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Abstract

This thesis addresses the problem of severe bandwidth.
and power limitation of future satellite systems by a joint con-
sideration of coding and modulation. Bandwidth economy is achieved
by two methods. First, baseband pulses with rapid spectral roll-
off and less than unity bandwidth-to-symbol-rate ratiaare obtained
by allowing controlled intersymbol interference (ISI). Second,
phase shift keying (PSK) having more phases is used.

Convolutional encoding with maximum likelihood decoding
is used to tradeoff some bandwidth economy acquired to overcome
the power limitation. Lower bounds, tight in most cases, are
derived for the minimum free Euclidean distance of the modulator
output signals, after coding and inclusive of ISI. These bounds
are used for searching good encoders.

Various encoder structures and modulation schemes are
proposed. In combining a rate 2/3 encoder of six binary memories
with 8¢-PSK modulation having controlled ISI, an Eb/No gain of
4-5 dB over uncoded QPSK is achieved simultaneously with marked
spectral improvement.



System performances are evaluated theoretically and
confirmed by simulation.
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Chapter 1. POWER AND BANDWIDTH LIMITATIONS OF CURRENT
SATELLITE COMMUNICATIONS SYSTEMS

In recent years, lowered cost and more diversified appli-
cations of satellite communications systems have dramatically
increased the demand for communication traffic via satellite.
Consequently, the existing spectral allocation for satellite serv-
ices in the 6/4~GHz band has become extremely congested. This
spectral congestion problem may be alleviated by designing satel-
lites which would reuse the same frequency band for a multiple
number of times or would operate in higher frequency bands such
as 14/11 GHz or 30/20 GHz. Multiple frequency reuses can be real-
ized by employing carrier waves with orthogonal sense of polariza-
tion or by employing a multiple-beam satellite antenna design.

The imperfect isolation between satellite antenna beams, as well

as nonideal polarization isolation, causes co-channel interference
(CCI) that can be one of the major impairments in a satellite system
reusing the same frequency spectrum for a multiple number of times.
The co-channel interference can be especially severe if the reuse

is achieved by orthogonal polarization, since rain can cause signif=-
icant depolarization on the carrier waves.

Another source of interference is called adjacent channel
interference (ACI), which is due to imperfect transponder frequency
isolation.

Generally, the carrier-to-interference (CCI + ACI) ratio
(C/1I) cannot be improved by merely increasing the carrier power
since the interference caused by nonideal isolation would increase
as well. Therefore, the overall available carrier-to-thermal noise
and interference power ratio [C/(N + I)] of a multiple-beam satel-
lite system can be limited because of the presence of interference.
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As a result, allowable power as well as bandwidth will be limited
in future multibeam satellite systemsswﬂzasiim EMEESHT\H. The power
limitation for avoiding 1nterference can be partlcularly severe at
30/20 GHz where 51gnals are more vulnerable to fades due to raln.

The Satellite Business Systems (SBS) is another example
where there exists power and bandwidth limitations. Low equipment
cost for High Power Amplifier (HPA) and antenna on the ground is
crucial for the successful development of such systems. These
cost considerations would limit the power available for trans-
mission. The SBS system operates in the 14/11 GHz band, which is
comparatively less congested than the 6/4 GHz band. However, band-
width limitation is anticipated even in this new band when the
number of users for such systems increases.

The purpose of this thesis is to address the transmission
system design problem for satellite channels that are both band-
width and power limited. Specifically, a joint forward error
correction (FEC) coding and modulation system design approach is
proposed.

The transmission system design problem becomes quite
complex when real system constraints are included. The impairments
caused by thermal noise, intersymbol interference (ISI), CCI, ACI,
and channel nonlinearities must all be considered. Frequently,
many of such impairments are mutually coupled. For example, in
the Time Division Multiple Access (TDMA) system, the modulated
signal must be filtered to minimize the interference into adjacent
channel. Due to power and cost considerations, it is desirable
to operate the HPA near saturation at the earth station. However,
the spectral sidelobes of the filtered TDMA signal would regrow
and spread after it is amplified by the nonlinear HPA. This
spectral sidelobe regrowth can cause undesirable out-of-band emis-
sion (OBE) noise and adjacent channel interference. It can also
cause additional intersymbol interference when the signal is

12



further filtered by the satellite transponder filters and the earth
station receive filters. Thus, the operating point of the earth
station HPA is frequently backed off from its saturation power
level in order to minimize the impairments caused by ISI and ACI
or to limit the OBE noise. At the satellite transponder, the non-
linear Traveling Wave Tube Amplifier (TWIA) would further degrade
the system performance and it often must also be backed off from
its saturation power level in order to minimize ISI, ACI and other
nonlinearity effects such as phase noise due to AM/PM conversion.
The more robust approach of joint coding and modulation system
design suggested in this thesis will hopefully combat such impair-
ments present in a realistic power and bandwidth limited environment.
This thesis will consist of 8 chapters. Chapter 1 has
given a description of the bandwidth and power limited satellite
channels. Chapter 2 reviews previous work performed on the subject
of coding and modulation system design for satellite channels.
Chapter 3 models the transmitter and receiver structures and derives
the likelihood ratio of signals in the presence of intersymbol
interference. Chapter 4 deals with the problem of filter design
which minimizes out-of-band emission. Chapter 5 presents several
classes of encoders suitable for coded 8¢-PSK modulation in the
absence of ISI. Chapter 6 discusses the subject of convolution
encoder designs in the presence of intersymbol interference.
Chapter 7 evaluates the overall system performance in theory as
well as by system simulation to find the coding gain with respect
to uncoded 4¢-PSK and bandwidth required for given bit error rate.
The last chapter concludes the thesis and provides suggestions
for further research.

13



CHAPTER 2. REVIEW OF PREVIOUS WORK

Most of the previous works dealing with bandwidth limita-
tion or power limitation fail to address both subjects simultaneously.
In this review we are going to cite merits of some approaches and
reasons for rejecting others. After some reorganizing of the pre-
ferred approaches, we hope to form a unified framework for the
course of research of this thesis.

We start by looking at some bandwidth efficient modu-
lation techniques, then power efficient coding techniques and
afterwards maximum likelihood detection which is often applicable
for these bandwidth or power efficient techniques. Finally, we
shall state our approach.

To speak about bandwidth efficiency, one must define
what bandwidth is, which unfortunately does not have a universally
satisfying definition. Recently, Amoroso [l] has given a rather
comprehensive summary of various definitions for spectral band-
width of a signal. Different pulse shape would be obtained in
minimizing bandwidth under different definitions of bandwidth.

One such example is described in the classical paper by Landau
and Pollack [2] in which a prolate spheroidal function minimizes
the width of the frequency band containing a specified fraction
of the signal energy.

Lacking a universal criterion for bandwidth economy,
modulation schemes are judged very often by inspecting their power
spectra. Nevertheless, several modulations that are claimed to be
bandwidth efficient have evolved in recent years.

Minimum shift keying (MSK) [3] is one such scheme using
half-cosine as baseband pulse with the two quadrature channel pulse
trains offset by half a pulse repetition interval. MSK can be
viewed as a special case of continuous phase M-ary frequency shift

14



keying (MFSK) with M = 2. Due to its constancy of envelope, MSK
is more compatible with nonlinear satellite transmission mode.
However, it can hardly be claimed as bandwidth efficient since
the null-to-null bandwidth is 50 percent more than that of 4¢-~PSK
with rectangular pulse shape. In a recent paper [4], Rhodes pro-
posed another constant envelope modulation called the frequency
shift offset quadrature (FSOQ) modulation which is basically con-
tinuous phase 3FSK, with improved spectral property over MSK at
the cost of slightly increased transmission complexity. Several
other schemes use overlapped baseband pulses, such as overlapped
raised cosine [6] and truncated sinc functions [7], which achieve
spectral efficiency at the expense of slight envelope fluctuation
and presence of intersymbol interference. The merit of all these
schemes is that they can be treated as quadrature pulse amplitude
modulation (QPAM) which is convenient for analyses and high speed
implementation. However, these schemes do not improve power economy
over QPSK using rectangular pulse-shaping.

One power efficient coding technique is described by
Ungerboeck [10]. Redundancy is introduced by using a rate 2/3
convolutional encoder which takes in 2 bits, and maps its 3-bit
output into the eight phases of 8¢~PSK. Ungerboeck was able to
achieve 3-6 dB gain over uncoded 4¢-PSK, with the same information
rate and spectral efficiency. It seems very appealing if the power
efficiency of Ungerboeck's rate 2/3 coded 8-¢ can be combined with
the spectral efficiency of some of the QPAM schemes mentioned
previously.

We shall prefer this combined coding and modulation over
another well-known class of hybrid coding and modulation schemes,
called correlated phase shift keying (CORPSK) or alternatively
called trellis phase code, summarized in the paper by Muilwijk
[8]. Typically, these schemes convolutionally encode the input
bit sequence into multilevel phase positions, which are interpolated

15



to generate a smooth phase function for phase modulation. For
example, tamed frequency modulation (TFM) [5] achieves reduced
bandwidth through convolutionally encoding three input bits into
8-phase positions. Anderson and Taylor [9] have shown that trellis
phase codes can achieve substantial power improvement (2 to 4 dB)
over 4¢-PSK, with reduced bandwidth at the same time. It is pos-
sible that the gain of CORPSK can be achieved by less complex
coded QPAM schemes. In fact, we expect our combined coding and
modulation approach to achieve better spectral and power efficiency
than CORPSK.

A proper understanding of maximum likelihood (ML)
decoding using the Viterbi algorithm is indispensable for optimal
detection in case overlapped baseband pulse, or coded M-ary PSK,
or trellis phase code is employed. ML detection for convolutional
codes in the presence of non-stochastic channel impairments (such
as bandlimiting, distortion by nonlinear elements or cross channel
coupling) is a fairly well studied topic. ML estimation for band-
limited linear channel has been investigated by Forney [1ll] and
Ungerboeck [12]. A summary of these results is presented in [13].
Mesiya et al [14] treated the ML detection problem for the non-
linear and bandlimited channel using a bank of matched filters.
Hermann [15] subsequently evaluated numerically the degradation
of the free Euclidean distance for uncoded signals transmitted in
a bandlimited nonlinear channel and found the performance loss
relative to the linear channel to be small. Hence there exists a
substantial potential for receiver improvement by ML estimation
relative to bit-by-bit detection. However, the question of pulse
design is not addressed in these papers. Furthermore, the problem
of code design with good free Euclidean distance is left out.

The framework formulated is as follows. First, we shall
attempt to define bandwidth efficiency and obtain optimal pulse

16



shapes according to these definitions. These pulses will be over-
lapped at baseband and coded M-ary PSK will be employed. Search
algorithm for optimal encoder for M-ary PSK channel with controlled
ISI will be investigated. ML detection is used for decoding.

We shall not treat the nonlinear satellite channel in
our analysis, thus limiting ourselves to linear additive white
Gaussian noise channel. The research of this thesis started with
the practical problem stated in Chapter 1. Research direction is
framed in this chapter and we shall proceed to offer a unified
solution in later chapters.

17
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CHAPTER 3. TRANSMITTER AND RECEIVER STRUCTURES FOR
BASEBAND PULSES WITH CONTROLLED
INTERSYMBOL INTERFERENCE

The bulk of the literature on channel coding is mostly
concerned with reliable transmission over a binary symmetric chan-
nel. The encoding stage would take in a sequence of binary digits
and deliver a binary sequence which is relatively immune to error
occurrences. Unfortunately, such encoding techniques for binary
symmetric channels are inadequate for most modulation schemes which
use multilevel/phase signals. Until now, results for channel coding
employing multilevel/phase signals are relatively few [10]. The
problem of optimal code design for modulation schemes with control-
led intersymbol interference (ISI) is scarcely addressed. However,
growing demand for communications bandwidth in recent years has
stimulated interest in modulation schemes employing expanded signal
set and baseband pulses with controlled ISI. These novel modulation
schemes necessitate the consideration of coding and modulation as
an entity. For channels corrupted by Additive White Gaussian Noise
(AWGN), we want to maximize the minimum free Euclidean distance
amongst the coded channel waveforms. This chapter presents a
unified mathematical model for M-ary PSK modulation technique with
channel encoding for the AWGN channel. The modelling attempts to
abstract the complicated satellite channel in a way that is mathe-
matically tractable. The results obtained from this modeling will
be tested by simulation in Chapter 7.



3.1 Transmitter Structure

The data source (Figure 3.1) puts out a sequence u con-
sisting of binary uk's which are statistically independent random
variables with equal probability of being 0 or 1. The data stream
is fed into a convolutional encoder to increase the message redun-
dancy before transmission. The encoder output is mapped into a
sequence Vv consisting of vk's which are elements of an M-ary PSK
channel symbol set. In the example shown in Figure 3.2 for 8¢-PSK,
vks{o, 1, 2, ...,7}. For practical application, M is rarely greater
than 8 when phase and timing jitter would then become a major limita-
tion of system performance.

Throughout this thesis, convolutional encoders are em-
ployed due to their generally superior error correction capability
compared to block coding as well as relative ease of decoding and
code searching by the Viterbi algorithm. The problem of finding
optimal encoder with multiphase signals will be explored in Chap-
ter 4.

The low pass filter with impulse response JEE; h'(t)

(Eé being the modulated signal power per symbol) provides the in-
phase and quadrature envelope functions sr(t) and si(t) given by

N 2nvk
s (t) = 2. JZEL h'(t = kT) cos —

k=-N

‘N 2nv,
s;(t) = 25 4JZEL h'(t - kT) sin —;

k=-N

The envelope functions then modulate the carriers cos 2nfct and
sin 2nfct which are afterwards added to give the modulated signal

19
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N Znd 27tvk
1 1 - - s .
x(t) Z; JZES h'(t kT) { cos M cos 2nfct sin sin 2nfct

M
=-N

N Znd)
' -
3 JZE; h'(t - kT) cos (2nfct +

M
k==N
N [ [
= ¥ 3 JZE] n(t - k1) (ejznfctﬂznvkm + M*)
k==N

* . . .
where (-) denotes the conjugate of the term before it. Defining

N
s(t) = ¥ JZEL h'(t - k1) 32N
k=-N

The modulated signal can be expressed as

x(t) = 2 s(t) eIt 4+ 2 5% (g) e7IZMELE
and applying Fourier transformation gives
X(£) = 3 S(£ - £,) + 2 8"(-£ - £)

as shown in Figure 3.3.

Often times, the modulated signal is subsequently
filtered to minimize adjacent channel interference. Therefore,
the transmission channel is bandlimited and the band-pass filter
with impulse response g(t) (Figure 3.1) is added to model the channel.
Assume the Fourier transform of g(t) given by

G(£) =f g(t) e 32nft 44

=00
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to have a spectral shape as shown in Figure 3.4, and define Go(f)

such that

*
G(f) = Go(f - fc) + G (-f - fc) , and let

0o
g (t) = Jf G, (£) eI2ME gf
-(0
so that

j2rnf t ~janf t

g(t) = g (t) e g, (t) e

2 Re [go(t) ejznfct]

Finally, the spectrum of the channel filtered signal and its
inverse Fourier transform, assuming s(t) is low pass (<fc) are
respectively

- 1 1 * *
Y(£) = 3 S(f - fc) Go(f - fc) + 5 S (f - fc) Go (-f - fc)
y(t) = 5 {s(t) * g (t) I2MEt 4 ()%}
= Re [s(t) * go(t) ejznfct]
in which
N )
s(t)*g (t) = L VZEL h'(t - k1) I7VKM o« g (¢
k=-N
N .
= ¥ [VZEL h'(t - kT) * g (t)] eI ¥™Vk/M
=-N

Defining JZES h(t - kT) = JZEé h'(t - kT) * go(t) gives

23.
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N
2 Re [JZES h(t - kT) ejznfct"'ﬂnvk/M]
k=-N

y(t)

N
5 %g 3E, h(t - k1) JJ2nf t+iznv, M (')*€
=-N

Therefore, the two filters in the model can be combined by replac-
ing Jfﬁg h'(t) with JEE; h(t) and omitting the channel filter with
impulse response g(t) in Figure 3.1. As go(t) can be complex in
general, so can h(t). 1In the following discussion, we shall assume

f h(t) h¥(t) = 1

3.2 Metric Derivation

The signal y(t) is then corrupted by a zero mean white
Gaussian noise n(t) with
N,

E[n(t) n'(t)] = 5 6(t - t')

The received waveform is given by

r(t) = y(t) + n(t)

Note in particular that y(t) is real and consequently r(t) is also
real.

A maximum likelihood receiver chooses the source sequence
u that would most likely result in the waveform r(t) after noise
corruption. For AWGN corruption, it is well known [17] that the
logarithm of this likelihood is proportional to the negative value
of the Euclidean distance between the received r(t) and the
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uncorrupted yu(t) generated by the sequence u. Consequently, the
metric for measuring distances amongst waveforms will be Euclidean,
with Euclidean distance defined by

[~}

=ty - v 0] 2 = f [r(t) - v, (£)1[r(t) - y (£)1" at

- 00
Therefore, the decision rule which minimizes the error probability,
based on the entire received signal, is to choose u iff

in

Plr(e)ly, ()] '
P[r(t)lyu,(t)] 2 0 for all u' # u

and for AWGN corruption, this likelihood ratio is equal to

N ECER RO RN LSRR MO

No

8

ZIN
(o)

[y, () = y,,(£)] r(t) dt

1
8

*]

f [¥2(t) - yZ,(t)] at

-0

1
le»-‘

o

Hence, each input sequence u is associated with a A, for each
received waveform r(t) such that

Ay = y,(t) r(t) dt - x f y2(t) dt

o) o]

2|
s

-0
and the decision rule is to choose the u with the largest Au. For
simplicity, the following derivations will drop the subscript u.
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The remaining of this section is devoted to expressing
A in terms of a complex discrete sequence of sufficient statistics
r.. As we shall see later, the sufficient statistics r, are gener-
ated by the demodulator as samples of the matched filter output.
The first term in the expression for A is

f y(t) r(t) 4t

N
) %-;JZE‘S‘ h(t - kT) eI2MEct *+ 12nvy/M o ()

:';\.s

k=-N
+ (.)*§ dt
N
1 *
- T BRIy e ]
=-N
N 0]
= Y JE—S Re[}]vak/M rk]
Kk=-N

in which

r, =f JZ h(t - kT) 32t Lty at

-0

is a complex number. The second term for A is given by

8

y2(t) dt

8

oo N 2
- f 2E) L h(t - kr) IZEEIZIVE/M )M e
-00 ==N

‘97~



8

N N
SE, L X %h(t - kT) h(t - 2T) eI ELHI(Vytvy)2n/M
k=-N 2=-N

8

*
+ (°) l dt

® N N
+/% E, L X %h(t - kT) h'(t - a1) &I (Vg~Vy)2n/M
Lo k=-N 2=-N

*
+ (°) ; dt
We assumed previously s(t) to be low pass, or roughly speaking
h(t) is slow-varying with respect to the carrier frequency. The

first integral in the above expression can be shown to equal zero.
Furthermore, define

=3
i

2 *
k-2 = Jr h(t - kT) h (t - 2T) dt

-0

%; ]H(w)l2 e~ JuT(k=2) 4,

§Ss

T -k

Consequently, the second term for A becomes

N N
% E, 3 ) {ej(vk-vz)Zn/M h_, + (°)*§
k==N 2==N

N N
= E_ 2 2 Re [%J(Vk—VE)ZR/M hk—é]
k=-N 2=-N
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The overall expression for A is then given by

N N
E .
By T E e S0y
O k=-N 2=-N
The second term in the above expression is a symmetrical quadratic

form. The terms that are symmetrical to the diagonal are equal
since

-
Re ej(vz-vk)Zn/M « h

= Re|el (Vo~Vy)2n/M | *

-

j(vy,=v,)2n/M |, *
ReEa k "2 h.?.-k:]

Re[ej(Vk"’,o,)z"/M : hk—z]

Therefore, the double summation for A can be separated into two

terms which are twice the upper triangular quadratic form and the
sum of the diagonal terms.

N N
JE. . JE
A =2 2 2 ReEaJZTWk/M r | - 2 JE n
o o S o]
==N ==N
K+N
JE X
- —5 Ivn/M -jv, /M
N 2 2E, Re[e 2 e IVgy h2]
k=-N 2=1
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For sufficiently large £, the intersymbol interference co-
efficient h, should be small. If we limit the intersymbol
interference effect to s symbol, (i.e., hi = 0 for Iil 2 s), then

N N
JE JE.
A =2 ﬁ_ﬁ E Re{}JZRVk/M r } - -N—E Z JES ho
O k=-N ©  k=-N
N s=-1
JE- | .
- ) 2{E_ Re eI 2™/ Y eIV m/M h,
O k=-N 2=1
Defining
= j2nv, /M _
Ak 2Re[e k rk] ‘/Es ho
13 s-l 13
- 2JE Re[eJZ"Vk/M'Z e~ I2MVy _o/M h£]
2=1
so that
J'— N
— A
No k

==N
The maximization of A over all possible u is a dynamic
programming problem which can be efficiently performed by the
Viterbi algorithm [13]}. The optimal receiver structure for this
mathematical model follows immediately from the expression for A.
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3.3 Receiver Structure

As we have just seen, the sufficient statistics for detec-
tion is given by

[

rk=/J§_h(t-kT)e

-0

j2":'fct r(t) 4dt
which can be generated by a correlation receiver as shown in Fig-
ure 3.5. The received signal is multiplied by the in-phase and
guadrature carriers before it is passed into filters matched to
the transmit filter with impulse response h(t). The carriers can
be recovered by conventional phase lock loop techniques. The filter
output is sampled at appropriate instants with adequate timing
synchronization. Wwith the rk's at hand, the most likely u can be
estimated by trellis search using the Viterbi Algorithm. Consider
the trellis diagram for a certain binary convolutional encoder of
rate p/q and having y binary memories in the absence of ISI as
shown in Figure 3.6. The encoder shown has 2Y states. Merging
into every state are 2P branches each associated with a channel
symbol which is an element of the channel symbol set. 1In the
presence of ISI, the channel "remembers" the past s-1 symbols.
Consider adding (s - 1) shift registers to each queue of the
encoder (or p.(s = 1) shift registers added altogether) as shown
in Figure 3.7. Obviously, knowing the content of the shift registers
for this convolutional encoder with extended memory is sufficient
for calculating the present as well as the past (s - 1) channel
symbols. The state of the system (encoder plus channel) is suf-
ficiently represented by the content of the shift registers for
the encoder with extended memory. The trellis diagram in the
presence of ISI, therefore, consists of 2y+p.(s-l) states.

The probability of error Py depends on the Euclidean
distances between codeword waveforms. Asymptotically, Pe is
determined by the minimum free Euclidean distance.
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3.4 Staggering Quadrature Components for Limiting Spectral
Sidelobe Regrowth

Often times, one of the quadrature component is delayed
by half a repetition interval T forming the so called staggered
4¢~-PSK. For Time Division Multiple Access (TDMA) transmission,
the transponder power amplifiers are operated near saturation and
behave like band-pass soft limiters. To avoid adjacent channel
interference, the signal is usually band-pass filtered before it
is amplified. However, for unstaggered 4¢-PSK modulation, the non-
linear amplifier causes the spectral sidelobes to regrow to nearly
their original unfiltered level. 1In this section, we attempt to
explain this phenomenon and why staggering quadrature components
may reduce spectral sidelobe regrowth.

For conventional 4¢-PSK (with rectangular pulse shaping),
the transmission often times has phase shifts of n radians when
the polarity is reversed (Figure 3.8). When the signal is filtered,
envelope nulls occur in the regions where polarity is reversed,
resulting in envelope fluctuations (Figure 3.9). The nonlinearity
of power saturation or envelope limiting tends to restore these
envelope nulls and consequently brings back the high frequency
content of the signal that has been filtered out previously.

On the other hand, staggered 4¢-PSK makes * n/2 radians
phase transitions only and avoids the phase shifts of n radians
that cause large envelope fluctuations, thereby limiting the
spectral sidelobe regrowth resulting from restoration of envelope
nulls. Consequently, the staggered 4¢-PSK could induce less adja-
cent channel interference than conventional 4¢-PSK in transmission
systems which do not suppress the spectral sidelobes by filtering
the output of the nonlinear amplifier.

