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Abstract

This thesis addresses the problem of severe bandwidth.

and power limitation of future satellite systems by a joint con-

sideration of coding and modulation. Bandwidth economy is achieved

by two methods. First, baseband pulses with rapid spectral roll-

off and less than unity bandwidth-to-symbol-rate ratioare obtained

by allowing controlled intersymbol interference (ISI). Second,

phase shift keying (PSK) having more phases is used.

Convolutional encoding with maximum likelihood decoding

is used to tradeoff some bandwidth economy acquired to overcome

the power limitation. Lower bounds, tight in most cases, are

derived for the minimum free Euclidean distance of the modulator

output signals, after coding and inclusive of ISI. These bounds

are used for searching good encoders.

Various encoder structures and modulation schemes are

proposed. In combining a rate 2/3 encoder of six binary memories

with 80-PSK modulation having controlled ISI, an Eb/No gain of

4-5 dB over uncoded QPSK is achieved simultaneously with marked

spectral improvement.



System performances are evaluated theoretically and

confirmed by simulation.

THESIS SUPERVISOR: Pierre A. Humblet

TITLE: Assistant Professor of Electrical Engineering

CO-OP COMPANY SUPERVISOR: Russell J. F. Fang

TITLE: Manager, Communication System Analysis, COMSAT Labs



ACKNOWLEDGMENTS

I would like to give my sincere thanks to Professor

Pierre A. Humblet who, despite distance, contributed much more

attention to my research than is expected for a Co-op thesis super-

visor. His insistence on clarity of presentation improved both

my communication skills and the lucidity of this thesis.

Special thanks also go to Dr. Russell Fang, who first

introduced me to the subject and provided helpful supervision along

the way. His keen sense of industrial application adds a new dimen-

sion to my academic pursuit, making the Co-op experience so worth-

while. I would also like to thank COMSAT Labs for providing

this opportunity.

I am also indebted to Dr. Lin Nan Lee and Mr. Smith Rhodes,

both of whom helped me to understand modulation and coding;

Ms. Linda Mikisits for preparing some of the graphs; and Mr. and

Mrs. Mark Eng for their hospitality during this period, thus

providing the more humane part of my education.



Table of Contents

Page No.

TITLE PAGE

ABSTRACT ................................................

ACKNOWLEDGMENTS .....................................................

TABLE OF CONTENTS .........................................

LIST OF FIGURES .........................................

CHAPTER 1. POWER AND

SATELLITE

BANDWIDTH LIMITATIONS

COMMUNICATION SYSTEMS

OF CURRENT

CHAPTER 2.

CHAPTER 3.

CHAPTER 4.

REVIEW OF PREVIOUS WORK .....................

TRANSMITTER AND RECEIVER-STRUCTURES FOR
BASEBAND PULSES WITH CONTROLLED INTERSYMBOL

INTERFERENCE ................................
3.1 TRANSMITTER STRUCTURE ..................

3.2 METRIC DERIVATION ......................

3.3 RECEIVER STRUCTURE ......................

3.4 STAGGERING QUADRATURE COMPONENTS FOR

LIMITING SPECTRAL SIDELOBE REGROWTH ....

FILTER DESIGN WITH SMALL OUT-OF-BAND

EMISSION .............................................

4.1 INTRODUCTION ............................

4.2 PULSE SHAPE OPTIMIZATION ...............

4.3 SEVERAL PULSE SHAPES ...................

40

40

43

47



Page No.

4.4

4.5

BT PRODUCT . ............................

FILTER LOSS ............................

CHAPTER 5. CONVOLUTIONAL ENCODERS FOR MULTIPHASE

MODULATION WITHOUT INTERSYMBOL

INTERFERENCE ...............................

5.1 DEFINITIONS ...........................

5.2 BINARY ENCODERS WITH STRAIGHT BINARY

MAPPING ...............................

5.3 OCTAL ENCODERS WITH IDENTITY

MAPPING ...............................

5.4 GF(8) ENCODERS ........................

CHAPTER 6. CONVOLUTIONAL ENCODER DESIGNS FOR BASEBAND

PULSES WITH CONTROLLED INTERSYMBOL

INTERFERENCE ...............................

6.1 BOUNDS ON df IN THE PRESENCE

OF ISI ................................

6.2 CODE SEARCHING ........................

CHAPTER 7.

CHAPTER 8.

PERFORMANCE EVALUATION ....................

7.1 THEORETICAL RESULTS ...................

7.2 COMPUTER SIMULATION ...................

CONCLUSION AND SUGGESTION FOR FURTHER

RESEARCH .......... ....... ....................

APPENDIX A. ANALYSES OF PULSE OPTIMIZATION

FOR m = 1,2 ...................

80
80

83

89

95

102

102

109

120

120

124

135

138



Page No.

APPENDIX B.

APPENDIX C.

APPENDIX D.

APPENDIX E.

CODE SEARCHING ALGORITHMS FOR

RATE 2/3 CODED 8 ..............

PROGRAM FOR SEARCHING OPTIMAL

RATE 1/2 CODED 44 WITH

NONZERO hi .... .. .. .. .. ... .. ...

PROGRAMS FOR DECODERS .........

MISCELLANEOUS PROGRAMS ........

REFERENCES .................................

148

174

182

197

203



List of Figures

Figure No.

3.1

3.2

3.3

3.4

3.5

3.6

3.7

3.8

3.9

3.10

3.11

4.1

4.2

Title

Transmitter Structure ....................

Channel Symbol Set for 80-PSK ............

Fourier Transform of x(t) ................

The Channel Filter .......................

Demodulator Structure ....................

Trellis Diagram and Encoder Structure for

Rate p/q Encoder with y Memories .........

Configuration of a Rate 2/3 Convolutional

Encoder with 2(s-1) Extra Bits to Denote

Memory Due to ISI of Channel ...........

Reversed Polarity in 44-PSK ..............

Envelope Null at Reversed Polarity after

Filtering ................................

Removal of Nulls after Filtering .........

Channel Cross-Coupling after Nonlinear

Amplifier ................................

N-th Order Beta Functions ................

Power Spectrum of Oth Order Beta Function

(Rectangular Pulse Shape, m = 1, n = 0) ..

Page No.

20

22 -
22

24

32

33

34

36

36

38

38

49

50
Power Spectrum

(m = 1, n = 1)
Power Spectrum

(m = 1, n = 2)

Power Spectrum

(m = 1, n = 3)
Power Spectrum

(m = 1, n = 4)

of ist Order Beta Function

of 2nd Order Beta Function

of 3rd Order Beta Function

of 4th Order Beta Function

Half-Cosine Pulse Shaping (m = 2,
n = 1)...................................

4.3

4.4

4.5

4.6

4.7



List of Figures (Continued)

Figure No.

4.8

4.9

Title

2nd Order Trigonometric-Hyperbolic

Function (m = 2, n = 2) ................

Power Spectrum of Half-Cosine Pulse

Shaping (m = 2, n = 1) ...................

Page No.

57

58
4.10 Power Spectrum of 2nd Order Trigonometric-

Hyperbolic Function (m = 2, n = 2) .......

4.11 Raised-Cosine Pulse Shaping ................

4.12 Power Spectrum of Raised-Cosine ..........

4.13 N-th Order Truncated Sinc Functions ......

Power Spectrum

Sinc Function

Power Spectrum

Sinc Function

Power Spectrum

Sinc Function

Power Spectrum

of ist Order Truncated

of 2nd Order Trunca........te..

of 2nd Order Truncated

of 3rd Order Truncated

................ *..........

of 4th Order Truncated

Sinc Function. ...........................

Characteristics of Nonlinearity ...........
r' -T kc- A Fr~y- =~rv- =r A v='l c=AC'rvc,4 -n..=

F_ vs e for the 1st and 2nd Order Beta

Functions (m = 1, n = 1, 2) ............

FI vs 6 for the 3rd and 4th Order Beta

Functions (m = 1, n = 3, 4) ..............

F2 vs E for the 1st and 2nd Order

Truncated Sinc Functions .................

F vs 8 for the 3rd and 4th Order

Truncated Sinc Functions .................

4.14

4.15

4.16

4.17

4.18

4.19

4.20

4.21

4.22

4.23

4.24

5.1

Shapings ...

M(k)] ......

A Comparison of Various Pulse

Effect of wk on D[M(wk ( Fk ) '

i VO V LVI VV~LIU~r~~ ~UIO~~~VDI~~~ · r,··r



List of Figures (Continued)

Figure No.
5.2

5.3

5.4

5.5

5.6

6.1

6.2

6.3

6.4

6.5

6.6

7.1

7.2

7.3

7.4

7.5

7.6

B.1

Title

A Feedback Convolutional Encoder ..........

Addition and Multiplication Tables for

Octal Convolutional Encoder ..............

A Rate 2/3 Coded 80 Octal Convolutional

Encoder with 2 Octal Memories ............

Rate 1/2 Coded 80 Octal Convolutional

Encoders with 0, 1, and 2 Octal

Memories .................................

