the image as

either entirely created by shading or all due to reflectance changes. The central draw-

back of this approach is that the whole image must be classified, so it is impossible

to perform lighness computations at a point.

Instead of relying on just the magnitudes of the derivatives, Bell and Freeman [10]

trained a classifier to use the magnitude of the output of a set of linear features. The



Figure 1-7: The surface pictured in this image violates the assumptions of the Retinex
model. There are sharp creases and folds on the surface that lead to sharp image edges
that are caused by shading. Under the Retinex model, these sharp changes should
have been caused by albedo changes.

classifier was trained to label the coefficients of a steerable pyramid [60] as caused by

either shading or a reflectance change. Using steerable pyramid coefficients allowed

the algorithm to classify edges at multiple orientations and scales. However, the

steerable pyramid decomposition has a low-frequency residual component that cannot

be classified. Without classifying the low-frequency residual, only band-pass filtered

copies of the shading and reflectance images can be recovered. In addition, low-

frequency coefficients, which span a large region of the image, may not be naturally

classified as either shading or reflectance.

1.2.3 Generative Approaches

Generative approaches are an alternative to these discriminative approaches. While

discriminative approaches attempt to distinguish the effects of shading and reflectance,

generative approaches create possible surfaces and reflectance patterns that explain

the image, then use a model to choose the most likely surface.

Generative Models in a World of Painted Polyhedra

A good example of a generative approach is Sinha and Adelson's work on recovering

the shape and reflectance of painted polyhedra [61]. This work focuses on images of

polyhedra which have their faces painted different shades of gray. For these surfaces,
every shading or reflectance change is manifested as a line in the image. Junctions of



lines will occur at each vertex of the polyhedron and at some areas with reflectance

changes. The algorithm begins by labelling each junction as either being caused by

a reflectance change or shading. Shading creates specific types of junctions, so Sinha

and Adelson were able to create a catalogue of junctions that could be caused by

shading.

Alone, this catalogue is not sufficient because albedo changes on the surface can

have the same local appearance as shading. To overcome the limitations of local

analysis, the next step is to find the most likely shape and lighting of the scene using

global analysis. The authors find a set of perceptually likely shapes consistent with

the input pattern, then verify that the rendered shapes could reproduce the input

pattern. The final output is the most likely shape, the associated reflectance pattern,
and the possible directions of the light source.

Workshop Metaphor

In [5], Adelson and Pentland use a "workshop metaphor" to describe their generative

approach. In this metaphor, the world consists of images of planar surfaces. The scene

is constructed from sheet metal that can be painted and shaped. In addition, lights

can be placed at arbitrary locations. The scenes are created by three specialists: a

lighting specialist, which places lights in the scene, sheet metal worker, which changes

the shape of the surface in the scene, and a painter, who changes the reflectance of

the surface. Given an image, each specialist tries to recreate the scene using as

little assistance as possible from the other specialists. This scenario also includes a

supervisor, who is able to use all three specialists.

The different possible scenes are evaluated according to the cost of creating each

scene. Each action performed by a specialist to recreate the scene has a cost assigned

to it, with more complicated actions having a higher cost. For instance, painting a

rectangle is $5, while painting a general polygon is $5 per side. The most likely scene

is computed by finding the scene with the lowest cost.

Mosaicing Shading Images

Instead of explicitly modeling the surfaces in the scene, Freeman et al. [26] proposed

constructing the shading image from a mosaic of image patches taken from example

images. The shading image is reconstructed by dividing the input image into patches,
then for each image patch, choosing the shading and reflectance patches that best



match the image patch. These patches are mosaiced together to form the shading

and reflectance images. The algorithm considers a discrete set of candidate patches

for each image patch. The probability of each candidate patch being the best patch

for a portion of the mosaic is influenced by two factors: how well the patch explains

the image and how compatible the patch is with neighboring patches. In addition,

there is a penalty based on the flatness of the shading patch applied to the log

probability of each candidate. This is important because any image can be explained

as a reflectance pattern painted onto a flat surface. The chief disadvantage with this

approach is that the surfaces must be constructed explicitly, limiting the system's

applicability to real-world images.

Gaussian Generative Approaches

In recent work, Stainvas and Lowe have proposed modelling the illumination and

reflectance with a generative model that relies on a Gaussian Markov Random Field

[65]. The parameters of this field are fit using a Generalized EM algorithm. Chapter

4 also relies on a Gaussian MRF, but of a much different form. In addition, Stainvas

and Lowe must resort to approximate inference techniques to learn the parameters

of the MRF. Chapter 4 will show how to learn the parameters without resorting to

approximate inference.

1.2.4 Other approaches

The previous sections have focused on algorithms that use a single, gray-scale image

of the scene to estimate the shading and albedo of the scene. Some of the difficulties

inherent in this task can be avoided by considering richer inputs with more data.

Utilizing Color

Color is a strong cue for finding changes in the albedo of a scene. Instead of thresh-

olding based on the intensity of the gradient, Funt et al. [32] proposed thresholding

based on color information in the image. In more recent work, Finlayson et al. have

proposed using color cues to remove shadows from images [23]. Recently, Finlayson

et al. have proposed a method that does not require a calibrated camera to remove

shadows [22].



Multiple Images

In a different direction, Weiss [78] proposed using multiple images where the re-

flectance is constant, but the illumination changes. This approach was able to create

full frequency images, but required multiple input images of a fixed scene. Images

with varying illumination are also used in [46] to eliminate shadows from surveillance

images. More recently, Matsushita et al. have worked on the case where the range of

illuminations is biased [47].

1.2.5 Broader Links

Besides the links to previous work on the specific problem of estimating shading and

albedo images, the work described in this thesis has links to broader problems in

computer vision and machine learning.

Shape-From-Shading

The problem of recovering the shape of a surface from a single image of a scene, also

known as shape-from-shading, touches on many of the same issues as estimating the

shading and albedo of a scene. Zhang et al. present a good overview of shape-from-

shading methods in [80]. In the simplest formulation of the problem, it is necessary to

provide the orientation of the illumination and ensure that the surface has constant

albedo before the shape of the surface can be recovered.

More advanced algorithms, such as those from Zheng and Chellapa [81] and Sama-

ras and Metaxas [57], avoid the need to explicitly provide the light source direction by

estimating the light source illumination. Zheng and Chellapa's algorithm also seeks

to estimate three parameters that describe the reflectance of the surface.

These algorithms differ from the approach described in this thesis in two ways.

First, these algorithms can be viewed as reconstructing the illumination and sur-

face information by explicitly recovering the surface's shape and illumination. This

requires that algorithm make specific assumptions about the scene, such as the as-

sumption that the scene is illuminated by a point-source. This thesis takes a different

approach by simply estimating an image that captures the shading of the scene. This

enables the intrinsic image approach described in this thesis to sidestep the inverse

problem of recovering the shape and illumination of the scene.

The second difference is that these algorithms do not model albedo variations in



the scene. This is significant because most real-world scenes will have some variation

in the albedo of the scene.

Markov Random Field Models of Images

As Chapter 4 will discuss, the estimates of the shading and albedo of a scene can be

significantly improved by modelling the images with a Markov Random Field (MRF),
then learning the parameters of this MRF.

Markov Random Field models have been used extensively to model images. Ge-

man and Geman introduced MRF models for image denoising and image restoration

[33]. Freeman et al. proposed estimating images by constructing a mosaic of image

patches, chosen using a Markov Random Field Model. [26]. Rosales et al. and Tap-

pen et al. proposed similar models where the image was created from patches that

were computed directly from the observed image [54, 70]. These models were used for

a number of tasks including rendering photographs as paintings, demosaicing images,

and image super-resolution.

The particular type of MRF used in this thesis is a Gaussian Markov Random

Field [63]. In [66], Szeliski used Gaussian Markov Random Fields as a prior on depth

images.

Learning MRF Models

While much work in computer vision utilizes MRF models, the parameters of the

model are most often hand-specified. This is because the types of MRF models used

in vision often contain loops, which makes inference intractable [26]. A common

strategy for addressing this issue is to use sampling, as in the work of Zhu and

Mumford [82].

If the MRF models do not have loops, which is more common in research areas

such as Natural Language Processing, learning the MRF parameters is easier. In

[21], Della Pietra et al. describe an algorithm that can choose the features of the

MRF. This algorithm was applied to models of text. McCallum later extended this

algorithm to much larger sets of candidate features [48].

Historically, algorithms for learning MRF parameters have been posed as optimiz-

ing a probabilistic criterion. Recent work, such as that of Collins [18] and Taskar et

al. [71], has proposed learning MRF parameters using different criteria. Section 4.7

discusses the relationship between this work and the models described in this thesis.



(c) Reflectance Image

Figure 1-8: An example of the results produced by the system described in [69]. This
is found by combining the local evidence from the color and gray-scale classifiers,
then using Generalized Belief Propagation to propagate local evidence. The face that
has been painted on the pillow is correctly placed in the reflectance image, while the
ripples on the surface of the pillow are placed in the shading image.

1.2.6 Author's Previous Work

In [67, 68, 69], I have presented a discriminative system that takes advantage of both

color and gray-scale information. Like Retinex and the work of Freeman and Bell [10],

the premise of the system is that every image derivative can be classified as being

caused by shading or an albedo change. The derivatives are classified using two forms

of local evidence to classify the image derivatives: color and intensity patterns.

Color information is utilized by finding derivatives where the chromaticity of the

neighboring pixels changes. In this system, a change in chromaticity indicates a

reflectance change. Derivatives where there is a chromaticity change are classified as

reflectance changes.

Intensity information is used by assuming that surfaces and illuminations in the

world have regular properties that give shading patterns a unique appearance which

can be discriminated from most common reflectance patterns. This regular appear-

ance of shading patterns allows the local gray-scale image pattern surrounding a

derivative to be used to classify it as either shading or an albedo change.

While combining color and gray-scale information works well, some image patterns

are locally ambiguous. For instance, a sharp edge in an image such as Figure 1-7 could

be caused by a crease in the paper or a strong albedo change. To properly classify

derivatives in ambiguous areas, information must be propagated from areas of the

image where the classification is clear into areas where the correct classification is

(a) Original Image (b) Shading Image



ambiguous.

The propagation step is implemented using a Markov Random Field (MRF). A

node in the MRF is assigned to each image derivative. Each node represents the

correct classification of the derivative. The compatibility functions in the MRF are

configured to propagate information according to the heuristic that derivatives along

an image contour should have the same labels. Using the MRF, the correct clas-

sification of each derivative is estimated using the Generalized Belief Propagation

algorithm [79].

This system works well on real-world images. Figure 1-8 shows an example of the

output of our system. The face and cheek patches that have been painted on the

pillow are correctly placed in the reflectance image, while the ripples in the pillow are

placed in the shading image.

1.2.7 Limitations of Previous Work

The system discussed in the previous section overcame issues in previous work by:

1. Using machine learning to build better models of shading and albedo images

than the simple smooth/sharp model used by algorithms like Retinex.

2. Estimating full-frequency shading and albedo images by classifying derivatives.

3. Using a Markov Random Field to propagate information from areas of the image

with good local evidence into areas of the image where the correct classification

of the derivatives is ambiguous.

However, this system has several significant limitations. The most signficant lim-

itation is its reliance on classifying derivatives. As can be seen in Figure 1-9, shading

and albedo changes often coincide. In these situations, classification is not appropri-

ate. Another problem with classification can be seen in Figure 1-9. If the images are

properly anti-aliased, strong albedo edges in the image will tend to be surrounded

by derivatives with a small magnitude. Classifying these low-magnitude derivatives

is difficult because classifying these derivatives as albedo changes will remove any

shading around albedo changes. On the other hand, classifying these derivatives as

shading will cause small albedo changes to be included in the shading image.

Relying on classification also limits the type of problem that can be addressed.

Examining the noisy image in Figure 1-9(b) makes it clear that the derivatives in



Figure 1-9: Two examples of cases where the classification strategy breaks down. (a)
Anti-aliasing around edges in the images leads to blurred edges that do not have a
clear classification. (b) Classification will not work for denoising because noise and
scene derivatives occur everywhere.
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Figure 1-10: This diagram describes our basic approach to recovering intrinsic com-
ponent images. In this example, we recover the shading image of a piece of crumpled
paper by first estimating the horizontal and vertical derivatives of the shading image.
The estimate of the shading image is produced by finding the image that best satisfies
these constraints in the least squares sense.

this image cannot be classified as either belonging to the scene or the noise image.

A system based on classification will be thwarted by the fact that there there are

changes in the noise image at every pixel.

The second limitation of this system is that it was hand-designed. While some

of the parameters in the MRF were optimized, the overall heuristic that information

should propagate along contours was hand-selected, and the training was designed

around this heuristic.

The third limitation of this system is that it was trained using synthetic data.

Training with synthetic data is undesirable because the assumptions about the world

are built into the data. In addition, it is unlikely that surfaces in synthetic data will

have the complex shape and appearances that real-world surfaces possess.

1.3 Basic Strategy for Estimating Intrinsic Com-

ponent Images

This thesis describes a system for estimating intrinsic component images that over-

comes each of these limitations of the previous system. To overcome the limitations

of classification, estimating the intrinsic component images will be viewed as a con-

tinuous estimation problem.

I A



Viewed as a generic non-linear regression, estimating an intrinsic component image

with N pixels is an N-dimensional regression problem. Even for small images, this

dimensionality is too large and the space of all possible N pixel images is too complex

to use black-box regression algorithms. This dimensionality issue can be overcome by

making a simplifying assumption. The key simplifying assumption is that at every

pixel in the image being estimated, there are quantities that can be estimated using

only a small local patch of the observed image. For example, in the world of Mondrian

images from the Retinex algorithm, a two-pixel image patch is sufficent to estimate

the derivatives of the shading image.

Most of the previous work described in Section 1.2 has focused on using horizontal

and vertical derivatives as these local quantities. This is necessary because pixel values

cannot be estimated directly. Consider an image of a surface with two large regions

of differing albedo. If the region with darker albedo is larger than the image patch

used to estimate pixel values, it is impossible to correctly recover the shading of that

area. The classic Retinex algorithm overcomes this by making local estimates of the

image derivatives, rather than the pixel values. These derivative estimates are then

used to estimate the image by solving Poisson's equation.

This thesis generalizes this approach by allowing the local quantities being es-

timated to be arbitrary linear filters. These linear filters are used to estimate the

intrinsic component image in the following steps:

1. Choose a set of Nf linear filters, fi ... fN,. This set could be something as

simple as horizontal and vertical derivative filters, or a much more complex set

of filters.

2. If the observed image is denoted 0 and the true intrinsic component image

being estimated is denoted T, the next step is to use 0 to estimate fi * T,

where * denotes convolution, for all i = 1... Nf. In other words, the observed

image 0 is used to estimate how the intrinsic component image would look if

it were filtered with fi.

As mentioned earlier, to control dimensionality issues, it is expected that these

estimates can be produced at every pixel using only local image information.

Chapter 3 will describe how to use training data to learn non-linear estimators

of the filtered intrinsic component image.

3. Each of these estimated values of fi * T can be viewed as a constraint on

37



the intrinsic component image that is being estimated. The final step is to

reconstruct the estimated intrinsic component image by finding the image that

best satisifies these constraints. Throughout most of this thesis, the estimated

intrinsic image will be found using a pseudo-inverse operation.

Figure 1-10 shows an example of how this process works when estimating a shading

image. In this figure, the constraints are horizontal and vertical first derivatives. The

first step is to estimate the first derivative of the shading image at every pixel. Given

these estimates, which form an overcomplete linear system, the estimated shading

image is produced by finding the pseudo-inverse of this linear system.

The choice of filters depends on the image statistics. Filters should capture and

distinguish the characteristic statistics of the intrinsic components. In the case of

classic Retinex, the assumption is that shading images are smooth, while reflectance

images are piecewise constant, so that the processes can be easily separated in the

derivative domain. Since real images are more complex, more sophisticated statistics

must be learned in order to do the separation.

It should be noted that shading and albedo images combine multiplicatively, so

the system actually estimates the log of the shading and albedo images. This makes

the estimation problem additive. I have found that it is not necessary to take the log

when applying the algorithm to images from uncalibrated cameras. This is because

photographic tonescale is similar to a log transformation.

1.4 Contributions of this Thesis

The main focus of this thesis will be the task of learning to separate an image into

albedo and shading components. The system described in this thesis achieves state-

of-the-art performance on imagery that is more difficult than that used in previous

work. Unlike my previous work, color information will not be used. For this work, I

have chosen to focus on the problem of estimating shading and albedo images from

gray-scale images. This harder problem is a better test of the capabilities of the

algorithms described here.