The demodulator for the staggered case consists also of
matched filtering of the received signal as in the unstaggered case.
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Figure 3.8. Reversed Polarity in 4¢-PSK
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In a linear system, error performance and spectral shape are not
changed for the staggered case. Therefore, the mathematical
analyses in this thesis would refer to the unstaggered case.

This equivalence between the staggered and unstaggered
cases will not be preserved for a nonlinear channel. Before moving
onto the next chapter, it is worthwhile to look at cross-coupling
interference that results from envelope limiting of the nonlinear
TDMA transmission environment. The nonlinearity of power saturation
introduces an interaction between the in-phase and quadrature com=-
ponents. This phenomenon is best explained by considering the
effect of envelope limiting on filtered MSK (minimum shift keying)
signals. MSK is a special form of staggered 4¢-PSK (4 = T/2) that
uses half-cycle sinusoidal pulse shaping. Due to its constant
envelope, MSK can be useful for nonlinear transmission such as in
TDMA satellite communication. Unfortunately, MSK has a spectral
main lobe (the spectrum between the two nulls nearest to the zero
frequency) which is 50 percent wider than 4¢-PSK with rectangular
pulse shaping, which makes MSK infeasible if the transponder fre-
quency spacing B, is very tight relative té the quaternary symbol
rate Rs‘ An example of such congested environment would be the
INTELSAT-V TDMA system using 4¢~PSK. It is planned to transmit
at 120 Mbit/s with a channel spacing of B, = 80 MHz, giving a BC/Rs
ratio of 1.33. MSK communication requires a significantly larger
BC/Rs ratio in order that detection performance would not be
significantly deteriorated by ACI.

To reduce the bandwidth required for MSK, it is necessary
to filter the signal, which would then introduce intersymbol inter-
ference. The null of one of the quadrature modulation components
shown in Figure 3.10 is smoothed as the filter removes the high
frequency content of the sharp corner at the null. The removal
of the null causes an envelope boost. Therefore, MSK can still
experience significant envelope fluctuations if it is tightly
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filtered. The peak power of the TWTA is shared by the two quadra-
ture components in envelope limiting when the satellite transponders
are operated at power saturation. As a result, the voltage level

of one component at the location of the former null is increased

at the expense of the decreased voltage level of the other component
(Figure 3.11). This weakening of some of the pulses would increase
the error rate of the system.

It is often over emphasized that constant envelope modula-
tion schemes are more compatible with nonlinear amplifiers (such as
TWTAs driven into saturation) than those non-constant envelope
modulation schemes. The above example of filtered MSK signaling
in a real system environment shows that channel bandwidth limitation
inevitably brings in envelope fluctuations as well as intersymbol
interference and cross-coupling interference. At small BC/Rs ratio,
signaling waveforms with constant envelopes prior to bandlimiting
may perform no better than those with nonconstant envelopes. To
optimize system performance, pulse shaping should be designed to
match the channel characteristics, and the overly stringent con-
dition of constancy of envelope should be relieved. The question
of designing pulse shaping with improved spectral properties will
be addressed in the next chapter. The degree of nonconstancy of
envelope will be properly defined and quantified.
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Chapter 4. FILTER DESIGN WITH SMALL OUT-OF-BAND EMISSION

4.1 INTRODUCTION

An uncertainty relationship between a function h(t) and
its Fourier transform H(w) states that the mean square time-spread

(+2]

f_m (t - £,)2] h(t)]2 at

j‘“ |n(t) |z at

=00

(Aat)2 =

and the mean square frequency-spread

00

f_°° (w = w)? | Hw)|?2 aw

j‘m !H(w)l 2 dw

o0

(Aw)2 =

cannot be restricted too severely at the same time for any choice
of t  and W, - Specifically the product (At)(Aw) is at least 1/2,
and equality holds when h(t) is Gaussian, and to and w, are,
respectively

_[m t|h(e)]? at snd _[m wlE@)] 2 qw

f°° |n(t)]2 at f‘” || 2 aw

o 00

This mathematical statement of the uncertainty principle can be

put into a communication theory context. If we want to achieve

high speed data transmission by using baseband pulses h(t) which
are becoming more limited in time-spread At, it follows from the
uncertainty principle that H(w) would be broadened spectrally as
Aw increases.
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In satellite communication, we would like to achieve as
high a rate of data transmission as possible for the allocated
spectral band, while out-of-band emission should be kept at an
acceptably low level.

Ideally, one would like to have zero out-of-band emis-
sion, thereby implying the channel to be strictly band-pass in
nature. However, such a sharp cut-off for pulse shaping results
in infinite ringing of the time-domain signal which would be dif-
ficult to implement. Throughout this thesis, many baseband
pulses considered are limited in time duration. Therefore,
criteria have to be established to evaluate the out-of-band emis-
sion of these time-limited pulses.

Three such criteria may be cited as follows. First,
the total energy that falls out of band may be computed and con-
strained to be less than a certain level. Second, the largest
out-of-band sidelobe may be constrained to have a peak power less
than the peak spectral density of the main lobe by a certain
amount. The third method constraints the rate of roll-off of the
spectrum.

The solution to the first approach is the well-known
class of prolate spheroidal functions[2lRinging is observed for
the subclass of time-limited prolate spheroidal functions.

The second method, even though crude in nature, is
often times fairly robust and computationally economical for
given pulse shaping. However, a mathematically tractable formu-
lation for finding the pulse which is optimal in the sense of
this criterion is rather unlikely.

The third criterion will predominate the discussion of
this chapter due to its ease of formulation for the optimization.
We shall observe that the optimized pulse generally does not
ring, which perhaps is an advantage over the prolate spheroidal
function. The rate of spectral roll-off is related to the
moments of the spectrum; i.e.,
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for various values of n. Specifically, if the 2n-th moment is
bounded, then [H(f)l2 must decrease faster than f£20V1,

In theory, one could achieve a high fraction of power
in band and rapid roll-off out of band by using h(t) of long dura-
tion, yet avoiding ISI provided it satisfies Nyquist's criterion.
However, it can be shown that the equivalent noise bandwidth
(defined in Section 4.3) times the repetition interval T cannot
be less than unity without introducing ISI, thus setting a limit
to the bandwidth economy. Very often, technological problems make
complete absence of ISI hard to achieve. First of all, the desired
pulse shape may be difficult for implementation. Second, system
performance would be sensitive to timing errors. Third, nonlinearity
of the channel may introduce ISI at the sampling instants. Further-
more, such pulse shaping may produce a high variability in envelope,
which is undesirable for satellite communication. The availability
of the Viterbi algorithm for decoding the effect of ISI enables
us to abandon the traditional approach of avoiding ISI by satisfying
the Nyquist criterion.

The optimization of bandwidth economy must start from
defining spectrum spread and time spread in a manner that reflects
the characteristics of the communication system. In terms of these
definitions, uncertainty principles which give a lower bound for
the product of the spectrum spread and the time spread can be
obtained. The optimal pulse shape is defined as the one which
achieves the value of the lower bound. Consequently, the optimal
pulse shape would be different under various definitions of the
uncertainty principle. The degree of nonconstancy of envelope
will be pictured by the filter loss defined later in the chapter.
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4.2 PULSE SHAPE OPTIMIZATION

The time spread of h(t) is defined as the interval =
over which h(t) is nonzero. For symmetry's sake, this interval
is assumed to be [-1/2, 1/2]. A larger time spread for given
repetition rate 1/T may give more nonzero hi's

[+

hi A f h(t) h(t - iT) dt

-0

consequently increases the complexity of the trellis decoding of
the effect of ISI.

The spectrum spread is defined as the weighted moment
of h(t), given by

@ n

o{h(t)} =f L a £2K m(e) Bx(£) af

), k=0

in which H(f) is the Fourier transform of h(t). Each ay is a
non-negative weight for the 2k-th moment and a, is assumed to be
nonzero. The ak‘s have proper dimensions so that Q{h(t)} has the
same dimension as the 2n-th moment of H(f) H*(f).

Each term in the summation for Q{h(t)} is bounded if
h(t) is (n-1) differentiable for all t. This follows from the

fact that if h(t) is j-differentiable, then asymptotically

H(E) H*(£f) s o(1/£23 + 4
and consequently
eku(£) mx(£) g 0 (1/£237K* 4,

As a result, the necessary condition for
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K H(f) HA(f) 4f
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to be bounded is
k< 23]+ 3
The m~-th power integral of h(t) is defined as

©

R{h(t)} =f "t) dt , m 2

e OO

I\
=

R{h(t)} for m = 2 corresponds physically to the energy of the pulse
and for m = 1, the area under h(t). Without loss of generality,
R{h(t)} is assumed to be positive by employing - h(t) instead if
R{h(t)} turns out to be negative.

The equivalent bandwidth of h(t) for a given A = {ak}
and m is defined as the bandwidth BA of the bandpass filter

Hb(O) for £ = BA/Z
B (f) =
0 otherwise
which satisfies the conditions
Qfhy ()} = Q{h(t)}
R{h, (t)} = R{h(t)}

Once h(t) is given, these two constraints determine the values of
BA and Hb(O). An optimal h(t) is, by definition, the pulse shape
that minimizes BytT. The physical meaning of some special BA's
will be discussed after we obtain the necessary and sufficient
conditions for optimality.

The two constraints are homogeneous in a sense that if

hb(t) and h(t) satisfy the constraints, then so would ahb(t) and
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ah(t), leaving BA unchanged. Therefore, optimal solutions are
always defined up to a constant factor.

It can also be easily seen that BA is a monotonically
increasing function of the weighted moment of h(t) for a given
R{h(t)}. Thus, the solution for BA is always unique, hence, the
optimal h(t), denoted by h®(t), is the solution to the following

constrained optimization problem,

min Q{h(t)}
h

subject to
R{h(t)}
If B, for h®(t) is expressed as
.t
At

~ then the following form of the uncertainty principle is obtained.

For all h(t) of duration t with equivalent BA'

>
we have BAt 2 BA

The remainder of this section is devoted to finding hé(t).
To express the weighted moment in terms of h(t), Parseval's
theorem is applied so that

n
of{h(t)} = 2: a, H*(f) 2K negy ar

P~

1]
g‘""\s
Py w
Trts 1

a, H*(f) F{( %ﬁ) 2k 1 (2K) 4yy gt
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=f T -1¥ a nr) 1K) (1) at
-1/2 k=0
in which

3
In the process, we have assumed h(t) to be well behaved, that is,
at least 2n-differentiable in the open interval (~-t/2, 1t/2).
Furthermore, the fact that h(t) is (n-l1l)-differentiable at all t
to keep Q{h(t)} bounded implies

h(k)(i-;-)=o for 0 < ksn-1

Using Lagrange multiplier techniques, we form the Lagrandgian

n
cth(t)} = X (-1)™ af n(t)h{ZX(e) + arnT(t)
k=0
The necessary condition for G to be stationary is given by the
generalized Euler's equation for calculus of variation problems [18],
namely that

36 _ d_ 26
d dt ah(1)

+ . . .+ (-1)k 4 _ 236G + d 3G

3¢ L. .. +4_ 26 = 0
at® sn(k) at2? ppl2n)

which, after simplification, is reduced to the form
n
T (-1 ap 2% (x) = an™ (e
=0

in which
- _ 1 '
A= 3 m A
Therefore h®(t), the optimal pulse shape, is the solution for a
particular eigenvalue of the above 2n-th degree differential equa-

tion (nonlinear for m#l or 2) satisfying the 2n boundary conditions
at t = £ t/2.
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Multiplying both sides of the above differential equa-
tion by h(t) and afterwards integrating over [-t/2, t/2], then
for optimal pulse shape

0{h°(t)} = AR{h®(t)}

Since both Qf{h(t)} and R{h(t)} are positive for all h(t),Ar is
positive and the sufficient condition for h(t) to be optimal is
to possess the smallest A possible.

4.3 SEVERAL PULSE SHAPES

We are going to solve the two cases of m = 1 and 2 for
the above formulation. 1In both cases,

1 if k = 2n

0 otherwise

As a result, specifying m and n is equivalent to specifying A,
and therefore, we shall substitute the subscript A with the sub-
script m,n. The solutions are listed in this section, while the
detailed derivation is shown in Appendix A. For both cases, the
optimal pulse shapes are observed to be nonringing. All the
pulses considered in this section are normalized to have unity
energy.

The value Bl,O is the equivalent noise bandwidth used
so often for error performance analysis. This bandwidth, which
we shall denote by B, is the width of the low~pass filter which
has the same energy as h(t), or in other words

x®

S_m [H(f)]? af
EOE

B =
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We are interested in evaluating the value of B for all
pulse shape considered in this chapter due to three reasons.
First, it has a physically appealing interpretation. Second, it
is easily computable. Third, not all baseband pulses have finite
2nth moment which enable us to compare their BT products, a con-
cept which will be introduced in the next section to describe
spectral occupancy of the pulse shapes.

Case 1 m=1

This case corresponds to minimizing the 2n-th moment of
a pulse shape with fixed energy. From Appendix A, we have

2t\n

2t\n
)

o =
n °(t) = a (1 - (1 + 25

in which

_[(an + 1)11Y% 21
n (2n)! ﬁ

We shall call these functions the beta functions, which are sim-
ilar to the beta distribution found in probability theory. The
plots of hno(t) for n from 0 to 4 are given in Figure 4.1.

The spectrum of these five beta functions are derived
in Appendix A and are shown in Figure 4.2 through 4.6.

The values of Bl,n are as follows:

n 0 1 2 3 4 5
Bl n 1 5.24 8.96 12.40 15.72 18.95
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The Bt products are calculated to be

n 0 1 2 3 4
Br 1 1.200 1.429 1.630 1.814

Case 2 m= 2

This case is physically important because it corresponds
to minimizing the 2n-th moment of a pulse shape with fixed energy.
For n = 1,

\’% cos %E for -1/2 £ t £ /2

n,° () = .
0 otherwise

The half cosine pulse shape, when used with one quadrature stag-
gered by T/2, forms the well-known minimum shift key (MSK) modu-
lation. The spectrum of this pulse shape is

1/2 cos 1
H %(w) = (§1:_) 2

n2 1 - (wt/n)?

From Appendix A, we have 52 1 = 7.695 and Bt = 1.235
For n = 2

t + 1.4022 cos

t

hzo(t) = 0.1863 cosh 4.73 4£73

The value of 82'2 is 11.9, and the Bt product is 1.450.

Form =2 and n = 1, 2, hno(t) are plotted in Figures 4.7
and 4.8, and their Fourier transformations in Figures 4.9 and 4.10.
The solution for general n is conjectured in Appendix A. For con-
venience sake, we shall call the solutions corresponding tom = 2
the trigonometric-hyperbolic functions.
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To the list of optimal pulse shapes found so far, we
shall add two more classes of pulse shapes suggested for usage [6,7]
due to their generally good spectral properties as well as their
nonringing nature.

Case 3 overlapped raised - cosine pulse (Figure 4.11)

T

(%—;) 1/2 (1 - sin 13) , -1/2 St € /2

h(t) = ,
0 otherwise

with spectrum (Figure 4.12)

_{21\1/2 cos wt/2 sin t1/2
H(w) ={ 3~ wt /2
1 - (wt/n)2
and
Bt = 1.5

Case 4 Truncated n~th power sinc functions

The functions (Figure 4.13) considered are

1/2
2n . n
) R e
hn(t) = 2n
0 otherwise
in which
n
. n
_ sin x
U = u/ﬁ ( X ) dx
-7t
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are computed numerically with values

n o

1 3.70387
2.73815"
2.37926
2.08822
1.88265
1.72765

1.60546

0o g o ok W N

1.50595

The power spectra for n = 1 to 4 are also computed

numerically and shown in Figures 4.14 - 4.17.
The Bt product for hn(t) is equal to

o
__2_1327{

2
“n

For n = 1 to 4, they are respectively,

n 1 2 3

Bt 1.254 1.750 1.918

4
2.170

So far, the discussion has not addressed the question
of how much overlapﬁing of the pulse shape is tolerable during
transmission. We shall present an overall design procedure for

pulse signalling in the next two sections.
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4.4 BT PRODUCT

Consider the signal

N-1
s(t) =2 a, yE_ h(t - kT)
k=0

in which each ay numerically represents a channel symbol, and for

k#2, ay and a, are uncorrelated so that

0 k #2

E[a, a,] =
k "2 1 k=2

It can then be proved that the average power spectrum, defined as

lim £ |s(£)]?
N-o ;

is independent of the pulse repetition rate. Roughly speaking,
this implies that the spectral occupancy of a given pulse shape

is independent of the pulse repetition rate 1/T. Applying
Parseval's theorem to the above result also shows that the average
energy per repetition interval of s(t) is equal to E and indepen-
dent of T.

The BT product measures the bandwidth efficiency of the
signaling, in a sense that a smaller BT would use less bandwidth
for a given T. Defining resolution 6 as the ratio T/1t, the BT
product is related to the Bt product by

BT = Bt * 8

The BT product serves as a criterion for comparison amongst various
pulse shapes. A few examples would convince us of its usefulness.
The rectangular pulse shape has BT = 1. The enlarged spectral
mainlobe of the half-cosine pulse shape for MSK is reflected by

an increased BT of 1.235. For raised cosine pulse shape, BT = 1.56.
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shape, BT = 1.56. Typically, 6 = 1/2 giving BT = 0.75 which
reflects the spectral improvements (at the cost of ISI and
increased envelope fluctuation).

4.5 FILTER LOSS

For a given h(t), a higher repetition rate increases
ISI as well as introduces more levels to s(t). The higher rate
of data transmission is achieved at the cost of more envelope
fluctuation and a higher peak power requirement. In some satel-
lite communication systems such as TDMA transmission, the peak
power rather than the average power is limited. Assuming the
nonlinear amplifier with a characteristics shown in curve a of
Figure 4.18, which is linear up to the peak power required by
s(t), then the filter loss is defined as the ratio of the maximum
power of the signal that still ensures no nonlinear distortion to
the power available from the amplifier. Expressed in dB, the
filter loss is

E

= - S
f2 = <10 log PcT

In which ES is related to the maximum rms power of the carrier PC by

max s(t) = J?c
t

The remaining discussion illustrates how the dual con-
cepts of BT product (which measures spectral efficiency) and
filter loss (which measures nonconstancy of envelope) can be
applied for pulse shapes considered in the previous section.
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The time domain pulse shapes of the beta functions,. the
trigonometric-hyperbolic functions and the truncated n-th power
sinc functions become narrower as n increases. For large n, these
functions would resemble impulses with unity energy. Since an
impulse has a white spectrum, the main lobe of these functions
should become wider as n increases. The spectra plotted for these
functions confirm . our speculation. For a given value of 6, an
enlarged main lobe would require more spectral bandwidth for trans-
mission.

Oon the other hand, the amount of ISI for given 6 decreases
as the functions become more impulse-like. This enables us to
use a smaller resolution 6 without introducing excessive filter
loss.

A computer program which evaluates filter loss as a
function of resolution yields the plots shown in Figure 4.19 - 4.23.
In these plots, the upper curve represents the filter loss when
the in-phase and quadrature channels are not staggered. The lower
curve shows the filter loss when the two channels are offset by
T/2. The minima of these curves shift to the left as n increases,
allowing the use of smaller 6 for a given level of filter loss.

It is also observed that filter loss for the staggered case is

always less than that for the unstaggered case. If this observa-

tion is true for all h(t), then a constant envelope pulse modula-

tion with staggered quadratures, when filtered, would give less filter
loss and envelope fluctuation than the unstaggered case. Less
envelope fluctuation makes the modulation more compatible with a
limiting nonlinearity.

Finally, the analyses in this chapter suggest the fol-
lowing procedures for designing pulse shapings. The proper pulse
shaping is chosen by tailoring the spectrum according to the width
of the main lobe and the rate of roll-off that we desire for the
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channel to reasonably avoid adjacent channel interference and out-
of-band emission. The level of filter loss that can be tolerated
by the transmission system is determined, which gives an idea of
what 6 should be used from the filter loss versus resolution plots.
A comparison of various pulse shapes is given in Figure 4.24.
System performance with and without channel coding for
these pulses which introduce ISI will be considered in Chapter 6.
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Asymptotic Rate

BT and (8) For Staggered

of Roll-Off Pulse | 4 Bt Components at F, (dB) =
of [Hw)|2 Shape 0.5 1.0 * 1.5
0(1/£2) Beta® | 1.00| 1.00 F, =6 dB, BT = 0 for 5 <8 <1
0(1/£%) Betal | 5.24| 1.20} 0.96 (0.80) |0.89 (0.74) |0.79 (0.66)
TH! 7.70] 1.24
TSt - 1.25} 0.97 (0.78) |0.85 (0.68) | 0.73 (0.58)
" 0(1/£9) Beta? | 8.96| 1.43{ 0.96 (0.67) |0.83 (0.58) |0.72 (0.5)
TH? 11.90| 1.45
TS?2 - 1.75 ] 1.05 (0.60) {0.86 (0.49)% 0.77 (0.44)%
RC - 1.5 [ 0.93 (0.62) |0.81 (0.54) | 0.70 (0.47)*
0(1/£8) Beta® 112.40| 1.63 | 0.96 (0.59) |0.80 (0.49)% 0.72 (0.44)*
| 1s3 - | 1.92]1.00 (0.52) |0.81 (0.42)4 0.71 (0.37)%
0(1/£19) Beta? {15.72] 1.81 | 0.98 (0.54) |0.80 (0.44)H 0.71 (0.39)%
TS - 2.17 | 1.00 (0.46)*%]0.80 (0.37)% 0.72 (0.33)*

*h, is nonzero

Betan, THn, TS™ - nth order Beta,
truncated sinc functions

RC - Raised-cosine function

Figure 4.24.

trigonometric-hyperbolic, and

A Comparison of Various Pulse Shapings
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Chapter 5. CONVOLUTIONAL ENCODERS FOR MULTIPHASE
MODULATION WITHOUT INTERSYMBOL INTERFERENCE

The spectrum of uncoded M-ary PSK for constant symbol
rate (1/T) is independent of the number of phases employed by the
symbol, but Eb/NO required for a given bit error rate increases
significantly as M increases. To ensure reliable transmission,
message redundancy may be introduced, at the expense of reducing
the bit data rate R, or by using an expanded set of phases with
coding. The second approach of coded phase is particularly attrac-
tive for satellite communication since a coding gain with respect
to uncoded 4¢-PSK of several dBs may be achieved without reducing
Ry, with a spectrum similar to 4¢-PSK. Most of the known binary
convolutional codes with good minimum free Hamming distance can
be used for 2¢~PSK and 4¢-PSK, when the free Euclidean distance
between signals is proportional to the free Hamming distance of
the codes for the signals. Unfortunately, this proportionality
is no longer preserved when more than 4 phases are used with coding.

This chapter explores several convolutional encoder
structures that may be employed for coded phase, and investigates
their free Euclidean distance properties. Specifically, coded
8-¢ is addressed due to its attractiveness for implementation.
Otherwise, most of the results may be extended with some efforts
for the general M-ary case.

5.1 DEFINITIONS

The encoder inputs a sequence u and outputs a sequence
W, consisting of uk's and wk's respectively which are elements of
the set U, over which the operators multiplication - and addition
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® are well-defined. The encoder is characterized by the generator
matrix G with entries which are also elements of U, so that
functionally

The encoder output sequence w is distinctively mapped,
by the mapping M, onto the channel sequence v consisting of vk's
which are elements of the channel symbol set V so that v = M(w).
The modulator F then distinctively maps each sequence v onto a
time function f(t).

A channel encoding scheme S is therefore completely
specified by the triple (G, M, F), namely, the discrete encoder G
with its associated U and operators, the modulation F which gen-
erates the physical waveform and the channel symbol mapper M which
links G and F.

For AWGN, knowing the Euclidean distances between wave-
forms is sufficient for performance evaluation. The square
Euclidean distance D between the channel sequences, v! and v? is
given by

pivt , v2] = ||£(t, vt) - £(t, v&)]|2

e}

f [£(t, v') - £(t, ¥v®)I[£(t, ¥v') - £(t, v?¥)]1* 4t

. d

The minimum free square Euclidean distance df for S is
defined to be the minimum D between all distinct input sequences.
The encoder G is said to be optimal for given M and F if df is
maximized for the class of encoders of equivalent complexity
(described by such as rate and number of memories of the encoder).
In this thesis, we are mostly concerned with finding the optimal
G in this sense, for the various M and F proposed. An equally
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interesting problem, but much less understood, is to find the M
which would result in good df for given F and specified algebraic
structures of G. Take for example, if binary convolutional encoder
is used for 8¢-PSK modulation in the absence of ISI, we would be
interested to see whether Gray mapping, or straight binary mapping,
or any other mapping which maps a binary output sequence into an
octal sequence is the best.