Addition and Multiplication Tables for

GF(8) Encoders

df

df

df

df

df

df

A

A

A

vs

vs

vs

vs

vs

vs

rate

rate

rate

h, for

h, for

h, for

h i for

h, for

h i for

1/2 y

2/3 y

2/3 y

2..........................

= 2 .......................

3 .. ......................

= .......................
5 .......................

6 ........ .. ....... ......

2

= 4

= 6

Performance of

and INTELSAT V

Performance of

7 .......................

Encoder .................

Encoder .................

Encoder .................

Rate 2/3

Channels

Rate 2/3

Coded 84 over AWGN

Coded 84 over AWGN

Channel with Controlled ISI ..............

Performance of Rate 1/2 Coded 40 over AWGN

Channel with Controlled ISI ..............

A General Convolutional Rate 2/3

Encoder ..................................

Page No.

89

90

96

98

114

115

116

117

118

119

128

129

130

131

132

133

150



Chapter 1. POWER AND BANDWIDTH LIMITATIONS OF CURRENT
SATELLITE COMMUNICATIONS SYSTEMS

In recent years, lowered cost and more diversified appli-

cations of satellite communications systems have dramatically

increased the demand for communication traffic via satellite.

Consequently, the existing spectral allocation for satellite serv-

ices in the 6/4-GHz band has become extremely congested. This

spectral congestion problem may be alleviated by designing satel-

lites which would reuse the same frequency band for a multiple

number of times or would operate in higher frequency bands such

as 14/11 GHz or 30/20 GHz. Multiple frequency reuses can be real-

ized by employing carrier waves with orthogonal sense of polariza-

tion or by employing a multiple-beam satellite antenna design.

The imperfect isolation between satellite antenna beams, as well

as nonideal polarization isolation, causes co-channel interference

(CCI) that can be one of the major impairments in a satellite system

reusing the same frequency spectrum for a multiple number of times.

The co-channel interference can be especially severe if the reuse

is achieved by orthogonal polarization, since rain can cause signif-

icant depolarization on the carrier waves.

Another source of interference is called adjacent channel

interference (ACI), which is due to imperfect transponder frequency

isolation.

Generally, the carrier-to-interference (CCI + ACI) ratio

(C/I) cannot be improved by merely increasing the carrier power

since the interference caused by nonideal isolation would increase

as well. Therefore, the overall available carrier-to-thermal noise
and interference power ratio [C/(N + I)] of a multiple-beam satel-
lite system can be limited because of the presence of interference.

11



As a result, allowable power as well as bandwidth will be limited
in future multibeam satellite systems such as the INE~ZSAT VI; The power
limitation for avoiding interference can be particularly severe at
30/20 GHz where signals are more vulnerable to fades due to rain.

The Satellite Business Systems (SBS) is another example
where there exists power and bandwidth limitations. Low equipment
cost for High Power Amplifier (HPA) and antenna on the ground is
crucial for the successful development of such systems. These
cost considerations would limit the power available for trans-
mission. The SBS system operates in the 14/11 GHz band, which is
comparatively less congested than the 6/4 GHz band. However, band-
width limitation is anticipated even in this new band when the
number of users for such systems increases.

The purpose of this thesis is to address the transmission
system design problem for satellite channels that are both band-
width and power limited. Specifically, a joint forward error
correction (FEC) coding and modulation system design approach is
proposed.

The transmission system design problem becomes quite
complex when real system constraints are included. The impairments
caused by thermal noise, intersymbol interference (ISI), CCI, ACI,
and channel nonlinearities must all be considered. Frequently,
many of such impairments are mutually coupled. For example, in
the Time Division Multiple Access (TDMA) system, the modulated
signal must be filtered to minimize the interference into adjacent
channel. Due to power and cost considerations, it is desirable
to operate the HPA near saturation at the earth station. However,
the spectral sidelobes of the filtered TDMA signal would regrow
and spread after it is amplified by the nonlinear HPA. This
spectral sidelobe regrowth can cause undesirable out-of-band emis-
sion (OBE) noise and adjacent channel interference. It can also
cause additional intersymbol interference when the signal is



further filtered by the satellite transponder filters and the earth

station receive filters. Thus, the operating point of the earth

station HPA is frequently backed off from its saturation power

level in order to minimize the impairments caused by ISI and ACI

or to limit the OBE noise. At the satellite transponder, the non-

linear Traveling Wave Tube Amplifier (TWTA) would further degrade

the system performance and it often must also be backed off from

its saturation power level in order to minimize ISI, ACI and other

nonlinearity effects such as phase noise due to AM/PM conversion.

The more robust approach of joint coding and modulation system

design suggested in this thesis will hopefully combat such impair-

ments present in a realistic power and bandwidth limited environment.

This thesis will consist of 8 chapters. Chapter 1 has

given a description of the bandwidth and power limited satellite

channels. Chapter 2 reviews previous work performed on the subject

of coding and modulation system design for satellite channels.

Chapter 3 models the transmitter and receiver structures and derives

the likelihood ratio of signals in the presence of intersymbol

interference. Chapter 4 deals with the problem of filter design

which minimizes out-of-band emission. Chapter 5 presents several

classes of encoders suitable for coded 80-PSK modulation in the

absence of ISI. Chapter 6 discusses the subject of convolution

encoder designs in the presence of intersymbol interference.

Chapter 7 evaluates the overall system performance in theory as

well as by system simulation to find the coding gain with respect

to uncoded 40-PSK and bandwidth required for given bit error rate.

The last chapter concludes the thesis and provides suggestions

for further research.



CHAPTER 2. REVIEW OF PREVIOUS WORK

Most of the previous works dealing with bandwidth limita-

tion or power limitation fail to address both subjects simultaneously.

In this review we are going to cite merits of some approaches and

reasons for rejecting others. After some reorganizing of the pre-

ferred approaches, we hope to form a unified framework for the

course of research of this thesis.

We start by looking at some bandwidth efficient modu-

lation techniques, then power efficient coding techniques and

afterwards maximum likelihood detection which is often applicable

for these bandwidth or power efficient techniques. Finally, we

shall state our approach.

To speak about bandwidth efficiency, one must define

what bandwidth is, which unfortunately does not have a universally

satisfying definition. Recently, Amoroso [1] has given a rather

comprehensive summary of various definitions for spectral band-

width of a signal. Different pulse shape would be obtained in

minimizing bandwidth under different definitions of bandwidth.

One such example is described in the classical paper by Landau

and Pollack [2] in which a prolate spheroidal function minimizes

the width of the frequency band containing a specified fraction

of the signal energy.

Lacking a universal criterion for bandwidth economy,

modulation schemes are judged very often by inspecting their power

spectra. Nevertheless, several modulations that are claimed to be

bandwidth efficient have evolved in recent years.

Minimum shift keying (MSK) [3] is one such scheme using

half-cosine as baseband pulse with the two quadrature channel pulse

trains offset by half a pulse repetition interval. MSK can be

viewed as a special case of continuous phase M-ary frequency shift



keying (MFSK) with M = 2. Due to its constancy of envelope, MSK

is more compatible with nonlinear satellite transmission mode.

However, it can hardly be claimed as bandwidth efficient since

the null-to-null bandwidth is 50 percent more than that of 44-PSK

with rectangular pulse shape. In a recent paper [4], Rhodes pro-

posed another constant envelope modulation called the frequency

shift offset quadrature (FSOQ) modulation which is basically con-

tinuous phase 3FSK, with improved spectral property over MSK at

the cost of slightly increased transmission complexity. Several

other schemes use overlapped baseband pulses, such as overlapped

raised cosine [6] and truncated sinc functions [7], which achieve

spectral efficiency at the expense of slight envelope fluctuation

and presence of intersymbol interference. The merit of all these

schemes is that they can be treated as quadrature pulse amplitude

modulation (QPAM) which is convenient for analyses and high speed

implementation. However, these schemes do not improve power economy

over QPSK using rectangular pulse-shaping.

One power efficient coding technique is described by

Ungerboeck [10]. Redundancy is introduced by using a rate 2/3

convolutional encoder which takes in 2 bits, and maps its 3-bit

output into the eight phases of 84-PSK. Ungerboeck was able to

achieve 3-6 dB gain over uncoded 44-PSK, with the same information

rate and spectral efficiency. It seems very appealing if the power

efficiency of Ungerboeck's rate 2/3 coded 8-0 can be combined with

the spectral efficiency of some of the QPAM schemes mentioned

previously.

We shall prefer this combined coding and modulation over

another well-known class of hybrid coding and modulation schemes,

called correlated phase shift keying (CORPSK) or alternatively

called trellis phase code, summarized in the paper by Muilwijk

[8]. Typically, these schemes convolutionally encode the input

bit sequence into multilevel phase positions, which are interpolated



to generate a smooth phase function for phase modulation. For

example, tamed frequency modulation (TFM) [5] achieves reduced

bandwidth through convolutionally encoding three input bits into

8-phase positions. Anderson and Taylor [9] have shown that trellis

phase codes can achieve substantial power improvement (2 to 4 dB)

over 44-PSK, with reduced bandwidth at the same time. It is pos-

sible that the gain of CORPSK can be achieved by less complex

coded QPAM schemes. In fact, we expect our combined coding and

modulation approach to achieve better spectral and power efficiency

than CORPSK.