However, this approach is not limited to estimating shading and albedo images.

The same approach can be used for other image estimation problems where the statis-

tics of different image classes are distinct. To demonstrate this, the techniques de-
scribed in this thesis will also be applied to the problem of removing noise from



images. Instead of training on images with and without albedo changes, the system

can be trained on examples with and without noise. As Section 3.12 will show, the

results are competitive with state-of-the-art denoising methods.

In addition to the state-of-the-art system for estimating intrinsic images described

in this thesis, the contributions of this work include:

1. An efficient, boosting-like method for training the estimators that predict the

estimated filter outputs. This method scales to large data sets and, as will be

shown in Chapter 2, produces estimators that are both smaller and make lower-

error predictions than estimators trained using Support Vector Regression.

2. A data set of real-world surfaces consisting of observations and ground-truth

shading images. To my knowledge, this is the first data set for the shading and

albedo estimation problem with ground-truth decompositions.

3. A method for learning to how to weight the various constraints in the linear

system. As Chapter 4 will show, this is important because, as discussed in

Section 4.1.2, the correct estimate of a filter value may be ambiguous given

only local information. Chapter 4 will show how to learn a weighting function

that compensates for this ambiguity and leads to significantly better estimates.

4. As Chapter 4 will show, learning this weighting function is equivalent to learning

the parameters of a Markov Random Field model of the estimated image. In

contrast with the previous work of Tappen et al., the parameters of this MRF

are completely learned from the training data. This enables the behavior of the

system to be driven by the data, rather than hand-engineered heuristics.

1.5 Roadmap

As Section 1.3 describes, the first step in estimating images is to estimate the value

of fi * T, the filtered intrinsic component image. Chapter 2 describes a stagewise,

boosting approach for learning the estimators to predict these images.

Chapter 3 then evaluates the performance of these estimators on both the tasks of

estimating shading and albedo images and denoising images. Chapter 3 also discusses

the details of the pseudo-inverse step and constructing the training and test data.

Because these estimates are found using small patches of image data, the correct

value of a linear filter response may be ambiguous. Chapter 4 discusses how to learn



which image patches are ambiguous and appropriately weight the estimates. This

corresponds to learning the parameters of a Conditionally-Gaussian Markov Random

Field. Chapter 4 describes an efficient method of learning these parameters and

demonstrates how this leads to signficantly better estimates of the shading images.

1.6 Notation

Throughout this thesis, the variables (, T, and X will represent the observed im-

age, the ground-truth "target" image, and the estimated intrinsic component image,
respectively. Generally, o will represent an observation vector, such as a patch taken

from an image, and t will represent a ground-truth target value. The variable C will

be used to denote the estimated values of the linear constraints that are used to

reconstruct the estimated image.



Chapter 2

Learning a Mixture of Experts

Estimator

As the previous chapter explained, an intrinsic component image is estimated by

1. Choosing a set of linear filters, fi ... fNf, that will serve as constraints on the

pixels in the estimated image.

2. For each fi, learning to predict fi * T, from the observed image 0, where T is

the ground-truth target image.

3. Performing a pseudo-inverse operation to reconstruct the image from the esti-

mated filtered image values.

The intuition behind this strategy is that the correct response of some filters can

be estimated from image patches. The estimated image is then reconstructed from

these response estimates. Obtaining good estimates of the filtered image is the critical

step in estimating high-quality intrinsic component images. This chapter focuses on

the issues involved in choosing an estimator to predict these values. When choosing

an estimator to use, issues beyond the error in the estimates, such as the amount of

computation needed to produce the estimates, must be considered. Sections 2.2 and

2.3 explore these issues and cover background material on regression.

Section 2.4 introduces the Mixture of Experts estimator, which is the type of

estimator that will be used to predict the filtered image values. Section 2.5.2 presents

an efficient, stagewise algorithm for learning this Mixture of Experts estimator.



2.1 Basic Problem Statement

The goal is to learn a function g : RM -* R that maps from an M-dimensional

observation vector o to a scalar estimate of the linear constraint value. Practically,
in the basic system described in Section 1.3, g will map from an image patch to an

estimated filter response at the center of the patch.

The actual estimates produced by the estimator g will depend on the parameters

of that estimator, 0. In this chapter, g(-; 0), will denote an estimator defined by

parameters 0. While the parameters of g could be chosen by hand, it is unlikely

that this estimator will capture the rich behavior of real-world images. Instead, the

parameters can be found using training examples.

Formally this can be accomplished by first choosing a set of NT training pairs,
(oi, ti), where i = 1... NT. In each pair, oi denotes an observation, which could be a

vector, while ti denotes the scalar target value to which g(oi; 0) should evaluate when

presented with observation oi. Due to ambiguities and noise in the training data, it

is unlikely that g(oj; 0) will equal ti for all oi, so a loss function, L(g(oi; 0), y) must

also be chosen. The loss function expresses the penalty for g(oj; 0) differing from ti.

One of the most popular loss functions is the squared error:

L(g(o; 0), t) = (g(o; 0) - t)2  (2.1)

Given a loss function and training examples, the parameters, 0, can then be found

by minimizing the sum of the loss function over the training set:

NT

0 = arg min L(g(oi; 0), ti) (2.2)
0 i=1

This is also known as "training" or "learning" the estimator.

2.2 Issues in Choosing the Type of Estimator

The estimator g(.; 0) can take a number of forms. In this work, the choice of the

estimator for estimating intrinsic component images is dominated by three major

issues:

1. Flexibility



Without the ability to model complex relationships between the observations

and constraint values, the system will be unable to cope with the complex

statistics of real-world images.

2. Computation Required for Training

One of the primary goals in this work is to avoid simplistic, hand-constructed

models of images. To capture the variation in real-world images, it is vital that

the training procedure scale to large numbers of training examples.

3. Computation Required to Produce Estimates

When producing the estimates of the intrinsic component images, the value

of multiple constraint values must be estimated at each pixel in the image.

For even a small 128 x 128 pixel image, this adds up to tens of thousands of

estimates that must be produced. The overall system will not be useful unless

these estimates can be produced quickly.

2.3 Possible Types of Estimators

With these different criteria in mind, it is possible to assess the usefulness of different

types of estimators. This section considers several types of estimators that could be

used to estimate the filter response values.

2.3.1 Linear Estimators

The simplest type of estimator is a linear estimator of the form

g(o; 0) = 0T o  (2.3)

where 0 is a vector of real numbers. This estimator requires relatively little com-

putation to train and produce estimates, but can only express a simple relationship

between the observation and prediction. It can be expected that the relationship

between image patches and constraint values will be complex, so it is unlikely that

this estimator will be accurate enough.



2.3.2 Nearest Neighbor Estimator

In the other direction, non-parametric estimators have the ability to model com-

plex relationships between observations and predictions, with the potential cost of

requiring excessive computation to produce estimates. This can be understood by

considering a simple k-nearest neighbor estimator:

g(o; 0) =N1 t, (2.4)
iENk(o)

where Nk(o) denotes the k training samples that are the most similar to o, and NN

denotes the number of neighbors. The patches in Nk(o) are known as its k-nearest

neighbors. Given o, this estimator produces an estimate of y by averaging the k

training samples that are the most similar to o. This estimator can be further refined

by using the k-nearest neighbors to fit a polynomial, then using that polynomial

to predict t. This technique is known as Locally-Weighted Regression [7, 17]. The

advantage of locally-weighted regression is that more complicated relationships in the

neighborhood can be captured.

This estimator can obviously predict complex relationships between o and t, as

long as this relationship is locally smooth. The disadvantage of this estimator lies

in the task of finding the k-nearest neighbors. Using brute-force techniques, the cost

of finding the k-nearest neighbors of o grows linearly with the number of training

examples.

2.3.3 The Nadaraya-Watson Estimator and Kernel Density

Regression

A smoother alternative to the nearest-neighbor estimator is an estimator of the form:

-IIo0-0o112

_g=(o; t)= (2.5)
i= 1

where oi and y2 are training examples from the set of NT training examples. The

parameter h is a scale factor that controls how the influence of a point falls off. This

estimator is know as the Nadaraya-Watson estimator [50, 77, 13].

Like the k-nearest neighbor estimator, an estimate is produced by averaging the

training samples. Assuming that the Euclidean distance between patches is an ap-



propriate measure of similarity between vectors, the e h2 term in the numerator

of Equation 2.5 will be close to 0 for dissimilar patches and close to 1 for similar

patches. These similarity measures are used to compute a weighted average of the

training examples.

This estimator can be viewed as a smooth version of the nearest neighbor estima-

tor. Rather than using a set of neighbors in the training set to make a prediction,
every point in the training set contributes to the prediction. However, the contribu-

tion of each example is weighted by its similarity to o. The nearest neighbors to o

will contribute the most, while dissimilar training examples will contribute relatively

little.

2.3.4 Probabilistic Interpretation of the Nadaraya-Watson

Estimator

In addition to its connection to the k-nearest neighbor estimator, the Nadayara-

Watson estimator is motivated well in a probabilistic framework [13]. To see the

connections, I will first describe basic kernel density estimation, then show how using

a density estimated in this fashion to do regression leads to the Nadaraya-Watson

estimator.

Kernel Density Estimation

To begin, consider the problem of estimating a probability density function, k(x), from

a set of samples, x 1 ... XN, drawn from some unknown density, p(x). For example,

the samples shown in Figure 2-1(b) were drawn from the relatively complicated 2D

pdf, p(x), shown in Figure 2-1(a). The goal is to use the samples in Figure 2-1(b) to

produce an estimate, f(x), of the density function in Figure 2-1(a).

Rather than imposing a functional form on ^(x), which often overly limits the com-

plexity of A(x), A(x) can be estimated using non-parametric methods. The unique

characteristic of non-parametric methods is that P(x) is specified using the observa-

tions, rather than a small number of parameters.

Kernel density estimation, also known as Parzen density estimation, is a popular

approach for estimating A(x) from xl... XN. Using this approach, A(x) is constructed

by placing a small kernel at each sample xi. Following Bishop's [13] notation, the

density estimate can be constructed using a kernel function, H(u):



(b)

Figure 2-1: An example probability density function, shown in (a), and samples drawn
from that distribution.

N

(x) = H(x - xi) (2.6)
i=1

where u E IRM. If H(u) > 0 for all u and f H(u)du = 1 then this estimate will be a

valid probability density function.

If the kernel function is chosen to be a Gaussian kernel, with standard deviation

h, the estimated kernel density function becomes:

(x) = - 1 exp IIX i11h2 (2.7)
i=1

where 1 is the normalizing constant for the Gaussian kernel. The term h is sometimes

referred to as the bandwidth of the kernel.

Figure 2-2(a) shows the density estimate produced using only 2000 samples of

the density from Figure 2-1(a). The behavior of the kernel density estimator is clear

in this figure. The estimate is the sum of a set of Gaussian bumps that have been

placed at the location of the training samples. While this estimate is somewhat poor,
given enough samples and if h is chosen properly, the kernel density estimation can

produce good estimates of complicated densities. Figure 2-2(b) shows the density

estimate produced using 20000 samples. This estimate matches the true density well.
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(b) 20000 Samples

Figure 2-2: Kernel density estimates of the density function shown in Figure 2-1(a).
Figure (a) shows the estimate found with a relatively small number of samples. It is
uneven and does not approximate the true density well. (b) With more samples, the
estimate of the density improves significantly.

Deriving the Nadaraya-Watson Estimator as Estimation using the Kernel
Density

The Nadayara-Watson estimator can now be derived as regression using a kernel
density estimate. For convenience, we denote a sample xi from the density p(x) as a
pair (oi, ti), where o denotes an observation that we wish to use to predict the target
value t. Given an estimate of the probability density function of xi, which can also
be viewed as the joint density function of o and t, the estimate of t that minimizes
the mean-squared error criterion, t, is the conditional expectation of t, given o:

t = E[to] (2.8)

where the expectation is over the estimated density function, Pj(x).
Using the properties of Gaussian density functions, this is equal to

E 
1-N 1 tie 

112

t i=1 _i (2.9)

which is the Nadaraya-Watson estimator from Section 2.3.3.

(a) 2000 Samples



2.4 Overcoming Complexity issues using Experts

The flexibility of the Nadaraya-Watson and k-nearest neighbor estimators make them

ideal estimators to use for predicting the constraint values. However, this flexibility

comes at the price of high computational complexity. To predict the target value t

from an observation vector, o, this vector must be compared with every sample in the

training set. As the training set grows large, these comparisons become prohibitively

slow. In addition, a prediction must be made for nearly every pixel in an image,

making speed issues central to the usefulness of the system. Algorithms, such as the

kd-tree, have been proposed to speed up these comparisons. However, the benefits

of these algorithms may diminish when high-dimensional observations are used. For

example, Sproull has reported that the benefits of algorithms based on trees diminish

when the dimensionality of the samples is greater than 12 [64].

While recent research has proposed new algorithms that overcome some of the

weaknesses of tree-approximations [20], these estimators do not provide any way of

summarizing the data. One advantage of parametric estimators is that their param-

eters give a concise description of the relationship between the observations and the

target values. The ideal estimator would offer the flexibility of the non-parametric

estimators, with the ability to learn a concise description of the relationships in the

training data.

This section shows how a Mixture of Experts [39, 37] estimator can offer the flexi-

bility of a non-parametric estimator, while still summarizing the data with a relatively

few number of parameters. The Mixture of Experts estimator can be motivated by

noticing that the local relationship between o and t can be modelled well as a linear

relationship. Figure 2-3(a) shows this property using the samples from the example

distribution discussed previously. As Figure 2-3(b) shows, more complicated relation-

ships can be expressed by considering multiple linear relationships. Each red line in

Figure 2-3(b) captures the relationship between o and t for a range of o. Each of

these lines can also be thought of as defining the optimal linear regression function

for a range of o.

This notion of using NE multiple linear regression functions to estimate t from o

can be expressed formally by defining a function g(o) that estimates t from an M x 1

observation o:
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(a) Single (b) Multiple

Figure 2-3: The Mixture of Experts estimator is able to capture the relationship
between the observation and the target. (a) Locally, the relationship between o and
t is modelled well as a linear relationship. (b) Using multiple linear regressions, the
relationship between o and t is modelled well.

NE

g(o; ) =•p(ilo)(OTo) (2.10)
i=1

where Oi is a M x 1 set of linear regression coefficients. The probability mass function

p(ilo) is the conditional probability that Oi is the best set of linear regression coeffi-

cients for predicting t, conditioned on o. Essentially, the estimate g(o) is a weighted

average of linear estimates. The probability mass function, p(ilo), acts as a gating

function that assigns weight to the various linear estimates based on how "expert"

they are for a particular observation o. This estimator is referred to as a Mixture of

Experts model because it is built from a set of functions that are each experts for a

different region in the space of observations.

2.4.1 Completing the Estimator by Defining p(ilo)

Fitting a Mixture of Experts Estimator involves choosing the number of experts, N,

then fitting the regression coefficients and p(ilo). Jacobs et al. proposed modeling

the regression coefficients and p(ilo) as the output of a neural network [37]. The

parameters of this network are found by maximizing the likelihood of the data using

gradient descent. In later work, Jordan and Jacobs showed how to use the EM



algorithm to fit this model [39].

While fitting the linear regression coefficients and p(i o) is relatively easy, the

number of experts must be chosen beforehand. This problem is similar to the prob-

lem of choosing the number of mixture components when estimating a probability

distribution using a mixture model. This problem, sometimes referred to as model

selection, is discussed more in Section 2.5.

Fortunately, the tasks of fitting p(ilo), learning the regression coefficients, and

choosing the number of mixture coefficients can be accomplished simultaneously. This

section describes an algorithm, which I will refer to as the ExpertBoost algorithm,

that uses training data to fit a Mixture of Experts estimator.

Modelling p(i o)

Before describing the algorithm for learning the estimator g(o), the exact form of the

Mixture of Experts estimator must be fixed by choosing the form of p(ijo). We follow

the work of Jacobs et al. [37] and use a softmax function to express p(ilo):

p(io)= exp (2.11)
p jo _exp (-j)

where 7y is the output of some function.

Inspired by the Nadaraya-Watson estimator and kernel density estimation, we

define the p(ilo) using the softmax function over the Euclidean distance between o

and a set of "prototype vectors":

exp I 1-p, 12
p(i o) (2.12)

where pi ... PN are a set of prototype vectors and h is a scale factor. For brevity, it

will be assumed that h > 0 throughout this thesis.

The final form of the estimator can now be expressed as

ECN exp 11- opil
g(o; p, 0) = exp (-I - 12) ( (2.13)

where o is the Mx 1 observation and 01... ON are M x 1 vectors of linear regression

coefficients. Again, pi ... PN are prototype vectors, and h is a positive scale factor.