Furthermore, S is said to be invariant if and only if
for all input sequences a, b and ¢

D[M((a ® c)G), M((b & c)G)]
= D[M(a G), M(b G)]

If (U, ®, -) is a ring, then invariance implies
D[M(a G), M(b G)]
= D[M(Q G) , M((-a ® b) G)]
in which -a consists of additive inverses for the elements of a.
For an invariant S, it follows that

d; = min D[M(a G), M(b G)]
b

for any a, making the evaluation for df much simpler. Code searching
thus becomes much easier when the distance between two codewords
depends only upon the difference sequence (-a ® b) between the
two input sequences.

Two schemes S; and S, are said to be equivalent, denoted
by

S1 = (Gy, My, Fi) = (G, My, Fp) = Sy

if and only if they generate the same set of waveforms for all
possible input sequences.
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Using the terms defined, three channel encoding schemes
for F being 8¢-PSK without ISI will be described in the following
sections.

5.2 BINARY ENCODERS WITH STRAIGHT BINARY MAPPING

The first scheme referred to as the binary encoding
scheme, is defined as follows,

U= {0, 1}

with multiplication and addition defined by

® 0 1 . 0 1
0 0 1 0 0 0
1 1 0 1 0 1

The channel symbol set is given by
v=1{0,1, 2, . . ., 7}

and G is a binary rate 2/3 convolutional encoder.

M maps each triple output (A, B, C) of the rate 2/3
convolutional encoder G into an octal v using a straight binary
conversion, so that

v =4A + 2B + C

F uses the octal sequence v for 8¢~-PSK without ISI.

An alternative M' which maps the triple output (A',
B', C') of another binary convolutional encoder G' into an octal
v' using Gray mapping can be specified as

v! = 4a + 2b + ¢
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in which

a = A'
b = A" & B!
c = A' & B' @ C!

Obviously, (G, M, F) and (G', M', F) would be equivalent if for
the same input sequence u, the output octal sequences v and Vv'
are equal, which implies

a=»a
b =B
c =2¢C
and consequently
A = A
B =A' & B!
C=A'" & B' & C!

The transformation given by these equations enables us to convert
each G into an equivalent G' and vice versa. Therefore, the dis-
cussion on these binary convolutional encoder will assume the use
of straight binary mapping for the remainder of the chapter.

It is noteworthy that this description of S is similar
to the formulation of rate 2/3 coded 8¢-PSK by Ungerboeck [1l0].
However, the method of bounding df is quite different and the
bound we are going to get is tighter than Ungerboeck's. As a
consequence, we are able to find codes with better d_.

b
The S defined is unfortunately not invariant. Consider

w=uG

li
]
@

hence w &

[
i
=
&
o
@
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Let W = (wk,l’ wk,2’ wk,s) and € = (ek,l’ 8k,2’ 8k,3) be groups
of three bits that are mapped into an octal, that is

M(wk) = 4w

k,1 + 2w

k,2 ¥ Yk,3
Defining

di = D[i, 0] i = O’ l, 2, 3, 4

The square Euclidean distances

D[M(wy ® g) , M(w,)]

are tabulated in Figure 5.1, which shows that these distances are
equal to

D[M(e 0]

k)

regardless of the values of Wi if M(sk) =0, 1, 2, 4, 5, 6; and
for M(sk) = 3 or 7, may be equal to 4, for some Wy o

A lower bound for the Euclidean distance between two
channel sequences can be stated as follows:

For any

zl M(El )

v2

—

M(w?)
we have
D[y, v2] > DM (&), 0]
in which the error sequence

e = w! & w2

and My is the mapping that replaces occurrences of 3's in €y into
1's. In other words
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£x
W, © e (M(ey))
000 001 010 011 100 101 110 111
D (0) (1) (2) (3) (4) (5) (6) (7)
Yy
(M(wy))
Q00 000 001 010 011 100 101 110 111
(0) do d, dg ds dg ds d, d,
001 001 000 011 010 101 100 111 110
(1) do d, d, d; dy dg d, dg
010 010 011 000 001 110 111 100 101
(2) do dy dp d, d, ds d, ds
011 011 010 001 000 111 110 101 100
(3) do d, dg ds d, ds dp d,
100 100 101 110 111 000 001 010 011
(4) do 4, d, d, d, ds 4, 4,
101 101 100 111 110 001 000 011 010
(5) do d, d, d, dy dg dg ds
110 110 111 100 101 010 011 000 001
(6) do d, d, d, d, ds ds ds
111 111 110 101 100 011 010 001 000
i (7) do d, d, ds d, dg d, d4
Figure 5.1. Effect of wk on D[M(wk @ ek), M(sk)]
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M(sk) if M(ek) £ 3
Mb(ek) =
1 if M(ak) = 3

A lower bound for df follows immediately

df > min D[Mb(g), 0] = db

in which ¢ is any encoder output sequence.

This bound enables us to search for good codes using
the Viterbi algorithm which compute the value of db at each stage
of the algorithm. Furthermore, the encoder with maximum db is
optimal since it can be shown that the lower bound is tight, which

is to say,
Theorem
For every g, there exist a
w=ugG
such that

D[M(w), M(w & g)] = D[M(e), Q]
Proof

Forney [16] has shown that every convolutional encoder
is equivalent to a feedback systematic encoder with structure
shown in Figure 5.2, in the sense that both generate the same set
of codewords. Therefore, it suffices to prove the theorem if
a w can be generated by an equivalent convolutional encoder so
that the bound can be satisfied with equality.
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The outputs Wi o0 Wy 3 in Figure 5.2 are basically
14 14
unconstrained. From Figure 5.1, it is seen that for every Epr WE
can choose wk'2 and wk'3 in such a way that

D[M(wk)r M(wk ® Sk)] = D[Mb(ek)' 0] 0.E.D

A computer program was written to perform the code searqp.
The search algorithm and . ‘Program notes are described in Appendix B.

The y = 4 and y = 6 encoders found are shown in Figures 7.2 and 7.3.

5.3 OCTAL ENCODERS WITH IDENTITY MAPPING

In this section, an invariant encoder is introduced with

ug=v=4{0,1, 2, .. ., 7}
over which addition is definéd by
a®b=(a+b) modulo 8
and multiplication is defined by
a +*b=(axb) modulo 8
The addition and multiplication tables are given in Figure 5.3.
M is the identity mapping

M(wk) = Wy

For the sake of convenience, the notation M will be harmlessly
left out in the following discussion.

It should be noted that, unlike the binary encoder in
the previous section, the (U, &, :) defined is only a ring and
not a field, and hence most of the results concerning canonical
encoders in [16] do not apply.
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Figure 5.3 Addition and Multiplication Tables
for Octal Convolutional Encoder
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Theorem

This encoder is invariant for 8¢-PSK in the absence of
ISI.

Proof

For

i<
]
e
Q@

it follows that
(u®e) G=(uG) @& (e G)
=V eeg
Since for F being 8¢-PSK without ISI
D[v ® ¢, v] = D[g, 0]

the invariance of this scheme follows immediately. Q.E.D.

The Viterbi algorithm can be applied in a straight
forward manner to search for optimum octal rate 2/3 convolutional
encoders. Such encoder with y octal memories will have 8¥ states.
Furthermore, a rate p/q encoder (p and q relatively prime) will
have 8° branches going into each state. Wwhile gP -1 comparisons
have to be made at each state, 3p information bits are being
decoded at each stage of the Viterbi algorithm. There are alto-
gether (y + p)g multiplicative taps in the encoder, each can take
on 8 possible values. The large number of possible tap combina-
tions makes exhaustive code searching computationally very consuming
for y > 3.
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To anticipate the performance of these encoders, an upper
bound on the minimum free distance achievable will occupy our atten-
tion for the rest of this section.

The following is basically a modified Plotkin bound [19]
for octal encoders.

Theorem

Let m be an input octal sequence and y@ = mG consisting
of octals vﬁ be the corresponding output octal sequence.
It follows then, the set of vﬂ for all m and a given n
either has

m

1. vn all zeros or
2. an equal number of vﬁ = 0 and VM = 4, and also an equal
m _ mo_ m _ m _
number of Vo T 1, Vp T 3, Vo T 5 and Vo = 7
Proof

i

Let the n-th column of G be 95" Consequently,

m _
Vp T B 9,
Now either
a) vg =0 for all m
1
or b) There exists an m' with vg = 4.

m

Then for every m which gives Vo = 0, we have an

m* =m o m'

— —
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or c)

or d)

such that

since the mapping of m' onto m* is a one to one
onto mapping and furthermore, only those m s with

*
vﬁ = 0 are mapped onto m* s with vg = 4. There
is therefore an equal number of vﬂ = 0 and vﬁ = 4.
There is no m such that vﬂ =1, 3, 5, or 7 in which

m
case the number of vn

=1, 3, 5, and 7 are all zero
and hence equal.

There exists an m' with vﬁ' =1 (3 or 50r 7). 1It
can be readily shown that the set of codewords
partitioned according to their value of vﬁ gives

8 equal-sized cosets. Hence, the claim in 2 is

true. Q.E.D.

If F is such that the signal energies are normalized so that

D(0, 4) = 2

then from Figure 3.2, the square distances are

D(0, 1) =D(0, 7) =1 - J2/2
D(0, 2) = D(0, 6) =1
D(0, 3) =D(0, 5) = 1 + J2/2

It follows immediately from the above theorem that the average
weight of vﬁ within the n-th column is 1.

The upper bound for the minimum distance of octal
convolution encoders can be stated as,
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Theorem

For a rate p/q octal convolutional encoder (p and g
relatively prime) with p queues (each consisting of
K memory elements) and g modulo 8 adders, the minimum
free square Euclidean distance is upper bounded by

L
d. < min a(L_+ K) gP
£ =71 gPL

Proof

There are 8pL information octal sequence of length pL.
Each corresponding code sequence is of length g(L + K). The total
weight of all 8pL codewords is g(L + K)BPL since each octal in a
codeword has an average weight of 1 within a not-all-zero column.

The average weight of a nonzero code word is therefore

pL
g(LL + K)8

gPh_1

The minimum free distance must be less than the average distance
for all L. Therefore, by minimizing over L, we obtained an upper

bound for df.
Q.E.D
The minimum is observed to occur always at L = 1. A
fair approximation to this upper bound is g(K + 1).

For rate 1/2 octal convolutional encoders, we have

K 0 1 2 3 4 5
Upper bound 2.29 4.57 6.86 9.14 11.43 13.71
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For rate 2/3 octal convolutional encoders, we have

K 0 1 2 3 4 5
Upper bound 3.05 6.09 9.14 12.19 15.24 18.29

Furthermore, if the p queues are of unequal length, then the upper
bound is equal to the case of K for which K is the number of octal
memory elements in the shortest queue. From the computer search
for optimal code, the bound for rate 1/2 encoders is fairly tight
for K =0, 1, 2. The upper bound for the rate 2/3 encoders seems
to suggest a far superior performance than the binary encoders
which have an equal number of states. Unfortunately, the code
search turned out codes which achieve a df much less than the upper
bound. A non-exhaustive code search for the 64 states (K = 1)
octal encoder gave a code shown in Figure 5.4, with df = 3.172
which equals the df for the best binary encoder with 6 binary memory
found in the previous section. The algorithms for searching octal
encoders of rates 1/2 and 2/3 are discussed in Appendix B. Some
rate 1/2 encoders found are listed in Figure 5.5.

5.4 GF(8) ENCODERS

The modulo 8 encoder has a multiplication table which
is not homogeneous, in a sense that certain elements of U occur
more frequently and in a structured manner in the table. Further-
more, (U, ®, <) does not form a field since not every nonzero
element of U has a multiplicative inverse. Based on these
observations, we suggested a class of encoders for which (U,
®, -) is a Galois field with 8 elements. The addition and multipli-
cation tables shown in Figure 5.6 are generated as follows. Each
element of U can be represented either as a binary triple
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6 7

Subgenerators: 1
7 4 7
3

de = 3.172 Asymptotic Coding Gain = 5.0 4B

Figure 5.4. A Rate 2/3 Coded 8¢ Octal Convolutional
Encoder with 2 Octal Memories
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Figure 5.6 Addition and Multiplication Tables
for GF(8) Encoders



v = (a, b, c) a, b, ¢ g GF(2)

or as a polynomial

at? +bt+c

The sum of two elements is expressed by the sum of their respective
polynomials, or equivalently, the exclusive OR of the elements in
binary representation. Their product is given by the product of
their respective polynomials modulo

t3 + t + 1

which itself cannot be factorized.

Similarly, M is the identity map and F is 8¢-PSK without

IST.
For all possible octal input sequences m, we have either
m _
1. Vo T 0 or
2. The numbers of m such that
m _
v, =1
are equal for all i ¢ U
Proof

If there is an m such that

v, = 1
is nonzero, then the sequence
J -1
vUo= 31T ¢
in which
i(i)” =1
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has

J
Furthermore, g? is a codeword and is being generated by

3 -l
n’ = §(1)7 m
Therefore, there exist a 1 to 1 correspondence between every

codeword with
m _ .
v =1
and
m_.
vy = 3
from which statement 2 follows
Q.E.D.

The (G, M, F) thus defined is not an invariant system.
In fact, it satisfies the same lower bound, namely

de 2 msin DM, (g), O]

for the free Euclidean distance between two codewords as in the

case of binary encoding, since both use exclusive OR as the operator
for addition. We suspect that the bound is also tight, perhaps
through a similar but more elaborate argument than that used for

the binary encoder. 1If the bound is indeed tight, the average

value of

DM, (vy), 0]

in which My substitutes every
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with

v, =1
n

is 1 - J2/8 or 0.823. The minimum free Euclidean distance is
therefore upper bounded by the same bound as for modulo 8 encoder
times 0.823.

A computer program was written for searching rate 2/3
GF(8) encoders and is shown in Appendix B. Exhaustive search for
encoders with just 1 or 2 octal memories is virtually impossible.
The db resulting from our nonexhaustive search was rather dis-

appointing, and further investigation into the GF(8) encoder was
suspended.
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Chapter 6. CONVOLUTIONAL ENCODER DESIGNS FOR BASEBAND PULSES
WITH CONTROLLED INTERSYMBOL INTERFERENCE

The concern of this chapter is to design good, and if
possible optimal, binary convolutional encoders G for modulation F
being 2¢-PSK or 4¢-PSK with controlled ISI. Previously,
Viterbi [13] has shown, using a code ensemble performance argument,
that for duo-binary antipodal signaling, performance loss is less
than 1 dB relative to the case of signaling without ISI. Using
the notation developed in Chapter 3, duo-binary signaling cor-
responds to having

ho =1 , hy =3

and

h, = 0 for |i] 2 2

This result is complemented in this chapter by calculating the
asymptotic performance for specific codes by finding or lower-
bounding the minimum free Euclidean distance achieved by the code.
It should be noted that we were unable to extend the
results in this chapter to find bounds for de for 8¢-PSK with ISI.

6.1 BOUNDS ON df IN THE PRESENCE OF ISI

The following discussion is based on using coded 2¢-PSK
(or equivalently coded 2-PAM). The results will be extended to
4¢-PSK, which can be generalized as 2 orthogonal 2-PAM streams in
the absence of channel crosstalk.

The signaling scheme is defined as follows:
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G: A binary input binary output rate p/q convolutional
encoder.

M: The set U = {0, 1} is mapped onto the set Vv = {1, =1}
given by
0~->1, 1~» -1
It is noteworthy that

M(u; ® uz) = M(uy) M(uz)

F: The channel symbol sequence v generates the waveform
y(t) = z , h(t - KT) v,
k

The factor JES has been left out in the expression since
it is immaterial to our discussion.

The square Euclidean distance between the channel symbol sequences
v and v' is

D[v, v']

"
P

@% h(t - kT)(Vk - Vi{]z dt

= f k}% h(t = kT) h(t - 2T)(v, = v)(v, - v}) dt

= 2L Dy (Ve - VRV = V)

1l
=3
o
<
=
i
<
-
N
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in which

oo
hy_, =h,_, = J{ h(t - kT) h(t - &T) dt

-0

and the last expression is obtained by rearranging the order of
summation and assuming

h; =0 for lil > s

Our objective now is to express D[v, v'] explicitly in terms of
the sequence v and the difference sequence between v and v'.
Recall that exclusive -OR in U is equivalent to multiplication

in V, we may define the difference sequence ¢ consisting of Ex and
the delta sequence §(i) consisting of Gkﬁg by

vk = ek vk
and

Oy (1) = Vi Vi 4

so that we have

(Vg = Vi) (Vg = Vieg) = (Vg = e Vi) (Ve g - By Viog)

vkvk_i(l - sk)(l - sk_i)

Gk(l)(l - Sk)(l = Sk_i)
Since Gk(i), I and Er.q can take on the values t1 only, we have

(1 - sk)(l - Sk—i) 2 (vk - v}';)(vk_i - vi_i) 2 - (1 - ek)(l - ek-i)
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By appropriately choosing the upper bound or lower bound with
respect to the sign of hi’ we obtain the following upper and lower
bounds for D.

S
ho(l - )2 +2 ) [ps ] 2. a- el = ey3)
i=1 K

i

D [v, ¥']

v

S
ho(Ll = £,)2 - 2 Z I, Z(l - e (L - gy ;)
=1 X

Note in particular that in the construction of the
bounds, no reference is made to G, and the conclusion drawn should
be treated rather as a property of the M and F used.

The lower bound for D, which depends on a single sequence
¢ only, can be used in the Viterbi algorithm to lower bound the
free Euclidean distance.

The remaining of this section will examine the tightness
of this lower bound under various circumstances.

Defining

Ao(g) = Z (1 - &p)?
k
and

Ai(arﬁ) = Z 6k(i)(l - sk)(l = sk-i)
k
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in which 6 denotes the set of §(i), so that we may express

Dlv, ¥'1 = Ag(e) ho + 2 ), A (5, &) By

i
The tightness of the bound depends on the degree of freedom to
choose 6§ so that as many as possible of the inequalities used in

lower bounding D[v, v'] become strict equalities. The restrictions
on & to achieve tightness of the bound are as follows,

I. For hi < 0, we want
Aj(6, £) = Dy (1= )l = ey )
k

constraining
6k(1) =1

for k's satisfying

II. For hi > 0, we want

Al(al §_) =Z -(1 - Sk)(l - Sk_i)
k

constraining

Gk(i) = -1
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for k's satisfying

III. Each v defining a 6§ must be a codeword of G.

A v that will satisfy constraint I is v = 1 when
8(i) = 1 which corresponds to feeding an all-zero sequence into G,
hence constraint III is also satisfied. Therefore, the lower
bound is always tight if his are negative for nonzero i.

A few §(i) which satisfy constraint II are

8(i) = =1
8(i) = ¢
(i) = Te
or
5(1) = ETig (i.e., 8, (i) = gpep ;)

in which the operator Ti delays the & sequence by i places. Note
that constraint III may not be satisfied.

Less nonzero his would impose less restrictions on §,
making the lower bound fairly tight. We expect the lower bound
to be strictly tight if there is only one nonzero hi besides ho‘
In case there are many nonzero his’ attention should be paid to
the largest hi‘ Mathematically, it is not possible to have many
large his.
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This section is wrapped up by considering the example
of rate % coded 4¢ with only h, and h; nonzero (all hi‘s are real).
The 2 outputs of the binary rate % encoder are regarded as two
PAM data streams, each modulating the carriers cos 2nfct and
sin 2nfct which are mutually orthogonal. If h, is negative, the
bound is tight by the previous discussion. If h; is positive, we
know that 6(1) = ¢ (for each stream) would satisfy II. It remains
to show that the v which defines 6(1) is a codeword, hence satis-
fying III. 1Instead, we will first prove a stronger statement for
rate % 4¢-PSK

Theorem

For every codeword ¢ and v having

Dle « v, v] = Aog(e) + 2A,({8(1)}, &) hy
there exists a codeword, v', obtained from v
by a 1 to 1 onto mapping such that

Dlg - ¥', ¥'] = Ao(g) - 27, ({8(1)}, &) Iy

Proof

Defining 8'(1l) by

Consider obtaining 8'(1l) from §(1) from the following l-1 onto
mapping

6'(1) = 8(1) - &

Consequently
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D[e + v', v'] = Ag(g) + 22, {[86'(1)], &} hy
= Ag(eg) *+ 2 j{: ﬁi(l)(l - e ) (1 - €p_1) M1
k
= Ap(g) + 2:2: Gk(l) £x (1 - ek)(l - Sk-l)lh
k
= Ao(eg) = 2A,({6(1)}, &) hy

To show v' is a codeword, we note that 6(1) is a codeword, hence
§'(l) is also a codeword. Therefore

z: = gv(l) . TQ'(l) . T2§t(l) . ng'(l)
is also a codeword formed by multiplying the delayed versions of
the codeword §'(1l).

Q0.E.D.
This theorem tells us that the distribution of the
coefficients for h, is symmetrical about 0. Furthermore, we
know that feeding an all-zero sequence [when §(1) = 1] generates
the largest A, for given g¢. Therefore, the smallest A; is
-A; ({1}, g) when

6'(1y =1-e=¢

The next section will demonstrate how to search for
optimal rate % encoder with positive h,.

6.2 CODE SEARCHING

The minimum free square Euclidean distance is given by
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df = min :E: %1 - sk’i)2 hy =-2(1 - sk,i)(l - Sk-l,i) h;

(8584 %

+ (1 - ak,q)2 hy -2(1 - Sk,q)(l - sk_l’q)ﬁh%

in which the subscript i and q corresponds to quantities associated
with the in-phase and quadrature channels. Let Ak denotes each

term in the summation. The minimization of
A= E Ak
k

can be performed using the Viterbi algorithm. The states are
defined by using the extended state concept described in Section 3.3.
The state information at time k would be sufficient to determine
€ and €pal for the two orthogonal channels, and consequently Ak‘

The computer program first of all sets up tables showing
the possible state transitions and the value of Ay associated
with each transition. Then the minimum-free distance path is
trellis searched until every state has accumulated a metric greater
than the minimum-free distance found so far. This stopping result
is based on the fact that A is always nonnegative since

(1 - €)% by =2(1 = &,)(1 = g, _;) by

equals zero if

and equals
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2 4h, - 8h,

if

provided

h; < 5 hy

Nf

In fact, it can be proved that h; £ % hy if s = 1. We shall have
a small digression here to provide the proof.

Let E be a set of -positive integers such that
icE iff hi # 0. Now

hi =J~ h(t) h(t - iT) dt

-0

Applying Parseval's theorem and assuming real h(t) give

oo
h; = J [H(£)]?2 cos 2nifT df

(0

and consequently breaking up the integral into intervals of

[n/T - 1/2T, n/T + 1/2T] and afterwards through a change of
variable, we have

h, =f1/(2T)[uz ‘H(f + -‘T-l)|2] cos 2nifT df
~1/(2T) n=-=
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The folded spectrum inside the square bracket is named S(f) so

that overall,
1/(2T)
h, = S(f) cos 2nifT d4f

i
-1/(2T)

Now if hi = 0, we must have S(f) orthogonal to cos 2rnifT in
[-1/2T, 1/2T]. Since cos 2nifT are mutually orthogonal for
nonzero i's, it follows immediately that

ho
S(f) = ZT{E— + :E: hi cos ZnifT}
icE

The set of his must satisfy

S(f) 2 0 S

since |H(f)|2 is real and positive for all f.

Now if E = {1}, the maximum value of h; satisfying *
is 1/2 hy so that

S(f) =T hyg (1 - cos 2rfT)

which is a raised cosine spectrum. Q.E.D.
It follows immediately that

1
A > O for 5 > h; > 0
if and only if
A > 0 for h; = 0
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This result has an important consequence concerning code catastro-
phe. The necessary and sufficient condition for a code to be
noncatastrophic in the absence of ISI is that there is no zero
weight path from some nonzero state back to itself. Therefore,
a noncatastrophic code in the absence of ISI would also be non-
catastrophic in the presence of ISI (h; < %) when s equals 1.