A proper understanding of maximum likelihood (ML)

decoding using the Viterbi algorithm is indispensable for optimal

detection in case overlapped baseband pulse, or coded M-ary PSK,

or trellis phase code is employed. ML detection for convolutional

codes in the presence of non-stochastic channel impairments (such

as bandlimiting, distortion by nonlinear elements or cross channel

coupling) is a fairly well studied topic. ML estimation for band-

limited linear channel has been investigated by Forney [11] and

Ungerboeck [12]. A summary of these results is presented in [13].

Mesiya et al [14] treated the ML detection problem for the non-

linear and bandlimited channel using a bank of matched filters.

Hermann [15] subsequently evaluated numerically the degradation

of the free Euclidean distance for uncoded signals transmitted in

a bandlimited nonlinear channel and found the performance loss

relative to the linear channel to be small. Hence there exists a

substantial potential for receiver improvement by ML estimation

relative to bit-by-bit detection. However, the question of pulse

design is not addressed in these papers. Furthermore, the problem
of code design with good free Euclidean distance is left out.

The framework formulated is as follows. First, we shall

attempt to define bandwidth efficiency and obtain optimal pulse



shapes according to these definitions. These pulses will be over-

lapped at baseband and coded M-ary PSK will be employed. Search

algorithm for optimal encoder for M-ary PSK channel with controlled

ISI will be investigated. ML detection is used for decoding.

We shall not treat the nonlinear satellite channel in

our analysis, thus limiting ourselves to linear additive white

Gaussian noise channel. The research of this thesis started with

the practical problem stated in Chapter 1. Research direction is

framed in this chapter and we shall proceed to offer a unified

solution in later chapters.
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CHAPTER 3. TRANSMITTER AND RECEIVER STRUCTURES FOR
BASEBAND PULSES WITH CONTROLLED

INTERSYMBOL INTERFERENCE

The bulk of the literature on channel coding is mostly

concerned with reliable transmission over a binary symmetric chan-

nel. The encoding stage would take in a sequence of binary digits

and deliver a binary sequence which is relatively immune to error

occurrences. Unfortunately, such encoding techniques for binary

symmetric channels are inadequate for most modulation schemes which

use multilevel/phase signals. Until now, results for channel coding

employing multilevel/phase signals are relatively few [10]. The

problem of optimal code design for modulation schemes with control-

led intersymbol interference (ISI) is scarcely addressed. However,

growing demand for communications bandwidth in recent years has

stimulated interest in modulation schemes employing expanded signal

set and baseband pulses with controlled ISI. These novel modulation

schemes necessitate the consideration of coding and modulation as

an entity. For channels corrupted by Additive White Gaussian Noise

(AWGN), we want to maximize the minimum free Euclidean distance

amongst the coded channel waveforms. This chapter presents a

unified mathematical model for M-ary PSK modulation technique with

channel encoding for the AWGN channel. The modelling attempts to

abstract the complicated satellite channel in a way that is mathe-

matically tractable. The results obtained from this modeling will

be tested by simulation in Chapter 7.



3.1 Transmitter Structure

The data source (Figure 3.1) puts out a sequence u con-

sisting of binary uk's which are statistically independent random

variables with equal probability of being 0 or 1. The data stream

is fed into a convolutional encoder to increase the message redun-

dancy before transmission. The encoder output is mapped into a

sequence v consisting of vk's which are elements of an M-ary PSK

channel symbol set. In the example shown in Figure 3.2 for 8ý-PSK,

vks{0, 1, 2, ...,7}. For practical application, M is rarely greater

than 8 when phase and timing jitter would then become a major limita-

tion of system performance.

Throughout this thesis, convolutional encoders are em-

ployed due to their generally superior error correction capability

compared to block coding as well as relative ease of decoding and

code searching by the Viterbi algorithm. The problem of finding

optimal encoder with multiphase signals will be explored in Chap-

ter 4.

The low pass filter with impulse response V2'T h'(t)

(Es being the modulated signal power per symbol) provides the in-

phase and quadrature envelope functions sr(t) and si (t) given by

N 22 vk
sr(t) = 12E h'(t - kT) cos M

k=-N

2nv
k

si(t) = J 2i hl'(t - kT) sin -M

k=-N

The envelope functions then modulate the carriers cos 2nf t and

sin 2nf t which are afterwards added to give the modulated signal



4J4-)
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N ( 2cv 2nvkt
x(t) 1= 2E h'(t - kT) cos k cos2nft- sin M sin 2f c

k=-N

= I 42E h'(t - kT) cos 2nfct + M
k=-N

N

= 42Es h'(t - kT) eJ 2 fct+j2 nVk/M + ()
k=-N

where (*) denotes the conjugate of the term before it. Defining

N
s(t) = IE h'(t - kT) ej2nvk/M

k=-N

The modulated signal can be expressed as

1 j2nfct 1 * -j2nfct
x(t) = s(t) ejnf + s (t) e-j

and applying Fourier transformation gives
1 1 *

X(f) - S(f - f) + 2 S (-f - f

as shown in Figure 3.3.

Often times, the modulated signal is subsequently

filtered to minimize adjacent channel interference. Therefore,

the transmission channel is bandlimited and the band-pass filter

with impulse response g(t) (Figure 3.1) is added to model the channel.

Assume the Fourier transform of g(t) given by

G(f) = g(t) e- j 2n f t dt



sin wt

3

5 S

1

cos -Act

Figure 3.2. Channel Symbol Set for 84-PSK

X(f)

1/2 S (f-fc)

I

Fourier Transform of x(t)

~~__ ___ __

1/2 S* (-f-fc)I

Figure 3.3.



to have a spectral shape as shown in Figure 3.4, and define Go(f)

such that

G(f) = Go(f - fc) + GO (-f - f) , and let

00

g (t) = J G(f) ej 2nft df
-CO

so that

j2 fct (* -j2tf
g(t) = go(t) eJ fc t + g (t) e cj2ft

= 2 Re[g0 (t) ej2nfct]

Finally, the spectrum of the channel filtered signal and its

inverse Fourier transform, assuming s(t) is low pass (<fc) are
respectively

1 1 * *Y(f) =2 S(f - f ) Go(f - f) + S (f - f ) G (-f - fc)

y(t) (t) e2fct +

-Re[s(t) * go(t) ej2nct

in which

N
s(t)*go(t) = 2E h'(t- kT) ej2 vk/M * go(t)

k=-N

N

[ [;27 h'(t - kT) * g ( t ) ] e j 2 nv k / M

k=-N

Defining s h(t - kT) = h'(t - kT) * go(t) gives

23,



G(f)

Figure 3.4. The Channel Filter

Go* (-f-I (f-fc)
I

I I



N

y(t) = Re [12s h(t - kT) ej2nfct+j2nvk/M
k=-N

N
= 1 J h(t kT) ej2nfct+j2nvk/M +

k=-N

Therefore, the two filters in the model can be combined by replac-

ing uE7 h'(t) with )2iE h(t) and omitting the channel filter with

impulse response g(t) in Figure 3.1. As go(t) can be complex in

general, so can h(t). In the following discussion, we shall assume

h(t) h (t) = 1

3.2 Metric Derivation

The signal y(t) is then corrupted by a zero mean white

Gaussian noise n(t) with

No
E[n(t) n'(t)] = o (t - t')

The received waveform is given by

r(t) = y(t) + n(t)

Note in particular that y(t) is real and consequently r(t) is also

real.

A maximum likelihood receiver chooses the source sequence

u that would most likely result in the waveform r(t) after noise

corruption. For AWGN corruption, it is well known [17] that the

logarithm of this likelihood is proportional to the negative value

of the Euclidean distance between the received r(t) and the



uncorrupted yu (t) generated by the sequence u. Consequently, the

metric for measuring distances amongst waveforms will be Euclidean,

with Euclidean distance defined by

r(t) - Yu(t) 2 = f [r(t) - yu(t)][r(t) - yu(t)]* dt
-00

Therefore, the decision rule which minimizes the error probability,

based on the entire received signal, is to choose u iff

P[r(t)J•yu(t)]
In P[r(t)yu,(t)] > 0 for all u' / uP[r(t)ly u(t)I

and for AWGN corruption, this likelihood ratio is equal to

II r(t) - Yu(t)l 2 - IJr(t) - yu'(t) 1 2

00 N

00

S f [y (t) - y2,(t)] r(t) dt
-00

Hence, each input sequence u is associated with a Au for each

received waveform r(t) such that

Au o Yu(t) r(t) dt - C (t) dt

and the decision rule is to choose the u with the largest Xu . For
simplicity, the following derivations will drop the subscript u.



The remaining of this section is devoted to expressing

X in terms of a complex discrete sequence of sufficient statistics

r." As we shall see later, the sufficient statistics rk are gener-

ated by the demodulator as samples of the matched filter output.