2.5 Stagewise Training of the Mixture of Experts

Estimator

Fitting the Mixture of Experts estimator in Equation 2.13 involves choosing the num-

ber of experts, NE, fitting the linear regression coefficients, 01 ... ONE, and choosing

the prototype vectors, p ... pNl,. Below, I will refer to the combination of a set of

linear regression coefficients, Oi, and a prototype patch, pi, as an expert. This section

will show how all of these tasks can be accomplished quickly and easily by fitting the

estimator in a stagewise fashion.

Stagewise learning can be understood by contrasting it with the traditional op-

timization approach. As mentioned above, the parameters of an estimator can be

found by minimizing a loss function that penalizes the estimator's error on the train-

ing set. This minimization is typically done by iteratively updating the parameters

of the estimator until the algorithm reaches a local minimum of the loss function. In

the context of fitting a Mixture of Experts estimator, taking this approach entails

fixing the number of experts, then iteratively adjusting the prototype patches and

associated linear regression coefficients to minimize the loss function.

The stagewise approach to fitting the estimator is fundamentally different because

it relies on the estimator being composed of a combination of experts. Like the

optimization-based approach, fitting the estimator to the training data is a set of

iterative steps that reduce the loss. However, instead of modifying a fixed set of

parameters at each iteration, the loss is reduced at each iteration by adding a new

expert to the estimator.

To understand this, consider a Mixture of Experts estimator with NE experts:

g(o;p, ) = exp (2.14)ENE exp 1Il-pi 2
This estimator can be improved in two ways. In the optimization approach, the

prototype patches pi... PNE and the regression coefficients 01... ONE are modified to

minimize the loss over the training set. Alternatively, this estimator could be im-

proved by adding a new expert. This new expert would correct predictions in regions

where the estimator performs poorly. The stagewise approach to fitting an estimator

minimizes the loss function in just this manner. At each iteration of the training

algorithm, a new expert is added so that the loss over the training set decreases.



2.5.1 Stagewise Versus Iterative Training

At first glance, iterative training may appear to be the superior strategy because the

parameters of the estimator are jointly optimized to minimize the loss. However,

the key disadvantage of this approach is that the number of experts must be fixed.

Finding the correct number of experts for the estimator requires repeatedly fitting

estimators with increasing numbers of experts until the correct number is found using

some model selection criterion such AIC or BIC [6]. For complicated problems, a

number of experts may be needed, making this process of repeatedly training quite

slow. In addition, I speculate that optimizing over both the prototype patches and

regression coefficients will be particularly difficult because the training process will

be very sensitive to the initialization of the prototype patches.

The key advantage of stagewise training is that it is not necessary to fix the number

of experts. The correct number of experts is determined using the stopping criterion

for training. As Chapter 3 will show, estimators trained in this fashion perform very

well when estimating image constraints.

2.5.2 Fitting the Mixture of Experts Estimator

Adding an expert to the estimator requires choosing a prototype patch and regression

coefficients at every iteration. As shown below, once the prototype patch is chosen,
finding the regression coefficients is simple. This makes choosing the prototype image

patch the most difficult problem.

When deciding on a strategy for choosing the next patch, the overriding concern is

computational efficiency. For a difficult image estimation problem, such as estimating

shading or albedo on a real-world surface, large training sets, with hundreds of thou-

sands of training examples, will be necessary to capture the complicated statistics of

a real-world surface. In addition, a fast training algorithm is beneficial for research

because it facilitates experimentation.

For this reason, I have chosen a simple, greedy strategy for choosing the next

prototype patch. At each iteration, the training example with the highest loss is

chosen to be the next prototype patch. This greedy algorithm will be referred to as

the ExpertBoost algorithm, due to its similarities with the AdaBoost [28] algorithm

for learning a classifier. The actual algorithm for fitting the estimator is shown in

Algorithm 1. The following sections describe each step of the ExpertBoost algorithm.



The steps in the headings refer to the steps in Algorithm 1.

Input

The input to this algorithm is a set of M observed image patches, ol ... oM and the

derivative value at the center of each patch, c1 ... cm. The scale factor h from the

exponent in Equation 2.13 must also be provided. This scale factor can be chosen

using cross-validation on the training set.

Note that an n x n image patch from the training set can be unwrapped into a

n2 x 1 vector. For convenience, we will assume that each of the training samples has

been unwrapped into a vector.

The linear regression associated with each expert should include a bias term. The

most convenient way to add this bias term is to add another dimension to the training

samples. The value of this dimension should be 1 for every training sample. If the

prototype patches are augmented similarly, this will not affect the similarity value

between an observation and a prototype patch. For all that follows, I will assume

that the training examples have been augmented in this fashion.

Steps 1-6: Initialization

In Steps 1-6, the algorithm is initialized by setting the first prototype, pi, to be an

arbitrary training sample. The associated linear regression coefficients are chosen to

be the linear regression from the observations to the ground-truth filter responses, c,
with the minimum mean-squared error (MMSE). If the training examples ol... oM

are n x 1 vectors, this can be computed quickly by first concatenating the M training

examples into an n x M matrix, denoted O. The regression coefficients 01, which will

be associated with pi, can then be found using a Moore-Penrose pseudo-inverse:

01= (00T)-'Oc (2.15)

where i^ is a vector consisting of cl ... cM.

Once the initial prototype patch is chosen, the algorithm then adds NE- 1 experts,
one by one, to the estimator. The following steps occur at each of the NE- i iterations.

Step 8: Adding the next patch

At each iteration in the algorithm, the first step is to choose the next prototype patch

to be added to the system. As mentioned before, this is primarily accomplished using



Algorithm 1 ExpertBoost
Require: NE, the number of prototype patches to be added to the model. A set of

M training examples, (ol, cl)... (OM, Cm). A scale parameter, h

1: i - 1

2: Choose an arbitrary observation to be the initial prototype, pi.

3: 01 -- argmino Em =1(01 . om - Cm) 2

4: for m = 1... M do

5: set rm , which is the current estimate of cm, to the linear estimate of Cm from

Om

6: end for

7: for i= 2.. .N do

8: Add a patch, on, to the prototype database by setting patch Pi = on, where

n = arg maxn(r - Cn) 2

9: for m = 1... M do

10: dm ~ e J(ot - a) 2, where pi denotes value j in the patch with index i. A

similar notation is used for the observations o.

11: dom •;=1e-EJ(°m-g)

12: end for

13: Set Oi = arg min0 Em=1 ( dOr-+dn Tom)) 2

14: for m = 1... M do

15: Update rm to be the current estimate of Cm from om.

16: end for

17: end for



a greedy approach. At each iteration, the current estimate of each target value is

updated for each training example. The training example with the largest error in

the estimate is chosen to be the next prototype patch in Step 8.

Steps 9-13: Fitting the regression coefficients

Once the next prototype patch has been chosen, the next step is to fit the linear

regression coefficients for the new expert. For the squared-error loss function, these

coefficients can be computed efficiently.

The first step is to compute two intermediate quantities, dm and dom, where m

indexes into the M training examples. The quantity dm is the similarity between the

newest prototype patch and each of the training examples. For each training example

om in ol... OM, dm is computed as

dm +- e- E j -p1) 2  (2.16)

where jp denotes value j in the patch with index n, and dm is computed for each m

in 1... M. The notation is similar for the observations o.

The other intermediate quantity that needs to be computed is dO,, which expresses

each patch's similarity to the previous prototype patches:

doM - e--~2 (2.17)
l=1

Again, this is computed for each m in 1... M. The sum is over all of the previous

prototype patches chosen by the system.

With these quantities, the new regression coefficients, 60, can be found by mini-

mizing the error in the updated predictions:

Oi d- arg min dr +dr- Ck (2.18)0 M=1 dm + dm

where ri-1 is the current estimate of Cm before the new expert is added.

Interestingly, Equation 2.18 can be rewritten as a weighted regression:

Sd 2 2
i -argrmin d )i-1 + cm ~Tom) (2.19)

m=1



In this form of the equation, the weight of a training example is determined by

two factors. First, examples that are more similar to prototype patches already

chosen receive less weight. At the same time, examples that are similar to the newest

prototype patch receive more weight.

The regression coefficients can be found easily in closed form:

(OTWO)-1 OTWa (2.20)

where O is the matrix of observations, as in Equation 2.15. The matrix W is a

diagonal matrix with the diagonal terms set to be

Wm = da dm) (2.21)

where Wm is the value on the diagonal in the mth row. The vector ý contains the

new target values:

dm-1 + (2.22)dm
For stability, the regression can be regularized by adding a scaled identity matrix,

al to the (OTWO) term. For best performance, this matrix should be modified so

that no regularization is applied to the bias term. This allows the bias term to be set

freely and encourages the linear terms to have as low a norm as possible.

For large training sets, these steps can be accomplished much more quickly by first

selecting a subset of training examples that are most similar to the new prototype.

2.5.3 Beyond Squared-Error

In the previous sections, the ExpertBoost algorithm is derived for minimizing the

squared-error loss. function. However, Equation 2.18 can be rewritten for any arbitrary

loss function, L(.):

M (domri-1 + dm(0om))
i +- arg min L m , Ck (2.23)

m=l1 d + dm

While conceptually simple, there is a caveat to this statement. The squared-error

loss is unique in that there is a simple closed form solution to the arg min task. It is

unlikely that other loss functions will have similar simple solutions.
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Figure 2-4: The 0-1 loss, plotted in green, is the ideal loss for classification, but is
not smooth. The exponential loss is a smooth upper bound on the 0-1 loss.

2.5.4 Classification using ExpertBoost

The ExpertBoost algorithm's ability to generalize to arbitrary loss functions allow

it to be used to learn a binary classifier. Binary classification can be viewed as a

regression problem where every target value is +/ - 1. The typical approach to

classification is to learn a function f : RM -- R that maps the M dimensional

observation vector to a scalar. For an observation o, if g(o) > 0, then the classifier

returns +1 as the estimated label of the observation. On the other hand, if g(o) < O,
the classifier returns -1. Unlike regression, the goal is not to learn to predict a certain

value. Instead the goal is to predict a value with the correct sign.

In most cases, the ideal loss function for learning a classifier is the 0-1 Loss,
plotted in green in Figure 2-4 for the case when the correct label is +1. Using

this loss function, the loss only depends on the prediction having the correct sign.

Unfortunately, this loss is not differentiable, which makes minimizing this loss difficult.

A differentiable alternative to the 0-1 Loss is the exponential loss [31]:

L(f(xi; 0), c) = e- cf(xi;6 ) (2.24)

This loss, plotted in blue in Figure 2-4, is an upper bound on the 0-1 Loss. Fried-

man et. al also point out that the f(x) that minimizes the exponential loss coincides

with the maximizer of the logistic log-likelihood [31].

Training a classifier using the ExpertBoost algorithm, under the exponential loss,

lr



can be accomplished using an algorithm similar to the GentleBoost algorithm [31].

For simplicity, the derivation will focus on a classifier of the form:

N exp ( o-pi9,2)

(o) = exp (2.25)
•-•i=lexp h "-Pi )h

where 0i is a scalar. The primary difference between this classifier and the Mixture

of Experts estimate in Equation 2.13 is that only a constant is associated with each

expert, rather than a set of linear regression coefficients.

For the exponential loss, there is not a simple closed-form method of finding the

regression coefficients in Step 13. However, because the exponential loss is convex, a

quadratic approximation can be substituted instead. At iteration i, the exponential

loss, L, for any set of regression coefficients, 0i, is:

L = exp -cm dr +dm (2.26)
m=1

where cm is the true label of example m. This can be approximated with a Taylor

series, expanded around Oi = 0:

L m•exp -Mcm n + i m 2 dm 2 (2.27)dpo +dm do + r do + dm

The value of Oi is found by minimizing this quadratic approximation:

i d
0

Z-d 1 4- ( dm, Cm

o i = (2.28)

M e-cm 2 , 2
k=1 d

i 
+dd

In [31], these types of stagewise updates are referred to as taking Newton steps

because iteratively solving a quadratic approximation is similar to Newton's method

for minimizing non-linear functions.

2.5.5 Related Work on Stagewise Methods

This stagewise approach to fitting an estimator has been used previously for fitting

additive models of the form:



I

f (x, O) - Oih(x, i) (2.29)
i=1

where the functions h(x, yl) ... h(x, 71) are often called "basis functions" or "weak

learners". These basis functions are parameterized by i/ ... y,. [34] This general form

subsumes many popular types of regression methods, including radial-basis function

regression, spline regression, and kernel regression.

One of the first examples of the application of stagewise modelling to this additive

regression model was the Projection Pursuit Regression algorithm [29]. In [44], Mallat

and Zhang use this strategy, which they call matching pursuit, to choose a set of

wavelet basis functions for representing signals.

This additive model is also the model produced by the popular AdaBoost [28]

algorithm for learning a classifier. In the context of boosting, the functions h ... hi

are known as weak learners because each individual weak learner is expected to have

poor discriminative power. However, combined together, as in Equation 2.29, these

weak learners form a strong classifier. Friedman et al. [31] and Collins et al. [19]

showed the connection between the AdaBoost algorithm and stagewise minimization

of the exponential loss.

After the introduction of the AdaBoost algorithm, its connection to minimizing

the exponential loss was not initially understood. This led to regression mechanisms

that relied on using the AdaBoost algorithm to learn a classifier. An example of this

type of regressor, that on the surface appears to be quite similar to the regression

model that I have proposed, is the work of Avnimelech and Intrator, entitled "Boosted

Mixture of Experts: An ensemble learning scheme" [8]. This algorithm operates by

fitting a new expert to training examples that the previous experts predicted with

low confidence. A classifier is then retrained to classify which estimator should be

used for each example.

The primary difference between these additive models and the regression model

presented in this chapter is the normalizing term in Equation 2.13. Section 3.10

compares the performance of an additive model, such as Equation 2.29, and the

Mixture of Experts model for estimating shading images.
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Figure 2-5: The training data used in the initial demonstrations of the ExpertBoost

algorithm. In this data set, there is no noise.

2.6 Visualizing the ExpertBoost Algorithm

To understand the behavior of the ExpertBoost algorithm, this section will show how

it learns to predict a one-dimensional function. To begin with, consider learning from

a set of training pairs, (ol, tl)... (OM, tM), shown in Figure 2-5. In this data, given

o, there is no uncertainty in the correct value of t. This data could be considered as

being drawn from a distribution that would appear as a line with a similar shape to

the distribution shown in Figure 2-1.

2.6.1 The Training Process

After adding the first expert, the estimator is equivalent to a linear estimator, so the

regression coefficients chosen for the first expert, depicted with the red line in Figure

2-6(a), are the optimal linear regression coefficients. The next step is to choose

the training sample with the highest error as the next prototype patch. This next

prototype is marked with the black circle in Figure 2-6(a).

The linear regression coefficients associated with this expert are chosen to min-

imize the error for training examples near the next prototype. This regression, de-

picted as the green line in Figure 2-6(a), matches the steep relationship between o

and t around the next prototype patch.

After adding this expert, the estimator, depicted as the dashed red line in Figure

2-6(b), produces good predictions where o is near zero, but very poor predictions

where o is near 350. Consequently, the training example with the highest error now

I I I I
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0
(a)

Figure 2-6: The first two iterations of the ExpertBoost algorithm. The estimator is
initialized to be the best linear estimator of the data. See the text for details. Figure
(b) shows the third prototype patch to be added to the estimator.

lies on the right side of Figure 2-6(b) and is chosen to be the next prototype. The

linear regression associated with this prototype, again depicted as a green line in

Figure 2-6(b), expresses the relationship between o and t on the right side of Figure

2-6(b).

After these three experts have been added, the estimator, again depicted as a red

line in Figure 2-7(a), is the least accurate in the middle of Figure 2-7(a). Figure 2-7
shows how the estimator improves as more experts are added. At first, the estimator

jumps wildly and has poor behavior. However, as shown in Figure 2-7(e), after
14 experts have been added, it performs quite well. After adding 24 experts, the
estimator has a nearly perfect fit, as seen in Figure 2-7(f).
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Number of Experts: 5 Number of Experts: 6
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(c) (d)

Number of Experts: 14 Number of Experts: 24

o

Figure 2-7: These plots show the evolution of the Mixture
experts are added. At first, the estimator is a poor fit, but
fit.

of Experts estimator as
quickly becomes a good

Number of Experts: 3



2.6.2 The Importance of Local Fitting

For a problem without noise, such as the simple example just demonstrated, it is

vital to only use training examples near the next prototype patch when fitting the

linear regression coefficients. Figure 2-8 shows the how the estimator is fit if the linear

regression coefficients are fit to the whole training set each time. The initial linear

fit is identical for both methods. However, as can be seen in Figure 2-8, the two

methods then begin behaving quite differently. Instead of improving the estimator

for different ranges of o, the second method simply selects points from the range of o

close to zero, without fitting a significantly different estimator.