The computer program watches out for loops of zero
weight to exclude code catastrophe. Optimal codes with up to 7
binary memories for various ranges of h, which are listed in
Figures 6.1 - 6.6. These codes are represented by two subgenerator
polynomials shown in Figure 7.1 for code #l1 in Figure 6.1.
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5.0

45

4.0
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3.0.

Code #1: 1 1
1 1
| T T 1
5 hg—4h,
CODE#1
! | ] ]
0.1 0.2 0.3 0.4
hy
Figure 6.1. df vs hy for y = 2
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Code #2 . :

6.0

55

5.0

e

“~

7 hg -8 hy

CODE #2
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Figure 6.2. df vs h; for y = 3



Code #3: 10011 Code #3': 1 00 11
10111 10101
| T T T
7.0 | -
65 7 hg—6h i
. CODE #3
'500’ " - —
-~
~ ~
° S CODE #3' ~ . 7
N
\\ 8 ho—8hy
5.0 - \ .
\
\
45 - -
4.0 { | | |
0 0.1 02 03 0.4
hy
Figure 6.3. df vs hy for y = 4

116



Code #4:

8.0

8 hg—4hy
CODE #4

70

0fF———— —— — — —— — — .
CODE #4

5.0 ] L |
0 0.1 0.2 0.3 0.4 0.5

Figure 6.4. df vs hy for y =5
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Code #5: 1
1

011011 Code #5':
111001

10.0

9.0

10 hg - 10 hy

Figure 6.5. df vs h; for y
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Figure 6.6. df vs h; for y =7
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Chapter 7. PERFORMANCE EVALUATION

In this chapter, the Eb/No gain for binary rate 2/3 coded
8¢ and rate 1/2 coded 4¢ over uncoded 4¢-PSK is investigated.
The minimum free distance gives the gain at high Eb/No while system
performance at moderate Eb/No is pictured by simulation. The dete-
rioration in asymptotic performance due to intersymbol interference
predicted by the previous chapter will be tested experimentally.
It is assumed that only hy = 1 and h; are nonzero in the following
discussion. Furthermore, h; is considered to be real, which implies
no cross-coupling of the channel.

7.1 THEORETICAL RESULTS

At high Eb/No’ error occurrence is dominated by the
minimum free distance paths. Therefore, signaling schemes with
the same minimum Euclidean separation will have comparable asymp-
totic error performance. Euclidean separation for a given scheme
can be enhanced by increasing signaling power. Consequently,
asymptotic performance gain for a certain scheme over another is
the reduction in Eb/No (in dB) which maintains the same minimum

Euclidean separation. Eb is related to E by

Rs Eb = Es
in which R is the number of information bits for each repetition
interval.

a. Asymptotic Performance of Rate 2/3 Coded 8¢ Without ISI.
In Chapter 5, df for the best binary rate 2/3 coded 8=¢

encoders of up to 6 memories were found. DJ[O0, 2], which is also the
free square Euclidean distance for uncoded 4¢, is normalized to
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be 1. Therefore, if the same E, is used for coded 8-¢ as in

uncoded 4¢, the gain in free square Euclidean distance, denoted
by df'8¢/df’4¢, is equal to the df listed for the codes. Conse-
quently, the coding gain of coded 8¢ over uncoded 4¢ is given by

G8¢/4¢ = 10 log (df’8¢/df,4¢) = 10 log df
These values are tabulated as follows,
¥ de,807%, 40 Sa¢,/40
(same Eb) (dB)
2 2.000 . 3.0
3 2.293 3.6
4 2.586 4.1
5 2.879 4.6
6 3.172 5.0

Theory for evaluating the minimum free distance in the
presence of ISI for rate 2/3 coded 8¢ is still lacking.

b. Asymptotic Performance of Rate 1/2 Coded 4¢ With ISI.

For rate 1/2 coded 4¢, asymptotic performance deteriora-
tion evaluated theoretically in Chapter 6 is quite noticeable if
ISI is present. The coding gain can be referenced with respect
to uncoded signaling, either without ISI, or in the presence of
ISI the effect of which is trellis decoded, or in the presence of
ISI the effect of which is not trellis decoded.

The asymptotic Eb/No gains for the rate 1/2 encoders
(Rs = 1) listed wunprimed ' in Figure 6.2 - 6.7 over uncoded 4¢ PSK
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without ISI can be calculated from their free square Euclidean

distance.
G(dB) h1/ho equals

0.0 0 .1 0.2 0.3 0.4 0.5
¥
2 3.98 3.62 3.22 2.79 2.17 1.76
3 4.77 4.62 4.31 3.60 2.76 1.76
4 5.44 5.05 4.62 4.15 3.62 3.01
5 6.02 5.80 5.56 5.19 4.62 3.98
6 6.99 6.53 6.02 5.44 4.77 3.98
7 6.99 6.81 6.53 6.02 5.44 4.77
in which

G =

d
10 log df, coded 4¢
f, uncoded 4¢

N

It has been shown in some cases [13] that the asymptotic exponent
of the bit error probability without coding is not deteriorated,

relative to the case of no ISI,

if the ISI effect is trellis decoded.

If the effect of ISI is not trellis decoded, the asymptotic error

occurrences

destructive ISI.

are due mainly to the weakest pulses as a result of

If the receive filter is matched to the weakest

pulse, then the equivalent free distance of such a scheme can be
shown to be

dO

f, uncoded 4¢
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In the case of no coding, trellis decoding the effect of ISI would
asymptotically recover a loss (with respect to any non-trellis
decoding) which is upper bounded by

h,;
=10 log (1 - 2 H—)
o

No explicit expression was obtained regarding the equiv-
alent 'free distance'! for decoders which only trellis decode the
effect of the encoder but not the effect of ISI.

It is rather unlikely that h; exceeding 0.2 would be
adopted for satellite communication. For overlapped raised-
cosine [6] pulse shaping with coding (h; equals 1/6 for T = % 7),
asymptotic performance loss relative to the case of no ISI is
about 0.5 dB, which is typical for the other pulse shapings con-
sidered in this thesis.

c. Non-Asymptotic Loss of ISI

The non-asymptotic loss due to ISI should be less than
the asymptotic loss due to two reasons. First, many of the dis-
tances between pairs of codewords are larger than they would be
in the absence of ISI, due to reinforcement by ISI. These im-
proved Euclidean separations would reduce error occurrences non-
asymptotically but have little effect asymptotically. Second, only
a few information sequences u can make the error sequence g to
achieve the value of the lower bound for the Euclidean distance.

In effect, the occurrence of minimum distance paths is much less
frequent than in the case of no ISI.

wWwhen hy = 1 and h; = 1/2 are the only nonzero hi’ asymp-
totic loss can be seen from the table in part b above to be about
2 dB or 3 dB relative to the case of coding without ISI. Previously,
Viterbi has shown by a random coding argument that the average
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loss over a code ensemble in such a case would have been about

1 dB for antipodal transmission relative to the case of no ISI.

It may be unfair to compare our results with Viterbi's since ours

are based on 4¢-PSK rather than antipodal signaling. Also, the

non-asymptotic performance loss should be significantly less than

2 dB or 3 dB for 4¢-PSK with ISI due to reasons mentioned previously.
Codes with good Hamming distance for 4¢-PSK usually have

a larger deterioration of free distance once ISI is introduced

than those with mediocre Hamming distance. This turns out to be

the case when df is evaluated during the code search. Therefore,

a random coding argument may not properly reflect the deterioration

on good codes due to ISI. The simulation performed in the next

section does seem to suggest a 2 dB loss projected asymptotically,

rather than the diminishing loss asymptotically for antipodal sig-

naling as suggested in Figure 5-11 of [13].

7.2 COMPUTER SIMULATION

Two computer programs listed in Appendix D which optimally
decode’ rate 1/2 coded 4¢ with y = 2 and rate 2/3 coded 4¢ with
Y = 4, 6 in the presence of ISI were implemented on the IBM 3032
machine. Two additional programs which do not trellis decode the
effect of ISI (i.e., an ordinary Viterbi decoder which would be
optimal without ISI) were also written to compare their performance
loss relative to the optimal decoders.

The programs each contain an encoder which takes in a
randoﬁ binary sequence. The sufficient statistics sequence {rk}
obtained by demodulation is fed into the decoder and the decoded
sequence is compared with the properly delayed input sequence.

The channel is asumed to be AWGN. As we shall see, the physical

waveform does not have to be generated in order to find {rk}.
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Recall that each Iy is given by

o]

r, =J( J2 €325t ity n(t - kT) at
w00

in which
r(t) = y(t) + n(t)

where

j2rnf t + jv,n/M
y(t) = % JZES z:{h(t - kT)e c k + (.)*}
k

and n(t) is a zero mean uncorrelated white Gaussian process with

-

N

E[n(t) n(t')] = 59 §(t - t')

The expression for I can be reduced, by the baseband assumption
and assuming non-zero ho and h; only, to the form

Ty = Y * Dy

in which
2nv 2nv 2NV
Y = JES {cos i L h, cos —E—E:l + h; cos E__Eil}
2nv 2nv 2nv
- JEC jisin —% + h; sin —%°F 4 by sin 50
and

B = Mg 4 7 30 4

has Ny 57 Dy q being zero mean Gaussian random variables of
’

7

+ 2 = ot 1
variance o NO/2. All nk’l s and Ny q S are uncorrelated,

7

except for consecutive n, i's or consecutive n, 's when

14 7
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N_hy
n 1 = o
k,qg "k-1,qg 2

E[nk ] = E[n

;i Pr-1,4

The value of r, can be readily generated for known v:
Let us consider the generation of a zero mean real
Gaussian sequence {uk} with
02 if i =3
Efu; uy] = 62 h; if [i - j]l=1
0 otherwise

Suppose {tk} is sequence of uncorrelated, zero mean and real
Gaussian random variables each of variance 1. It can be readily
shown that

u, =0 B(tk + utk_l)

1/2
1 1
a 2h; ~ {(2h1>2 _1}

(1 + o2)"1/2

in which

B

does has the desired mean, variance and correlation with other
uk's. Using this technique, the sequences {nk,i}, {nk,q} and
subsequently {rk} can be generated for the decoder.

The encoder with extended memory discussed in Section 3.3
is used to define the states of the decoder. Specifically, a state
is defined as the contents of the memories as well as the bits
shifted out of the end of each queue at the previous instant.
Possible state transitions and the associated branch metric are
tabulated. In some versions of the program, quantization of values
involved in the decoding is available. However, either real values
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or very fine quantization is used in the simulation. Since exten-
sive simulation is rather expensive, we have not made enough runs
to picture the effect of quantization. Such knowledge, however,
is rather valuable from an implementation standpoint.

A survivor at each state is retained by choosing the
branch transition merging into the state which makes the accumulated
metric of that state a maximum. The survivor of each state is
stored in a table. At each decoding stage the survivor which has
accumulated the largest metric is traced back 100 state transitions
to obtain the decoded information (1 bit for rate 1/2 coded 4¢
and 2 bits for rate 2/3 coded 8¢).

The encoders shown in Figures 7.1 - 7.3 were simulated
for various values of h;. Computer programs which simulate the
performance of uncoded 4¢-PSK and 8¢-PSK in the absence of ISI
were also written. The bit error performances are shown in Fig-
ures 7.4 - 7.6. Specifically, Figure 7.4 gives the simulation
results for rate 2/3 coded 8¢ over the AWGN channel or INTELSAT V
channel, without using controlled ISI. The simulations generating
curves 4, 5, and 6 are performed by S. Lebowitz, assuming perfect
timing and phase recovery and sufficient quantization in decoding.
Figure 7.5 simulates the performance of rate 2/3 coded 8¢ (y = 4)
with controlled ISI over an AWGN channel and compares the perform-
ances with and without extended state Viterbi decoding. Figure 7.6
is analogous to Figure 7.5, except the code studied is rate 1/2
coded 4¢ with y = 2.

One rather surprising result of Figure 7.4 is that for
y = 6 and BER = 10 5, the coding gain of 4.3 dB in the INTELSAT V
channel is significantly higher than the coding gain of 3.7 dB
for the AWGN channel. This demonstrates the robustness of the
code against real-live channel impairments.

From Figures 7.5 and 7.6, it is seen that system per-
formance deterioration is quite noticeable if the decoder does
not trellis decode the effect of ISI.
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Subgenerators:

e
o
b

Figure 7.1. A Rate 1/2 y = 2 Encoder
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Subgenerators: 010101
111001
000010

df = 2.586 Asymptotic = 4.1 dB
coding gain.

Figure 7.2. A Rate 2/3 y = 4 Encoder
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Subgenerators: 01 101011
110110001
0 000O0O110

df = 3.172 Asymptotic coding gain = 5.0 dB

Figure 7.3. A Rate 2/3 y = 6 Encoder
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Figure 7.4. Performance of Rate 2/3 Coded 8¢ over AWGN and
INTELSAT V Channel
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Figure 7.5. Performance of Rate 2/3 Coded 8¢
over AWGN Channel with Controlled ISI
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The simulation results for rate 1/2 coded 4¢ in Fig-
ure 7.6 seem. to agree fairly well with the theoretical prediction
of Chapter 6. On the other hand, it is surprising to see that
the effect of ISI hardly deteriorates system performance for rate
2/3 coded 8¢ in Figure 7.5. A plausible explanation is that the
information sequence u which makes the error sequence g achieve
the lower bound in the absence of ISI may not bring about any
reduction in free distance when ISI is present. In essence, there
are two mismatched patterns of variance with respect to u, one
due to the fact that the (G, M, F) is not invariant even without
ISI, and another due to the variance brought about by ISI. This
complication also explains our failure to effectively lower bound
the Euclidean free distance between any two input sequences.

The rate 2/3 decoders with 4 memories and 6 memories
theoretically have 4.1 dB and 5.0 dB asymptotic coding gain in
the absence of ISI over uncoded 4¢-PSK, which is comparable to
the coding gain of 3.0 dB and 3.7 dB at BER = 10 5 from the simula-
tion. Even though theoretically the 6 memory code has a 0.9 dB
asymptotic gain over the 4 memory code, it is noteworthy that for
the 6 memory case, the number and the length of the minimum dis-
tance paths are increased. 1In fact,atypical error event: has about
10~-15 errors for the y = 6 decoder, compare to 3-6 errors for the
case of y = 4. However, we do expect the decoders to achieve their
asymptotic coding gain at high enough Eb/No.

At each Eb/No’ ten thousand to half a million information
bits were decoded to obtain a reasonable average of the bit error
probability. Therefore, simulation can be statistically reliable
only for BER greater than 10 4. An extensive study on the system
performance for the various decoders and values of h; used is very
expensive due to heavy computation requirements. Results presented
in this thesis are for the purpose of illustration rather than as
an extensive evaluation of performance.

The computer programs are documented in Appendix D.
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Chapter 8. CONCLUSION AND SUGGESTION FOR FURTHER RESEARCH

The major contribution of this thesis is unifying modula-
tion and coding as a single entity. While binary encoding which
maximizes Hamming distance is a fairly mature field, principles
for designing codes for modulation schemes and channel characteris-
tics in general are still very lacking. The conceptualization of
a transmission system as a triple (G, M, F) offers a convenient
formulation, and this thesis serves as an example for a more general
framework.

Chapter 4 offers a unified approach for pulse design,
taking into account the spectral roll-off requirements and restric-
tions imposed by the band limiting and nonlinear channel. In effect,
less than unity channel bandwidth per symbol rate can be realized
(for INTELSAT V, BW/SR = 80 MHz/60 MHz = 1.33).

The bounding techniques for minimum free square Euclidean
distance used in Chapter 5 and 6 can be used in general for variant
schemes. Using such techniques, we addressed the methods of search-
ing for optimal code for multi-phase PSK and for modulations with
controlled ISI. We have also demonstrated the robustness of rate
2/3 coded 8-¢ against the INTELSAT V channel impairments through
simulation.

The main theme of Chapter 5 is left unanswered, namely,
which (G, M, F) for multiphase modulation is the best for schemes
of similar complexity. While we are satisfied with the simplicity
and performance of the binary encoders found, we suppose octal
and GF(8) encoders with better distance properties can be dis-
covered if more powerful rejection rules are adopted in the code
searching. A generalized concept of complexity (in terms of
decoder complexity, inevitable decoding delay etc.) required for
a certain level of system performance is needed for meaningful
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comparison of various classes of encoders, the formulation of which
by itself is a complex subject.

Trellis decoding the effect of ISI requires increased
complexity for the decoder. An interesting question is whether
we would be better off if the same complexity is used for an encoder
with longer constraint length. Simulation results for pulses with
significant ISI (h; > 0.1) seem to favor the encoder which also
trellis decode the effect of ISI.

For implementation purposes, we would like to know the
effect of quantization and path memory length on error performance
in the decoding process. There is a strong need in satellite
communication to advance the state of art of implementing very
high speed hardwares for Viterbi algorithm decoding.

The Viterbi algorithm is the optimal (in the maximum
likelihood sense) scheme for decoding, at the cost of exponential
increase of complexity with constraint length. Sequential decoding
algorithms on the other hand reduces decoder complexity at the
expense of increased delay, memory and computation requirements.
Between the two extreme, a reduced state decoding algorithm, if
one ever exists, seems to be a good compromise. We suspect that
the increased complexity (4 fold for rate 2/3 coded 8¢ with nonzero
ho’ h;) due to ISI can be reduced by certain manner of ignoring
or combining some state or state transitions. Success in the treat-
ment of the ISI case may bring insight concerning reduced state
Viterbi decoding for a long constraint length encoder. Naturally,
the ignoring of states introduced by nonzero h,, h;, etc. is a
trivial example of this reduced state approach. Reduced state
decoding for a given encoder would inevitably deteriorate perform-
ance, but there may be gain compared with full state decoding of
the same complexity. The success of the reduced state approach
depends very much upon the 'distinctiveness' of the states. 1In
the case of ISI, the diminishing 'distinctiveness' as ISI is reduced
may enable us to conglomerate states together.
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In conclusion, we would like to see how the problem of
severe bandwidth and power limitation has been dealt with in this
thesis by proposing specific schemes for implementation which
acquires good performance improvement with reasonable increase of
complexity. Pulse shapings are to be chosen from those suggested
in Chapter 4 with BT product of around . 0.8 when filter loss
is less than 1 dB. It may be possible at the cost of increased
filter loss and introducing a nonzero h, to obtain a BT product
of about 0. 7with 1/3 < 8 < 1/2 for the 4th order beta and truncated
sinc functions. 1In all cases, the quadrature component should be
staggered with respect to the in-phase component to decrease filter
loss. For very small earth terminals with severely limited trans-
mission power which would necessitate the use of a low rate coding
scheme, the rate 1/2 encoders are recommended. For transmission
systems such as TDMA which is power limited in order to reduce
ACI and OBE, the rate 2/3 coded 8¢ with 4 binary memory would offer
a 3 - 4 dB gain due to coding. The full benefit of these trans-
mission schemes cannot be fully estimated until they are simulated
in a more realistic system environment.
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APPENDIX A. Analyses of Pulse Optimization
form =1, 2
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From Section 4.2, hno(t) is the solution associated with
the smallest A for the following boundary value problem,

a 2n h(t) = (-1)™a h™(t)
dt2n
subject to
t/2
f h2(t) = 1
-1/2
h(t) =0 for t > 1/2
n®) (+ t,2) =0  for 0<ks<n-1

Notice that the energy of h(t) has been normalized.

Case 1. m=1

The solution of the differential equation is the beta
function, a well-known distribution in probability theory

- 1 (2n + 1)! _ 2t\n 2t\n
hn(t) = It ol (1 - )y (1 + = ) t £ 1/2
= 0 otherwise
with
1/2
./. hn(t) dt = 1
-1/2
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Normalizing the energy gives

B, (t)

1/2
[h(t)]2 dt
J:r/z n

To evaluate the denominator, we observe that
t/2

1 =f th(t) dt
-1/2

o =
hn (t) =
2 1/2

1/2
_ 1 (4n + 1)! [t n! n! 2
T T (2n)!(2n)!(T (2n + 1)!) j[ [h (t)]? dt
-1/2
Consequently,
o - 2t.\n 2t\n
hn (t) = An(l - :t—-) (1 + ?—-)
in which
= [(4n + 1)!] vz
Ay = (2n)! je—
! o

The plots of hg(t) for n from 0 to 4 are given in Figure 4.1.
The value of B1 n can be derived from its definition.
For hb(t),

B 2n + 1
Qih, (1)} = 752 ( %’n) ENCE

o]

R{hb(t)} =Jr hb(t) dt

= H,(0)
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since

Q{h (t)} = Qfh °(t)}
R{h (t)} = R{h °(t)}
therefore by eliminating Hb(O), we have

=1 B

Bl,n l,n

0 {no(t)} x
=21 {(n + %) g 2n + 1
R{h °(t)}2

1
2t {(n + %) A R{h O(t)}71} 2P * 1

The eigenvalue is given by

2n
nd h O(t)

A= (-1)
dth n

The highest order term in t of hno(t) can be found by binormial
expanding hno(t) to be

n ({2t\ 2n
An(-1) (?_)

and subsequently
= 2\ 2n
A= An (2n)! ( >

T

on the otherhand

t/2
R{hno(t)} =f hno(t) dt
-I/iz n!
= A

n (2n + 1)! T
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Substituting the values of A and R{hno(t)} into the expression
for Bl n gives

2

8 =)l (2n + 1)!| 2n +1
l,n ‘/2 n!
The values of Bl n are as follows:
n 0 1 2 3 4 5
Bl n 1 5.24 8.96 12.40 15.72 18.95

The spectrum of hno(t) is

t/2

H () = An/ (1 - %—*-‘-) Doy g %—E)n e~ IWt ¢
-1/2

1/2

=a_ T }f (%-- t>n'(% + t)n Pt at , B = -jur
-1/2

_ -n-(1/2)

= ApT Jr B nt I, ., (1/2)(%)

in which

vy (3)
n+(1/2) \2

n
(-1)%(m + x)!

~ ki(n - k)1 p¥

- 2 [ B2
k

n
+ (_l)n+l e~B/2 (n + k)!
Eé; ki(n - k)! g% J
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is a special case of the modified Bessel functions of the first
kind. After a considerable amount of computation, it can be
shown that

-1
Bo%(w) = (1)%/? (;—’—‘—) sin 2L
H,%w) = (5'1:)1/2 L (wr)~2 {2fur ~ sin 2% -2 cos %L
1 : 21! 2 2 2
Hzo(w) = (9!t)l/2 %% (w'c)"3 36(%I) sin %l
wr) "L Wt wT
-6 (§—> cos = - 2 sin §_€
o 1/2 31 -4 wr) 3 WT
Hy (w) = (13! 1) Ef (wt) 30(§a sin 3=
wt\ wT wr) "1 wT wI
- 30 (§j> cos 5 -12 5 sin > + 2 cos 5
H,%w) = (17! 1)1/? %—f (wr)~> 3210 (gl) sin 4T

-3 -2
wTt wr wT LWT
210 (§~) cos 5 S0 (5—) sin 5

2

+
N
(@]
N
&
N—
o
Q
o
n
Mg

+ 2 sin Elf
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The Bt product for hno(t) is given by
1

T
o 2
(fo h ~(t) dt)

_ {(2n+1)! { n! }2
T (4n+1)? (2n)!