The first term in the expression for A is

f y(t) r(t) dt

0 N
= E 2 l h(t - kT) eJ2nfct + j 2nvk/M r(t)

-o k=-N

+ () dt

N

= E eej2nvk/M rk + (.)
k=-N

N
= N Re[ej2nvk/M rk]

k=-N

in which

rk = f h(t - kT) ej2nfct r(t) dt
_-00

is a complex number. The second term for A is given by

f y2(t) dt

N 2
= Es . h(t - kT) ej 2 fct+j2nvk/M + ( dt

- k=-N
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cN N

= Es a )h(t - kT) h(t - 2T) ej4nfct+j(vk+V) 2n/M

-c k=-N £=-N

+ () dt

00 N

+f Es k

-a k=-

N

E h(t - kT) h* (t - T) e(V k v)2n/M

-N £=-N

+ (*) dt

We assumed previously s(t) to be low pass, or roughly speaking

h(t) is slow-varying with respect to the carrier frequency. The

first integral in the above expression can be shown to equal zero.

Furthermore, define

hk-k = h(t- kT) h (t - aT) dt

= f ~ H(I)12 -jwT(k-2) dw

= hkC-k

Consequently, the second term for X becomes

1 E2 s ,, ,( k v)2n/M hk+
'kk-I

k=-N £=

N

sk=-
k=-NI

N
S Re [eJ (vk-V£)2n/M hk-£

£=-N

K,,Y A

I 1 1

-•



The overall expression for X is then given by

X = 2 N s F Re e kj2nv k/ rkN
k=-N

No  Es Re ej(vkv) 2n/M hk-£
k=-N £=-N

The second term in the above expression is a symmetrical quadratic

form. The terms that are symmetrical to the diagonal are equal

since

Re[ej(v - v k)2n/M * hk]

= Re[e(v 2
- vk)2n/M * h-k]

= Re[eJ(vkv 2 )2n/M * h-k

= Re[eJ(vk-v )2n/M hk-£

Therefore, the double summation for A can be separated into two

terms which are twice the upper triangular quadratic form and the

sum of the diagonal terms.

N N

X = 2 NRe[ej 2nvk/M r k N X 4 h
k=-N k=-N

j N k+N
s k= 2- Ree ivkn=/ME ejk-n/MI ha

k=-N 2=1



For sufficiently large k, the intersymbol interference co-

efficient h2 should be small. If we limit the intersymbol

interference effect to s symbol, (i.e., hi = 0 for lii _ s), then

N N

0 s o
k=-N k=-N

- 24s Re j2nvk/M 1 ejv k-n/Mh
k=-N £=1

Defining

Ak = 2Re[eJ27vk/M rk - JE ho

- 2 E Re ej2nvk/M e-/j2nvk--/M h
2=1

so that

E-- N

N0  k
k=-N

The maximization of X over all possible u is a dynamic

programming problem which can be efficiently performed by the

Viterbi algorithm [13]. The optimal receiver structure for this

mathematical model follows immediately from the expression for A.



3.3 Receiver Structure

As we have just seen, the sufficient statistics for detec-

tion is given by

rk= J2-h(t - kT) ej2nfc t r(t) dt

which can be generated by a correlation receiver as shown in Fig-

ure 3.5. The received signal is multiplied by the in-phase and

quadrature carriers before it is passed into filters matched to

the transmit filter with impulse response h(t). The carriers can

be recovered by conventional phase lock loop techniques. The filter

output is sampled at appropriate instants with adequate timing

synchronization. With the rk's at hand, the most likely u can be

estimated by trellis search using the Viterbi Algorithm. Consider

the trellis diagram for a certain binary convolutional encoder of

rate p/q and having y binary memories in the absence of ISI as

shown in Figure 3.6. The encoder shown has 2 Y states. Merging

into every state are 2P branches each associated with a channel

symbol which is an element of the channel symbol set. In the

presence of ISI, the channel "remembers" the past s-1 symbols.

Consider adding (s - 1) shift registers to each queue of the

encoder (or p.(s - 1) shift registers added altogether) as shown

in Figure 3.7. Obviously, knowing the content of the shift registers

for this convolutional encoder with extended memory is sufficient

for calculating the present as well as the past (s - 1) channel

symbols. The state of the system (encoder plus channel) is suf-

ficiently represented by the content of the shift registers for

the encoder with extended memory. The trellis diagram in the

presence of ISI, therefore, consists of 2y+p.(s-1) states.

The probability of error Pe depends on the Euclidean

distances between codeword waveforms. Asymptotically, Pe is

determined by the minimum free Euclidean distance.
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3.4 Staggering Quadrature Components for Limiting Spectral
Sidelobe Regrowth

Often times, one of the quadrature component is delayed

by half a repetition interval T forming the so called staggered

44-PSK. For Time Division Multiple Access (TDMA) transmission,

the transponder power amplifiers are operated near saturation and

behave like band-pass soft limiters. To avoid adjacent channel

interference, the signal is usually band-pass filtered before it

is amplified. However, for unstaggered 4ý-PSK modulation, the non-

linear amplifier causes the spectral sidelobes to regrow to nearly

their original unfiltered level. In this section, we attempt to

explain this phenomenon and why staggering quadrature components

may reduce spectral sidelobe regrowth.

For conventional 4ý-PSK (with rectangular pulse shaping),

the transmission often times has phase shifts of n radians when

the polarity is reversed (Figure 3.8). When the signal is filtered,

envelope nulls occur in the regions where polarity is reversed,

resulting in envelope fluctuations (Figure 3.9). The nonlinearity

of power saturation or envelope limiting tends to restore these

envelope nulls and consequently brings back the high frequency

content of the signal that has been filtered out previously.

On the other hand, staggered 44-PSK makes ± t/2 radians

phase transitions only and avoids the phase shifts of n radians

that cause large envelope fluctuations, thereby limiting the

spectral sidelobe regrowth resulting from restoration of envelope

nulls. Consequently, the staggered 44-PSK could induce less adja-

cent channel interference than conventional 40-PSK in transmission

systems which do not suppress the spectral sidelobes by filtering

the output of the nonlinear amplifier.

The demodulator for the staggered case consists also of

matched filtering of the received signal as in the unstaggered case.

1 ~11_~1_ __1_ __~



Reversed Polarity in 40-PSK

-E.

Figure 3.9. Envelope Null at Reversed Polarity
After Filtering

Figure 3.8.



In a linear system, error performance and spectral shape are not

changed for the staggered case. Therefore, the mathematical

analyses in this thesis would refer to the unstaggered case.

This equivalence between the staggered and unstaggered

cases will not be preserved for a nonlinear channel. Before moving

onto the next chapter, it is worthwhile to look at cross-coupling

interference that results from envelope limiting of the nonlinear

TDMA transmission environment. The nonlinearity of power saturation

introduces an interaction between the in-phase and quadrature com-

ponents. This phenomenon is best explained by considering the

effect of envelope limiting on filtered MSK (minimum shift keying)

signals. MSK is a special form of staggered 44-PSK (d = T/2) that

uses half-cycle sinusoidal pulse shaping. Due to its constant

envelope, MSK can be useful for nonlinear transmission such as in

TDMA satellite communication. Unfortunately, MSK has a spectral

main lobe (the spectrum between the two nulls nearest to the zero

frequency) which is 50 percent wider than 44-PSK with rectangular

pulse shaping, which makes MSK infeasible if the transponder fre-

quency spacing Bc is very tight relative to the quaternary symbol

rate Rs . An example of such congested environment would be the

INTELSAT-V TDMA system using 40-PSK. It is planned to transmit

at 120 Mbit/s with a channel spacing of Bc = 80 MHz, giving a B c/Rs
ratio of 1.33. MSK communication requires a significantly larger

B c/Rs ratio in order that detection performance would not be

significantly deteriorated by ACI.

To reduce the bandwidth required for MSK, it is necessary

to filter the signal, which would then introduce intersymbol inter-

ference. The null of one of the quadrature modulation components

shown in Figure 3.10 is smoothed as the filter removes the high

frequency content of the sharp corner at the null. The removal

of the null causes an envelope boost. Therefore, MSK can still

experience significant envelope fluctuations if it is tightly

S37
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filtered. The peak power of the TWTA is shared by the two quadra-

ture components in envelope limiting when the satellite transponders

are operated at power saturation. As a result, the voltage level

of one component at the location of the former null is increased

at the expense of the decreased voltage level of the other component

(Figure 3.11). This weakening of some of the pulses would increase

the error rate of the system.

It is often over emphasized that constant envelope modula-

tion schemes are more compatible with nonlinear amplifiers (such as

TWTAs driven into saturation) than those non-constant envelope

modulation schemes. The above example of filtered MSK signaling

in a real system environment shows that channel bandwidth limitation

inevitably brings in envelope fluctuations as well as intersymbol

interference and cross-coupling interference. At small Bc/Rs ratio,

signaling waveforms with constant envelopes prior to bandlimiting

may perform no better than those with nonconstant envelopes. To

optimize system performance, pulse shaping should be designed to

match the channel characteristics, and the overly stringent con-

dition of constancy of envelope should be relieved. The question

of designing pulse shaping with improved spectral properties will

be addressed in the next chapter. The degree of nonconstancy of

envelope will be properly defined and quantified.