This occurs because the points toward the left of Figure 2-8(a) consistently have

the highest error. Because the algorithm is compelled to minimize the error over the

whole training set, rather than just a subset of examples near to the next prototype,
the criterion for fitting the linear regression coefficients is essentially identical to the

criterion used to fit the previous set of coefficients. As Figure 2-8(f) shows, this

behavior still continues after large numbers of experts are added.



Number of Experts: 2

o o

(a) (b)

Number of Experts: 3

Number of Experts: 14

Number of Experts: 4

Number of Experts: 24

0 0

Figure 2-8: In this example, the regression coefficients are trained to minimize the
squared error over the whole training set, rather than just the subset of the training
set that is close to the next prototype. This leads to pathological behavior.

64

Number of Experts: 1



Number of Experts: 24
3UU

250

200

>" 150

100

50

0

300

250

200

> 150

100

50

0
0U U UU IU UU u ZoU U V U 5 U U IUU IU O UU OU 3UU 30U

0

(a) (b)

Figure 2-9: These figures show the estimators trained on noisy data, with different
numbers of experts added. Despite the noise in the data, the estimators trained with
ExpertBoost algorithm are still a good fit.

2.6.3 Resiliency to Noise

Given the greedy nature of this algorithm, it could be expected that this algorithm

would perform poorly on noisy data with outliers. However, as shown in Figure 2-9,

the algorithm performs quite well. As expected, the algorithm chooses outliers as

the prototype patches. Despite this, the ExpertBoost algorithm still learns a good

estimator because the linear regression coefficients are fit to all the training points

near each prototype. This makes the step of fitting regression coefficients robust to

outliers.

Interestingly, unlike the noise-free example in Figure 2-8, fitting the regression

coefficients to the whole training set, rather than just a local subset, performs well

in this case. Figure 2-10 shows how the estimator develops in this case. With only

a few experts, the algorithm behaves similarly to the noise-free case shown in Figure

2-10. However, as can be seen in Figure 2-10, the estimator is able to adapt to the

local structure on the left side of the figures. This is possible because the noise in the

data randomizes the order in which the prototypes are chosen. In addition, as more

experts are added, fitting the regression coefficients to the whole training set on noisy

data finds an estimator that is very similar to the estimator found when fitting the

regression coefficients to subsets of the data, as can be seen in Figures 2-10(a) and

2-10(b).
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Figure 2-10: While fitting the regression coefficients to minimize the error over the
whole training set did not work in the previous example, these plots demonstrate that
it works well on data with noise.

2.6.4 Benefits of Randomly Chosen Patches

In addition to the greedy strategy for choosing the next prototype patch, it is helpful

to occasionally choose the next prototype patch at random. The primary motivation

for choosing patches at random is that it allows the algorithm to choose prototypes

other than the outliers on which it tends to focus.

To examine the benefit of drawing patches at random, I changed Step 8 from

Section 2.5.2 so that at each iteration there is a 40% chance of drawing a random

patch. If a random patch is to be drawn, that patch is drawn from all those examples

whose error is higher than the median error 65% of the time. In this experiment,

these probabilities were set manually, although they could also be set using cross-

validation. Generally, I found that the performance of the estimator was not sensitive

to the values of these probabilities.

The advantage of choosing patches randomly can be seen after a number of ex-

perts have been added. Figure 2-11 shows the estimator trained using the strictly

greedy strategy, shown in Figure 2-11(a), and the estimator found using some ran-

domly chosen experts, shown in Figure 2-11(b). The estimator with randomly chosen

prototypes has a smoother fit with fewer experts.
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(a) Strictly Greedy Strategy (b) With Random Path Draws

Figure 2-11: The plot in (b) shows the estimator found by occasionally drawing
patches at random, rather than pursuing a strictly greedy strategy, as shown in (a).
Adding randomly chosen prototypes leads to a smoother estimator.

2.7 Comparison with Support Vector Regression

To demonstrate the flexibility of a Mixture of Experts estimator trained using the

ExpertBoost algorithm, this section will compare this estimator to an estimator found

using Support Vector Regression [75] on a benchmark regression problem. Estimators

trained using Support Vector Regression are useful for this comparison for several

reasons:

1. Like the particular Mixture of Expert estimators used in this work, these esti-

mators are based on a small subset of the training examples.

2. Efficient, well-tested packages for training estimators are freely available [16].

3. If Gaussian RBF kernels are used, then the estimator has a very similar form

to the Mixture of Experts estimators used in this work.

Support Vector Regression, or SVR, is related to Support Vector Classification

[75]. There is a large amount of research in this field, which will not be summarized

in this thesis, however, excellent tutorials are available [15, 59]. Smola and Sch6lkopf

have also published a tutorial specifically related to Support Vector Regression [62].

Assuming that a Gaussian RBF kernel is used as the kernel for the estimator, the

form of the estimator is:
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Nsv

g(o) = b+ N w exp (-yj o - pi 1') (2.30)
i=1

where o is the observation, wl... WNsv are scalar coefficients, b is a scalar bias term,

and pi ... PNsv are training examples, analogous to the prototype patches chosen by

the Mixture of Experts estimators. In a SVR system, these are known as support

vectors.

To compare the two estimators, I used the problem of estimating the scalar func-

tion:

y(x 1,x 2 ,... ,X10) = 10 sin(7rxlX2) + 20(x 3 - 0.5)2 + 10 4 + 5x5  (2.31)

When generating samples, each x was uniformly distributed between 0 and 1. In

addition, zero-mean Gaussian noise, with unit variance, was added to each target

value. By design, only five of the dimensions contribute to y(xl, 2,... , X10). This

function was first proposed in [30] and has also been used for comparison in [72, 74].

The parameters of both algorithms were hand-tuned on a small sample of the

training data. The scale factor was set to 23 for the Mixture of Experts estimators and

the kernel parameter, 7, was set to 2- 1 for the Support Vector Regression estimators.

Both algorithms were trained on 30,000 examples and tested on 10,000 examples.

The Mixture of Experts model, with 1000 experts, produced estimates with a mean

squared-error of 1.17, while a SVR estimator with 1137 support vectors produced

estimates with a mean squared-error of 1.77. Increasing the number of support vectors

to 3209, led to a mean squared error of 1.45.

Given that the two algorithms perform comparably on this simple test, the chief

advantage of fitting an estimator with the ExpertBoost algorithm for this problem is

that it is relatively simple to control the number of experts in the estimator. On the

other hand, controlling the number of support vectors when fitting a SVR estimator

is quite tricky. The number of support vectors is influenced by two parameters and

altering either of these parameters can both increase and decrease the number of

support vectors in the estimator.

While the performance of these algorithms is similar for this problem, Section 3.10

will show how estimators trained using the ExpertBoost algorithm will produce much

better estimates of shading images.



2.8 Conclusion

This chapter has described a greedy, stagewise algorithm for learning a Mixture of
Experts estimator. The greedy, stagewise approach allows the algorithm to scale to
large data sets. The next chapter will show how this estimator is applied to the task
of estimating intrinsic component images. In addition, Section 3.10 will show that

the Mixture of Experts estimator compares very well against kernel regression.





Chapter 3

Estimating Intrinsic Component

Images

Chapter 2 has shown how to efficiently learn a Mixture of Experts estimator by mini-

mizing the squared-error over a training set. The quality of the estimated images de-

pends on good estimates of the filter responses. While conceptually straight-forward,

there are a number of choices to be made when implementing these estimators.

This chapter focuses on evaluating these different choices, both quantitatively and

qualitatively. The primary focus will be the task of estimating shading images, but

Section 3.12 demonstrates the effectiveness of the system on the task of denoising

images.

In addition to evaluating various configurations of the estimator, Section 3.12

demonstrates how the Mixture of Experts estimators produce much better estimates

of the derivatives of the shading image than estimators based on the same heuristic

as the Retinex algorithm, which was discussed in Section 1.2.2. Section 3.2 discusses

the implementation of the pseudo-inverse step.

3.1 Training Data

To capture of the complicated statistics of real-world surfaces, the estimators are

trained on real-world image data. This section describes how the data sets were

gathered for the tasks of estimating shading images and denoising images.



(a) Observed Image

Figure 3-1: Synthetic training images for shading and albedo.

3.1.1 Creating Denoising Data

Generating training data for denoising images is simple. The training set is created

from a set of 80 images taken from the Berkeley Segmention Database [45]. The

details of the processing steps will be described in Section 3.12.

3.1.2 Creating Shading and Albedo Data

On the other hand, generating training data for estimating shading and albedo images

can be difficult. Generating training data for this problem requires an image of

surfaces both with and without albedo changes.

Gathering Real-World Data

One relatively simple option is to generate synthetic data, such as the examples

in Figure 3-1. This is the approach taken in [10, 69]. The chief advantage of this

approach is that there are no artifacts in the training data. This makes synthetic data

especially useful in the early stages of research for validating methods and verifying

intuitions. However, synthetic data is also dissatisfying because the method chosen
for generating the images imposes strong assumptions about the world. For instance,
training on the images shown in Figure 3-1 is equivalent to assuming that surfaces are
made from smooth blobs that have a Lambertian reflectance and are illuminated with

(b) Shading Image



(b) Green Channel

Figure 3-2: These images are the red and green channels of a photograph of a piece
of paper colored with a green maker. The coloring can be seen in (a) but not in (b).
We use this property to construct a training set.

a relatively simple illumination. In addition, the changes in albedo in these images

are angular and have no correlation with the shading.

Training only on synthetic data can be viewed as only a small advance beyond

Retinex. Retinex is derived by constructing a simplified model of Mondrian images

and smooth shading, then using this simple model to decide the optimal method of

estimating the shading and albedo. Using synthetic training data generated from

a simple model of surfaces still relies on simplified models of shading and albedo

images, and substitutes estimators that have been trained on overly simple models of

the world.

To make meaningful progress, the training and test data must come from images

of real-world surfaces. Even in controlled settings, with multiple cameras and light

sources, it is difficult to create shading and albedo images without significant artifacts

in the images. As an example, in theory, both basic photometric stereo methods [24]

and the example-based photometric stereo method of Seitz and Hertzmann [35] offer

the ability to recover both the surface normal and reflectance at each point on a

surface. Unfortunately, both of these methods are insufficient because they do not

account for shadows on the surface. This is a significant weakness because shadows

are common characteristic of real-world surfaces.

Fortunately, the difficulty in obtaining training data can be overcome by using

color to measure shading separately from albedo. Figure 3-2(a) shows the red channel

of an image taken of a piece of paper colored with a Crayola "Electric Lime-Green"

Washable Marker and illuminated with a standard incandescent light. Both the

(a) Red Channel



markings and the surface shading are visible. The green channel of that image,

shown in Figure 3-2(b), does not contain any of these markings. The red channel

of the image shows the coloring because the green ink absorbs the light in the red

spectrum. Hence, the coloring appears dark. Because the paper is white and the

coloring is green, the light in the green spectrum is reflected uniformly, leading the

paper in Figure 3-2(b) to appear as if it has not been colored. This is exactly how the

shading image of this surface should appear. The red channel shows the surface with

both shading and albedo changes, while the green channel shows only the shading.

In order to collect data with different types of surface statistics, the training and

test sets were collected using three types of paper: office paper, paper towels, and

facial tissue. After coloring the paper with a green marker, I used a Canon 10D

in RAW mode, which has an approximately linear response, to capture each image.

The albedo image was extracted dividing the red and green channels of the image.

After finding the shading and albedo images, the data set was created from the log

of these images to make the problem additive. This dataset provides photographs of

real-world surfaces with high-quality shading and albedo image decompositions. The

database will be available for download at http://www.csail.mit.edu/-mtappen.

While using paper images may seem like an overly simple data set for evaluating

algorithms, examining the images in Figure 3-2 shows that the paper surfaces exhibit

many of the characteristics that make this problem difficult, including occlusions,

shadows, and complicated geometry. Furthermore, testing on crumpled paper images

is useful because these images violate the basic assumptions of Retinex. The shading

images have strong edges that would be considered albedo changes under the Retinex

model. To my knowledge, previous work has not attempted to recover the shading

for images as difficult as these.

Adding Synthetic Images

To further augment the range of image statistics in the set of training and test images,
a set of synthetic images was also added to the set of image data. The images, such

as those shown in Figure 3-1, were created by generating a random surface out of

ellipses, then rendering the surface with a point source illumination and Lambertian

reflectance. The albedo images were created from randomly rotated polygons with

random intensity.



3.2 Recovering Intrinsic Component Images from

Constraint Estimates

The overall goal of the system is to produce good estimates of the intrinsic compo-

nent images. For each constraint in the set of linear constraints, such as vertical

and horizontal derivatives, a Mixture of Experts estimator is used to estimate the

value of that constraint for every pixel location in the estimated image. While the

estimators are trained to predict constraint values as well as possible, it is also useful

to consider the quality of the images reconstructed from these constraint estimates.

This section describes how to reconstruct the estimated intrinsic component image

from the estimated constraint values.

The variable X will denote the image estimated from the observed image O.

For concreteness, assume that there are two linear constraints: a horizontal discrete

derivative and a vertical discrete derivative. Let Cdx and Cd, denote the matrices that

express the 2-D image convolution with each filter as a matrix. It is assumed that the

convolution operation produces only those pixels where the convolution kernel is fully

contained inside the image. This makes each of the matrices have fewer rows than

columns because the convolution is not computed at border pixels. The estimated

values of each of these types of derivatives are denoted as Cdx and dy,. These estimates

are found from ( using the Mixture of Experts estimators.

The estimated image X is recovered using the Moore-Penrose pseudo-inverse:

X = (CTC) - CT (3.1)

where

C = [Cd1
Cdy

and

Cdx

ýdy

It is important to note that the constraints are not limited to first-order deriva-

tives. The matrix C can be made up of arbitrary linear constraints. For some

combinations of functions, such as derivatives, C will be a singular matrix. In these

cases, we include a constraint specifying the value of a small number of pixels. For

all of the results shown, X is found using Gaussian Elimination in MATLAB (the



"backslash" operator). If computation is an issue, C can also be solved with the

conjugate gradient algorithm or FFT [78].

3.3 Evaluating the Mixture of Experts Estimators

The remainder of this chapter will focus on two main goals:

1. Demonstrating the effectiveness of the Mixture of Experts estimators.

2. Evaluating specific configurations of the estimator.

The second point is important because there are a number of choices available

when setting the specifics of the estimator, including the choices of features and loss

function. Sections 3.4 - 3.9 will quantitatively evaluate some of these choices.

While the problem of estimating shading images will be the basis of most of

the evaluations, Section 3.12 will show the system's effectiveness for the problem of

denoising images. After settling upon a final configuration for the estimator, Section

3.7 will show how the Mixture of Experts estimator outperforms a continuous-valued

Retinex estimator. Section 3.10 will demonstrate the superior performance of the

Mixture of Experts estimators when compared with estimators found with Support

Vector Regression.

3.3.1 The Training and Test Sets

The performance of the method was evaluated using a training set of 22 paper images

and a test set of 11 paper images. In addition, ten synthetic images were added to the

training set. I found that the system generalized to the examples used in [69] much

better with the addition of these images. Four similar synthetic images were also

added to the test set. The paper images were all created using the method described

in Section 3.1.2. The size of all the images was 127 x 127 and the gray-scale values

of each image ranged roughly between 0 and 255.



3.4 Evaluating Image Patch Representations: Im-

age Patches versus Multi-scale Representations

The evaluation will begin with a straightforward configuration. As a baseline, I

trained estimators to predict horizontal and vertical derivative filters. The input for

these estimators is a 5 x 5 image patch, with a constant subtracted from each patch

so that its mean is zero. The form of the horizontal and vertical filters, cdx and Cdv,

was

0 0 0 0 0 0
Ca = 0 -1 1 Cay = 0 -1 0

0 0 0 0 1 0

As mentioned in Section 2.5.2, it is helpful to add a regularization term when

fitting the regression coefficients. While learning this estimator, the regularization

coefficient was set to 1. The ExpertBoost algorithm was used to train both the vertical

and horizontal estimators. Both estimators were trained to include 800 experts. The

scale factor h from Equation 2.13, which was set to 384, was chosen manually using

the training data.

3.4.1 The Benefit of Multi-scale Image Patches

The first comparison will show the benefit of producing estimates from larger image

patches by using a multi-scale representation.