T

For n from 0 to 4,
n 0 1 2 3 4
Bt 1 1.200 1.429 1.630 1.814

The spectrum of these five beta functions are shown in
Figure 4.2-4.6.
Case 2 m= 2

The energy of hb(t), by Parseval's theorem, is given by

[+

[ hbz(t) dt

fBz'n/z E
|5, (£)] 2 af
—len/z

R{h, (t)}

"

le(O)’Z BZ,n
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This, together with the expression for Q{hb(t)} which is the same
as the one for m = 1, gives

=1 B

Bo n 2.0

N ofh °(t)}] 1/2n
T n+sz) ——
R{h °(t)}

i

2

1/2n

2t {(n +3) A)

The differential equation to be solved is

2n !
4 n(t) = (-1)® Ah(t)

dth

For n = 1,

‘/% cos %E for -t/2 £ t £ /2

0 otherwise

h,%(t) =

The half cosine pulse shape, when used with one quadrature
staggered by T/2, forms the well-known minimum shift key (MSK)
modulation. The spectrum of this pulse shape is

T

1/2 COs =—
H ®(w) = (8—r> - £

n2 - (wt/m)?

with

= 1 . 2
Bt |Hl°(0)‘2

Il

ml:l

= 1.235

The value of A is n?/t12, consequently giving

- 3 _
By 1 = 2& no= 7.695
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For n = 2, the eigenvalues of the differential equation are

4/n, =4JA, j¥JA, -] +JA. Defining

a = 5 YA
so that we may express
2 t . 2at 2at . 20t
(t) A cosh + A2 sinh = + A3 cos = + A4 sin -
The four boundary conditions give
A1 cosh o + A2 sinh o + A3 cos o + A4 sina = 0
A1 cosh a = A2 sinh o + A3 cos a - A4 sina =0
Al cosh a + A3 cos o =0
; A2 sinh o + A4 sina =0
and
Al sinh o + A2 cosh a = A3 sin a + A4 cos a = 0
-A1 sinh o + A2 cosh o + A3 sin a + A4 cos a =0
.;> A2 cosh a + A4 cos a =0 -
A1 sinh o = A3 sina =0
In matrix form, we have
cosh a cos a 0 0 A1 0
sinh « -sin « 0 0 A3 - 0
0 0 sinh o sin o A2 0
0 0 cosh « cos o A4 0
should there be a nontrivial solution, either one of the sub-
determinants
cosh « cos « sinh « sin o
A1= 1A2=
sinh o -sin a cosh « cos «
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must equals zero, giving
tan ¢ = * tanh «

The smallest positive solution for this transcendental equation
is o = 2.365 when A; = 0, for which case A, # 0 would give A, and A,
the trivial solution. Since

A1 _ sin «

A3 sinh o

we may assume

A1 = k sin «

A3 = k sinh «

in which k normalizes the energy of h2°(t). After some numerical

computation, we have
h,°(t) = 0.1863 cosh 223 ¢ + 1.4022 cos L2 ¢
The value of Bo 2 is 11.9, and the Bt product is 1.45.
The solution for general n is suspected to be an even
function of the form

L2
hno(t) = }E: Ay cosh akt cos B,t + By sinh a,t sin ﬁkt

k=1

in which
ap + jsk (ak 2 0, By 2 0)

is one of the 2n-th root of (-1)n A (the smallest A of course), 2
the number of such roots (in the first gquadrant and on the
positive real as well as imaginary axes) and A,, B, are found by
matching boundary conditions. For convenience sake, these pulse
shapes will be called trigonometric-hyperbolic functions.

Form =2 and n = 1, 2, hno(t) are plotted in Figures 4.7,
4.8, and their Fourier transforms in Figures 4.9, 4.10.
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Appendix B. Code Searching Algorithms for
Rate 2/3 Coded 8¢
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The encoders are represented by subgenerators such as

a a a a .

9; < (gi,O’ 91,1 * - - gi,z) 1=1,2
in which g? 5 is the tap gain from the j-th register of the i-th
queue to the adder A (Figure B.l). £ denotes the number of
memories of a queue. Each subgenerator will be interchangeably
expressed by its integer representation, such as

= a 2-2
91 T 93,0™ *t9,1 ™M

+ .. .+ g?,i

where m is the number of elements in the set V. The addition of
two subgenerators is given by the element-wise adding of the two
subgenerators. A subgenerator is larger than another subgenerator
by virtue of its integer representation. Two encoders are said

to be similar if they have the same minimum free Euclidean distance.

B.1l BINARY ENCODERS WITH STRAIGHT BINARY MAPPING

Let queue 1 has £ = n memories and queue 2 has. £ =y
memories. Then the encoder has a total of y = n + y memories.
There are 3(y + 2) taps and investigating each possible tap combina-
tion becomes prohibitive for y > 4. A number of rejection rules,
based on the structural similarity of encoders and conjectures
about tap patterns for good encoders, would serve to limit the
computation requirements effectively.

In the code searching algorithm, the subgenerators are
incremented by nested loops, from the innermost to the outermost
according to the order
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a a b b ¢ _cC
92+ 93r 927 91 920 91 -

In other words, g; is incremented the most often and gi the least
often. The rejection rules used include,

Rule 1: The first and last register of any queue must
each be connected to at least one of the adders. 1If this condi-
tion is not satisfied, the encoder can be rejected since there is
an equivalent encoder with shorter constraint length.

Rule 2: Time reversal does not change the distance pro-
perties of an encoder. Therefore, an encoder is similar to another
encoder with reversed subgenerators. A reversed subgenerator is
given by
b gi,(sz-l)zzml - - 9,0
If the outermost nonzero subgenerator g4 satisfies 9i > 94 rev’
the encoder defined by the loop indices has a time reversed version
which has been considered previously. Therefore, that value of
g; can be skipped.

2 + .

9i rev = gi,z

Rule 3: Ungerboeck [10] conjectured that for good
encoders, the adder C, which outputs the least significant bit,
is not connected to the present inputs, which is to say

97,0 = 95,0 = O
The state of the encoder determines the value of C and hence which
of the sets {0, 2, 4, 6} or {1, 3, 5, 7} v(=4A + 2B + C) belongs
to. If we adopt this restriction on the encoder, the taps gi'n

and gg " can also be set to zero by the time reversal argument.
Such a restriction is rather difficult to justify but it was
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adopted in our program for its 16 fold reduction in computation
requirement.

Rule 4: An encoder with n = p is equivalent to the encoder
obtained by exchanging the two queues. In other words, it is
immaterial to exchange the subgenerators gi, g?, gi with gg, gg,
gg in that order. By consideration of the order of looping in
the program, an encoder can be rejected if

a N+l a a a ,n+l1
g1 2 + g2 > g, + g2 2

Rule 5: Consider encoders generated by exclusive-ORing
subgenerators. If v = (A, B, C) is the output of the encoder
shown in Figure B.l, we may obtain v' = (A & B, B, C) by replacing
the subgenerator gi by gi @ gg and gg by gg ® gg. In particular,

we will consider the following transformations.

i. (A, B, C) » (A® B, B, C)
or by expressing v and v' by straight binary conversion,
v 0 1 2 3 4 5 6 7
>v! 0] 1 6 7 4 5 2 3

ii. (A, B, C) > (A® C, B, C)
or equivalently
A 0 1 2 3 4 5
»>v! 0 5 2 7 4 1 6 3

iii. (A, B, ¢) » (A, B ® C, C)
or equivalently
v 0 1 2 3 4 5 6 7
>v! 0 3 2 1 4 7 6 5
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iv. (A, B, C)» (A® B, B® C, C)
or equivalently
v 0 1 2 3 4 5 6 7
»>v! 0 3 6 5 4 7 2 1

v. (A, B, C)> (A®C, B®C, C)
or equivalently
v 0 1 2 3 4 5 6 7
»>v! 0 7 2 5 4 3 6 1

vi. (A, B, C) > (A®B ®&C, B, C)
or equivalently
v 0] 1 2 3 4 5 6 7
»>v! 0 5 6 3 4 1 2 7

vii. (A, B, C) > (A®@B@®@C, B®C, C)
or equivalently
v 0 1 2 3 4 5 6
>v! 0 7 6 1 4 3 2 5

For all these transformations, each element of the triple is
replaced by adding itself to those elements to the right. 1In
other words, only B or C can be added to A, and C to B. Using
the free Euclidean distance bound obtained in Section 5.2, it is
observed that for these transformations, Mb(v) = Mb(v') for v =0,
2, 4, 6 and the corresponding v'. For v = 1 (or 3,7), v' can
become 5 (recall that Mb(S) = 1.707 while Mb(l) = Mb(3) =

Mb(7) = 0.293) under some transformations. Therefore, the above
transformations (8 altogether if we include the identity trans-
formation (A, B, C) » (A, B, C)) actually represent four
different cases of whether v = 1, 3, 5 or 7 is transformed into
5. Thus, computation can be reduced by a factor of 2. 1In fact,
we cut the computation requirement by a factor of 8 by ignoring
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all transformations other than the identity transformation. This
restriction is justified experimentally when removing the restric-
tion for encoders of a small number of memories did not yield
encoders with better minimum free distance.

Rule 6: The best df discovered so far is remembered
and an encoder is rejected immediately when a free distance of
less than df is revealed.

There may be some other hidden symmetries which would
give additional rejection rules. The best encoder found may not
be optimal (though we strongly suspect that would not be the case)
since some of the rejection rules have not been rigorously proven.

A computer search program, which evaluates the Euclidean
distance of rate 2/3 coded 8¢ encoders is listed on the following
pages.
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CODESF.FORT
THIS FROGRAM CHECKRS THE FREE EUCILIDAAGN DISTANCE OF AHY BINARY
RATE 2/3 ENCODER USING THE VITERBI ALGORITHM.

ILINK STORES WHERE THE DIFFERENT BRANCHES MERGING INTO A STATE
COME FROM. RMET STORES THE OCTAL OQUTFUT V ASSOCIATED WITH EACH
ERANCH.IOUT STORES THE TRIFLE (AsEsC), DIST STORES THE METRIC AT
EACH STATE»WHEREAS DNEW SERVES AS A TEMPORARY STORAGE FOR DIST.
ITAP(IsJ) IS THE JTH INFPUT TO THE ADDER I. ISTORE IS A TEMFORARY
STORAGE FOR CONVERTING DECIMALLS TO BINARY NUMBERS.

DIMENSION RMET(44+4)sDIST(64)yITAF(328) sDNEUW(S4) s ILINK(S414)
DIMENSION IOUT(3),EUCLEL(8)

EUCLED IS THE'BOUND FOR THE EUCL.IDEAN FREE DISTANCE FOR EACH
CHANNEL SYMEOL V . .

DATA EUCLED/O.» 293914942931 24514707 141,293/
COMMON ISTORE(3)

DMIN IS THE MINIMUM FREE DISTANCE FOUND SO FAR.THE CINSTRAINT
LENGTH AND THE SUBGENERATOR POLYNORMIAL (SUBSEQUENTLY CONVERTED
TO BINARY FORM) IS REQUESTED.

IMIN=-1,

WRITE(&9122)

FORMAT(1X» “INFPUT N AND Uy THE NUMBER OF MEMORIES IN ZACH QUEUE’)
READK » KN KU ' :
K=KN+KU

WRITE(S65121)

FORMAT(1Xy INFUT THE TAP GAINS TQ THE ADDER AyIN DECIMAL FORM‘)
REAL%,I1 .
WRITE(69123)

FORMAT(1X» 7INFPUT THE TAF GAINS TO THE ADRDER R/)

READX,I2

WRITE(6y124)

FORMAT(1Xy INPUT THE TAF GAINS TO THE ADDER €)

READXs I3

CALL CRIN(I1)

o 3 1=1,3

ITAF(1,I)=ISTORE(I)

CONTINUE

CALL CBINC(I2)

Do S 1=1,8

ITAF(2yI)=ISTORE(I)

CONTINUE

CaLl CBIMN(IZ)

.00 42 I=1,8

ITAP(3,I)=ISTORE(T)
CONT IHUE ]
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ASSOCIATED WITH THE BRANCH TRANSITION

THE TABLES FOR THE ILINK AND RMET ARE BEING FILLLED. ZACH I

LENOTE ONE OF THE STATES. EACH J DENOTES ONE OF THE BRANCHES .
GOING INTO THE STATE I+ THE METRIC TABLE DIST IS INITITIALIZED -
WITH LARGE VALUES. )

IR=2%%K

Do 6 I=1sIK
nIST(I)=100.,
Do 7 J=i,4

THE FREVIOUS STATE LINKED BY THE .J-TH BRANCH IS FOUND. THE
ENCODER OQUTFUTS ARE FOUND AND USED TO COMPUTE THE OCTAL V

/

IQ1=(I-1)/2%%KU

IQR=I-1-IQ1X2XXKU
IQ1=IQ1%2+(J-1)/2
IG2=IQ2X2+I=1-((J=-1)/22%2
ILINK(IyJ)=MODRCIQLy2RIRNIKEKERUSTMOD (T2, 2XXKU)+1
IOUT(1)=0

I0UT(2)=0

IoUT(3)=0 .
IR=IQ1IX2RK(KU+1)+IQ2

CALL CRINCIR)

I14=7-K

o 8 Li=1,3

D0 ¢ L2=1As8

IOUT(L1)= IGUT(Li)+ITAP(L1»L2)#]5TOhI(LQ)
CONTINUE :

CONTINUE

IOUT (1)=MODC(IOUT(1) 2
IOUT(2)=HOD(IOUT(2),2)
IOUT(3)=MOTI(IOUT(3)+2)
IOCTAL=I0UT(1)4+I0UT(2)X2:+I0UTC(3)
RMET(I,»J)=EUCLEBD(IOCTAL+1)
CONTINUE

CONTINUE

TRELLIS SEARCH FOR MINIMUM DISTANCE FATH

[00 LENOTES THE MINIMUM DISTANCE AMONGST PARALLEL TRANSITIONS.
OSHORT IS THE SHORTEST EUCLIDEAN SEFARATION FOUND SO FAR.
DLEASF REFRESENT THE SMALLEST METRIC AMONGST aAlllL THE STATES AT
A [NECODING STAGE. ICOUNT IS THE NUMBER OF STAGES THE ALGORITHM
HAS GONE THROUGH. )
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[00=100.

DO 46 J=2+4 '
IF (ILINK(1sJ).EQ.1) DNOO=AMINLCIIOOyRMET(15.J))
CONTINUE

DSHORT=D0O

DIST(1)=0

DNEW(1)=1000. °

ICOUNT=1

DLEAST=100. .

ICOUNT=ICOUNT+1

IF (ICOUNT.EQ.100) GO TO 41

A SURVIVOR IS CHOSEN AMONGST THE 4 BRANCHES GOING IN*D A STATE

D0 18 I=2,IK

DNEW(I)=DIST(ILINK(Is1))+RMET(Is1)

DO 19 J=2,4
DNEWCI)=AMINL(DISTC(ILINKCI 1 J))HRMETCI ) s ONEW (T )
CONT INUE .

THE STATE WITH THE SMALLEST METRIC IS FOUND.

DLAAST=AMIN1 (DLEAST s DNEW(I))
CONTINUE

THE METRIC TABLE IS BEING UFPDATED i

DO 20 I=1,IK
DISTC(I)=DNEW(I)
CONTINUE

THE THREE BRANCHES (J=2 TO 4) THAT MERGES INTO THE ALL ZERO
STATE IS COMPARED TO SEE WHICH ONE GIVES THE SHORTEST DRUN AT

THAT STAGE. IF DRUN IS LESS THAN THE SHORTEST FREE DISTANCE OF
THE ENCODER (DSHORT) FOUND &0 FARy DSHORT WOULD BE UPDATED.

DRUN=1000. .

Do 21 J= 2,4

DRUN=AMINI (DISTC(ILINK(1sJ)I+RMETCL»Jd v DRUN)
CONTINUE

IF (DSHORT-DRUN.GT.~-0.00001> GO TO 22

GO TO 24 )

DSHORT=DRUN

'IF DSHORT IS LESS THAN THE DMIN FOUND FOR PREVIOUS ENCODERS, THEN
THE ENCODER CONSIDERED RIGHT NOW IS NO GOOD. IF EVERY STATE HAS A
METRIC (THE SMALLEST OF WHICH IS DLEAST) LARGER THAN DSHORTs THEN
IT IS NOT NECESSARY TO GO TO FURTHER STAGES TO FIND THE MINIMUM
FREE DISTANCE. D'MIN FOR THE ENCODER IS EQUAL TO DSHORT.
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IF ((DMIN-DSHORT).G6T.0.00001) GO TO 41

IF ((DSHORT-DLEAST).GT.0.,00001) GO TO 17

IF (DSHORT.LT.DOO) DMIN=DSHORT

WRITE(62125)

FORMAT(1Xs ‘THE TAP GAINS FOR YOUR ENCODER FOR THE ADDERS ArBC
ARE RESFECTIVELY!’)

DO 126 L3=1,3

WRITE(62127) (ITAF(L3sL4) sl.4= [ﬁyB)

FORMAT(1X51013)

WRITE(62128) DMIN

FORMAT(1X» /' THE HININUM FREE DISTANCE IS/»1XsF10.5)

STOF

END

THE SUBROUTINE CEIN CONVERTS A DECIMAL NUMBER INTO A BINARY
NUMBER. :

SUBROUTINE CBINCIDEC)

COMMON ISTORE(8)

IQUOT=IDEC

Do 1 I=1,8 '
ISTORE(I)=IQUOT/2%X(8-1)>
IQUOT=IQUOT-ISTORE(I)X2xXx(8--1)
CONTINUE

RETURN

END
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call code8e
TEMFPNAME ASSUMED AS MEMBERNAME

?
2 2 , ‘
INPUT THE TAP GAINS TO THE ADDER AsIN DECIMAL FORM
: |

21

INPUT THE TAF GAINS ‘TO THE ABDER B

0?

57

INPUT THE TAP GAINS TO THE ADDER C

”
3

THE TAPFP GAINS FOR YOUR ENCODER FOR THE ADDERS A»B,C

o 1 01 0 1

i 11 0 0 1

o 0 0 0 1 O
THE MINIMUM FREE DISTANCE IS .2,58600
READY -

159

INPUT N AND U, THE NUMBER OF MEMORIES IN EACH QUEUE .

RPN =N oz

‘ARE RESPECTIVELY:?



B.2 OCTAL CONVOLUTIONAL ENCODERS

A similar set of rejection rules can probably be deduced
for the octal convolutional encoders. However, the plain fact
that there are g3 (¥*2) (~7 x 101°% for y = 2) possible tap combina-
tions would deny exhaustive search even if the rejection rules
are powerful enough to reduce the effort by four or five orders
of magnitude. Instead, we shall employ a different tactic for
code searching, which randomizes the code search within a small
class of promising candidates. This technique enables us to obtain
an encoder with reasonable df within a much shorter period of computa-
tion. This technique can be used similarly for searching other
types of convolutional encoders. The randomization avoids a lot
of computation waste due to equivalence patterns. Imagine tasting
a large variety of cookies in a box. By picking at random, it is
rather unlikely that one would repeatedly taste the same flavor,
though it is also unlikely that one would be able to pick the best
flavor. On the other hand, a systematic picking may coincide with
the way cookies of the same flavor are arranged.

The class of encoders which will be considered consists
of those encoders which achieves the largest minimum free distance
when the input error sequence is restricted to have one nonzero
entry only. This restricted df achieved is usually very close to
the upper bound derived in Section 5.3.

Since the error sequence has only one nonzero entry, we
may restrict our attention to the tap gains of only one of the
queues. The tap gains of the other queue can be generated inde-
pendently and similarly. The tap gains of concern for y = 2 are
(gilo, gi,l, gg,o, g?’l, 9?1,0' gi’z). The restricted df would
not be altered by conjugating any element of this 6-tuple (the
conjugate of i is 8-i) or by pairwise interchanging any two of
the values. By a thorough computer search, the only 6-tuples which
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achieve a maximum restricted df with each element of the 6-tuple
having a value from 1 to 4 and

A

a a b b c c
91,0 91,1 91,059,159 ,0% 91

are

(l, 1, 3[ 3/ 3)

(ll 1/ 2, 3, 3)

(ll ll

1,
2,

(1, 1, 2, 2, 3, 4)
2, 3, 3, 4)
2,

(ll 2! 3, 3[ 4)

The code search algorithm picks any two (or the same) 6-tuples at
random and exchange randomly two of the entries within each chosen
6-tuples, conjugating the entries during the exchange. The two
6~tuples now defines an encoder. To further reduce the candidates
of encoders, error sequences with one nonzero entry fed simultane-
ously into each of the two queues are passed into the encoder.
Again, only those encoders with the maximum achieved df for the
double error sequences are retained. The remaining encoders are
then trellis searched for the unrestricted df. Through such a
process, a large proportion of encoders is rejected since they
cannot survive the occurrences of these error sequences which most
likely induce the minimum free distance. ‘

The documented computer algorithm is listed on the
following pages.
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octal23.fort
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o000

THIS FROGRAM SEARCHES FOR GOOD RAJSIE 2/3 ENCODERS WITH 2 0OCTAL
MEMORIES. :

DIST STORES THE CUMULATED METRIC OF EACH OF THE &4 STATESs AND
DNEW IS USED AS A TEMPORARY STORAGE FOR DIST. THERE ARE é4 BRANCH

"GOING INTO EACH STATE, AND THE ENCODER OUTPUT OF EACH BRANCH IS

DENOTEDIN BY RMET., THE ENCODER OUTFUT IS A FUNCTION OF -THE TAP GAIN
WHICH IS STORED IN ITAF.THE THREE OCTAL OUTPUT OF THE OCTAL
ENCODER IS GIVEN RBY IOUT. EUC(I) DENOTES THE EUCLIDEAN DBISTANCES
BETWEEN THE CHANNEL SYMBOL SEQUENCE I AND 0., ICODE IS THE POOL OF
SUBGENERATORS WHERE THE ITAFPS GET THEIR VALUES.

DIMENSION RMET(64+44)sDIST(64)+ITAP(4:3)sICODE(10+4)
DIMENSION IREG(4)»IOQUT(3)»DNEW(44) yEUC(B)»IC(2)
DOUBLE PRECISION DSEED

COMMON ISTORE(4)

DATA EUC /7042429391 491470792:91.70791.49.293/

DATA ICODE /1s1slslvlslslslsislslrlslesls2rlslslelisely
19292929291 92929292939292939393+29293+3s
393139393939 32313931393949494939354+454/

WRITE(6,222) ) :

FORMAT(’ ENTER A SEED FOR THE RANDOM NUMBER GENERATOR’)

REALXy DSEED

BY INVOKING THE RANDOM NUMBER GENERATORs TWO SUBGENARATORS

ARE PICKED FROM THE IC(1) AND IC(2) ROWS OF THE POOL OF SUBGEN-
ERATORS. THEN THE IC3 AND IC3 LOCATIONS OF EACH SUBGENERATORS
ARE EXCHANGELD AND CONJUGATED AT THE SAME TIME. THUS THE POOL OF
SUBGENERATORS IS CONSTANTLY VARIED. .

IC(1)=GGUBFS(DSEED) X%2.99999+1
IC(2)=GGUBFS (DSEED) %9 .99999+1

IF (IC(1).ER.IC(2)) GO TO 50

DO S1 I=1,2
IC3=GGUBFS(USEED)X5.,99999+1
IC4=GGUBFS (DSEEDN) X5 .99999+1
ITEMP=ICODE(IC(I)»IC3)
ICODE(CIC(I)»IC3)=8-ICODE(ICKI)ICA4)
ICODECIC(I) » IC4)=8-TITEMP

CONTINUE

THE ENCODER FICKED RANDOMLY IS THEN TESTED WITH ERROR SEQUENCES

WITH ONE ERROR FED SIMULTANEQUSLY INTO EACH QUEUE OF THE ENCODER.
ANY ERROR FPATH HAVINC DISTANCE LESS THAN 3.9 IS REJECTED.
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SMPAIR=10.

DO 32 Ji=1,7

D0 53 J2=154

SMTEMF=0.

DO 5S4 J3=156 ]
SMTEMP=SMTEMF+EUC (MOD(JIXICAODE(IC(1) s JI)+JIXICODE(IC(2)+J3)+8)+1)
CONTINUE

IF (SMTEMP.LT.3.9) GO TO 50

SMPAIR=AMIN1 (SMFAIR»SMTEMP)

CONTINUE '

CONTINUE . -

ITAF IS NOW READ FROM ICODE. THE VITERBI ALGORITHM WILL BE USED
TO FIND THE MINIMUM DISTANCE OF THE ENCODER. )

ICODNM=ICODNM+1
ITAF(1,1)=ICODECIC(1) 1)
ITAFP(2,1)=ICODECIC(1)+2)
ITAF(321)=ICODE(IC(2)»1)
ITAP(4,1)=ICODE(IC(2),2)
ITAF(1,2)=ICODECICC1)+3)
ITAF(2+2)=ICODE(IC(1)+4)
ITAP(3y2)=ICODEC(IC(2)+3) =
ITAF(4,2)=ICODECIC(2)s4)
ITAP(1+s3)=ICODEC(IC(1)+3)
ITAF(2:,3)=ICODE(IC(1)+6)
ITAP (3, 3)=ICODEC(IC(2)+3)
ITAF(4,3)=ICODE(IC(2)+4)
[ISHORT=1000.