Chapter 4. FILTER DESIGN WITH SMALL OUT-OF-BAND EMISSION

4.1 INTRODUCTION

An uncertainty relationship between a function h(t) and

its Fourier transform H(w) states that the mean square time-spread

~(At)2  00(t - t 0 )2 h(t)[2 dt
(at)2 = fc Ih(t)1 2dt

and the mean square frequency-spread

(Aw)2 = 100 (W - W0)2  H(w)J2 dw

If H(w)I2 dw

cannot be restricted too severely at the same time for any choice

of to and wo. Specifically the product (At)(Aw) is at least 1/2,

and equality holds when h(t) is Gaussian, and to and wo are,

respectively

h tlh(t)j2 dt and wH(w) 2 d

f jh(t)j 2 dt 0 H(w)1 2dw

This mathematical statement of the uncertainty principle can be

put into a communication theory context. If we want to achieve

high speed data transmission by using baseband pulses h(t) which

are becoming more limited in time-spread At, it follows from the

uncertainty principle that H(w) would be broadened spectrally as
Aw increases.



In satellite communication, we would like to achieve as

high a rate of data transmission as possible for the allocated

spectral band, while out-of-band emission should be kept at an

acceptably low level.

Ideally, one would like to have zero out-of-band emis-

sion, thereby implying the channel to be strictly band-pass in

nature. However, such a sharp cut-off for pulse shaping results

in infinite ringing of the time-domain signal which would be dif-

ficult to implement. Throughout this thesis, many baseband

pulses considered are limited in time duration. Therefore,

criteria have to be established to evaluate the out-of-band emis-

sion of these time-limited pulses.

Three such criteria may be cited as follows. First,

the total energy that falls out of band may be computed and con-

strained to be less than a certain level. Second, the largest

out-of-band sidelobe may be constrained to have a peak power less

than the peak spectral density of the main lobe by a certain

amount. The third method constraints the rate of roll-off of the

spectrum.

The solution to the first approach is the well-known

class of prolate spheroidal functions lzl.Ringing is observed for

the subclass of time-limited prolate spheroidal functions.

The second method, even though crude in nature, is

often times fairly robust and computationally economical for

given pulse shaping. However, a mathematically tractable formu-

lation for finding the pulse which is optimal in the sense of

this criterion is rather unlikely.

The third criterion will predominate the discussion of
this chapter due to its ease of formulation for the optimization.
We shall observe that the optimized pulse generally does not

ring, which perhaps is an advantage over the prolate spheroidal

function. The rate of spectral roll-off is related to the
moments of the spectrum; i.e.,



f f2n H(f)j 2 df

for various values of n. Specifically, if the 2n-th moment is

bounded, then [H(f)12 must decrease faster than f2n+l1

In theory, one could achieve a high fraction of power

in band and rapid roll-off out of band by using h(t) of long dura-

tion, yet avoiding ISI provided it satisfies Nyquist's criterion.

However, it can be shown that the equivalent noise bandwidth

(defined in Section 4.3) times the repetition interval T cannot

be less than unity without introducing ISI, thus setting a limit

to the bandwidth economy. Very often, technological problems make

complete absence of ISI hard to achieve. First of all, the desired

pulse shape may be difficult for implementation. Second, system

performance would be sensitive to timing errors. Third, nonlinearity

of the channel may introduce ISI at the sampling instants. Further-

more, such pulse shaping may produce a high variability in envelope,

which is undesirable for satellite communication. The availability

of the Viterbi algorithm for decoding the effect of ISI enables

us to abandon the traditional approach of avoiding ISI by satisfying

the Nyquist criterion.

The optimization of bandwidth economy must start from

defining spectrum spread and time spread in a manner that reflects

the characteristics of the communication system. In terms of these

definitions, uncertainty principles which give a lower bound for

the product of the spectrum spread and the time spread can be

obtained. The optimal pulse shape is defined as the one which

achieves the value of the lower bound. Consequently, the optimal

pulse shape would be different under various definitions of the

uncertainty principle. The degree of nonconstancy of envelope

will be pictured by the filter loss defined later in the chapter.
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PULSE SHAPE OPTIMIZATION

The time spread of h(t) is defined as the interval r

over which h(t) is nonzero. For symmetry's sake, this interval

is assumed to be [-t/2, t/2]. A larger time spread for given

repetition rate 1/T may give more nonzero hi's

h i  f h(t) h(t - iT) dt

consequently increases the complexity of the trellis decoding of

the effect of ISI.

The spectrum spread is defined as the weighted moment

of h(t), given by

a n

Q{h(t)} =f akf H(f) H*(f) df
f k=o

in which H(f) is the Fourier transform of h(t). Each ak is a

non-negative weight for the 2k-th moment and an is assumed to be

nonzero. The ak's have proper dimensions so that Q{h(t)} has the

same dimension as the 2n-th moment of H(f) H*(f).

Each term in the summation for Q{h(t)} is bounded if

h(t) is (n-l) differentiable for all t. This follows from the

fact that if h(t) is j-differentiable, then asymptotically

H(f) H*(f) 50(1 /f 2 j + 4

and consequently

fkH(f) H*(f) 0 (1/f2j-k+4 )

As a result, the necessary condition for

4.2



J fk H(f) H*(f) df

to be bounded is

k < 2j + 3

The m-th power integral of h(t) is defined as

R{h(t)} =J hm(t) dt , m = 1

R{h(t)} for m = 2 corresponds physically to the energy of the pulse

and for m = 1, the area under h(t). Without loss of generality,

R{h(t)} is assumed to be positive by employing - h(t) instead if

R{h(t)} turns out to be negative.

The equivalent bandwidth of h(t) for a given A = {ak}
and m is defined as the bandwidth BA of the bandpass filter

Hb(O) for f < BA/ 2

Hb(f) =

otherwise

which satisfies the conditions

Q{hb(t)} = Q{h(t)}

R{hb(t)} = R{h(t)}

Once h(t) is given, these two constraints determine the values of

BA and Hb( 0 ). An optimal h(t) is, by definition, the pulse shape
that minimizes BAt. The physical meaning of some special BA's

will be discussed after we obtain the necessary and sufficient

conditions for optimality.

The two constraints are homogeneous in a sense that if

hb(t) and h(t) satisfy the constraints, then so would ahb(t) and



ah(t), leaving BA unchanged. Therefore, optimal solutions are

always defined up to a constant factor.

It can also be easily seen that BA is a monotonically

increasing function of the weighted moment of h(t) for a given

R{h(t)}. Thus, the solution for BA is always unique, hence, the

optimal h(t), denoted by ho(t), is the solution to the following

constrained optimization problem,

min Q{h(t)}
h

subject to

R{h(t)} = C

If BA for ho(t) is expressed as

B PA T

then the following form of the uncertainty principle is obtained.

For all h(t) of duration T with equivalent BA,

we have BAt - 0A

The remainder of this section is devoted to finding ho(t).

To express the weighted moment in terms of h(t), Parseval's

theorem is applied so that

n

Q{h(t)} = f ak H*(f) f2 k H(f) df
-o k=O0

n0 n
= a H(f) F{ ( 2k h(2k)(t) dt

-0 k=o

45



t-/2 n

= /(-)k a' h(t) h( 2k)(t) dt
-t/2 k=o

in which

at = (2n)-2k ak ak
In the process, we have assumed h(t) to be well behaved, that is,

at least 2n-differentiable in the open interval (-t/2, t/2).

Furthermore, the fact that h(t) is (n-l)-differentiable at all t

to keep Q{h(t)} bounded implies

h(k) (± ) = 0 for 0 5 k < n- 1

Using Lagrange multiplier techniques, we form the Lagrangian

n

G{h(t)} = (-1)n a' h(t)h(2k)(t) + X'hm (t)
k=O

The necessary condition for G to be stationary is given by the

generalized Euler's equation for calculus of variation problems [18],

namely that

8G d 8G kd aG d aG0
Sh dt ah(1 )  . k (k )  d t 2i  (Gh dt h dt + (ah- dt2n 3h (2n)

which, after simplification, is reduced to the form

n

1 (-I)n ak h(2 k)(t) = Xhm-lt)
k=o

in which

1A =- m X'

Therefore ho(t), the optimal pulse shape, is the solution for a

particular eigenvalue of the above 2n-th degree differential equa-

tion (nonlinear for mpl or 2) satisfying the 2n boundary conditions

at t = ± r/2.



Multiplying both sides of the above differential equa-

tion by h(t) and afterwards integrating over [-T/2, T/2], then

for optimal pulse shape

Q{ho(t)} = XR{ho(t)}

Since both Q{h(t)} and R{h(t)} are positive for all h(t),X is

positive and the sufficient condition for h(t) to be optimal is

to possess the smallest X possible.

4.3 SEVERAL PULSE SHAPES

We are going to solve the two cases of m = 1 and 2 for

the above formulation. In both cases,

1 if k = 2n
a' - 0 otherwise

As a result, specifying m and n is equivalent to specifying A,

and therefore, we shall substitute the subscript A with the sub-

script m,n. The solutions are listed in this section, while the

detailed derivation is shown in Appendix A. For both cases, the

optimal pulse shapes are observed to be nonringing. All the

pulses considered in this section are normalized to have unity

energy.