Larger image patches are helpful for estimating constraint values because the

estimators are able to see more of the image. Unfortunately, the dimensionality of

the patches rises quickly as larger areas of the image are considered. To work with

larger patches of the image, while avoiding the "curse of dimensionality" [11] and its

problems, we use a multi-scale representation of the image patches. The multi-scale

patch is constructed using a three level Laplacian Pyramid [4] using a five-tap [1 4 6 4

1] filter, without down-sampling between levels. The multi-scale patch is then created

by taking a 3 x 3 patch from each level of the pyramid. This multi-scale representation

allows each patch to effectively represent a larger area of the image with a relatively

few number of dimensions. For example, an 11 x 11 image patch, with 121 pixels, can

be represented in a multi-scale representation with only 27 coefficients. While some
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Figure 3-3: Using multi-scale image patches reduces the error both in the estimate
of the derivative values and in the resulting estimated shading images. Figure (a)
compares the error in the horizontal and vertical derivatives, denoted dx and dy.
Figure (b) compares the error in the resulting estimates of the intrinsic component
images.

information is lost, it is assumed that the important information at the center of the

patch is retained.

When estimating derivatives for shading estimation, the estimators performed

better when the mean was subtracted from the 3 x 3 patch taken from the low-

frequency residual of the Laplacian Pyramid.

Besides changing the input, the estimators are trained in the exact same fashion

as described in the previous section.

Evaluating the Benefit of using Multi-scale Patches

To begin, Figure 3-3 numerically compares the two input representations using three

measurements: the squared error in the predictions of the horizontal derivatives, the

squared error in the predictions of the vertical derivatives, and the squared-error of the

estimated shading image reconstructed from the horizontal and vertical derivatives.

As can be seen in Figure 3-3(a), using the multi-scale image patches improves the

estimates of the derivative values. As Figure 3-3(b) shows, this has a dramatic effect

on the error in the estimated shading images. Using the multi-scale image patches
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(b) Ground-truth Shading

(c) Estimated Shading Image Us-
ing 5 x 5 Image Patches

(e) Difference Between the Two
Shading Estimates

(d) Estimated Shading Image Us-
ing Multi-scale Image Patches

(f) Absolute Value of (e)

Figure 3-4: These images demonstrate the qualitative improvement gained by using
multiscale image patches. The coloring is much less noticeable in the results from
using multiscale image patches, shown in (d). Examining the difference images in (e)
and (f) shows that much of the difference comes from better handling of the crease
in the lower-left portion of the image.

(a) Observed Image



(b) Ground-truth Albedo Image

(c) Estimated Albedo Image Using 5 x 5
Image Patches

(d) Estimated Albedo Image
Multi-scale Image Patches

Figure 3-5: The albedo images recovered by subtracting the estimated shading image
from the observed image. The albedo image recovered using multi-scale patches shows
fewer shading artifacts.

Using

(a) Observed Image



reduces the error nearly 40%.

This difference can be observed qualitatively in Figure 3-4, which shows the shad-

ing images estimated from the observation in Figure 3-4(a). The estimate found using

multi-scale image patches, shown in Figure 3-4(d), shows less of the coloring than the

estimate found with 5 x 5 patches, shown in Figure 3-4(c). However, examining the

absolute value of the difference between the two images, shown in Figure 3-4(f), shows

that the major improvement from using multi-scale patches comes on the right half

of the image. This difference is most likely caused by a better estimate of the shading

around the crease in the lower-left portion of the image. As can be seen in Figure

3-5, which shows the albedo images recovered by subtracting the estimated shading

images from the observation, less of the crease appears in the shading image recovered

using the multi-scale patches. This has a large impact on the error in the rest of the

image.

Figure 3-3(a) also shows another interesting characteristic of both systems. The

error in the estimates of the vertical derivatives is almost one-third of the error in the

estimates of horizontal derivatives. This is because the illumination in the training

images generally comes from the right side of each image. This leads to strong vertical

shading edges, which are ambiguous using only local information. This leads to errors

like the crease which is mistakenly viewed as an albedo change in Figures 3-4 and 3-5.

3.4.2 Does Using Multiple Filters Aid Shading Estimation?

Any linear constraint can be considered in the pseudo-inverse step. A reasonable

addition to the oriented derivative filters is a set of higher-order derivatives. To

examine whether higher-order derivatives improve shading estimation, three second-

order derivatives were added to the first-order derivatives used previously. The error

over the training set only dipped slightly from 2.46 x 107 to 2.41 x 107.

3.5 Interpreting the Estimates

This thesis contains many examples of estimated shading and albedo images. Unless

otherwise noted, the albedo images are produced by subtracting the estimated shading

images from the observed images.

When examining the shading and albedo images, the shading image should appear

as if the surface were completely made from the same material, with no painting or
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Figure 3-6: This chart shows the squared-error of the estimate of each image in the

test set. Image # 5 has the largest error, due to the crease in the paper, which is
ambiguous given only local information. This image will be used throughout this
work as the example for a qualitative comparison.

other changes in reflectance. The albedo image should appear as a flat image with

just coloring.

It should be noted that the errors reported in the test set are dominated by several

images. Figure 3-6 shows the squared-error of each test image, when estimated using

the multi-scale estimators from Section 3.4. In particular, image #5 accounts for a

significant portion of the error. Throughout this thesis, this image will serve as the

primary example for qualitative evaluation of the behavior of the algorithms. The

large error incurred in this image is likely due to the crease in the lower-left portion

of the image. Locally, this crease is ambiguous and mistakes in this crease propagate

through the rest of the image.

3.5.1 Estimating Albedo Images

In all the results shown in this chapter, the estimation task is to estimate the shading

image from the observation. The albedo image can then be recovered by subtracting

the estimated shading from the observed image. If the image model includes more

than two intrinsic components, then separate estimators for each characteristic would

need to be trained.



(b)

Figure 3-7: To estimate shading images using classification, similar to [69], a label
must be assigned to every horizontal and vertical derivative in the image. Pixels
marked in white in Figure (b) are labelled as shading. The red x's in Figure (c) show
a portion of the horizontal derivatives labelled as albedo changes.

3.6 Evaluating Different Criteria for Fitting the

Derivatives

As Section 2.5.3 pointed out, the ExpertBoost algorithm can minimize any loss func-

tion. While the squared-error loss leads to a convenient algorithm, it is possible

that minimizing a different criterion may lead to visually better estimated intrinsic

component images. This section will compare minimizing the squared-error with two

alternate criteria. First, it will be compared against minimizing the exponential loss,

which essentially treats the problem as a classification problem. This will allow the

results in this thesis to be compared against classification-based systems such as my

previous work [69].

Next, in Section 3.6.2, minimizing the squared-error in the predictions will be

compared against minimizing a robust-error norm.

3.6.1 Minimizing Squared-Error versus the Exponential Loss

Rather than minimizing the squared-error in the estimated derivative values, it is

possible to instead treat the problem as a classification problem instead. This is the

approach taken in Retinex and my previous work [69]. As described in Section 1.2.2,
this can be thought of as classifying every derivative as either being caused by shading

or an albedo change, assuming that the set of linear constraints are derivatives.

Before learning the classifiers, the first step is to label every image derivative in

4"(w)
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Figure 3-8: This chart shows the error on the test set when classification is used
instead of regression. Using classification significantly increases the error.

the training set as either shading or a reflectance change. As the task is to predict the

shading image, the training set consists of pairs of observations and the corresponding

shading image. To assign each derivative in the training set a label, the albedo image

is calculated for each image pair by subtracting the shading image from the observed

image. The label of each derivative is based on the absolute value of the derivative in

the albedo image. If this derivative has a magnitude greater than one, the derivative is

classified as an albedo change. Dark points in Figure 3-7(b) show derivatives classified

as albedo changes in the training image shown in 3-7(a). Figure 3-7(c) shows these

points marked with red x's on the observed image.

Once every derivative in the training set has been assigned a label, the classifiers

can be trained as described in Section 2.5.4. This is similar to training a classifier

with the GentleBoost algorithm [31].

Results

To evaluate classification, classifiers were trained on the same training set as in previ-

ous experiments. Classifiers were trained to classify both the horizontal and vertical

derivatives. Given a new test image, the shading derivatives are estimated by return-

ing the value of the derivative in the image if the classifier labels the derivative as

being caused by shading. Otherwise, the shading derivative is assumed to be zero.

Figure 3-9(g) shows one of the largest disadvantages of classification. The crease



in the lower-left portion of Figure 3-9(a) is ambiguous given only local information.

The estimator trained using the squared-error criterion copes with this by placing

a portion of the edge in the shading image and a portion of the edge in the albedo
image, as seen in Figures 3-9(c) and 3-9(f). On the other hand, a classifier cannot

make this split - each derivative must be in one image or the other. As can be seen

in Figures 3-9(d) and 3-9(g), this leads to the whole crease being placed in the albedo

image. This significantly affects the error in the predicted image. As Figure 3-8

shows, when using classification, the squared-error over the training set grows from

2.46 x 107 to 6.9 x 107 .

Perceptual Effects of Continuous Estimation Instead of Classification

The previous section has shown that estimating derivative values instead of classifying

generally leads to a lower overall squared-error in the estimate of the shading image.

While the error is lower, the images estimated using continous regression have a

distinctive behavior. Figure 3-10 shows the intrinsic component images estimated

from Adelson's Checker Shadow image. Examining the shading image, shown in

Figure 3-10(b), shows that remnants of the albedo image can still be seen in the

shading image. This is a natural result of using the squared-error as the criterion. If

the estimator is uncertain about whether a derivative belongs in the shading image

or the albedo image, under the squared-error criterion, the best choice is to split the

derivative and place some in the shading image and some in the albedo image.

To some viewers, this may appear to be a bad result. If, instead, the goal is
actually to estimate a shading image without any albedo changes, these estimates can

be used to classify the derivatives. Figure 3-11 shows the shading and albedo images
produced using a simple classification heuristic. Using this heuristic, if the magnitude
of the derivative in the estimated shading image is less then 80% of magnitude of the
corresponding derivative in the observed image, then the derivative is classified as an
albedo derivative. This leads to an image that shows much less albedo in the shading
image.

It is important to note that when this strategy is applied on the test images, the
squared-error increases. While classifying derivatives appears to give better results,
the results are actually worse numerically, using a squared-error metric.



(a) Observed Image

(b) Ground Truth Shading
Image

(c) Shading Image Estimated (d) Shading Image Estimated
with Regression with Classification

(e) Ground Truth Albedo Im-
age

(f) Albedo Image Estimated
with Regression

(g) Albedo Image Estimated
with Classification

Figure 3-9: The shading and albedo images estimated using classification and regres-
sion. Using classification allows much more shading to leak through into the albedo
image.



(b) Estimated Shading Image (c) Estimated Albedo Image

Figure 3-10: These images show the ghosting that often results from using continu-
ous estimates of the shading derivatives, rather than estimates based on classifying
derivatives.

(a) Observation (b) Estimated Shading Image (c) Estimated Albedo Image

Figure 3-11: The ghosting seen in Figure 3-10 is natural when the estimators are
trained to minimize the squared-error in the derivative estimates. This leads to a
lower overall squared error in the estimated shading image. However, if the real goal
is to eliminate albedo changes from the shading image, at the expense of increasing
the pixel-wise error, this can be accomplished by using the original prediction to
classify each derivative. These figures show the results of using the estimates from
Figure 3-10 to classify each derivative.

(a) Observation
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Figure 3-12: (a) The Lorentzian robust loss function used in this section. (b) This
chart compares the error in the test set when training the derivative estimators to

minimize either a robust loss or the squared-error loss. Training using the squared-

error loss leads to poorer estimates of the shading images.

3.6.2 Minimizing Squared-Error versus a Robust Loss

The ExpertBoost algorithm can also minimize loss functions other than the squared-

error. An interesting robust alternative to the squared-error is the Lorentzian robust

penalty function[14]:

1
L(x, y) = log(1 + -(X - y)2 ) (3.2)

2

This function, plotted in Figure 3-12, is considered to be robust because the

derivative of the error decreases as the error increases. This makes the Lorentzian

cost function robust to the occasional outlier. In comparison, in the squared-error

cost function, the derivative of the error increases as the error increases. This makes

the squared-error function somewhat sensitive to outliers.

Unfortunately, it is not possible to solve the minimization in closed form, so it is

minimized with the non-linear conjugate gradient routine from the NETLAB package

[49]. In practice, this is much slower than solving the least-squares problem that

results from using the squared-error cost function.
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Figure 3-13: This chart shows the difference in error over the test set when using an
estimator based on the Retinex heuristic versus the Mixture of Experts estimators.
Using the Mixture of Experts estimators significantly reduces the error.

Results

As shown in Figure 3-12(b), training the estimators under a robust loss function raised

the total squared-error in the test set from from 2.46 x 107 to 4.38 x 107. In addition

to producing lower-quality image estimates, the non-linear optimization required for

fitting the regression coefficients significantly increases the time necessary to train the

estimators.

3.7 Learning versus the Retinex Heuristic

The previous sections have established that, out of the options evaluated, training

estimators with the squared-error loss function, using multi-scale observations, is the

best combination for estimating shading images when using the squared-error as the

evaluation criterion. The next natural question is: how does this system compare

with other approaches to this task?

The baseline system for comparison with the Mixture of Experts estimators is an

estimator based on the assumption underlying the Retinex algorithm, discussed in

Section 1.2.2. The assumption is that derivatives with small magnitudes are caused

by shading and derivatives with large magnitudes are caused by changes in the albedo

of the scene. Given the value of a derivative in the observed image, 6o, the estimate

of the shading derivative, &d is



c60 = (3.3)1 + ealS ol+b

The sigmoid function in Equation 3.3 acts to set derivatives with large magnitudes

to 0. The parameters a and b are found by minimizing the squared-error of the

derivatives over the training set.

The results produced by the Mixture of Experts estimators were superior both

visually and in terms of squared-error. Figure 3-14 shows the shading and albedo

images returned by the ExpertBoost estimators and the Retinex estimators. The

scribbling is still noticeable in the images from the Retinex estimators. In addition,

much more of the shading image has leaked into the albedo image found using the

Retinex estimators than in the image found with the ExpertBoost estimators. This

is corroborated by the differences in error. As shown in Figure 3-13, the error in

the test images produced using the Retinex estimators is over twice the error in the

images produced using the ExpertBoost estimators.

This difference can also be seen qualitatively in Figure 3-14(d), which shows the

shading image recovered by using the Retinex estimators. The Retinex estimators

have done a very poor job of eliminating the coloring from the shading image.



(a) Observed Image

(b) Ground Truth Shading
Image

(e) Ground Truth Albedo Im-
age

(c) Shading Image Estimated
with Mixture of Experts Esti-
mators

(f) Albedo Image Estimated
with Mixture of Experts Es-
timators

(d) Shading Image Estimated
with Retinex-style Estimators

(g) Albedo Image Estimated
with Retinex-style Estimators

Figure 3-14: The shading and albedo images estimated using Retinex-style estimators
and Mixture of Experts estimators. The Retinex-style estimators are unable to remove
the coloring from the page. In addition, the albedo image shows that many more
shading artifacts have leaked through into the albedo image.



3.8 Learning to Estimate Albedo Images versus

Learning to Estimate Shading Images

Until now, the learning problem has been posed as the problem of estimating a shading

image from an observation. However, since the observation is the sum of a shading

image and an albedo image, it is equally valid to pose the problem as estimating

the albedo image from the observation. If the estimators are stable, the results from

learning to estimate shading images should be similar to the results from learning to

estimate albedo images.

To verify the stability of the system, horizontal and vertical estimators were

trained using the same method as described in Section 3.4. The only difference

from Section 3.4 was that the task was to predict the derivatives of the albedo images

instead.

The stability of the system can be verified by measuring the error in the shading

images produced by subtracting the estimated albedo images from the observed im-

ages. As shown in the Figure 3-15, these new shading images have almost the same

error as those obtained by estimating the shading images directly.
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Figure 3-15: This chart compares the error in the estimated images when the system

is trained to estimate shading images against the error when the system is trained to

estimate albedo images. The two errors are roughly equal, demonstrating the stability

of the system.
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3.9 Effect of Known Lighting Orientation

To understand the importance of knowing the light direction, a new training set

was produced that consisted of three copies of each of the original training images.

Each of the images in the new training set was randomly rotated. Estimators of the

horizontal and vertical derivatives were then trained in the same manner described in

Section 3.4. The estimators were trained on a set of image patches that were similar

in number to those training patches used to train the previous estimators.
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Figure 3-16: This chart compares the error in the estimated images when the orienta-

tion of the illumination is roughly known against the error when the orientation has
been randomized.