THE ENCODER IS SIMULATED SO THAT THE OUTPUTS AS A FUNCTION OF THE
CONTENT OF THE SHIFT REGISTERS IS FOUND.

DO 6 I=1,464 i

DIST(I)=100.

DO 7 J=1,64

IoUT(1)=0

IoUT(2)=0

IoUT(3)=0

IREG(1)=(I-1)/8

IREG(2)=(J-1)/8

IREG(3)=(I-1)~- IREG(i)*S
IREG(4)=(J-1)-IREG(2)x8

DO 8 Li=1,3 ’

DO 9 L2=1,4
IOUT(L1)=MOD(IOUT(L1)+IREGCLIKLTAR (.2+1.1)58)
CONTINUE ‘

CONTINUE
RMET(IvJ)*EUC(IOUT(1)+1)+EUC(IDUT(°)+1)+FUC(IOUT(3)+1)
CONTINUE

CONTINUE
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THIS IS THE BEGINNING OF THE TRELLIS SEARCH. ICOUNT COUNTS THE
NUMBER OF STAGES THE VITERRI ALGORITHM HAS FERFORMED.

DIST(1)=0.

DNEW(1)=1000.

ICOUNT=0

DLEAST=100.
ICOUNT=ICOUNT+1

IF .(ICOUNT.EQ.10) GO TO 59

THE 64 PATHS MERGING INTO A STATE IS COMPARED AND THE SURVIVOR IS
PICKED, THE SURVIVOR GOING BACK TO THE ZERO STATE GIVES ONE OF
THE FREE DISTANCES (DRUN),» WHICH IS COMPARED WITH THE PREVIOUS
MINIMUM FREE DISTANCES (DSHORT) AND UPDATES DSHORT IF DRUN IS
SMALLER THAN DSHORT. DLEAST REGISTERS THE SMALLEST ACCUMULATED
METRIC OF THE 64 STATESs AND IF DLEAST IS GREATER THAN DSHORT»
TRELLIS SEARCH FOR THE MINIIUM DISTANCE PATH OF THE ENCODER HAS
BREEN ACCOMFLISHED.

DO 18 I=2,64

DNEW(I)= DIST(1)+RHET(191)

0o 19 J=2,64

INEW(I)=AMIN1 (DIST(JI)H+RMET(Ly D »DNEWCT))
CONTINUE

DLEAST=AMIN1 (DLEASTsDNEW(I))

CONTINUE

D0 20 I=1r64

DIST(I)=DNEW(I)

CONTINUE

DRUN=1000.

DO 21 I=2,64

DRUN=AMIN1 (DIST(I)+RMET (1 s 1) »DRUN)
CONTINUE

IF (DSHORT-DRUN.LT.O. 000001) GO TO 24
DSHORT=DRUN

DMIN IS THE FREE DISTANCE OF THE BIEST ENCODER FOUND SO FAR. IF
DSHORT IS LESS THAN DMIN» THEN THE PRESENT ENCODRER CAN BE
ABANDONED, AFTER WE FINISH THE TRELLIS SEARCH FOR THE ENCODER
AND THE MINIMUM FREE DISTANCE IS LARGER THAN DMIN, THUS WE HAVE
FOUND A BETTER ENCODER,»WHICH IS PRINTED AT THE TERMINAL.

164



IF ((DMIN-DSHORT).GT.0.,00001) GO TO S50
IF ((DSHORT-DLEAST).6T.0.00001) GO TO 17
DMIN=DOSHORT '
WRITE(S9240)

- FORMAT(” X= X- X Xrweew Kememememm X )

+J
tJ

~N

rJ
SN

L W

td
k3
)]

rJ
rJ

o

D0 224 I=1,3

WRITE(6,227) I o ( ,

FORMAT(’ TAF BGAINS TO THE ABDER ‘»I3s’ ARE:’)
WRITE(69223) (ITAP(.3»1)sL3=114) :
FORMAT(4I5)

CONTINUE

WRITE (6,225) DMIN

FORMAT(’ MINIMUM FREE DISTANCE= ‘:F10.5)

WRITE(6s226) ICODNM

FORMAT(’ NUMBER OF ENCODERS TRELIIS-SEARCHED SO FAR= ’,I16)
IF (ICODNM.LT.10000) GO TO 50 :
STOF

ENI!
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ca3ll octal23
TEMPNAME ASSUMED AS MEMEERNAME

ENTER A SEED FOR THE RANDOM NUMBER GENERATOR
?

1234.d0

X X O Xmmm e Xomom X
TAP GAINS TO THE ADDER 1 ARE:
1 -7 1 b .
TAP GAINS TO THE ADDER 2 ARE:
&6 & 5 6 '
TAP GAINS TO THE ADLDER 3 ARE?
4 5 3 1 _
MINIMUM FREE DISTANCE=  2,05100
NUMBER OF ENCODERS TRELLIS-SEARCHED SO FAR= + 4
X mm X=X m e X=mm e Xomrm m o m X - .
TAP GAINS TO THE ADDER 1 ARE:
1 7 4 2 -
TAP GAINS TO THE ADDER 2 ARE:
3 2 '3 3 _
TAP GAINS TO THE ADDER 3 ARE:
2 5 7 6 _ -
MINIMUM FREE DISTANCE=  2,05100 -
NUMBER OF ENCODERS TRELLIS-SEARCHED SO FAR= - 9
Xmmmmm X X X=X m e X
TAP GAINS TO THE ADDER 1 ARE:
6 7 1 2
. TAP GAINS TO THE ADLER 2 ARE:
3 &6 S5 S ,
TAP GAINS TO THE ADDER 3 ARE:
1 4 4 &
MINIMUM FREE DISTANCE=  2,29300
NUMBER OF ENCODERS TRELLIS-SEARCHED SO FAR= 18
el
READY
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JCTAL12.FORT”
THIS FROGRAM SEARCHES EXHAUSTIVELY FOR OPTIMAL RATE 1/2 OCTAL

CONVOLUTIONAL ENCOLDERS.

4
DIST STORES THE CUMULATED METRIC,K OF THE STATES OF THE ENCODER
WITH K-1 OCTAL MEMORIESsAND DNEW IS USED AS A TEMPORARY STORAGE
FOR DIST. THE EUCLIDEAN DISTANCE OF THE OQUTPUT OF THE J-TH
ERANCH MERGING INTO THE I-TH STATE 1S GIVEN BY RMET(IsJ). THE
ENCODER OUTFUT (I0UT) IS A FUNCTION OF THE TAP GAINSs WHICH ARE
STORED IN ITAF. EUCC(I) DENOTES THE EUCLIDEAN DISTANCES BETWEEN
THE CHANNEL SYMEOL I AND O. ILINK(I»J) DENQTES THE FREVIOUS
STATE CONNECTING TO THE STATE .I THROUGH THE J-TH BRANCH MERGING
INTO STATE I. .

DIMENSION RMET(6458)»DIST(484)»ITARP(3»2)EUC(8) -

DIMENSION ILINK(40+8)yI0UT(2),DNEW(S4)

DATA EUC /7049 4293914¢91070792491.70791.49.293/

COMMON ISTORE(3)sK

WRITE(62130) -

FORMAT(/ PUT IN THE NUMBER OF QCTAl. MEMORIES OF THE ENCODER.’)
READX » M

K=M+1

IF (MJEQ.2) WRITE(69139)

IL ﬁ&D IU REPRESENTS THE SUBGENERATORS FOR THE ENCODER. IL AND
ARE CONVERTED TO OCTAL REFRESENTATION AND STORED AS TAP GAINS.

IL=8X%X(K~-1)
IU=8%X%K-1

IMIN=0. -

Do 2 I1=1L,1IU

CALL OCTAL(I1) ~

Do 3 1=1,3
ITAP(Is1)=ISTORE(I)
CONTINUE

N0 4 I2=1,IU

CALL OCTAL(I2)

D0 S 1=1,3
ITAFP(I»2)=ISTORE(I)
CONTINUE :
DSHORT=1000,

THE OCTAL EJCODER IS SIMULATED TO GIVE THE STATE TRANSITION TABLE
ILINK AND THE OCTAL OUTPUT IOUTs AS WELL AS THE METRIC OF EACH
TRANSITIONS (RMET).
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Do 6 I=1isIL

DIST(I)=100,

DO 7 J=1,8

ILINK(I»J)=(I-1)>%x8+(J~-1) ’
CALL OCTALC(ILINK(IsJ)) '
I0UT(1)=0

I0UT(2)=0

00 8 Li=1,2

D0 9 L2=1,3 .
IOUT(L1)=MODCIOUT(L1)+ISTORE(L2)XITAP(L251.1)+8)
CONTINUE

CONTINUE

RMET(I»J)=EUCCIOUT (1)+1)FEUCCIOUT(2+1)

CONTINUE

CONTINUE

THIS IS THE BEGINNING OF THE TRELLIS SEARCH. ICOUNT COUNTS THE
THE NUMBER OF STAGES THE VITERBI ALGORITHM HAS FERFORMED.

DIST(1)=0.

DNEW(1)>=1000,

ICOUNT=0

DLEAST=100. .
ICOUNT=ICOUNT+1 :
IF (ICOUNT.EQ.10) GO TO 4

THE 8 FATHS MERGING INTO A STATE Ié COMPARED AND THE SURVIVOR IS

FICKED. THE SURVIVOR GOING INTO THE ZERO STATE GIVES ONE OF THE
FREE DISTANCES (DRUN)y WHICH IS COMFARED WITH THE FREVIOUS MINIMUM
FREE DISTANECES (DSHORT) AND UFPDATES DSHORT IF DRUN IS SMALLER THAN
DSHORT. DLEAST REGISTERS THE SMALLEST ACCUMULATED METRIC OF THE
STATES» AND IF DLEAST . IS GREATER THAN DSHORTs TRELLIS SEARCH FOR
THE MINIMUM DISTANCE FATH OF THE ENCODER HAS BEEN ACCOMPLISHED.

DO 18 I=2,IL
DNEW(I)=DIST(MODCILINKCT s 1)y IL 3+ )HRMET (151)

D0 19 J=2,8 _

DNEWC(I)=AMINI (DIST (MODCILINKCI 9 J) s 1) +1)+RMET(I+J) »DNEW(T))
CONTINUE

DLEASTSAMINL (DLEAST» DNEWCI))

CONTINUE

D0 20 I=1,IL

DIST(I)=DNEW(I)

CONTINUE

DRUN=1000.

D0 21 I=2,8 .
DRUN=AMIN1 (DIST (MODCILINKCLy 1) w TL)+1)+RMET (15 1) » BRUN)

- CONTINUE

IF (DSHORT-DRUN.LT.0.000001) GO TO 24
DSHORT=DRUN
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DMIN IS THE FREE DISTANCE OF THE BEST ENCODER FOUND SO FaAR. IF
DSHORT IS LESS THAN DMINs THEN THE PRESENT ENCODER CAN BE
ABANDONED., AFTER WE FINISH THE TRELLIS SEARCH FOR THE ENCODER
HENCE THE MINIMUM FREE DISTANCE OF THE ENCODER IS AT LEAST AS
LARGE AS DIMIN» THE SUBGENERATORS. OF THE ENCODER ARE PRINTED.

IF ((DMIN-DSHORT).GT.0.000013) GO TO 4

IF ((DSHORT-DLEAST).GT+0.00001) GO TO 17
DMIN=DOSHORT

WRITE(6,138)

FORMAT( X X -X A X -X7)
IK=3-M

DO 134 La=1+2

WRITE(6,135) L4

FORMAT(’ THE TAPS TO THE AIDER “yI4s’ ARE?’)
WRITE(62133) (ITAP(L3sL4),L3=IK,3)
FORMAT(3X»SIS) .

CONTINUE -

WRITE(69136) DMIN

FORMAT(’ THE MINIMUM DISTANCE OF THIE ENCODER IS ‘sF10.3)
CONTINUE

CONTINUE

STOP

END

SUBROUTINE OCTAL(IDEC)

COMMON ISTORE(3)sK

IQUOT=IDEC

D 1 I=1+3

ISTORE(I)=IQUOT/8%XX(3~1I)
IQUOT=IQUOT-ISTORE¢I)*8%Xx(3-1I)

CONTINUE

RETURN

END
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ca3ll octalll
TEMPNAME ASSUMED AS MEMBERNAME

FUT IN THE NUMBRER OF OCTAL MEMORIES

?
i
Xmmmmme Xmmmm X = X X = m e X
THE TAPS TO THE ADDER 1 ARE?
1 0
THE TAPS TO THE ADDER 2 ARE:
0 1
THE MINIMUM DISTANCE OF THE ENCODER
X G T— Xmmmm e G Xmmm e X
THE TAFS TO THE ADDER 1 ARE:
1 0
THE TAPS TO THE ADDER 2 ARES
0 2
THE MINIMUM DISTANCE OF THE ENCODER
Xmmmmee X e X e e e X X om e X
THE TAFS TO THE ADDER 1 ARE:
1 0
THE TAPS TO THE ADDER 2 ARE:
0 3
THE MINIMUM DISTANCE OF THE ENCODER
p C—  — Xmm e T R X
THE TAFS TO THE ADDER 1 ARE!
1 0 -
THE TAFS TO THE ADDER 2 ARE!
0 5
THE MINIMUM DISTANCE OF THE ENCODER
X = G G G Xmmm e X
THE TAPS TO THE ADDER . 1 ARE!
1 0 -
THE TAFS TO THE ADDER 2 ARE:S
i 1 3
THE MINIMUM DISTANCE OF THE ENCODER
o e X T T X
THE TAPS _TO THE ADDER 1 ARE!
1 0
- THE TAPS TO THE ADDER 2 ARE:
1 5 . ’
THE MINIMUM DISTANCE OF THE ENCODER
X = X p C— GT— Ko X
THE TAPS TO THE ADDER 1 ARE:
A ° ER
THE TAPS TO THE ADDER 2 ARE!
2 3 ~
THE MINIMUM DISTANCE OF THE ENCODER
e X T Xmmmm=X
THE TAPS TO THE ADDER 1 ARE?
1 0
T1
READY
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GF8CODE.FORT’
THIS FPROGRAM SEARCHES EXHAUSTIVELY FOR RATE 2/3 GF(8) CONVOLUT
-IONAL ENCODERSWITH 1 OCTAL MEMORY.

DIST STORES THE CUMULATED METRIC OF EACH OF THE EIGHT STATES»

AND DNEW IS USED AS A TEMFPORARY STORAGE FOR DIST. THERE ARE

64 BRANCHES GOING INTO EACH STATEs AND THE ENCODER OUTPUT OF

EACH BRANCH IS DENOTED BY RMET., THE ENCODER OUPUT IS A FUNCTION
OF THE TAFP GAINS WHICH ARE STORED IN ITAP. THE THREE OCTAL OQUTPUT
OF THE ENCODER IS GIVEN BY I0QUT. IEUC(I) DENOTES .THE PUCIIDFGN
DISTANCE EBOUND BETWEEN I AND Q.

DIMENSION RMET(8:64)DIST(8)»ITAF(3,3)yEUCLID(S) y ILINK(8r44)
DIMENSION IREG(3),I0UT(3)>sDNEW(8)»IADD(8,8)IMULT(8,8)

IADD AND IMULT ARE THE ADDITION AND NULTIPLICATION TABLE FOR
GF(8)

DATA IADD /0919293949596 9791903392959497 16
22320919697 249593929212097 961594y
493596979091 929393T94379691501392>
b1794s592939091 97950843 3u2vlyQ/
DATA IMULT/0205050909090905091+2+39495+697
0929496339197 95909396152794:21+2>
004139736929 59120959194929793 94y
0969791959392+ 49097+592919694»3/
DATA EUCLID /049429371 472429392.51.7079149.293/
COMMON ISTORE(3)
DIMIN=0. .
I11,I2,I3 REFPRESENTS THE SUBGENERATORS OFF THE ENCODERsWHICH ARE
CONVERTED TO OCTAL 'REFRESENTATION.

DO 2 I1=1,255.

CALL OCTAL(I1)

N0 3 I=1,3 )
ITAFP(I»1)=ISTORE(I)
CONTINUE .
DO 4 I2=1,255

CALL OCTAL(I2)

[0 S I=1,3
ITAP(I»2)=ISTORE(I)
CONTINUE

DO 41 I3=1,255
CALL OCTAL(I3)

D0 42 I=1,3
ITAF(I»3)=ISTORE(I)
CONTINUE
[ISHORT=1000.
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17

43
19
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THE GF(8) ENCODER IS SIMULATED TO GIVE THE STATE TRANSITION TABLE
ILINK AND THE OCTAL OUPUT IOUTs AS WELL AS THE METRIC OF EACH
TRANSITIONS IMET.

ng 6 191+8
DIST(I)=100.

D0 7 J=1,64

IOUT(1)=0

IoUT(2)=0

IOUT(3)=0

IREG(1)=(J~1)/8

IREG(2)=(I~-1)

IREG(3)=J-1-IREG(1)x%8

ILINK(I;J)“J-((J-l)/S)*B

0 8 Li=1,3

ng 9 L2=1,3 .
IOUTC(L1)=IADDC(IOUT(L1)+1y IMULTC(IREGC.2) 41 ITAPUL2sL1)+1)+1)
CONTINUE

CONTINUE

Do 10 Li=1,3

CONTINUE

RMET(IsJ)= EUCLID(IOUT(l)+1)+FULL[D(IUUT(“)+1)¥EUFIID(IDUT(3)+1)
CONTINUE

CONTINUE

THE 64 PATHS MERGING INTO A STATE IS COMPARED AND THE SURVIVOR IS
FICKED. THE SURVIVOR GOING INTO THE ZERO STATE GIVES ONE OF THE
FREE DISTANCES (ORUN), WHICH IS COMPARED WITH THE PREVIOUS
MINIMUM FREE DISTANCES (DSHORT) AND UPDATES DSHORT IF DRUN IS
SMALLER THAN DSHORT. DLEAST REGISTERS THE SMALLEST ACCUMULATED
METRIC OF THE STATES» AND IF DLEAST IS GREATER THAN DSHORT,
TRELLIS SEARCH FOR THE MINIMUM DISTANCE PATH OF THE ENCODER

HAS BEEN ACCOMFLISHED

DIST(1)=0.

INEW(1)=1000.

ICOUNT=0

DLEAST=100.

ICOUNT=ICOUNT+1

IF (ICOUNT.EQ.10) GO TO 41
Do 18 I1=2,8
DNEW(I)=DIST(1)}+RMET(I»1)

DO 19 J=2,464

DNEWCI)=AMINI (DIST(ILINK(I 9y J) ) HRMET (I 9.J) »DNEWC(TI) )
CONTINUE

DLEAST=AMIN1 (DLEAST»DNEW(I))
CONTINUE
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21

141

143

144
142

145
41

Do 20 I=1+8

DIST(I)=DNEWC(I)

CONTINUE )

DRUN=1000.

Do 21 I=2,8

[0 44 J=1,8
DRUN=AMINI(DISTC(I)+RMET(1»I+(J-1)%8) »DRUN)
CONTINUE

CONTINUE

IF (DSHORT-DRUN.LT.-0.,000001) GO TOQ 24
DISHORT=DRUN

DMIN IS THE FREE DISTANCE OF THE BEST.ENCODER FOUND SO Far. IF
DSHORT IS LESS THAN DMINs THEN THE FRESENT ENCODER CAN BE
ABANDONED. AFTER WE FINISH THE TRELLIS SEARCH FOR THE ENCODER
HENCE THE MINIMUM FREE DISTANCE: (F THE ENCODER IS AT LEAST AS
FODDD AS DMINs THE SUBGENERATORS (OF THIE ENCODER ARE PRINTED.

IF ((DMIN-DSHORT).GT.0.00001) GO TO 41
IF ((DSHORT-DLEAST).GT.0,00001) GO TO 17

IF (DSHORT.LT.3.,00001) DMIN=DSHORT
WRITE(6s141)

FORMAT(’ . X=——=—=X=————X X Xomsm e X7)
D0 142 L4=1,3

WRITE(65143) L4

FORMAT(’ THE TAPS TO THE ADDER “»15s’ ARE$*)
WRITE(&7144) (ITAP(L3sL4)sL3=1+3)

FORMAT (5Xs31S)

CONTINUE :
WRITE(65145) - DMIN : -
FORMAT(’  THE FREE DISTANCE OF THIS CODE = ‘s10F5)

CONTINUE

CONTINUE

CONTINUE

STOP

ENDY

SUEROUTINE OCTAL(IDEC)

COMMON ISTORE(3)

IQUOT=IDEC

D0 1 I=1,3

ISTORE(I)=IQUOT/8%%(3-1) : .
IQUOT=IQUOT-ISTORE (1) X8X% (3-1) : ]
CONTINUE

RETURN

END
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ISICODE.FORT’
THIS FROGRAM SEARCHES FOR OFTIMAL RATE 1/2 BINARY CONVOLUTIONAL
ENCODER FOR QPSK WITH NONZERO H1 ONLY.

IDIST STORES THE COEFFICIENT OF HO AND H1 OF THE ACCUMULATED
METRIC OF THE ENCODER FLUS CHANNEL sWHILE IDNEW IS A TEMPORARY
STORAGE FOR IDIST. THERE ARE TWO BRANCHES MERGING INTO STATE I
AND THE ENCODER OUTFUT OF BOTH BRANCHES ARE THE SAME THUS CAN

BE STORED IN IMET(I»3). AT STATE I, THE COEF. OF H1 ASSOCIATED
WITH EACH BRANCH IS STORED IN IMET(I»1) AND IMET(Is2). THE
ENCODER OUTPUTS IOUT AND FREVIOUS ENCODER OUTPUT IPREV ARE
FUNCTIONS OF THE TAP GAINS ITAF., THE ACCUMULATED EUCLIDEAN METRIC
OF EACH STATE IS RMET WHICH CAN BE CALCULATED FROM IMET. ICHsITRy
IBR ARE ASSOCIATED WITH CHECKING CODE CATASTROFHE.

DIMENSION IMET(256s3)yRMET(2546+2)IDIST(2546+2),DIST(254)
DIMENSION ITAP(8s2)sICH1(S50)sITR(200)yIBR(200)

DIMENSION: ILINK(256,2)» IDNEW(256+2)»I0UT(2) s IPREV(2) yDINEW(256)
COMMON ISTORE(8)

WRITE(65151) : :
FORMAT(’ ENTER THE NUMBER OF MEMORIES OF THE ENCOBER.’)
READX (K

WRITE(6,152)

FORMAT(’' ENTER THE VALUE OF THE FIRST CORRELATION COEFsH1 /)
READX»yH1

WRITE(69153)

FORMAT(’ GUESS A LDWER BOUND FOR DMIN TO START WITH. )
READX» DMIN

IL=2%%K+1

IU=2%%k(K+1)-1

I1 AND I2 REFRESENT THE SUBGENERATORS 0OF THE ENCODER, WHICH ARE
CONVERTED INTO BINARY REFRESENTATION AND STORED AS THE TAP GAINS.

DO 2 Ii=ILsIU»2
CALL CRINC(I1)

Do 3 1=1,8
ITAP(Is1)= ISTORL(I)
CONTINUE

DO 4 I2=IL,IU,2
CALL CBIN(IZ)

. DO 5 I=1,8

ITAF(I»2)=ISTORE(I) ‘
CONTINUE
[ISHORT=1000,
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THE EXTENDED STATE OF THE SYSTEMy DENOTED BY ISTATE,

DETERMINES

THE FRESENT AS WELL AS FREVIOUS OUTFUT OF THE ENCODER. IMET CAN

BRE CALCULATED FROM THESE OUTFUTS.

ISTATE=2%%X(K+1)

00 6 I=1,ISTATE

DIST(I)=100.