The value B1,0 is the equivalent noise bandwidth used

so often for error performance analysis. This bandwidth, which

we shall denote by B, is the width of the low-pass filter which

has the same energy as h(t), or in other words

B = (f)2 d

fH(0) 2



We are interested in evaluating the value of B for all

pulse shape considered in this chapter due to three reasons.

First, it has a physically appealing interpretation. Second, it

is easily computable. Third, not all baseband pulses have finite

2nth moment which enable us to compare their BT products, a con-

cept which will be introduced in the next section to describe

spectral occupancy of the pulse shapes.

Case 1 m=l

This case corresponds to minimizing the 2n-th moment of

a pulse shape with fixed energy. From Appendix A, we have

h 0 (t) = A(1 )n (1 + t)n

in which

A [(4n + 1)!]l/2 1
n (2n)! I

We shall call these functions the beta functions, which are sim-

ilar to the beta distribution found in probability theory. The

plots of hn0 (t) for n from 0 to 4 are given in Figure 4.1.

The spectrum of these five beta functions are derived

in Appendix A and are shown in Figure 4.2 through 4.6.

The values of Pl,n are as follows:

n 0 1 2 3 4 5

Pl,n 1 5.24 8.96 12.40 15.72 18.95
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The BT products are calculated to be

n 0 1 2 3 4

BT 1 1.200 1.429 1.630 1.814

Case 2 m = 2

This case is physically important because it corresponds

to minimizing the 2n-th moment of a pulse shape with fixed energy.

For n = 1,

]7cos for -t/2 5 t < T/2

h1
0 (t) =

0 otherwise

The half cosine pulse shape, when used with one quadrature stag-

gered by T/2, forms the well-known minimum shift key (MSK) modu-

lation. The spectrum of this pulse shape is

wt
(()1/2 cos 1-

H1  =

From Appendix A, we have P2,1 = 7.695 and BT = 1.235

For n = 2

h2 (t) = 0.1863 cosh t + 1.4022 cos 4.73 t2 T

The value of P2,2 is 11.9, and the BT product is 1.450.

For m = 2 and n = 1, 2, h o(t) are plotted in Figures 4.7

and 4.8, and their Fourier transformations in Figures 4.9 and 4.10.

The solution for general n is conjectured in Appendix A. For con-

venience sake, we shall call the solutions corresponding to m = 2

the trigonometric-hyperbolic functions.



Figure 4.7. Half-Cosine Pulse Shaping
(m = 2, n = 1)
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Figure 4.8. 2nd Order Trigonometric-Hyperbolic Function
(m = 2, n = 2)
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Figure 4.10. Power Spectrum of 2nd Order Trigonometric-
Hyperbolic Function (m = 2, n = 2)



To the list of optimal pulse shapes found so far, we
shall add two more classes of pulse shapes suggested for usage [6,7]
due to their generally good spectral properties as well as their
nonringing nature.

Case 3 overlapped raised - cosine pulse (Figure 4.11)

(2 ) 1/2 (1 - sint

h(t) =

with spectrum (Figure 4.12)

H(w) =(2To1 /2 cos wt/21 - (wT/7t) 2

-t/2 5 t 5

otherwise

sin T/2
w t/2

and

BT = 1.5

Case 4 Truncated n-th power sinc functions

The functions (Figure 4.13) considered are

(2;7 1/2

h (t) = 2n
0

sin 2nt/T n2it/ -t/2 < t < T/2

otherwise
in which

f sin x dx
n f 'x

7)n

-/2
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Figure 4.11. Raised-Cosine Pulse Shaping
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are computed numerically with values

n

3.70387

2.73815

2.37926

2.08822

1.88265

1.72765

1.60546

1.50595

The power spectra for n = 1 to 4 are also computed
numerically and shown in Figures 4.14 - 4.17.

The BT product for hn(t) is equal to

2n
2 n

- 2tn
For n = 1 to 4, they are respectively,

Bt 1.254

2

1.750

3

1.918

So far, the discussion has not addressed the question
of how much overlapping of the pulse shape is tolerable during
transmission. We shall present an overall design procedure for
pulse signalling in the next two sections.

2.170
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Figure 4.17. Power Spectrum of 4th Order Truncated
Sinc Function
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4.4 BT PRODUCT

Consider the signal

N-1

s(t) =, ak ~s h(t - kT)

k=o

in which each ak numerically represents a channel symbol, and for

ki£, ak and aQ are uncorrelated so that

0 k
E[ak a2 ] =

1 k= a

It can then be proved that the average power spectrum, defined as

lim 1 S(f)12

is independent of the pulse repetition rate. Roughly speaking,

this implies that the spectral occupancy of a given pulse shape

is independent of the pulse repetition rate 1/T. Applying

Parseval's theorem to the above result also shows that the average

energy per repetition interval of s(t) is equal to Es and indepen-

dent of T.

The BT product measures the bandwidth efficiency of the

signaling, in a sense that a smaller BT would use less bandwidth

for a given T. Defining resolution 6 as the ratio T/x, the BT

product is related to the BT product by

BT = BT - 8

The BT product serves as a criterion for comparison amongst various

pulse shapes. A few examples would convince us of its usefulness.

The rectangular pulse shape has BT = 1. The enlarged spectral

mainlobe of the half-cosine pulse shape for MSK is reflected by

an increased BT of 1.235. For raised cosine pulse shape, BT = 1.56.



shape, BT = 1.5e. Typically, 6 = 1/2 giving BT = 0.75 which

reflects the spectral improvements (at the cost of ISI and

increased envelope fluctuation).

4.5 FILTER LOSS

For a given h(t), a higher repetition rate increases

ISI as well as introduces more levels to s(t). The higher rate

of data transmission is achieved at the cost of more envelope

fluctuation and a higher peak power requirement. In some satel-

lite communication systems such as TDMA transmission, the peak

power rather than the average power is limited. Assuming the

nonlinear amplifier with a characteristics shown in curve a of

Figure 4.18, which is linear up to the peak power required by

s(t), then the filter loss is defined as the ratio of the maximum

power of the signal that still ensures no nonlinear distortion to

the power available from the amplifier. Expressed in dB, the

filter loss is

E
f = -10 log cT

c

In which Es is related to the maximum rms power of the carrier Pc by

max s(t) = Fc
t

The remaining discussion illustrates how the dual con-

cepts of BT product (which measures spectral efficiency) and

filter loss (which measures nonconstancy of envelope) can be

applied for pulse shapes considered in the previous section.
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The time domain pulse shapes of the beta functions,. the

trigonometric-hyperbolic functions and the truncated n-th power

sinc functions become narrower as n increases. For large n, these

functions would resemble impulses with unity energy. Since an

impulse has a white spectrum, the main lobe of these functions

should become wider as n increases. The spectra plotted for these

functions confirm. our speculation. For a given value of 6, an

enlarged main lobe would require more spectral bandwidth for trans-

mission.

On the other hand, the amount of ISI for given 8 decreases

as the functions become more impulse-like. This enables us to

use a smaller resolution 6 without introducing excessive filter

loss.

A computer program which evaluates filter loss as a

function of resolution yields the plots shown in Figure 4.19 - 4.23.

In these plots, the upper curve represents the filter loss when

the in-phase and quadrature channels are not staggered. The lower

curve shows the filter loss when the two channels are offset by

T/2. The minima of these curves shift to the left as n increases,

allowing the use of smaller 6 for a given level of filter loss.

It is also observed that filter loss for the staggered case is

always less than that for the unstaggered case. If this observa-

tion is true for all h(t), then a constant envelope pulse modula-

tion with staggered quadratures, when filtered, would give less filter

loss and envelope fluctuation than the unstaggered case. Less

envelope fluctuation makes the modulation more compatible with a

limiting nonlinearity.

Finally, the analyses in this chapter suggest the fol-

lowing procedures for designing pulse shapings. The proper pulse

shaping is chosen by tailoring the spectrum according to the width

of the main lobe and the rate of roll-off that we desire for the
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channel to reasonably avoid adjacent channel interference and out-

of-band emission. The level of filter loss that can be tolerated

by the transmission system is determined, which gives an idea of

what 0 should be used from the filter loss versus resolution plots.

A comparison of various pulse shapes is given in Figure 4.24.

System performance with and without channel coding for

these pulses which introduce ISI will be considered in Chapter 6.