To evaluate the change in performance, the system was evaluated on the same test

images that were used previously. After training on the rotated images, the errors in

the horizontal and vertical derivative estimates were similar, showing that cues based

on the orientation of the illumination were removed by randomizing the training data.

As shown in Figure 3-16, the error in the test set increased from 2.46 x 107

to 3.46 x 107 . This increase in error is expected because knowing the orientation

of the illumination provides valuable information about possible shading changes.

Interestingly, much of this increase is concentrated in the synthetic images in the

training set. Figure 3-17 shows an example of one of the test images. As Figure

3-17 demonstrates, after training the estimators on the randomly rotated images the

system has a more difficult time removing the synthetic albedo patterns from the

shading image.



(a) Observed Image (b) Original Estimated Shad- (c) Original Estimated
ing Image Albedo Image

(d) Shading Image after
Training on Rotated Images

(e) Albedo Image after Train-
ing on Rotated Images

Figure 3-17: These images show the effect of removing information about the orien-
tation of the light source. In the synthetic test images, such as the image shown here,
randomizing the light source's orientation reduces the system's ability to remove the
albedo from the shading image.

The estimates of the shading and albedo images from the crumpled paper images

are less affected by randomizing the illumination orientation. The mean absolute error

of the derivative estimates rose slightly, but overall the estimates of the shading and

albedo images changed little. This indicates that the shading on the paper surfaces

is sufficiently different from the albedo patterns in the training and test sets, so as

not to depend on knowing the orientation of the scene's illumination.
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Figure 3-18: These charts compare the error between the derivatives and shading

images estimated using either Support Vector Regression or the Mixture of Experts

estimators. The estimators produced derivative estimates with a comparable mean

squared-error, as shown in (a). However, as (b) shows, the mean absolute-error is

consistently lower in the estimates produced by the Mixture of Experts estimators.

This likely explains why the error in the reconstructed shading images is consistently

lower when the derivative estimates from the Mixture of Experts estimators are used.

The fact that the SVR estimators have a higher mean absolute-error indicates that

they make more small mistakes. When the image is reconstructed, these mistakes

can accumulate to produce large errors.
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3.10 Boosted Regression versus Support Vector Re-

gression

Section 2.7 showed that on a simple problem, Support Vector Regression estimators

and Mixture of Experts estimators achieve similar error rates. This section consid-

ers the performance of the two different types of estimators when estimating the

derivatives of the shading image. On this more complicated problem, the Mixture of

Experts estimators produce much better estimates of the shading images.

To compare the Mixture of Experts estimators against estimators trained using

Support Vector Regression, SVR estimators were trained on the same training set

used in the previous sections. The SVR estimators were trained using the multi-

scale patches as observations and the libSVM package to find the support vectors and

coefficients [16]. The v-SVR option [58] was used because it allows for easier control

over the number of support vectors.

Using a held-out portion of the training set, the kernel parameter 7 was set man-

ually to optimize the estimators' generalization performance. I found that y = 2-

worked well for estimating shading. The SVR estimator used 7421 support vectors to

estimate the horizontal derivatives and 8055 support vectors to estimate the vertical

derivatives.

As Figure 3-18(a) shows, the derivatives estimated using SVR often have a smaller

mean squared-error than the derivative estimates from the Mixture of Experts esti-

mators. However, as Figure 3-18(c) shows, the error in the estimated shading images

is consistently higher when the shading image is reconstructed from the derivatives

estimated with Support Vector Regression. Using these derivative estimates increases

the total squared-error over the test set from 2.46 x 107 to 4.16 x 107.

This can be understood by examining the mean absolute error of the derivative

estimates, shown in Figure 3-18(b). The mean absolute error is consistently lower

in the estimates from the Mixture of Experts estimators. This difference in absolute

error is likely due to the method that Support Vector Regression uses to choose

a relatively small number of support vectors from a large training set - a property

known as "sparsity". In Support Vector Regression, the estimator is fit by minimizing

an e-insensitive loss function:



L(g(o;0 ), t) 0 if g(o; ) - tj <C (3.4)
Ig(o; 0) - t| - c otherwise

where t is a target value and g(o; 6) is an estimator using o as the observation and

parameters, 0, to predict t.

Minimizing this loss causes small errors to be completely ignored. For the particu-

lar estimators in this experiment, E was 4.33 for the horizontal estimator and 3.34 for

the vertical estimator. This means that when fitting the estimator of the horizontal

derivatives, any error less than 4.33 will be ignored. This makes the estimator prone

to making many small errors, as can be seen in the difference in the mean absolute

errors. When the image is reconstructed from these derivatives, these small errors can

compound into large errors in the image. It should be noted that the SVR training

parameters have been tuned to produce an estimator that is relatively sparse. Given

enough support vectors, the SVR estimators would produce similar results to the

Mixture of Experts estimators.

Surprisingly, the difference in the form of the estimators does not play a significant

role in the difference in the quality of the estimates. At the beginning of this work, my

intuition was that the normalizing term in the Mixture of Experts estimator would

significantly enhance its generalization performance. Ideally, the normalizing term

would allow the linear regression to better extend to areas far from the prototype

patches.

To examine the effect of removing the normalizing constant, the ExpertBoost

algorithm was modified to fit an estimator of the form:

Nsv

g(o) = wi exp (-7 o - pil 2) (3.5)
i=1

The results from using this estimator were comparable to the results from using

a Mixture of Experts estimator. This indicates that the primary difference in the

performance of the estimators lies in the training procedures - as discussed above.
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Figure 3-19: This chart compares the error when reconstructing the shading images
from the derivative estimates using an L 2 norm versus an L 1 norm. Using an L 1 norm
reduces the squared error in the estimated shading images.

3.11 Recovering Intrinsic Component Images Un-

der the L1 Norm

Section 3.2 describes how to reconstruct the estimated intrinsic component image

from the estimated linear constraint values using a Moore-Penrose pseudo-inverse.

This is equivalent to finding the vector X that minimizes the L 2 norm of this error

vector

X = argmin ICX - C12  (3.6)

Changing the norm in Equation 3.6 will change the value of X returned. The L 2

norm can be conveniently replaced with the L 1 norm, which is effectively the sum of

the absolute values of the error vector. For the L 1 norm, X can be found by solving

this linear program [12, 2]:

minimizex,z 1Tz

s.t. CX - zl1 < C,

CX + z1 > Ž (3.7)

where 1 is a vector of all ones. Note that this solution involves introducing a new

vector of variables, z. More efficient formulations of this LP can be found in [2]
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To evaluate the effect of reconstructing the estimated images using an L 1 norm

instead of an L 2 norm, the shading images were estimated using the derivative esti-

mators from Section 3.4. I used the MOSEK [1] optimization package to find X.

As shown in Figure 3-19, reconstructing the image estimates under the L 1 norm

reduces the error in the image estimates from 2.4 x 107 to 1.7 x 107. The qualitative

difference between the two reconstructions can be seen in Figure 3-20. The albedo

image recovered using the L 1 norm, shown in Figure 3-20(f), is better at capturing

the flatness of the true albedo image than the albedo image recovered using the L 2

norm.

It is important to note that, in some sense, two different error criteria are being

used in this evaluation. The first criterion measures how well the estimated image

matches the derivative estimates, after it has been filtered with a derivative filter. The

second error criterion measures how well the image reconstructed using the first error

criterion matches the ground-truth image. This section shows that using the absolute

error, rather than the squared-error, leads to a better shading image, according to

the squared-error between it and the ground-truth image. This is likely because

the absolute error is more robust to outliers, which leads to fewer artifacts in the

estimated shading image.



(a) Observed Image

(b) Ground-Truth Shading
Image

(e) Ground-Truth Albedo Im-
age

(c) Shading Image Recon-
structed using an L 1 Norm

(f) Albedo Image Recon-
structed using an L 1 Norm

(d) Shading Image Recon-
structed using an L 2 Norm

(g) Albedo Image Recon-
structed using an L 2 Norm

Figure 3-20: The shading and albedo images estimated using the L 1 and L 2 norms to
reconstruct the estimated shading image from the estimated derivative values. Using
an L 1 norm leads to a slightly flatter appearance in the albedo image, indicating that
less shading image components appear in the albedo image.
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(c) Intrinsic Components

Figure 3-21: An example of using our method for denoising. The image in (a) has
been corrupted with white Gaussian noise (a = 10). The results produced by our
method are competitive with the recent Field of Experts Model of Roth and Black
[56].

3.12 Application to Denoising

To demonstrate the ability of our method to generalize to other types of intrinsic

components, this section considers the problem of estimating a scene image from an

observation corrupted with Gaussian white noise. In this application, the intrinsic

components are the clean image and the noise. In the initial tests, three filters served

as the basis of the system: two oriented first derivative filters and a Gaussian filter

with standard deviation 1 that was truncated to a 3 x 3 filter.

For denoising, I obtained the best results by using six filters as the basis for the

system: two first derivative filters, three second derivative filters, and a Gaussian

filter with standard deviation 1 that was truncated to a 3 x 3 filter.

The estimators were trained using a set of 80 images taken from the Berkeley

Segmention Database. The images were scaled to one-half their original size, cropped

to size 128 x 128, and added to a Gaussian white noise image with a standard

deviation of 10. The ExpertBoost algorithm chose 800 prototype patches for each
estimator.

For evaluation, I used a set of 40 test images from the Berkeley database. Each
of these images was processed in the same manner described above. For comparison,
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(c) Intrinsic Components

Figure 3-22: Enlarged portions of the images from Figure 3-21. The primary difference
between the two methods is that the Field of Experts model removes more of the noise
in the lower spatial-frequency bands.

Algorithm PSNR PSNR of High-
Pass Filtered
Image

Field of Experts 32.46 34.58
Intrinsic Components 32.21 34.51

Table 3.1: The PSNR in dB of denoised images produced by our method and the
Field of Experts algorithm. The second column compares the PSNR of high-pass
filtered versions of the results.

I used the Field of Experts code provided by Roth et al. [56], which has achieved

results close to the those produced by Portilla et al [52], which has achieved the best-

published results for denoising. As is standard in the denoising literature, the results

are presented in PSNR. If the error variance is denoted as ae, then the PSNR for

these results can be calculated as 201ogo10(255/ue).

As shown in Table 3.1, the Mixture of Experts estimators are competitive with

the Field of Experts, although the PSNR of the results from the Field of Experts

algorithm is about 0.25 dB higher. The primary difference between the results of the

two algorithms appears to be in the low spatial-frequency bands of the images. The

second column of Table 3.1 shows the PSNR of images created by high-pass filtering

the results from the two algorithms. For these images, the PSNR is almost identical.

As shown in Figure 3-21, the results are also visually similar.

To see if performance improved by adding more constraints, three second deriva-

tive filters were added to the set of constraints. The PSNR only increased slightly to

32.24.
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3.13 Conclusion

This chapter has considered many possible configurations of the estimators for pre-
dicting the linear constraint values. Given all of these results, the natural question

is: "What is the best set-up for estimating the constraint values?" Given the results

in this chapter, the best estimators:

1. Are Mixture of Experts estimators or additive estimators (see Section 3.10)

2. Use a multi-scale input representation (see Section 3.4)

3. Are trained to minimize the squared-error in the predictions (see Section 3.6)

In addition, as Section 3.11 demonstrates, it is best to reconstruct the derivatives

using the L 1 error norm instead of an L2 error norm.
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Chapter 4

Optimizing Estimated Images

The previous chapters have described how to estimate intrinsic component images by

first estimating local linear constraints, then finding the pseudo-inverse of the linear

system defined by these constraints. Chapter 3 also demonstrated how this strategy

works well when applied to the problems of estimating shading images and denoising

images.

While this strategy performs well, it suffers from two major limitations, described

in more detail in Section 4.1:

1. The system can be viewed as an "open-loop" system. Estimators are trained

to predict local linear constraints with the hope that good estimates of the

constraints will lead to good estimated intrinsic component images. However,

these estimators are trained to minimize the squared error in the prediction of

the constraint values, not the resulting image values.

2. Simply finding the pseudo-inverse of the constraints does not take into account

that some constraints may be more reliable or useful than others. In addition,

some constraints may be better than others for specific types of image patches.

This chapter focuses on overcoming these two limitations. Section 4.2 describes

how to implement a closed-loop system by optimizing the linear regression coefficients,

using the error in the estimated images as the criterion. Section 4.3 then addresses

the second limitation by showing how to learn a function that assigns a weight to

each linear constraint in the system.
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4.1 Limitations of the System from Chapter 3

As described earlier, the approach to recovering intrinsic component images described

in Chapter 3 suffers from two major limitations. In this section, I will provide further

explanation and motivation for each.

4.1.1 Open-Loop Versus Closed Loop Approaches

The issue of an open loop versus closed-loop system can be understood by considering

the criterion for finding the parameters of the system. As a reminder, the system

described in Chapter 3 recovers an intrinsic component image by first estimating the

values of linear constraints, which were chosen to be derivatives for the experiments.

The overall goal of this work is to produce a system that recovers the intrinsic

component images as accurately as possible. However, the parameters of the esti-

mators, which include the prototype patches and linear regression coefficients, are

chosen to minimize the error in the estimates of the constraint values. The hope is

then that good constraint estimates lead to good estimates of the intrinsic component

image. In the rest of this chapter, I will refer to this system as an "open-loop" system

because the estimator parameters are set without regard to the quality of the image

recovered from those estimates.

Ideally, the system should be "closed-loop", where the parameters of the constraint

estimators are chosen to optimize the image recovered from the estimates of the

constraints.

4.1.2 Taking Advantage of the Reliability of the Estimates

A second weakness of the system described in Chapter 3 lies in the pseudo-inverse

step. As this step is implemented in Chapter 3, the estimates are assumed to all be

equally valid. However, this is often not the case.

To understand this, consider the simplified, synthetic shading estimation problem

shown in Figure 4-1. The observed image in Figure 4-1(a) consists entirely of albedo

changes, so the flat image, shown in Figure 4-1(b), is the correct shading image.

While this simple example is designed by hand, Section 4.3.3 will consider a similar

example that uses trained estimators.

If only local information is used to estimate the derivatives, then good estimates of

the derivatives of the shading image can be found in some areas, such as the corner in
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(a) Observed Image

Figure 4-1: A simple, synthetic example that shows the benefit of weighting or ignor-

ing some of the constraints in the linear system. The square is an albedo change, so

the shading image should be a flat image.

(a) Observed Image (b) Observed Horizontal (c) Estimated Horizontal
Derivative Derivative

(d) Observed Vertical Deriva- (e) Estimated Vertical
tive Derivative

Figure 4-2: Figures (c) and (e) show the estimates of the horizontal and vertical
derivatives for the simple observation shown in (a). The lines in the estimates appear
shorter because the corners are unambiguous albedo changes, so the derivative should
clearly be zero around the corners.
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the green circle in Figure 4-2(a). Local data can produce good estimates in areas like

this corner because it is unlikely that shading alone could produce a corner. However,
local data is insufficient to estimate both the horizontal and vertical derivatives in

areas such as those marked with red circles in Figure 4-2(a). This is because a step

edge could be either an albedo change or a large shading edge.

Assuming that it is equally likely that a step edge is either a shading edge or

an albedo change, and that the estimates should be optimal under a least-squares

criterion, the estimates of the horizontal and vertical derivatives can be found. They

are shown in Figures 4-2(c) and 4-2(e).

Comparing these with the observed derivatives in Figure 4-2(b) and Figure 4-

2(d), two major aspects of the estimates can be seen. First, around the corners of the

square, the estimated derivative values are zero, because the corners are unambiguous

albedo changes. Therefore, there should be no changes in the shading image in these

areas and the derivatives are zero. However, in areas where only a step edge can

be seen locally, the estimated derivatives are non-zero. Because the step edge can

be explained equally well as either a shading edge or an albedo change, the optimal

choice under a least squares criterion is to put derivatives with 50% of the observed

magnitude in at those points. Consequently, the derivatives in Figures 4-2(b) and

4-2(d) appear more gray.

Figure 4-3(b) shows the result of including 50% of the derivatives along the edges.

While most of the square has been eliminated, a faint shadow of it remains. In the

albedo image, shown in Figure 4-3(c), the corners are bright, because they can be

recovered unambiguously, but the edges fade to gray.

This result can be significantly improved by noticing that along the edges, one

of the derivative estimates is zero. Along a vertical edge of the square, the vertical

derivative will be zero, regardless of whether the edge should be classified as shading

or as an albedo change. This can also be interpreted as saying, "Along a vertical edge,
the vertical derivative is reliable, while the horizontal derivative is unreliable, due to

ambiguity." Given this knowledge, it is reasonable to ignore the unreliable derivative

estimates, while still considering the good estimates. Along the horizontal edges

in this simple example, the vertical derivative will be ignored, while the horizontal

derivative will be ignored.