IDIST(I»1)=0 - -
IDIST(I»2)=0

IoUT(1)=0

IoUT(2)=0

CALL CBINC(I-1)

IA=8-K

DO 8 Li=1,2

DO 9 L2=IA»8 i
IOUTC(L1))=T0UT(LL)+ITAP (L2 L1 OXISTORIZ (L.22D
CONTINUE .
IOUT(LI)““OB(IDUT(LI): D]

© CONTINUE

IMET(I»3)=I0UT(1)+I0UT(2)
Do 7 J=1,2
ILINK(I»J)=MOD(I~-1r2%%XK)%k2+.)
IPREV(1)=0 '
IFPREV(2)=0

DO 41 IN=IA»7
ISTORE(IN)=ISTORE(IN+1)
CONTINUE

ISTORE(8)=J-1

D0 81 Li=1,2

DO 9?1 L2=IA»8

IPREV(L1)=IPREV(LL)+ITAR L2y LLIXISTORE (L2)

CONTINUE
IPREV(L1)=MOD(IPREV(L1)s2)
CONTINUE

IMET(I»N=I0UT(1)+I0UT(2)+IFREV(1)+IPREV(Z)-

MODCIOUT (1) +IPREV(1)+2)-MADC(IQUT(2)+IPREV(2)+2)

RMET(I;J) IMET(I»3)-HIXIMET(I»J)
CONTINUE '
CONTINUE

THIS IS THE BEGINNING OF THE TRELL.IS SEARCH.
NUMEBER OF STAGES THE VITERBI ALGORITHM HAS PERFORMED.

Do 26 I=1,50
ICHI(I)=~1
DIST(1)=0.
DINEW(1)=1000.
ICOUNT=1
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DLEAST=100.

ILEAST=100
ICOUNT=ICOUNT+1 :

IF (ICOUNT EQ.30> GO TQ 4

THE 2 PATHS MERGING INTO A STATE IS COMPARED AND THE SURVIVOR IS
FPICKED., THE SURVIVOR GOING BACK TO THE ZERO STATE GIVES ONE OF
THE FREE DISTANCE BOUNDS (DRUN)s WHICH IS COMFARED WITH THE
FREVIOUS MINIMUM FREE DISTANCES (DSHORT) AND UPDATES DNSHORT IF
DRUN IS SMALLER THAN DSHORT. AT THE SAME TIMEs THE COEFFICIENTS
OF HO AND H1 ASSOCIATED WITH THE MINIMUM FREE DISTANCE IS STORED

000000000

o0

18

AS THOSH AND IS1iSH RESFECTIVELY.

v
DO 18 I=2,yISTATE
D1=DIST(ILINK(I»1))+RMET(I»1)
D2=DISTC(ILINK(Is+2))+RMET(I,»2)
IF (D1.GE.D2) GO TO 82 -
DNEWC(I)=D1
IDNEW(Iy1)= IDIST(ILINK(I:i)v1)+IMET(Iv3)
IDNEW(I»2)=IDISTC(ILINK(I»1)s2)+IMET(I»1)
GO TO 18
DNEW(I)=D2
IDNEW(Is1)=IDISTC(ILINK{(I»2)s1)+IMET(I»3)
IDNEWC(I»2)=IDISTC(ILINK(I»2)2)+IMET(I»2)
CONTINUE
DO 20 I=1,ISTATE
DIST(I)=DNEW(I)
IDIST(I»1)=IDNEW(I»1)
IDIST(I»2)=IDNEW(I»2)

DLEAST REGISTERS THE SMALLEST ACCUNULATED METRIC OF THE STATES,

AND IF DLEAST IS GREATER THAN DSHORTs TRELLIS
MINIMUM DISTANCE PATH OF THE ENCODER HAS REEN
DMIN IS THE FREE DISTANCE OF THE EBEST ENCODER
OF DSHORT 1S LESS THAN DMINs THEN THE FRESENT
ABANDONED .

DLEAST=AMIN1 (DLEASTDIST(I))

IF (I.EQ.1) GO TO 20
ILEAST=MINOC(ILEASTyIDIST(Is1l)>
CONTINUE
DRUN=DRIST(ILINK(1,2))+RMET(1,2)
IHO=IDIST(ILINK(1,2)»1)+IMET(1+3)
IH1I=IDIST(ILINK(1,2)»2)+IMET(1,2)

IF (DRUN.LT.20) ICH1(IHO)=MAXO(ICH1(IHO)»IH1)
IF (DSHORT-DRUN.LT.0.00001) GO TO 24
DSHORT=DRUN

IHOSH=IHO

IH1SH=IH1

IF ((DMIN-DSHORT).GT.-0.00001) GO TO 4
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146

167

169
168

45

44

AFTER WE FINISH THE TRELLIS SEARCH AND HENCE DSHORT IS AT LEAST
AS LARGE AS DMIN, WE FRINT OUT THE CODEsTHE COEFFICIENTS OF HO
AND H1 ASSOCIATED WITH THE MINIMUM DISTANCE PATH (JHOMIN AND
IHIMINs» AS WELL AS THE VALUE OF DMIN.

IF (DLEAST.LT.DSHORT) GO T0O 17

IHOMIN=IHOSH

IHIMIN=IH1SH

WRITE(6,161)

FORMAT (* X== X= X=- D e e
DO 162 J=1,2

WRITE(69163) J

FORMAT (¢’ THE TAP GAINS TO THE ADDER 915+’ ARE’)
WRITE(69164) (ITAF(I+J)»I=IAs8)

FORMAT(3X»81I3)

CONTINUE

WRITE(69165) DSHORT» IHOMINy IHIMIN

FORMAT(’ MIN. FREE DISTANCE= ‘sF10.5s’ = ‘5I2y’ HO - ‘+1I3s’ H1%)
WRITE(65166)

FORMAT(’ OTHER FREE DISTANCES:’)

WRITE(65167)7

FORMAT(SXy ‘COEF. OF HO'’sSXy’'~VE OF COEF. OF H1%)
DO 168 I=1,20

IF (ICH1(I>.EQ.~1) GO TO 168

WRITE(69169) I,ICHI(I)

FORMAT(Z2X»I2,15X»1I3)

CONTINUE

CODE CATASTROFHE IS FOUND BY CHECKING IF LOOPS OF ZERD WEIGHT .
EXISTS

IN1=0 :
DO 44 I=2yISTATE
D0 45 J=1+2

IF (RMET(I+J)>.G6T.0.00001) GO TO 45
IK1=IN1+1

ITR(IK1)=1

- IBRC(IK1)=J

CONTINUE

CONTINUE

D0 97 IK2=1,IK1

DO 98 IK3=1,IK1

IF (ITR(IK2)NE.ILINK(ITRC(IK3)»IBRCIK3))) GO TO 98
ITRACK=ITR(IK2)

ITRER=IBR(IKN2)

178



D0 99 IN4=1,IK1
IF (ILINKC(ITRACKsITRBR) NELITRC(IK4)) GO TO 99
ITRACK=ITR(IK4)
ITRER=IBR(IK4)
IF (ITRACK.NE.ITR(IK2)) GO TO 99
WRITE(62101) .

101 FORMAT (1X» 'HOWEVERs THIS I8 A CODE CATASTROFHE.’)
GO TO 4

99 CONTINUE

98 CONTINUE

?7 CONTINUE
DMIN=DSHORT

4 CONTINUE

2 CONTINUE
STOP
END
SUBROUTINE CRIN(IDEC)
COMMON ISTORE(8)
IQUOT=IDEC
Do 1 I=1,8
ISTORE(I)=IQUOT/(2%%X(8~1))
IQUOT=IRUOT~-ISTORE(I)X2%%X(8~-1I)

1 LONTINUE

RETURN
END .
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call isicode
TEMFNAME ASSUMED AS MEMBERNAME *
ENTER THE NUMRER OF MEMORIES OF THE ENCODER.
7 : -
4 N 1
ENTER' THE VALUE (F YHE FIRST CORRELATION COEF yHL
? .
a2 . ‘
GUESS A LOWER BROUND FOR DMIN TO START WITH.
? R

5 i .
X- X -X X X- X
THE TAF GAINS TO THE ADDER 1 ARE,
1 0 0.0 1 ,
THE TAF GAINS TO THE ADDER 2 ARE
A 0 1 1 1
MIN. FREE DISTANCE= 5.20000 = &6 HO - 4 H1
OTHER FREE DISTANCES: ‘
COEF. OF HO -VE OF COEF. OF Hi
-3 ' 4
8 8-
" HOWEVER» THIS IS A CODE CATASTROPHE.,
P X X --X X =X=- X
THE TAP GAINS TO THE ADDER 1 ARE
1 0 0 0 1
THE TAP GAINS TO THE ADDER 2 ARE
1.1 1- 0 1 . .
MIN. FREE DISTANCE= 5.20000 = 6 HO-~- 4 H1
OTHER FREE DISTANCES:? i
COEF. OF HO -VE OF COEF. OF H1
8- 8
10 10
HOWEVERY THIS IS A CODE CATASTROFHE.
X Xmm e X e X G X
THE TAP GAINS TO THE ADDER 1 ARE
1 0 0 0 1 -
"THE TAP GAINS TO THE ADDER - 2 ARE
1 1 1 1 1
MIN. 'FREE DISTANCE= "5.20000 = 4 HO - 4 H1
OTHER FREE DISTANCES:
COEF. OF HO -VE OF COEF, OF H1
é 4
7 8
- 8 4
9 10 -
10 ¢ © 14 ~
X== X== X -X=- X- X
THE TAP GAINS TO.THE ADDER 1 ARE
i 0 0 1 1
THE TAP GAINS TO THE ALDER 2 ARE
i 0 1 0 1
MIN. FREE DISTANCE= 9+60000 = 6 HO - 2 Hl1
OTHER FREE DISTANCES?
‘ COEF. OF HO ~-VE OF COEF. OF Hi
6 y 2
8. ' 8
10 12
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X===== X=m=== Xmmmm e X = X=m=m= X
GAINS TO THE ADDER

THE TaF

1

0

o 1

1

THE TAP GAINS TO THE ADDER

1

MIN.

0

1 1

1
FREE DISTANCE=

© 5.80000

OTHER FREE DISTANCES:

COEF.

- READY

7
8
?
i1

OF HO

=3
8
10

12
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Appendix D. Program for Decoders
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" R12DECOD.FORT’

THIS IS AN OFTIMAL DECODER FOR VITERBI DECODING A RATE 1/2
ENCODER WITH UF TO 6 MEMORIES IN THE FRESENCE OF SEVERE 1ISI.

DIMENSION ITERM2(128,2),ILINK(128,2),IDIST(128),I0UT(2)
DIMENSION IQRT(128)yIPATH(128y100)sITAFP(2s6)sITERM1.(4) INPUT(128)
DIMENSION IDNEW(128)sRCOS(4)sRSIN(4)sISTORE(100)»R(2)
DOUBLE FRECISION DSEED

COMMON IREG(6)sK

NR=2

WRITE(6r141)

FORMAT (1Xy *INFUT THE NUMBER 0OF MEMORIES OF THE ENCODER’)
READX » MEMORY ~

K=MEMORY+1

WRITE(S62142)

FORMAT (1Xy “INFUT THE FIRST ISI COEFFICIENT H1’)

READXsH1 .

WRITE(&65143)

FORMAT(1Xs “INFUT THE SCALING FACTOR FOR PHE QUANTIZER’)
READX» FACTOR

WRITE(&:144)

FORMAT(1Xs /INPUT THE LENGTH OF THE SURVIVOR TQ BE STORED’)
READX» IMEM :
WRITE(S69145) '

FORMAT(1Xy INFUT THE SEED FOR THE RANDOM NUMBER GENERATOR’)
READX» DSEED '

WRITE(6:146) ‘ '

FORMAT(1X» ‘HOW MANY BITS YOU WANT TO RUN FOR EACH ROUND?’)
READX s NTOTAL ..

ALFHA AND BETA ARE EVALUATED FOR GENERATING RANDOM SEQUENCES
WITH CORRELATED CONSECUTIVE ELEMENTS SHOWN IN CHAPTER 7 OF
THE THESIS.

ALFHA=0,

IF (ABS(H1).GT..0001) ALPHA=.,5/Hl1-S5ORT((.S/HL)*%2-1)
BETA=1./SART (1+ALPHAXX2) i

ITAP(I»J) IS THE TAP GAIN FROM THE J~-TH REGISTER (INPUT INCLUDED).
TO THE I-TH ADDER. RCOS AND RSIN ARE EVALUATED AND STORED SO
THEIR VALUE CAN BE RETRIEVED WITHOUT COMPUTATION WHEN NEEDED.

WRITE(6+147)

FORMAT(1X» ' INFUT THE TAF GAINS IN A BIN. SEQUENCE FOR ADDER A’)
READ X (ITAP(1sI)»I=1+K)

WRITE(69148)

FORMAT(1X» “INPUT THE TAP GAINS IN A BIN. SEQUENCE FOR ADDER B’)
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REALD Xy (ITAF(2+,I)+I=1sK)

FI=3.1415926

Do 15 Ili=1+4

RCOS(I11)=COS((I11-1)XPI/2.4P1/4.)
RSINCIL11)=SIN((I11-1)XFPI/2.+P1/4.) .
CONTINUE : )

THE TABLES FOR DECODING IS GOING TO BE SET UP. EACH STATE IS
REFRESENTED BY A NUMBER ISTATE. NSTATE IS THE TOTAL NUMBER OF
STATES, INCLUDING THOSE DUE TO ISI.

NSTATE=2XXK
[0 1 ISTATE=1sNSTATE
CALL CBINCISTATE-1)

THE OUTFUT (10UT) OF THE ENCODER OF EACH STATE 18 CALCULATED,
THE CHANNEL SYMEOL IQRT IS THEN OBTAINED BY GRAY MAPPING.

Do 2 I1=1,2

IOUT(I1)=0

DO 3 I2=1sK

IOQUT(ID=I0UTC(IDHITAP(I1sI2IXIREGCIR)

CONTINUE

IOUTC(I1)=MODCIOQUT(I1)»2)

CONTINUE ‘ .

IGRT(ISTATE)=I0UT(1)+I0UT(2)+1

IF (CIOUT(1).EQ.1).AND.CIOUT(2).EQ.0)) IQRT(ISTATE)=4

THE INFUT INTO THE ENCODER CORRESFONDING TO EACH STATE IS
COMPUTED. THEN THE PREVIOUS STATE OF THE ENCODER WHICH IS LINKED
TO THE FRESENT STATE RY THE THE BRANCH IB IS FOUND.

INFUT(ISTATE)=IREG(1)

DO 4 IB=1,2

D0 61 I=2sKN

ILINKC(ISTATE» IR)=ILINK(ISTATE»IB)+IREG(IIX(2XX(K~-I+1))
CONTINUE

ILINK(ISTATE» IB)=ILINK(ISTATE»IB)+IB

CONTINUE )

CONTINUE

THE FOLLOWING CALCULATES THE CORRECTION TERM (ITERMR2) FOR EACH
STATE IN THE FRESENCE OF ISI AS GIVEN BY THE FORMULA FOR THE
THE METRIC IN CHAFTER 3 OF THE THESIS. IN THE EXPRESSIONsIRD
PERFORMS A ROUNDING FUNCTION AFTER SCALING BY FACTORXX2

D0 5 ISTATE=1sNSTATE

DO &6 I4=1,2

ITERM2(ISTATE»I4)=IRD(HIXCOS((TART(ILINK(ISTATE »I4))-IQRT(ISTATE)
JXPI/2)X(FACTOR%%2))
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CONTINUE

CONTINUE

WRITE(6,150)

FORMAT ( INPUT THE ENER&Y PER BIT TO NOISE RATIO IN BB’)
READX » DENO

WRITE(S69151)

FORMAT(1Xy“IF THE DECODED SHOULID <OR $HOULD NOT) DACODE ISIy
ENTER 1 (OR 0))

READX» IMFRVE “
RTEMP=SQRT(.125%10XX(~DBN0/10.))

RNOISE=RTEMF

STATE' METRIC (IDIST)s THE PAST.NUISE SAMPLES (PNBF) y THE
CONTENT OF THE REGISTERS OF THE ENCODER (IREG)s THE PRESENT AND
FAST CHANNEL SYMBOL OUTPUT (IQ) ARE INITIALIZED TO BE ZERO.

D0 75 I=1sNSTATE

IDIST(I)=0

IE=0

INBITS=0

FNSE1=0, .

FNSE2=0. g

Do 21 I=1sK

IREG(I)=0

CONTINUE

IQ1=0

IA2=0 . .
INDEX=1 - ’
DO 62 I=2sK :

IREG(K-I+2)= IREG(K-I+1)

CONTINUE

THE FOLLOWMNG LINES REPRESENTS AN ENCODRER. A RANDOM NUMBER
GENERATOR. GIVES THE INFUT TO THE ENCODER (IREG(1)). THE PREVIOUS
CHANNEL SYMBOLS (IQ1 AND IQ2) ARE ADVANCED AND THE ENCODER PUTS
OUT A NEW IQ1.

IREG(1)=GGUBRFS(DSEED+.5

o 1?2 Ii=1,2

IOUT(I1)=0

Do 20 I2=1,K

IOUT(I1)= IOUT(Il)+ITﬁP(Tlv[’)*IREG(IR)
CONTINUE

IOUT(I1)=MOD(IOUT(I1)»2)

CONTINUE

IR3=IR2

IR2=IQ1

IQI=I0UT(1)+I0UT(2> } ,

IF ((IOUT(1).EQ.1) ,AND.(TOUTC(R)JERLOY) IQ1=3
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THE CORRELATED NOISE SEQUENCES ARE GENERATED ACCORDING TO THE
TECHNIGUE MENTIONED' IN CHAPTER 7 OF THE THESIS. ICR AND ICI
FORM THE REAL AND IMAGINARY FART OF THE SUFFICIENT STATISTICS.,
ITERM1 CORRESFONDS TO THE FIRST TERM OF THE EXPRESSION FOR THE
METRIC.

CALL GGNML(ISEED»NRsR)

CNSE1=(R(1)+ALPHAXPNSEL ) XBETA

CNSE2=(R(2)+ALPHAXPNSE2)XBETA

PNSE1=R(1) .

FNSE2=R(2) ‘

ICR= IRD(((COSC(IQ2XPI/2+PI/A)+HIX(COGCIQIXPTI/24PTI/4)+
COSC(IQ3XPI/2+FI/4)))/2+CNSELXRNOISE) XFACTORX%2)

ICI=-IRO(((SINCIQRXFI/24+FI/4A) tHIX(SIN(IQI¥PI/24P1/4)+
SINC(IQIXFI/2+FI/4)))/2+CNSE2XRNOISE)XFACTORXX2)

RO 7 IS=1-4

ITERM1(IS)=IRD((RCOS(IS)XICR-RSINC(IS)IXICI)X2)

CONTINUE .

THE FOLLOWINGS SIMULATE A DECODER WHICH INPUTS THE SUFFICIENT

STATISTICS ICR AND ICI (OR ANY INFHASE AND QUADRATURE SAMPLED

VOLTAGES OF THE DEMODULATOR) AND TRELLIS SEARCH FOR THE

MAXIMUM LIKELIHOOD SEQUENCE. IDLARG IS THE LARGEST METRIC FOR

.THE STATES AT A STAGE OF DECODING.

IDLARG=~10000000
DO 8 ISTATE=1sNSTATE

FOR EACH STATE»THERE ARE TWO BRANCHES (IBRCH) MERGING INTO IT.
THE SURVIVOR IS CHOSEN AND THE STATE METRIC .IS UFDATED AND STORED
TEMPORARILY IN IDNEW. THE PREVIOUS STATE IN THE PATH OF THE
SURVIVOR IS STORED IN IPATH. ,
IDMRGE=IDIST(ILINK(ISTATE»1))~ITERM2(ISTATE » 1 )XIMPRVE

IBRRCH=1

ITEMP=IDIST(ILINK(ISTATE»2))-ITERM2(ISTATE »2)XIMPRVE

IF (IDMRGE.GE.ITEMF) GO TO ¢

IBRCH=2

IDMRGE=ITEMF

IDNEW(ISTATE)=IDMRGE+ITERMIL (IQRTCISTATEE))

IPATH(ISTATE» INDEX)=ILINK(ISTATE» IBRCH)

THE STATE WITH THE LARGEST METRIC (ILARGE) 1S FOUND AND STORED.
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IF (IDNEW(ISTATE).LE.IDLARG) GO TO 8
IDLARG=IDNEW(ISTATE)

ILARGE=ISTATE

CONTINUE

THE SURVIVOR WITH THE LARGEST METRIC IS TRACED BACK A NUMBER OF
STATES TO FIND THE DECODED INFORMATION SEQUENCE.IFOINT SERVES AS
A FOINTER TRACING FROM ONE STATE TO ANOTHER. THE LOCATION OF
STORAGE FOR ILARGE AT THE FRESENT DECODING STAGE IS POINTED TO

BY THE FOINTER CALLED INDEX,»WHICH IS INCREMENTED RY MODULO

ARITHMETICS. THE INPUT TO THE ENCODER IS STORED BY A CIRCULAR
STRUCTURE CALLED ISTORE, SO THAT IT MAY BE RETRIEVED LATER FOR
COMFARISON WITH THE DECODED SEQUENCE.

IFOINT=ILARGE

ITRACE=ISTORE (INDEX)
ISTORE(INDEX)=IDELAY
IDELAY=IREG(1)

DO 10 I7=1,INDEX
IFOINT=IFATHC(IPOINT » INDEX+1--17D

"CONTINUE

IF (INDEX.EQ.IMEM) GO TO 17
ITIMES=IMEM-INDEX

DO 11 I8=1,ITIMES
IPOINT=IFATH(IFOINT » IMEM-I8+1)
CONTINUE

IF ({INBITS.GT.IMEM).AND . CITRACEMNE, INFUTC(IPOINT)Y)) IE=IE+1 -
UFDATE DISTANCE TABLE -

0 12 ISTATE=1sNSTATE
IDISTC(ISTATE)=IDNEWC(ISTATE)
CONTINUE

INDEX=INDEX+1

IF (INDEX.GT.IMEM) INDEX=1

IE IS THE NUMBER OF EIT ERRORS MaADE. THE BIT ERROR PROBABILITY
IS COMPUTED. FOR EVERY 10000 RITS»THE BER WOULD BE FRINTED UNTIL
THE DECODER HAS DECODED THE REQUIRELD NUMBER OF RIT (NTOTAL).

INBITS=INRITS+1

IF (MODCINEBITSs10000).NE.O) GO TO 48

BER=IEX1./INBITS '

WRITE(62180) INERITS,IEsBER

FORMAT(1X»16s’ RBRITS ARE DECODEDyERRORS=/,I5y 'BER='sF74+6)
IF (INRITS.LT.NTOTAL) GO TO 18

WRITE(67270)

FORMAT (7 X=mmmrm Xmm e X == Xmmomemn X rmrmm X’)
IF (1,EQ.1) GO TO 71

STOF |

END

187



O0oo

o0

16

CEIN CONVERTS A DECIMAL NUMBER INTD A BINARY NUMBER

SUBROUTINE CRINCIDEC)
COMMON IREG(6) K
IQUOT=ILEC

0 16 I=1sK

"IREG(IX=IQUOT/2%%(K-1I)

IQUOT=IQUOT-IREG(I¥2XX (K-1)
CONTINUE

RETURN

END

IRD FERFORMS A ROUNDING FUNCTION.

FUNCTION IRD(RE)

IF (RE.GE+0,+) IRD=RE+.3
IF (RE.LT.0.+) IRD=RE-,5
RETURN .

END
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call rl2decod

TEMPNAME ASSUMED AS MEMBERNAME
INFUT THE NUMBER OF MEMORIES OF
4

et

vt e -

THE ENCODER

" INPUT THE FIRST ISI COEFFICIENT M1

?

o2

INPUT THE SCALING FACTOR FOR THE
?
10

QUANTIZER

TO BE STORED

INPUT THE LENGTH OF THE SURVIVOR

?

100 '

INPUT THE SEED FOR THE RANDOM NUMBER GENERATOR

?

2345

HOW MANY BITS YOU WANT TO RUN FOR EACH ROUND?

o -

50000

INPUT THE TAP GAINS IN A BIN., SEQUENCE FOR ADDER A -

: .
101

INPUT THE TAP GAINS IN A BIN., SEQUENCE FOR ADDER B

?

111 -

INPUT THE ENERGY PER BIT TO NOISE RATIO IN DE

?

3

IF THE DECODER SHOULD (OR SHOULD NOT) DECODE ISIs ENTER 1 (OR 0)
? .

1 .
10000. RITS ARE DECODEDyERRORS=  F&BER==, 005600
20000 BITS ARE DECODEDsERRORS=  $SBER=.004750
30000 BITS ARE DECODEDsERRORS= 123BER=.004:100
40000 BITS ARE DECODEDsERRORS= 172BER=.004300
50000 BITS ARE DECODEDsERRORS= 214BER=,004260

X X X=====X Xmm X | ]

INPUT THE ENERGY PER BIT TO NOISE RATIO IN DB

» -

4

IF THE DECODED SHOULD (OR SHOULD NOT) DECODE IST» ENTER 1 (OR Q)
?