Asymptotic Rate Pulse BT and (0) For Staggered
of Roll-Off S BT Components at F (dB) =
of H()2 hape 0.5 1.0 1.5

0(1/f 2) Betao 1.00 1.00 F = 6 dB, BT = 0 for ½ < 8 < 1

0(1/f4 ) Betal 5.24 1.20 0.96 (0.80) 0.89 (0.74) 0.79 (0.66)

TH' 7.70 1.24

TS' - 1.25 0.97 (0.78) 0.85 (0.68) 0.73 (0.58)

0(1/f 6) Beta2  8.96 1.43 0.96 (0.67) 0.83 (0.58) 0.72 (0.5)

TH2  11.90 1.45

TS2  - 1.75 1.05 (0.60) 0.86 (0.49)* 0.77 (0.44)*

RC - 1.5 0.93 (0.62) 0.81 (0.54) 0.70 (0.47)*

0(1/f 8) Beta3 12.40 1.63 0.96 (0.59) 0.80 (0.49)* 0.72 (0.44)*

TS3  - 1.92 1.00 (0.52) 0.81 (0.42)"Y 0.71 (0.37)*

0(1/fo0 ) Beta4  15.72 1.81 0.98 (0.54) 0.80 (0.44)L 0.71 (0.39)*

TS4  - 2.17 1.00 (0.46)* 10.80 (0.37)* 0.72 (0.33)*

*h2 is nonzero

Betan, THn , TSn - nth order Beta, trigonometric-hyperbolic, and
truncated sinc functions

RC - Raised-cosine function

Figure 4.24. A Comparison of Various Pulse Shapings
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Chapter 5. CONVOLUTIONAL ENCODERS FOR MULTIPHASE
MODULATION WITHOUT INTERSYMBOL INTERFERENCE

The spectrum of uncoded M-ary PSK for constant symbol

rate (1/T) is independent of the number of phases employed by the

symbol, but Eb/No required for a given bit error rate increases

significantly as M increases. To ensure reliable transmission,

message redundancy may be introduced, at the expense of reducing

the bit data rate Rb, or by using an expanded set of phases with

coding. The second approach of coded phase is particularly attrac-

tive for satellite communication since a coding gain with respect

to uncoded 44-PSK of several dBs may be achieved without reducing

Rb, with a spectrum similar to 40-PSK. Most of the known binary

convolutional codes with good minimum free Hamming distance can

be used for 20-PSK and 40-PSK, when the free Euclidean distance

between signals is proportional to the free Hamming distance of

the codes for the signals. Unfortunately, this proportionality

is no longer preserved when more than 4 phases are used with coding.

This chapter explores several convolutional encoder

structures that may be employed for coded phase, and investigates

their free Euclidean distance properties. Specifically, coded

8-0 is addressed due to its attractiveness for implementation.

Otherwise, most of the results may be extended with some efforts

for the general M-ary case.

5.1 DEFINITIONS

The encoder inputs a sequence u and outputs a sequence

w, consisting of uk's and wk's respectively which are elements of

the set U, over which the operators multiplication - and addition



@ are well-defined. The encoder is characterized by the generator

matrix G with entries which are also elements of U, so that

functionally

w = u G

The encoder output sequence w is distinctively mapped,

by the mapping M, onto the channel sequence v consisting of vk's

which are elements of the channel symbol set V so that v = M(w).

The modulator F then distinctively maps each sequence v onto a

time function f(t).

A channel encoding scheme S is therefore completely

specified by the triple (G, M, F), namely, the discrete encoder G

with its associated U and operators, the modulation F which gen-

erates the physical waveform and the channel symbol mapper M which

links G and F.

For AWGN, knowing the Euclidean distances between wave-

forms is sufficient for performance evaluation. The square

Euclidean distance D between the channel sequences, vi and v2 is

given by

D[v1  v2] = jf(t, V1) - f(t, V2)112

00

= [f(t, vI ) - f(t, v 2 )][f(t, v1 ) - f(t, v 2 )]* dt

The minimum free square Euclidean distance df for S is

defined to be the minimum D between all distinct input sequences.

The encoder G is said to be optimal for given M and F if df is

maximized for the class of encoders of equivalent complexity

(described by such as rate and number of memories of the encoder).

In this thesis, we are mostly concerned with finding the optimal

G in this sense, for the various M and F proposed. An equally



interesting problem, but much less understood, is to find the M

which would result in good df for given F and specified algebraic

structures of G. Take for example, if binary convolutional encoder

is used for 80-PSK modulation in the absence of ISI, we would be

interested to see whether Gray mapping, or straight binary mapping,

or any other mapping which maps a binary output sequence into an

octal sequence is the best.

Furthermore, S is said to be invariant if and only if

for all input sequences a, b and c

D[M((a $ c)G), M((b @ c)G)]

= D[M(a G), M(b G)]

If (U, e, *) is a ring, then invariance implies

D[M(a G), M(b G)]

= D[M(O G) , M((-a 0 b) G)]

in which -a consists of additive inverses for the elements of a.

For an invariant S, it follows that

df = min D[M(a G), M(b G)]
b

for any a, making the evaluation for df much simpler. Code searching

thus becomes much easier when the distance between two codewords

depends only upon the difference sequence (-a @ b) between the

two input sequences.

Two schemes S1 and S2 are said to be equivalent, denoted

by

S1 = (GI, M1, Fi) = (G2, M2 , F2 ) = S2

if and only if they generate the same set of waveforms for all

possible input sequences.

·__I~-·__I~---·~----411-·--



Using the terms defined, three channel encoding schemes

for F being 80-PSK without ISI will be described in the following

sections.

5.2 BINARY ENCODERS WITH STRAIGHT BINARY MAPPING

The first scheme referred to as the binary encoding

scheme, is defined as follows,

U = {0, 11
with multiplication and addition defined by

@ 0 1

0 0 1

1 1 0

0 1

0 0 0

1 0 1

The channel symbol set is given by

V = {0, i, 2, . . ., 7}
and G is a binary rate 2/3 convolutional encoder.

M maps each triple output (A, B, C) of the rate 2/3

convolutional encoder G into an octal v using a straight binary

conversion, so that

v = 4A + 2B + C

F uses the octal sequence v for 84-PSK without ISI.

An alternative M' which maps the triple output (A',

B', C') of another binary convolutional encoder G' into an octal

v' using Gray mapping can be specified as

v' = 4a + 2b + c



in which

a = A'

b = A' @ B'

c = A' @ B' 0 C'

Obviously, (G, M, F) and (G', M', F) would be equivalent if for

the same input sequence u, the output octal sequences v and v'

are equal, which implies

a = A

b = B

c = C

and consequently

A = A'

B = A' e B'

C = A' 9 B' a C'

The transformation given by these equations enables us to convert

each G into an equivalent G' and vice versa. Therefore, the dis-

cussion on these binary convolutional encoder will assume the use

of straight binary mapping for the remainder of the chapter.

It is noteworthy that this description of S is similar

to the formulation of rate 2/3 coded 84-PSK by Ungerboeck [10].

However, the method of bounding df is quite different and the

bound we are going to get is tighter than Ungerboeck's. As a

consequence, we are able to find codes with better df.

The S defined is unfortunately not invariant. Consider

w =u G

S= eG

hence w @ E = (u @ e) G



Let wk = (k, Wk,2' Wk,3) and 6k = (sk,l 8 k,2' &k,3) be groups
of three bits that are mapped into an octal, that is

M(wk) = 4wk,l + 2wk,2 k,3

Defining

d = D[i, 0] i = 0, i, 2, 3, 4

The square Euclidean distances

D[M(wk e &k) ,M(wk)

are tabulated in Figure 5.1, which shows that these distances are

equal to

D[M(e8) ' 0]

regardless of the values of wk if M(k) = 0, 1i, 2, 4, 5, 6; and

for M(6k) = 3 or 7, may be equal to d, for some wk-
A lower bound for the Euclidean distance between two

channel sequences can be stated as follows:

For any

vi = M(wi )

v2 = M( 2 )

we have

D[v, v 2 ] > D[Mb(E), 0]

in which the error sequence

e = W1 E w2

and Mb is the mapping that replaces occurrences of 3's in ek into

l's. In other words



k

(M(sk))
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M(&k) if M(&k) / 3

Mb(&k) =
1 if M(Ek) = 3

A lower bound for df follows immediately

df > min D[Mb(_), 0] = db

in which & is any encoder output sequence.

This bound enables us to search for good codes using

the Viterbi algorithm which compute the value of db at each stage

of the algorithm. Furthermore, the encoder with maximum db is

optimal since it can be shown that the lower bound is tight, which

is to say,

Theorem

For every E, there exist a

w = u G

such that

D[M(w), M(w @ E)] = D[Mb(_), 0]

Proof

Forney [16] has shown that every convolutional encoder

is equivalent to a feedback systematic encoder with structure

shown in Figure 5.2, in the sense that both generate the same set

of codewords. Therefore, it suffices to prove the theorem if

a w can be generated by an equivalent convolutional encoder so

that the bound can be satisfied with equality.
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The outputs Wk 2, Wk,3 in Figure 5.2 are basically

unconstrained. From Figure 5.1, it is seen that for every k,' we

can choose Wk,2 and Wk,3 in such a way that

D[M(wk), M(wk e ek ) ] = D[Mb(k), 01 Q.E.D.
Q.E.D.

A computer program was written to perform the code search.

The search algorithm and -program notes are described in Appendix B.
The y = 4 and y = 6 encoders found are shown in Figures 7.2 and 7.3.