This can also be viewed as implicitly propagating information, similar to the

explicit Belief Propagation step in [69]. Along a vertical edge, the vertical derivatives
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(a) Observed Image (b) Estimated Shading Image (c) Estimated Albedo Image

Figure 4-3: Equally weighting all of the constraints leads to the image in (c). The
square remains in the image because of the derivative estimates along the edges, which
are ambiguous given only local information.

(a) Observed Image (b) Estimated Shading Image (c) Estimated Albedo Image

Figure 4-4: As shown in (c), ignoring the constraints in certain locations, as described
in the text, causes the square to be correctly removed from the image.

are constrained to be zero, which propagates information from the corners, where

both the vertical and horizontal derivatives can be estimated reliably, along the edges

of the square.

As can be seen in Figure 4-4, ignoring some of the derivatives leads to the cor-

rect image being recovered. As will be shown in Section 4.3.6, on real-world data,
weighting or ignoring some estimates can lead to significant reductions in error.
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4.2 Learning the Estimators using Image Error

4.2.1 Basic Formulation

As described in Section 4.1.1, the distinguishing feature of a closed-loop system is

that the parameters of the estimators are optimized using the error in the predicted

image as the optimization criterion. If there are N training images in the training

set, this error, E, can be formally written as:

N

E = ( - n)T( n) (4.1)
n=l

where Tn is the ground truth target image and Xn is the estimated image. For the rest

of this chapter, it will be assumed that all images, T and X have been "unwrapped"

into a vector.

If Xn is found using a pseudo-inverse, Equation 4.1 can be rewritten as

N
E =Z(Tn - (CTC)-lCTn)T(T -_ (cTc)-CICTn) (4.2)

n=1

where C is the constraint matrix described in Section 3.2 and ' holds the estimated

constraint values. The estimated constraint values depend on the parameters of the

estimators, 0.

If the parameters are to be found using an iterative optimization scheme, such as

gradient descent, the gradient of E with respect to one of the estimator parameters,
Oi, can be computed directly:

OE N
S2 -(T n - (Cc)-ICT)T(cTc)-cT (4.3)
n=1

For computational efficiency, it is important to note that the matrix-vector prod-

uct (, - (CTC)ICT,)T(CTC)- 1 need only be computed once for all 0i. This

product can be computed efficiently by viewing it as the solution to this linear sys-

tem:

(CTC)x = (T- - (cTc)-IcT n) (4.4)

The vector x can be computed efficiently using techniques such as Gaussian Elimina-
tion.
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4.2.2 Training the Mixture of Experts Estimators

The Mixture of Experts estimators have two basic types of parameters: the prototype

patch associated with each expert and the linear regression coefficients. While both

can be optimized, this section will focus primarily on optimizing the linear regression

coefficients.

If one of the linear constraints in the system, such as a horizontal derivative, is

indexed by i, then the estimated constraint values are computed from an observation

o as:

C1 exp :- 0)og(o; 0, p) = (4.5)

where the notation is the same as that used in Equation 2.13.

If only the regression coefficients 81 ... ON, are being optimized, it is straightfor-

ward to calculate the gradient of the prediction error in Equation 4.2. This gradient

can be computed in a particularly succinct fashion by altering the notation of the

Mixture of Experts estimator. Given an observed image, 0, the estimate for every

constraint in the image can be rewritten as:

S= IT [S o (0e)] (4.6)

where ý denotes the values for a linear constraint, o is the Hadamard, entry-wise,

product, and the vector 1 is a vector of all ones. Note that while Equation 4.6 does

not index the constraints explicitly, multiple constraints, such as both horizontal and

vertical derivatives, are used to estimate intrinsic component images. The vector C

can represent the estimated values of any of these constraints. The term 0 denotes

a matrix created by concatenating the observation at every pixel in the image 0. If

the observation vector consisted of a 5 x 5 patch of pixels, then each column of O

would be an unwrapped version of one of these patches. Denoting each row i of 0 as

oi, the matrix S = [si,j] holds the similarity values from Equation 4.5.

exp( i -( j 12h
sT = e () (4.7)

The linear regression coefficients 01... ON form the columns of the matrix R:
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E = [0102 ... ON-1N]

With these definitions, the derivative of E with respect to a over a training set

of N images can be written as:

N
-= 2 OD,S, (4.8)

n=l

where Dn is a diagonal matrix with the diagonal equal to

diag(D,) = Cf(CTC)-l(T - (CTC)-ICT-n)

where ^ is the vector of constraint values for all of the constraints used to estimate

the intrinsic component images. The matrix Cf is the matrix that expresses the

convolution of the image with filter f. This could be the matrix C& or Cdy from

Equation 3.1. This form is particularly useful for implementation in matrix-based

programming languages such as MATLAB.

While it would be possible to reformulate the derivation in this section to find a

closed-form solution for E, the ultimate goal is to optimize E with other parameters

that do not have closed-form solutions. In these cases, it is sufficient to just be able

to compute the gradient.

4.2.3 Evaluating Closed versus Open-Loop Training

Using the linear regression coefficients found by the ExpertBoost algorithm as the ini-

tial values, the linear regression coefficients can be optimized by minimizing Equation

4.2 using a gradient descent algorithm. Using the same training set and constraints

described in Section 3.4.1, I optimized Equation 4.2 using a basic gradient descent

algorithm with the "bold driver" heuristic [13]. Instead of maintaining a constant

step-size at each iteration, the step size is decreased when the error rises instead of

falls.

Optimizing the regression coefficients with regard to image error for 244 iterations

of gradient descent led to a significant reduction in the training error, from 3.88 x 107

to 2.47 x 107. Unfortunately, this only led to a small decrease in the testing error. As

Figure 4-5 shows, the testing error is only reduced a small amount from 2.46 x 107
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Figure 4-5: This chart compares the Mixture of Expert estimators trained in the pre-

vious chapter, referred to as Open-Loop estimators, against estimators whose regres-

sion coefficients have been jointly optimized, referred to as Closed-Loop Estimators,
to minimize the error on the training set. Surprisingly, the reduction in testing error

is relatively minor, showing that open-loop training is a good strategy if closed-loop

training is computationally prohibitive.

to 2.44 x 107. This validates the open-loop training done in Chapter 3 as a good

strategy for learning to estimate shading images - especially if closed-loop training is

computationally prohibitive.

4.3 Learning to Assign Weights to Constraints

Section 4.1.2 demonstrated the usefulness of ignoring constraints in certain cases. In

the example shown in that section, ignoring the vertical derivative along an ambiguous

horizontal edge led to a much better estimate of the shading image. This section

describes how to express this notion of weighting constraints, then describes how to

learn the function that assigns weights to the different constraints.

4.3.1 Weighting Constraints

Using a pseudo-inverse to recover the estimate of an intrinsic component image can

also be viewed as minimizing a least-squares cost function:

Nf Np

X = argmin 3 [(fn)rT X - &]2 (4.9)
n=l p=l1
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where there are Nf types of constraints, such as vertical or horizontal derivatives.

The variable p indexes all of the possible locations for a constraint to be applied,
fP represents the coefficients of each constraint, and , represents the estimated

constraint values.

The primary point in Section 4.1.2 was that based on the observed image, some of

these constraints should be ignored. This can be incorporated into Equation 4.9 by

introducing a weighting function wP(O), which is a function of the observed image 0.

The purpose of this function is to use 0 to assign weights to each term in Equation

4.9. Terms that receive a high weight will have a greater effect on X than terms that

receive a relatively low weight:

N P

X = argmin w((0)((ff) T X - n)2 (4.10)
n=1 p=l

This same idea can be expressed in the matrix form by introducing a weighting

matrix W into the recovery step:

X = (CTW(o)c)- ' CTW(o)e (4.11)

where W(0) is a diagonal matrix. Each term in W(0) denotes the weight that the

constraint in the same row of C should receive.

4.3.2 Learning the Weighting Function

Just as the estimators should be trained in terms of the actual image error, the

weighting function W(0) should also be trained to minimize the error in the pre-

dicted intrinsic component image. Again, gradient-based optimization methods are a

convenient means for minimizing this error.

The optimization criterion is the squared-error in the prediction:

N
E = Z((C T W(0)C)-1CTW(0)8,~ - ") T ((c T W(0)C)-'CT W(0)8 - T) (4.12)

n=l

Assuming that W(0) depends on some parameter w, the derivative - can be

found by taking advantage of an identity from matrix calculus:

= - A-A A-1
Ow -w
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Using this identity and the matrix chain rule, the derivative of Equation 4.12 with

respect to w can be rewritten as

NE NW a(0) aw(O)]
T)T C) -1ACTW(O)- -1CTS2 E(X - T) (-A-1C' C)A-1CTW( ),n + A-ICT nOw Ow aw

(4.13)
where

A = CTW(O)C

and X is defined as in Equation 4.11.

Equation 4.13 can be rewritten more succinctly as

DE N _ D W(O)= 2 (Xn n)T A-C (-CXA + in) (4.14)
Ow ,w

Computationally, Equation 4.14 is significant because it make clear that in addi-

tion to computing X, only A-'(X - T,) needs to be computed. Similar to Equation

4.4, this can also be computed efficiently by solving a system of linear equations.

4.3.3 Using Experts as the Basis of the Weighting Function

As in the previous section, the matrix Wi(O) will denote the weight associated with

the estimator i. Each element along the diagonal of this matrix will be denoted as

for the jth element along the diagonal of Wi(O). For a system with N, linear filters,

the complete weighting matrix, W, is a block-diagonal matrix with WI(O)... W1(O)

along the diagonal.

The prototype patches that parameterize the Mixture of Experts estimators are

a natural basis for constructing a function that weights the constraints. This allows

image patches similar to some experts to be considered reliable, while patches similar

to other experts can be flagged as unreliable. The weight of an estimated filter

response is modeled as a function of the normalized similarity between the image

patch surrounding the corresponding location in the observed image and the set of

prototype patches, pl ... PNE associated with the estimator:

NE -s ( 2

(an)2 (4.15)NE L(o -ps)
n=1 'n=1
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Each a term is squared simply to ensure that it is not negative. The coefficient a 2

should be close to zero for an expert that produces poor quality estimates. This will

cause filter responses from patches similar to the prototype defining that estimator

to receive low weight. One set of weights is found for each type of linear constraint.

4.3.4 Learning the Weights a

The weights, a ... aNE, associated with a particular linear constraint, f, are found

by minimizing the squared error in Equation 4.12. This can be computed succinctly

in matrix form, similar to computing the gradient of the linear regression coefficients.

Using the same notation as in Section 4.2.2, 0 denotes a matrix created by concate-

nating the observation vectors from 0. The matrix S = [si,j] holds the similarity

values from Equation 4.5:

exp (-IIPAh )
EZN exp (Ioi-PA

If da is an N x 1 vector of the weight values, the derivative of ad can be written

as:
E1 N

-- = 4 Z (o - C X,) T DnSD,, (4.16)
n=1

where 8f, holds the estimates of the response to filter f. The matrix Cf is a convolution

matrix with the same notation as in Equation 4.8. The matrix Dn is a diagonal matrix

with the diagonal equal to

diag(Dn) = Cf(CTC)-1(T, - (CTC)-1CT n)

The final matrix Da, is also a diagonal matrix with ai along the diagonal.

Note that while S contains similarity values in this formulation, it can be replaced

with a more general set of features.

4.3.5 A simple example

To understand the value of learning these weights, this section will describe a simple

example, similar to the square example in Section 4.1.2, that makes clear the benefits

of learning to weight the constraints. Three of the training images in this simple

116



(a) (b) (C)

(d) (e) (f)

Figure 4-6: The training set used for the simple example in Section 4.3.5. The images
in the top row are the observations and the images in the bottom row are the target
albedo images.
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example are shown in Figure 4-6. The albedo is always a square that has been been

rotated. The shading is always a pair of bars that are also rotated. The training set,

which has 40 images, is constructed so that for every edge in the image, an edge with

the same orientation and gradient magnitude has appeared in the test set as both

shading and an albedo change.

While this training set seems quite simple, from a local estimation point of view,

it is quite difficult. The construction of the training set guarantees that edges are

locally ambiguous. The only good local evidence is at corners and at the junctions of

the bars and square.

To evaluate the behavior of the intrinsic components system on this data set, I

trained estimators to estimate the response of a set of Haar wavelet filters:

0 0 0 0 0 0 0 0 0

0 -1 1 0 -1 -1 0 -1 1

0 -1 1 0 1 1 0 1 -1

The estimators were trained to estimate the response of these filters on the albedo

image, which is always a rotated square. Because these images are dominated by

edges, the training set of image patches was one-third edges and one-third junctions

and corners. These patches were identified with the Harris corner detector provided

by Kovesi [41]. In addition, one-third of the patches were drawn at random from the

training set. The interest point detector was used because most of these images are

fiat, so randomly sampling points would swamp the training set with a large number

of identical points.

Figure 4-7(c) shows the estimated albedo image given the observation in Figure

4-7(a). Overall, the result is rather poor - the bars and the squares have basically the

same intensity and the estimated shading and albedo images basically look identical.

This is due to the ambiguities in the training set. Given only an edge, which could be

both shading or a reflectance change, the estimators choose to "split the difference"

and assign the edge to both images.

The bright spots around the corners of the squares and the junctions of the squares

and bars are interesting artifacts in Figure 4-7(c). The bright spots occur in these

areas because the local evidence is unambiguous. Thus, instead of splitting the differ-

ence, the estimators produce a much closer estimate of the derivative of the square.

This estimate tends to have a much higher magnitude and leads to the bright spots.
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(a) Observation (b) True Albedo Image (c) Estimated Albedo (d) Estimated Shading
Image Image

Figure 4-7: Figure (c) shows the albedo image estimated from the observation in (a),
when giving equal weight to all of the constraints. The system is basically unable to

separate the shading from the albedo.

(a) Observation (b) True Albedo Image (c) Estimated
Image

Albedo (d) Estimated Shading
Image

Figure 4-8: Figure (c) shows the albedo image estimated from the observation in (a),
with each constraint weighted independently. The system is now able to separate the

shading from the albedo quite well.

2.5 x 10
4

2•

01

~0.5

•0--

Without
Weights

With Weights

Figure 4-9: This chart shows that adjusting the weights of the constraints leads to a
significant reduction in the error over the square and bar images.
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(a) Observation (b) Abs. Value of Horizontal (c)
Wavelet

(d) Abs. Value of Vertical (e)
Wavelet

Figure 4-10: The figures in (c) and (e) show the correlation between the weight
assigned to a constraint and the magnitude of the constraint's value. For instance,
Figure (b) shows the magnitude of the constraint values for the horizontally-oriented
filter. In Figure (c), points whose weight is below a low threshold of 0.2 are marked in
red. The only points with large magnitude responses that are not marked in red are
points near corners and junctions. This demonstrates that the system has correctly
learned that only the corners and junctions provide meaningful information.

As Figure 4-8 shows, the results can be significantly enhanced by learning to

weight the constraints. The weights a were found using the same method that will

be discussed in Section 4.3.4, including the use of the steerable constraint described

in Section 4.3.8. The bars are almost totally removed from the albedo image. This

significant increase in quality of the estimated images can also be seen in quantitative

error. As shown in Figure 4-9, weighting the constraints reduces the total squared

error over the training set from 2.2 x 104 to 4.2 x 103 .

These weights demonstrate the correct behavior for solving this problem. Figure

4-10(b) shows the absolute value of the estimate of the horizontally oriented Haar

wavelet. Next to it, Figure 4-10(c) shows the same response. In this image though,
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Figure 4-11: This chart shows that adjusting the weight of the constraints leads to a

significant decrease in the error on the test set from Chapter 3.

pixels where the weight assigned to this constraint is below a low threshold of 0.2

are marked in red. Figures 4-10(d) and 4-10(e) show the same data for the vertically

oriented filter. Notice that in most of the image, pixels are marked in red where the

estimated response is large, such as along edges. The only exception to this is at the

corners of the square and at the junctions of the bars and the square. Effectively, the

system has correctly learned that good information can be found at the corners and

junctions and that estimated response values should be ignored along edges.

4.3.6 The Benefits of Weight Estimates for Shading and Albedo

The previous section showed the benefits of weighting the constraints on a relatively

simple data set. Fortunately, adjusting the weights also leads to a significant im-

provement in the estimates of the shading and albedo images.

Using the horizontal and vertical derivative estimators found in Section 3.4, the

error in Equation 4.12 was minimized by optimizing the weighting terms a, from

Equation 4.15, using the bold-driver gradient descent technique from Section 4.2.2.