1
10000 BITS ARE DECODEDsERRORS=  10BER=.001000
20000 BITS ARE DECODEDERRORS=  26BER=, 001300

* 30000 BITS ARE DECODEDsERRORS=  38BERs:, (001267
40000 BITS ARE DECODEDERRORS=  45BER=.0011.2%5
S0000 BITS ARE DECODED,ERRORS=  S4BER=.001080

X S S— X==m==X

NPUT THE ENERGY PER BIT TO NOISE RATIO IN DR

> .

@!

READY
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140

141

142

143

144

145

+RZ3DECOD.FORT”

THIS IS AN OFTIMAL DECODER FOR VITERBI DECODING A RATE 2/3
CODE WITH UF TO 4 MEMORIES IN THE FRESENCE OF ISI,

DIMENSION ITERM2¢(2

S5624) y ILINK(25694)yIDIST(256) s IOUT(3)

DIMENSION IMET(256)sIPATH(256y150)yITAP(394) s ITERM1(8)sR(2)
DIMENSION IDNEW(256)sRCOS(8)»RSIN(8)»ISTORE(2s150)» INPUT(256+2)
[OURLE FRECISION DSEED

COMMON IREG(8),K
NR=2
WRITE(4)140)

FORMAT(1X> INFPUT N AND Ur THE NUMBER OF MEMORIES IN EACH QUEUE’)

READX s KNy KU
R=KN+KU+2
WRITE(6+141)

FORMAT X “INPUT THE FIRST ISI COEFFICIENT’)

READXyH1
WRITE(69142)

FORMAT (1X» /INPUT THE SCALING FACTOR FOR THE QUANTIZER’)

READ%» FACTOR
WRITA(62143)

FORMAT(1Xs “INPUT THE LENGTH OF THE SURVIVOR TO BE STORED’)

READXy IMEM
WRITE(6,144)

FORMAT(1X» “INFPUT THE SEED FOR THE RANDOM NUMBER GENERATOR‘)

READXs DSEED
WRITE(6r145)

FORMAT(1X»y “HOW MANY BITS YOQU WANT T RUN FOR EACH ROUND’)

READXyNTOTAL

ALFHA AND BETA ARE EVALUATED FOR GENERATING RANDOM SEQUENCES
WITH CORRELATED CONSECUTIVE ELEMENTS SHOWN IN CHAFTER 7 OF

THE THESIS.

ALFHA=0.,

IF (ABS(H1).6T.0.00001) ALPHA=.,5/H1-SQRT((.5/H1)%X%x2-1)
BETA=1./SART (1+ALFHAXX2) :

PI=3.1415926

ITAF(IsJ) IS THE TAF GAIN FROM THE J-TH REGISTER (INPUT INCLUDED)

TO THE I-TH ADDER.

RCOS AND RSIN ARE EVALUATED AND STORED SO

FHAT THEIR VALUE MAY BE RETRIEVED LATER WITHOUT CONPUTATION

WHEN NEEDED.
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161

o000

WRITE(69147) :
FORMAT (1X» *INPUT THE TAP GAINS IN A BIN. SEQUENCE FOR ADDER A’)
READXs (ITAFP(1yI)sI=1+K)

WRITE(6,148) -

FORMAT(1X» /INFPUT THE TAP GAINS IN A BIN. SEQUENCE FOR ADDER B')
READXy (ITAP(2+1)»I:=1,K)

WRITE(62149)

FORMAT(1Xs “INFUT THE TAF GAINS IN A BIN. SEQUENCE FOR ADDER ')
READX s (ITAF (32 1) I=1+K)

Do 1S5 111=1,8

RCOS(I11)=COS((I11-1)XPI/4,4+PI/8.)
RSIN(I11)=SIN((I11~-1)XFI/4.4+P1/8.)

CONTINUE

THE -TABLES FOR DECODING. IS GOING TO BE SET UP. EACH STATE
IS REFRESENTED BY A NUMBER ISTATE.NSTATE IS THE TOTAL NUMBER OF
STATES» INCLUDING THOSE DUE TO ISI.

NSTATE=2%%XK

D0 1 ISTATE=1yNSTATE

CALL CRIN(ISTATE-1)

Do 2 I1=1,3

IoUT(I1)=0

Do 3 12=1,8

IOUTCIL)=IOUTC(I)+ITAP(I1yI2)XIREG (L)

CONTINUE

IOUT(I1)=MODCIOUTC(I1)»2)

CONTINUE_

IMET(ISTATE)=I0UT (1) X4+ T0UT(2)X2+IOUT(3I0+1

THE INFUT TO THE ENCODER CORRESFONDING TO EACH STATE 1S

COMFUTED. THEN THE FREVIOUS STATE OF THE ENCODER WHICH IS LINKED
TO THE PRESENT STATE BY THE BRANCH (I3) IS FOUND.

INFUT(ISTATE»1)=IREG(1)

INPUT(ISTATEs2)=IREG(2+KN)

D0 4 I3=1,4

ILINKC(ISTATE»I3)=2-MODC(I3y2)

DO 160 Ié=1yKU

ILINKCISTATE»I3)=IREG (K—=I&+1)X2RATS+ILINK(ISTATE»I3)
ILINKC(ISTATE»I3)=((I3-1)/2)X2%X(KU+1)+ILINK(ISTATE»I3)
D0 161 Ié6=1sKN

ILINKC(ISTATE» I3)=IREG(K~KU~-TI&)¥24% (KU+LS+ 1) +ILINK(ISTATESI3)
CONTINUE

CONTINUE

THE FOLLOWING CALCULATES THE CORRECTION TERM (ITERM2) FOR EACH
STATE IN THE FPRESENCE OF ISI AS GIVEN BY THE SECOND TERM OF THE
FORMULA FOR THE METRIC DERIVED IN CHAFTER 3 QF THE THESIS. IRD
FERFORMS A ROUNDING FUNCTION AFTER SCALING BY FACTOR%*2
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71
150

79

i8
162

145
163

19

DO 5 ISTATE=1sNSTATE

0 6 I4=1,4

ITERM2(ISTATE»I4)=IRD(HIXCOSC(CIMETCILINK(ISTATE» 14) ) -IMET(ISTATE)
JXFI/A)XFACTOR%X%2)

CONTINUE

CONTINUE

WRITE(62150)

FORMAT(1Xs INPUT THE ENERGY PER BIT TO NOISE RATIO IN DB’)

REALDX» DBNO

RTEMP=8QRT (., 0625%10%%(-DENO/10.))

RNOISE=RTEMP ‘

STATE METRIC(IDIST)»THE PAST NOISE SAMPLES (PNSE)y THE CONTENT

OF THE REISTERS OF THE ENCODER(IREG)» THE PRESENT AND PAST

CHANNEL SYMEOL OUTPUT (IOCT> ARE INITIALIZED TO BE ZERO.

DO 79 I=1:NSTATE
IDIST(I)=0,.
FNSE1=0.,"
FPNSE2=0.

IE=0
INBITS=0

D0 21 I=1,K |
IREG(I)=0
CONTINUE
I0CT1i=0
IOCT2=0
INDEX=1

THE FOLLOWING REFRESENTS AN ENCODER. A RANDOM NUMBER GENERATES
THE INPUTS TO THE ENCODER (IREG(1) AND IREG(KN+2)). THE FREVIOQUS
CHANNEL SYMBOLS (IOCT1 AND IOCT2) ARE ADVANCED AND THE ENCODER
FUTS OUT A NEW IOCT1

IF (KNXEQR.0) GO TO 145

[0 162 I=1,KN
IREG(KN+2-I)=IREG(KN+1-1)

00 163 I=1,KU
IREG(K+1-I)=IREG(K-1I)
IREG(1)=GGURFS(NSEED)+.4999
IREG(KN+2)=GGUBFS(DSEED) + , 4999
DO 19 I1=1,3

IOUT(I1)=0

D0 20 I2=1,8
IOUTCI1))=I0UTC(I1)+ITAPCIL»I2YXIREG(I2)
CONTINUE

IOUT(I1)=MODCIOUTC(I1) »2)

CONTINUE

IOCT3=10CT2

I0CT2=10CT1 ' .
IOCT1=I0UT(1)%X4+I0UT(2)%2+I0UT(3)
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THE CORRELATED NOISE SEQUENCES (CNSE1 AND CNSE2) ARE GENERATED
ACCORDING TO THE TECHNIQUE MENTIONED IN CHAPTER 7 OF THE THESIS.
ICR AND' ICI FORM THE REAL AND IMAGINARY PART OF THE SUFFICIENT
STATISTICS. ITERM1 CORRESFONDS TO THE FIRST TERM OF THE
EXFRESSIKN FOR THE METRIC.

CALL GGNML (DSEEDsNRsR)
CNSE1=(FNSE1XALFHA+R(1) )XBETA
CNSE2=(PNSE2¥%ALFHA+R(2) )XBETA

"PNSE1=R(1)

PNSE2=R(2) _

ICR= IRD(((COS(IOCT2XFI/4+PI/8)+H1X(COS(IOCTIXPI/4+FI/8)+
COSCIOQCTIXPI/44+PI/8))) /724RNOLSEXCNSEL ) XFACTORXX2) -

ICI=-IRD(((SINCIOCT2XPI/A+FPI/8)+H1X(SINCIOCTIXPI/44P1/8)+
SIN(IOCTIAPI/A4+PI/8) ) )/ 2HRNOQISEXCNSE ) XFACTORXX2)

g 7 15=1,8

ITERM1(IS)=IRD((RCOS(IS)*XICR-RSINCIS)IXICI)%2)

CONTINUE '

THE FOLLOWING SIMULATK A DECODER WHICH INPUTS THE SUFFICIENT
STATISTICS ICR AND ICI (OR ANY INFHASE AND QUADRATURE SAMPLED
VOLTAGES OF THE DEMODULATOR) AND TRELLIS SEARCH FOR THE MAXIMUM
LIKELIHOOD SEQUENCE. IDLARG IS THE LARGEST METRIC FOR THE STATES
AT A STAGE OF DECODING.

IDLARG=-10000000

_ DO 8 ISTATE=1,NSTATE

FOR EACH STATE» THERE ARE FOUR BRANCHES (I4) MERGING INTO IT.
IDMERGE IS THE METRIC OF THE SURVIVOR,WHICH ILLAST BRANCH IS IBRCH.
THE SURVIVOR 1S STDRED IN THE TABLE IFATH. THE STATE METRIC IS
THEN UFPDATED.

IDHRGE IDIST(ILIN&(ISTATE!l)) ITERMZ(ISTATEvi)
IERCH=1

N0 9 I6=2y4

ITEMP= IDIST(ILINK(ISTATE,Ié)) ~ITERM2(ISTATE,14)
IF (IDMRGE.GE% ITEMP) GO TO 9

IBRCH=16

IDMRGE=ITEMP

CONTINUE

IDNEWC(ISTATE)=IDMRGE+ITERM1 (IMETCISTATE) )
IFATH(ISTATE s INDEX)=ILINK(ISTATE» IBRCH)

THE STATE WITH THE LARGEST METRIC(II.LARGE) IS FOUND AJD STORED.,

IF (IDNEW(ISTATE).LE.IDLARG) GO TO 8
IDLARG=IDNEW(ISTATE)

ILARGE=ISTATE

CONTINUE
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THE SURVIVOR WITH THE LARGEST METRIC IS TRACED BACK A NUMBER OF
STATES TO FIND THE DECODED INFORMATION SEQUENCE. IFOINT SERVES
AS A FOINTER TRACING FROM ONE STATE TO ANOTHER. THE LOCATION OF
STORAGE FOR ILARGE AT THE FRESENT DECODING STAGE IS POINTED TO
BY THE FOINTER CALLELD' INDEXs, WHICH IS INCREMENTED BY MODULO
ARITHMETICS. THE INPUT TO THE ENCODER IS STORED BY A CIRCULAR
STRUCTURE CALLED ISTOREs 80 THAT IT MAY BE RETRIEVED LATER FOR
COMFARISON WITH THE DECODED SEQUENCE.

IPOINT=ILARGE
ITR1=ISTORE (1 INDEX)
ITR2=ISTORE (25 INDEX)
ISTORE(1y INDEX)=IDLAY1 .
ISTORE(2s INDEX)=IDLAY2
IDLAY1=IREG(1)-
IBLAY2=IREG(4)
[0 10 I7=1, INDEX
IPOINT= IPATH(IPOINTvINDPX+L"l?)
10  CONTINUE
IF (INDEX.EQ.IMEM) GO TO 17
ITIMES=IMEM- INDEX
DO 11 I8=1,ITIMES ,
IFOINT=IFATH(IFOINT s IMEM-IB8+1) .
11 CONTINUE
17 . IF C(CITR1IWNE.INFUTC(IPOINT»1) ) AND. CINBITS.GT. IMEM¥2)) IE=IE+1
IF ((ITR2.NE.INFUTCIFOINT»2)),AND. (INBITS.GT.IMEN¥2)) IE=IE+1

THE DISTANCE TABLE IS UPDATED

DO 12 ISTATE=1,NSTATE
IDIST(ISTATE)=IDNEW(ISTATE)
12  CONTINUE

THE INDEX AND THE COUNT FOR NUMBER OF DECODED EITS ARE :

INCREMENTED, IE IS THE NUMBER OF EIT ERRORS WADE. THE BIT ERROR

PROBAEBILITY IS COMPUTEDX FOR EVERY 10000 RITSs THE BER WOULD BE

PRINTED UNTIL THE DECODER HAS- DECODED THE REGUIRED NUMEBER OF
_BITS (NTOTAL).

aGooooao0n

INDEX=INDEX+1

IF (INDEX.GT.IMEM) INDEX=1

INBITS=INRITS+2

IF (MODC(INBITS,10000).NE.O) GO TO 7%

BER=IEX1./INBITS

- WRITE(6,180) INEITSyIEsRER

180 FORMAT(1Xs 16’ BITS ARE DECODEDYERROR=’yI5s’ BER=’'sF7.4)
.79 IF (INBITS.LT.NTQTAL) GO TO 18
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WRITE(62270)

FORMAT ( / X mm X = = e X om mm o m o ommmmn K 1)
IF (1.EQ.1) GO TO 71

STOF

END

THE SURROUTINE CRIN CONVERTS A DECIMAL NUMRER INTO A BINARY
NUMEER

SUBROUTINE CERINCILDEC)

COMMON IREG(8)»K

IQUOT=IDEC

D0 16 I=1sK
IREG(I)=IQUOT/2XX (K-1I)
IQUOT=IQUOT-IREG (I )R2KkX (K~-1)
CONTINUE

RETURN

END

IRD FERFORMS A ROUNDING FUNCTION,

FUNCTION IRD(RE)

IF (RE+GE.0.) IRD=RE+.5
IF (RE.LT+0.) IRD=RE-,S
RETURN ‘
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call r23decod

TEMFNAME ASSUMED AS MEMBERNAMIE

INPUT N AND U» THE NUMBER OF MEMORIES IN EACH QUIEUE
?

22

INPUT THE FIRST IS1 COEFFICIENT

P

.166667

INPUT THE SCALING FACTOR FOR THE GUANTIZ&R

?

10

INPUT THE LENGTH QF THE SURVIVOR TO BE STORED -

? .

100

INPUT THE SEED FOR THE RANDBOM NUMBER GENERATOR

P : .
454 '
HOU MANY BITS YOU WANT TO RUN FOR EACH ROUND '

soooo :
INPUT THE TAP GAINS IN 4 BIN. SEQUENCE FOR ADDER A
P .
010101 ~
INPUT THE TAP.GAINS IN A BIN, SEQUENCE FOR ADDER R
» .
111001
INPUT THE TAP GAINS- IN A BIN. SEQUENCE FKR ADDER C
. |
000010
INPUT THE ENERGY FER BIT TO NOISE RATIO IN DB
» .
5 Ky ) ! .
10000 BITS ARE DECODEDsERROR= O BER=.0
20000 BITS ARE DECODEDyERROR= 12 BER=,000600
. 30000 BITS ARE DECODED,ERROR= 12 BER=.000400
40000 BITS ARE DECODED,ERROR= 32 BER=.000800
50000 BITS ARE DECODEDsERROR= 42 BER=.000840
X X X X=m—m—m X=X
INPUT THE ENERGY PER BIT TO NOISE RATIO IN DB
? . : ’ ’
& :
10000 BITS ARE DECODED,ERROR= 13 BER=,001300
' 20000 BITS ARE DECODED,ERROR= 13 BER=.000650
30000 BITS ARE DECODED,ERROR= 13 BER=,000433
40000 BITS ARE DECODED,ERROR= 13 BER=,000325
50000 BITS ARE DECODED,ERROR= 13 BER=,000260
X X=X e X=X e X ‘
- INPUT THE ENERGY PER BIT TO NOISE RATIO IN DB
: _ :

6

10000 RITS ARE DECODREDsERROR=" 0 BER==,

20000, BITS ARE DECODEDsERROR= Q BER=.0

30000 BITS ARE DECODED,ERROR= Q BER=.0

40000 RITS ARE DECODEDs ERROR= -Q BER=.0

90000 BITS ARE DECODEDsERROR= 0 BER=,0
X

X=X e SIS v FU—
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. FSK.FORT”

THIS FROGRAM EVALUATES THE BIT ERROR RATE

DIMENSION R(2)
NR=2
WRITE(6,21)

FORMAT(1X, "INPUT THE ENERGY FER BIT T NOISE

READX EBNO
WRITE(6y22)

FORMAT (1X» HOW MANY RITS YOU WANT TO SIMULATE?’)

REALX s NTOTAL

WRITE(69223)

FORMAT (1Xs ZINFUT THE GEED FOR THE RAMIOM i
READX» DSEED
AVAR=SART (. 0625X10X%X(~-EBNQ/10.))
WRITE(&6227) AVAR

FORMAT (7 INFUT THE VALUE’»F8.,7»7 BACK INTO THE FROGRAM.’

READIX»FACTOR

NERROR=0

NRITS=0

CALL GGNML (DSEEDs»NRsR)

Al=R(1)

A2=R(2)

RCR= .S+A1XFACTOR ‘
RCI=A2%FACTOR

IF (RCR.LT.O) GO T0O 1

IF (ABS(RCI).GT. ABS(RCP)) NELRROR=NERROR+ L
GO TO 2

IF (ABS(RCI}).GT.ABS(RCR)) NERROR:=NERROR+L
IF (ABS(RCI).LT.ABS(RCR)) NEPROR~NthOh+’
NBITS=NRITS+2

IF (MOD(NEITS»10000).NE.O) GO TO 3
FERROR=NERRORX1./NRITS

WRITE(6y26) NEITS:FPERROR

IF (NBITS.LT.NTOTAL) GO TO 3

FORMAT(’ BER FOR “»I7y’ RBRITS IS5 7»F8.7)
STOF

END
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éall esk

TEMPNAME ASSUMED AS MEMEERNANME -
INPUT THE ENERGY PER BIT TO NOISE LEVEL (IN DB).
feh

2.5

© HOW MANY BITS YOQU WANT TO SIMULATIET?

?
30000

INPUT THE SEED FOR THE RANDOM NUMEER GENERATOR?T
., . : ,

3345

INPUT THE VALUE.1874736 BACK INTO THE PROGRAM.
?- . .
.1874

BER FOR 10000 BITS IS ,0294000

BER FOR 20000 BITS IS ,0285000

BER FOR 30000 BITS IS .0285000 -
READY - B o
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fors

-
8]

. PSKB8.FORT"’ )
. THIS FROGRAM EVALUATES THE BIT ERROR RATE QF 8-FSK.

DIMENSION R(2)

NR=2

WRITE(6:21) )

FORMAT(’ INFUT THE ENERGY PER BIT TO NOISE RATIO ¢(IN DR)’)
READX s EENO

WRITE(6522) :

"FORMAT(’ WHAT IS THE TOTAL NUMBER 0OF BITS YOU WANT TO SIMULATET?T’)
READX s NTOTAL

WRITE(6923)

FORMAT(’ INPUT THE SEED FOR THE RANDOM NUMBER GENERATOR. )
READX» ISEED ,

AVAR=SQART (. 0625X10XX (~EBNO/10.)X+8446467)

WRITE(6s24) AVAR

FORMAT(’ INPUT THE VALUE ‘vFB8B.7+’ . INTD THE PROGRAM.’)
READX s FACTOR

NE=0

NRITS=0 |

S1=C0S8(3.1415926/8)/2

S2=8IN(3.1415926/8)/2

CALL GGNML (DSEEXsNRsR)

Al=R(1)

A2=R(2)

RCR= S1+A1XFACTOR

RCI= S2+A2%FACTOR

ANGLE=ATAN2(RCIYRCR)/(3.1415936/ 4. )

IF (ANGLE.LT.0) ANGLE=ANGLE+8

IANGLE=ANGLE

IF ((IANGLE.EQ+1).0R+ (IANGLEEQ.3).0R, (IANGLE.EQ.7)) NE=NE+1
IF ((IANGLE+EQ+2).0R.(IANGLE.EQ.4) DR (IANGLEJEQ.6)) NE=NE+2
IF (IANGLE.EQ+.S) NE= NE+3 "
NEBITS=NEITS+3

IF (MOD(NBITS»30000).NE.O) GO TO 3

FERROR=NE*1./NEITS

WRITE(6926) NBRITS»FERROR

FORMAT(’ FOR “»19s’ THE BER IS ‘»F8.7)

IF (NBITS.LT.NTOTAL) GO TO 3

STOF

END .
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call #»sk8

TEMFPNAME ASSUMED AS MEMBERNAMIE
INFUT THE ENERGY FPER RIT TO NOISE RATIO (IN R

? .

é

WHAT IS THE TOTAL NUMBER 0OF BITS YOU WANT TO SIMULATE®?

4 : -.

100000
INPUT THE SEED FOR THE RANDOM NUMBER GENERATOR.

? .

4540

INPUT THE VALUE .1023045 INTO THE FROGRAM.

7 ' -

+1023 bita .
FOR 30000ATHE BER IS .0200000
FOR 60000 THE BER IS .0194833
FOR - 90000 THE BER IS .0195889.

- FOR 120000 THE BER IS ,0200000
READY

]
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:+  FLTRLOSS.FORT’

THIS FPROGRAM EVALUATES THE FILTER LOSS OF FRLSES WHICH ARE
SYMMETRICAL AEQUT THE CENTER. THE MAXIMUM AMPLITUDE IS FOUND
CONSTRUCTIVELY SUPERIMFOSING SHIFTED WERSIONS OF THE FULSE.

oooooc

11

r

(4]

THEN THE FILTER LOSS IS CALCULATED ACCORDING TO THE FOR&QLA

GIVEN IN THE THESIS.

DIMENSION FULSE(300:8) s AMF(300).
READ *» (PULSE(Is1)»I=1516)

no 11 I1=17,300

PULSE(I»1)=0.

DO 1 I=1,16
FPULSE(I+16»1)=FULSE(16~I+1,17
CONTINUE

DO 2 Ji=4,16

DO 9 K1=2,8

DO 10 K2=1»300

FULSE(K2»K1)=0

CONTINUE

CONTINUE

D0 3 J2=2,8

00 4 J3=1,32

PULSE (J3+2%XJ1X(J2-1)yJ2)=PULSE(J3,1)

CONTINUE

CONTINUE

DO S J2=1,300

SUM=0.

Do & J3?178

SUM=SUM+PFPUILLSE (J2+J3)
CONTINUE

AMFP (J2)=8SUM .
CONTINUE

AMAXU=0.,

AMAXS=0,

Do 7 J2=1,250
R1=2%X(AMP (J2) XXx2)

R2=AMP (J2)XX2+AMP (J24+J1 )4k
IF (R1.GT.AMAXU) AMAXU=R1
IF (R2.,6T.AMAXS) aMAXS=R2
CONTINUE

FL1= 10*ALUGIO(AMAXU*J1/310),
FL2= 10XALOGI10(AMAXSXJL1/31l.>
WRITE(62X) J1»FL1sFL2 )
CONTINUE

REALIl x»IC

IF (IC.EQ.1) GO TO 8

STOF

END -
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