The gradient descent algorithm was run for 2000 iterations.

As shown in Figure 4-11, weighting the constraints significantly reduces the squared-

error in the test set. The squared-error is reduced from 2.46 x 107 to 1.43 x 107. It also

leads to qualitative improvements, as seen in Figure 4-12. As Figure 4-12(g) shows,

the albedo image recovered with weighted constraints does a better job of capturing

the flat appearance of the albedo image.
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(a) Observed Image

(b) Ground Truth Shading (c) Estimated Shading Image

Image without Weights
(d) Estimated Shading Image
with Weights

(e) Ground Truth Albedo Im-
age

(f) Estimated Albedo Image
without Weights

(g) Estimated Albedo Image
with Weights

Figure 4-12: Shading and albedo images estimated with and without weighted con-

straints. The albedo image estimated with weighted constraints shows less shading

and has a flatter appearance.
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(a) Observed Image (b) Weight of Horizontal (c) Weight of Vertical Deriva-
Derivative tive

(d) Thresholded Weight of (e) Thresholded Weight of
Horizontal Derivative Vertical Derivative

Figure 4-13: These images show the weight assigned to each point in the observed
image shown in (a). The weights in the second row have been thresholded to allow
higher contrast.

4.3.7 What are Reliable Patches for Estimating Shading?

Examining the weight assigned to each derivative in the image is a convenient way

of visualizing how the system has chosen to assign uncertainty to different types of

image patches. Figure 4-13 shows the weight assigned to the horizontal and vertical

derivatives, given the observed image in Figure 4-13(a). Most notably, the highest

weight is assigned to smooth or flat regions. This is because these are the easiest

type of patches from which to estimate derivative values. If the patch is flat, then it

is very likely that both the albedo and shading images are flat at that point.

The other notable aspect of these images is that the weight around the edges is

very low. This is because the correct value at the edges is more difficult to estimate.

However, changing the scale so that the highest-weight portions of the image are

white, shown in Figures 4-13(d) and 4-13(e), shows interesting behavior. In portions
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of the image along small folds in the paper, the vertical derivative is assigned a much

higher weight that the horizontal derivative. This likely because the vertical derivative

will be close to zero whether those edges belong in the shading image or not. The

horizontal derivative is more ambiguous because the light comes from the right of the

image, which leads to many strong images caused by shading. The presence of strong

edges caused by both shading and albedo changes makes it difficult to estimate the

derivative of the shading image using only local information.

A second way of understanding how the system has chosen to assign weight is

to rank the prototype patches by the weight assigned to them. To aid visualization,
the system was retrained using 7 x7 image patches. In addition, these patches were

selected from only the paper images. This is because the synthetic data can be well

separated using Retinex-style intensity cues, which makes interpreting the patches

difficult because it is not clear whether a patch is reliable due a Retinex-style cue or a

different cue. Figures 4-14, 4-15, and 4-16 show a selection of the prototype patches

used for estimating the horizontal derivative and the weight assigned to them. For

display purposes, the patches were sorted according to the weight assigned to each

patch. The 800 patches were then divided into groups of 40 patches. For brevity, six

of the groups are shown in these figures.

The patches with high weights are dominated by flat areas, where it is easy to

estimate the derivative of the shading image. In addition, many of the patches with a

relatively large weight are lines or bars, which are not likely to be caused by shading.

These figures also show that vertical edges tend to receive relatively low weights,
probably for the same reasons discussed above.
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5.75e+01 4.42e+01 3.97e+01 3.96e+01 3.46e+01 2.32e+01 2.26e+01 2.24e+01

3.52e+00 3.51e+00 3.50e+00 3.39e+00 3.38e+00 3.25e+00 3.24e+00 3.19e+00

3.13e+00 3.12e+00 3.11e+00 3.09e+00 3.06e+00 3.05e+00 3.01e+00

2.57e+00 2.57e+00 2.56e+00 2.52e+00 2.52e+00 2.50e+00 2.46e+00 2.40e+00

z.oe+uu Z.oe+u Z.;De-+uu Z.jse+uu z.;j;e+uu z.iue+uu z.zue+uu

Figure 4-14: A selection of the prototype patches. The number above each patch is
the weight assigned to that patch. The patches are sorted according to these weights.
These patches come from a system trained on only the paper images, using 7 x 7
image patches as the input representation. As described in the text, each panel of
patches is a sorted group of 40 patches.
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1.15e+00 1.14e+00 1.13e+00 1.13e+00 1.13e+00 1.13e+00 1.12e+00 1.12e+00

1.26e-01 1.22e-01 1.21e-01 1.21e-01 1.20e-01 1.19e-01 1.18e-01 1.16e-01

1.13e-01 1.06e-01 1.05e-01 1.04e-01 1.03e-01

1-02 9.24e-02 8.80e-02 8.46e-02 8.40e-02 8.35e-02 8.32e-02 8.24e-02

Figure 4-15: A selection of the prototype patches. The number above each patch is
the weight assigned to that patch. The patches are sorted according to these weights.
These patches come from a system trained on only the paper images, using 7 x 7
image patches as the input representation. As described in the text, each panel of
patches is a sorted group of 40 patches.
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4.36e-03 4.34e-03 4.24e-03 4.22e-03 3.93e-03 3.88e-03 3.80e-03 3.79e-03

3.536-03 3.5ue-03 3.44e-U3 3.32e-03 3.2be-U3 3.2Ue-U3 2.u3e-u3

3.98e-17 3.29e-17 2.88e-17 2.21e-17 1.88e-17 9.79e-18 8.20e-18 8.14e-18

4.88e-19 9.36e-21 1.82e-21 4.93e-23

6.63e-32 2.60e-32 1.68e-32 4.58e-35 4.24e-35 1.34e-35 1.21e-35

Figure 4-16: A selection of the prototype patches. The number above each patch is
the weight assigned to that patch. The patches are sorted according to these weights.
These patches come from a system trained on only the paper images, using 7 x 7
image patches as the input representation. As described in the text, each panel of
patches is a sorted group of 40 patches.
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4.3.8 Incorporating Steerable Constraints

The linear constraints used by the system are not limited to fixed filters. The con-

straints themselves can also depend on the observed image. Steerable constraints are

one example of a constraint that depends on the constraint matrix. The constraint

matrix C, can be written as the sum of a horizontal and vertical derivative matrices:

Cs = diag(cos(Oi(O)))Cd + diag(sin(Oi(O)))Cdz (4.17)

where Oi(O) is a function of the observed image O that provides the steering orien-

tation at location i. The matrix Cs basically represents a steered filter [25].

To test the benefit of a steered constraint, I added the constraint that the deriva-

tive steered parallel to the observed image edge should be equal to the value of zero.

Since an estimator is not trained for this constraint, the prototype patches from both

the horizontal and vertical derivatives are used for this constraint. The weight co-

efficients, a, were trained using the gradient descent method described in Section

4.2.2. This constraint can be viewed as expressing the notion that edges should have

constant intensity. Incorporating this constraint reduced the error from 1.43 x 107 to

1.31 x 107 .

4.4 Joint Optimization of the Linear Regression

Coefficients and the Weights

Using gradient descent, it is easy to jointly optimize the regression coefficients and

the weighting coefficients. Contrary to my expectations, this performed worse than

simply optimizing the weighting coefficients. As Figure 4-17 shows, optimizing only

the weighting coefficients achieves a lower training error than joint optimization.

However, the training error can be significantly reduced by first optimizing only

the weighting coefficients, then jointly optimizing the regression and weighting coeffi-

cients. After 600 additional iterations of gradient descent, the training error decreases

from 1.4169 x 107 to 9.80 x 107 . However, the error on the testing set actually in-

creases slightly after training. This indicates that the training is likely overfitting the

training data.
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00
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Figure 4-17: The training error at each iteration of gradient descent. The blue line is

the training error when both the regression coefficients and the weighting coefficients

are jointly optimized. The green line is the training error when only the weighting co-

efficients are optimized. The red line shows the training error when jointly optimizing

the weights and filters, after first optimizing the weights.

4.5 The Advantage of an Energy Based Criterion

In the previous sections, the learning has been formulated as minimizing the squared

error in the predicted intrinsic component image. This section shows how the learning

can be reformulated probabilistically. The pseudo-inverse step can also be interpreted

as finding the MAP estimate of Conditional Markov Random Field defined as

p(XIO) = exp ((f - )2 (4.18)
n=l p=l1

where the terms in this equation have the same meaning as in Equation 4.9. The

quantity Z is the normalizing constant for the density function, also knows as the

partition function. The cliques in this MRF are defined by the linear constraints fP.

If all the constraints take the form of a 5 x 5 filter, then the cliques will all be 5 x 5

pixel neighborhoods in the image. This MRF is conditioned on the observed image

O because of the ^ terms, which depend on O. This type of MRF is also known

as a Conditional Random Field or CRF [42]. The terms in Equation 4.18 are often

referred to as potential functions or compatibility functions.

In matrix form, this MRF can also be expressed as a Gauss-Markov Random Field
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(GMRF) [63]:

p(XjO) = exp (X - p)TCTC(X - t) (4.19)

where

S= (cTc)-Ic T1

The estimate of the conditional distribution of the intrinsic component image can

be improved by weighting certain cliques more than others:

1 )p( \ g
p(X£O) = exp )( - )2  (4.20)

n=1 p= 1

Again, the notation for the weighting functions w(O) is the same as in Equation 4.10.

Given this probabilistic setting, the natural way to find the parameters of w(O),

denoted here as 0, is to maximize the conditional log-likelihood of the data, T. This

can be accomplished using gradient descent. The gradient of the log likelihood with

respect to 0w is:

0 log T N P a
0oW P Ow;(O)W ((fn) T T - n)2

l p zzIp) _ epn=l p=l

- j expv } ((f g)Xp - (P)2 (4.21)
Z x n=1 p=19

Note that because of the dominated convergence theorem, the derivative of the second

term can be moved inside the integral because 0, is constant in the integral [76].

Notice that the second term can be rewritten as an expectation:

-log X N P W(O)((fpTT _ e)2

n=1 p=l

-EP(X;O)p= aow(o), •-n)2 (4.22)

The expectation, denoted Ep(x;o,ow), is computed under the conditional distribution

p(X; O, O,).
Equation 4.22 makes it clear that optimizing the parameters of the weighting
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function requires the ability to compute the expected values of the potential func-

tions. Because the problem can be formulated as a Gauss-Markov Random Field, the

expected value of these potential functions can be computed easily from the covari-

ance matrix of p(X 10, ,,,). This is accomplished most easily by inverting the matrix

CTW(O)C.

Unfortunately, inverting a matrix is O((N3), if N, is the number of pixels in the

image [53]. In addition, each gradient computation will require inverting this matrix.

On the other hand, as pointed out in Section 4.3.4, calculating the gradient when

minimizing the squared error only requires computing the product of a vector with

an inverse matrix. Computing these products is equivalent to solving a linear system,

which is O(N,2). For images, Np will typically be very large, leading to tremendous

savings in computation.

4.6 The Difficulty of Adjusting Weights under an

L1 Norm

In the previous sections, the estimated intrinsic component image, X, is reconstructed

from the estimated constraint values using a pseudo-inverse. In the previous chapter,

Section 3.11 showed that the results could be significantly improved by reconstructing

the images using an L 1 norm rather than an L 2 norm, which is the effective norm when

using a pseudo-inverse. Given the significant improvements that come from learning

to weight the estimates using the pseudo-inverse, it is likely that similar improvements

can be obtained by weighting the constraints when reconstructing using an L 1 error

norm.

To understand the difficulty of learning to weight the estimates under the L 1 norm,

it is instructive to rewrite the error criterion from Equation 4.12 in this fashion:

N

minimizex (Xn - T) T(X - ,)
n=1

N P

s.t X = arg min w(0)I(f~) T x -- l (4.23)
n=1 p=l

where I " II could represent any norm. If the L 2 norm is used, then the arg min step is
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a set of matrix multiplications and the value of X can be differentiated analytically

with respect to the parameters of the weighting functions wP(O). However, if an L1

error norm is used, then X is computed using a linear program similar to the one

used in Section 3.11. The value of X can then no longer be differentiated analytically.

This problem can be avoided by considering a different approach to learning the

weighting parameters. In [18], Collins describes how to estimate the parameters of

models of the form:

x = arg min 4(, &) a (4.24)
1EX

where X is the set of all possible values of 2, a is a vector of parameters, and 4(x, y)

is a vector of feature functions that relate possible values of X: with the observation y.

To estimate the weight of the features a, Collins suggests the perceptron algorithm

[55], which has historically been used to learn classifiers. The a parameters are chosen

to maximize a margin between the correct estimate and all other possible estimates.

I implemented this algorithm as described in [18], including the averaging of pa-

rameters suggested in that paper. Unfortunately, the perceptron algorithm proved

unstable and difficult to work with. In early experiments, it gave good results, while

failing in later experiments. The primary difficulty with using the perceptron algo-

rithm is that there are no theoretical guarantees about its performance if the data is

not linearly separable. This makes it difficult to determine if the algorithm is behav-

ing correctly and also makes it difficult to evaluate the generalization performance of

the estimator returned by the algorithm.

4.6.1 A simple option

A simple option for learning the parameters of the weighting function is to train

them using the L 2 norm, then use them with the L 1 norm. The drawback to this

approach is that the weighting function parameters are tailored to the behavior of

the L 2 norm. This actually increases the squared error over the test set. The error

likely rises because the weights are tailored to the behavior of minimization under an

L 2 norm.
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4.7 Relationship to Other Work

Learning the parameters w to minimize the Equation 4.23 is similar to the work on

the problem of structured prediction. The primary difference lies in the criteria. The

work of Taskar et al. [71] and Collins [18] focuses on maximizing a margin between

between the true values and all other values. In this work, the criterion is simply

the loss function. It is possible to optimize only the loss because the prediction

is produced from a quadratic cost function, which makes it possible to analytically

differentiate the value of the arg min step.

In the context of semi-supervised learning, Zhu et al [83] have also optimized the

parameters of a Gaussian field to minimize the entropy over the data.

4.8 Conclusion

This chapter has addressed two main issues: closed-loop versus open-loop learning

and learning to weight the constraints implied by the estimates of the linear filter

responses. Both on synthetic examples and real-world shading images, weighting

the estimates leads to significantly better performance. This chapter has also shown

how these weights can be learned efficiently by minimizing the loss in the predicted

image. This is much more efficient than posing the problem as a maximum-likelihood

learning problem.
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Chapter 5

Conclusion

This thesis has presented a system that takes a single grayscale image and decomposes

it into intrinsic component images that represent certain intrinsic characteristics of

the scene.

This estimation process consists of two basic steps. Assuming that the desired

intrinsic component image is the shading image, the first step is to use the observed

image to estimate filtered versions of the shading image, using small patches of image

data. Each of these estimated filter responses can be seen as a constraint on the

appearance of the shading image. The second step is to find the image that best

satisifies these constraints, under either a squared-error or absolute-error metric.

In Chapter 3, the effectiveness of this system was demonstrated on two types of

decompositions, shading/albedo and scene/noise. On the shading and albedo task,
the system achieves state-of-the-art results on images that are more difficult than

those used previously. On the denoising task, this system was competitive with the

recently published Field of Experts of Roth and Black [56].

5.1 Contributions of This Work

The primary purpose of this work has been to develop a state-of-the-art system for

estimating shading and albedo images. However, as shown by the system's extension

to denoising, the techniques described are flexibile enough to be applied to other

image estimations. The unique contributions of this work include:

Treating Lightness Estimation as Regression In this work, the problem of esti-

mating the albedo of a point as been posed as a continuous estimation problem.

135



This avoids the problems of classification based systems, such as [69]. In addi-

tion, it makes it easier to incorporate a wider variety of linear constraints.

Ground-Truth Data and Quantative Evaluation A unique feature of this ap-

proach is the use of ground-truth shading and albedo images to evaluate the

various design decisions in the construction of the estimators. The training and

test images will be made available. I hope that the availability of this new data

will spur new research and approaches to this problem.

Learning to Weight the Constraints In Chapter 4, the system is extended by

assigning weights to the various constraints, based on the observed image. The

function that assigns these weights can be optimized on the training data. As

Chapter 4 shows, this is equivalent to learning the parameters of a Conditionally

Gaussian Markov Random Field. This is a unique contribution to the body of

work in MRF-based techniques in computer vision. While there is much work

that relies on hand-designed MRF's, systems that learn the MRF parameters are

much less common. This is likely due to the computational cost of computing

expectations in MRF models. As Chapter 4 shows, this can be avoided by

minimizing the error in image estimates.
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