5.3 OCTAL ENCODERS WITH IDENTITY MAPPING

In this section, an invariant encoder is introduced with

U = V = {0, 1, 2, . .. , 7}

over which addition is defined by

a a b = (a + b) modulo 8

and multiplication is defined by

a - b = (a x b) modulo 8

The addition and multiplication tables are given in Figure 5.3.

M is the identity mapping

M(wk) = wk

For the sake of convenience, the notation M will be harmlessly

left out in the following discussion.

It should be noted that, unlike the binary encoder in
the previous section, the (U, 1, -) defined is only a ring and

not a field, and hence most of the results concerning canonical
encoders in [16] do not apply.
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Figure 5.3 Addition an~UId Mult^·ipliatonTale

Figure 5.3 Addition and Multiplication Tables
for Octal Convolutional Encoder
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Theorem

This encoder is invariant for 80-PSK in the absence of

ISI.

Proof

For

v = u G

E =eG

it follows that

(u0 e) G = (u G) 0 (e G)

= V 6 s

Since for F being 80-PSK without ISI

D[v 0 e, v] = D[e, 0]

the invariance of this scheme follows immediately. Q.E.D.

The Viterbi algorithm can be applied in a straight

forward manner to search for optimum octal rate 2/3 convolutional

encoders. Such encoder with y octal memories will have 8Y states.

Furthermore, a rate p/q encoder (p and q relatively prime) will

have 8P branches going into each state. While 8P -1 comparisons

have to be made at each state, 3p information bits are being

decoded at each stage of the Viterbi algorithm. There are alto-

gether (y + p)q multiplicative taps in the encoder, each can take

on 8 possible values. The large number of possible tap combina-

tions makes exhaustive code searching computationally very consuming

for y > 3.



To anticipate the performance of these encoders, an upper
bound on the minimum free distance achievable will occupy our atten-
tion for the rest of this section.

The following is basically a modified Plotkin bound [19]
for octal encoders.

Theorem

Let m be an input octal sequence and vm = mG consisting
of octals vm be the corresponding output octal sequence.n
It follows then, the set of vm for all m and a given nn
either has

1. vm all zeros orn
2. an equal number of vm =0 and vm = 4, and also an equalmn  n

number of vm 1 v = 3 vm 5 and vm = 7n n n n

Proof

Let the n-th column of G be gn. Consequently,

mvmn = m gn

Now either

a) vm = 0 for all mn

b) There exists an m' with vm ' = 4.n
Then for every m which gives vm = 0, we have an=- n

m* = m0 m'

or



such that

vm* = (m m') g

= (m ) $ (m' gn)

= 0 $4

=4

since the mapping of m' onto m* is a one to one

onto mapping and furthermore, only those m s with

v = 0 are mapped onto m* s with vm* = 4. Theren n
is therefore an equal number of vm = 0 and v m = 4

n n
or c) There is no m such that vm = 1, 3, 5, or 7 in which- n

case the number of vm = 1, 3, 5, and 7 are all zeron
and hence equal.

or d) There exists an m' with vm  = 1 (3 or 5 or 7). It- n
can be readily shown that the set of codewords

partitioned according to their value of vm givesn
8 equal-sized cosets. Hence, the claim in 2 is

true. Q.E.D.

If F is such that the signal energies are normalized so that

D(0, 4) = 2

then from Figure 3.2, the square distances are

D(0, 1) = D(0, 7) = 1 - 12/2

D(0, 2) = D(0, 6) = 1

D(0, 3) = D(0, 5) = 1 + 12/2

It follows immediately from the above theorem that the average

weight of vm within the n-th column is i.n
The upper bound for the minimum distance of octal

convolution encoders can be stated as,
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Theorem

For a rate p/q octal convolutional encoder (p and q

relatively prime) with p queues (each consisting of

K memory elements) and q modulo 8 adders, the minimum

free square Euclidean distance is upper bounded by

df < min q(L + K) 8pL

f L 8pL 1

Proof

There are 8pL information octal sequence of length pL.

Each corresponding code sequence is of length q(L + K). The total

weight of all 8pL codewords is q(L + K)8p L since each octal in a

codeword has an average weight of 1 within a not-all-zero column.

The average weight of a nonzero code word is therefore

pL
q(L + K)8

8pL_ 1

The minimum free distance must be less than the average distance

for all L. Therefore, by minimizing over L, we obtained an upper

bound for df.

Q.E.D

The minimum is observed to occur always at L = 1. A

fair approximation to this upper bound is q(K + 1).

For rate 1/2 octal convolutional encoders, we have

K 0 1 2 3 4 5

Upper bound 2.29 4.57 6.86 9.14 11.43 13.71



For rate 2/3 octal convolutional encoders, we have

K 0 1 2 3 4 5

Upper bound 3.05 6.09 9.14 12.19 15.24 18.29

Furthermore, if the p queues are of unequal length, then the upper

bound is equal to the case of K for which K is the number of octal

memory elements in the shortest queue. From the computer search

for optimal code, the bound for rate 1/2 encoders is fairly tight

for K = 0, 1, 2. The upper bound for the rate 2/3 encoders seems

to suggest a far superior performance than the binary encoders

which have an equal number of states. Unfortunately, the code

search turned out codes which achieve a df much less than the upper

bound. A non-exhaustive code search for the 64 states (K = 1)

octal encoder gave a code shown in Figure 5.4, with df = 3.172
which equals the df for the best binary encoder with 6 binary memory

found in the previous section. The algorithms for searching octal

encoders of rates 1/2 and 2/3 are discussed in Appendix B. Some

rate 1/2 encoders found are listed in Figure 5.5.

5.4 GF(8) ENCODERS

The modulo 8 encoder has a multiplication table which

is not homogeneous, in a sense that certain elements of U occur

more frequently and in a structured manner in the table. Further-

more, (U, O, .) does not form a field since not every nonzero

element of U has a multiplicative inverse. Based on these

observations, we suggested a class of encoders for which (U,
o, .) is a Galois field with 8 elements. The addition and multipli-

cation tables shown in Figure 5.6 are generated as follows. Each

element of U can be represented either as a binary triple
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Subgenerators: 1 6 7

7 4 7

3 5 2

df = 3.172 Asymptotic Coding Gain = 5.0 dB

Figure 5.4. A Rate 2/3 Coded 80 Octal Convolutional
Encoder with 2 Octal Memories
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* 0 1 2 3 4 5 6 7

0 0 0 0 0 0 0 0 0

1 0 1 2 3 4 5 6 7

2 0 2 4 6 3 1 7 5

3 0 3 6 5 7 4 1 2

4 0 4 3 7 6 2 5 1

5 0 5 1 4 2 7 3 6

6 0 6 7 1 5 3 2 4

7 0 7 5 2 1 6 4 3

Figure 5.6 Addition and Multiplication Tables
for GF(8) Encoders



v = (a, b, c) a, b, c E GF(2)

or as a polynomial

a t 2 +b t + c

The sum of two elements is expressed by the sum of their respective

polynomials, or equivalently, the exclusive OR of the elements in

binary representation. Their product is given by the product of

their respective polynomials modulo

t3 + t + 1

which itself cannot be factorized.

Similarly, M is the identity map and F is 84-PSK without
ISI.

For all possible octal input sequences m, we have either

1. vm= 0 orn

2. The numbers of m such that

vm = i
n

are equal for all i e U

Proof

If there is an m such that

m
v = in

is nonzero, then the sequence

vm _ 1 mv = j(i) v

in which

i(i) = 1



has
miVn =

n

Furthermore, vm 3 is a codeword and is being generated by

m = j(i) m
Therefore, there exist a 1 to 1 correspondence between every

codeword with

vm i
n

and

m =
vn

from which statement 2 follows

Q.E.D.

The (G, M, F) thus defined is not an invariant system.

In fact, it satisfies the same lower bound, namely

d f min D[Mb(L), 0]

for the free Euclidean distance between two codewords as in the

case of binary encoding, since both use exclusive OR as the operator

for addition. We suspect that the bound is also tight, perhaps

through a similar but more elaborate argument than that used for

the binary encoder. If the bound is indeed tight, the average

value of

D[Mb(vn), 01

in which Mb substitutes every

vm = 3n
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with

vm =
n

is 1 - 42/8 or 0.823. The minimum free Euclidean distance is

therefore upper bounded by the same bound as for modulo 8 encoder

times 0.823.

A computer program was written for searching rate 2/3

GF(8) encoders and is shown in Appendix B. Exhaustive search for

encoders with just 1 or 2 octal memories is virtually impossible.

The db resulting from our nonexhaustive search was rather dis-

appointing, and further investigation into the GF(8) encoder was

suspended.



Chapter 6. CONVOLUTIONAL ENCODER DESIGNS FOR BASEBAND PULSES
WITH CONTROLLED INTERSYMBOL INTERFERENCE

The concern of this chapter is to design good, and if

possible optimal, binary convolutional encoders G for modulation F

being 24-PSK or 40-PSK with controlled ISI. Previously,

Viterbi [13] has shown, using a code ensemble performance argument,

that for duo-binary antipodal signaling, performance loss is less

than 1 dB relative to the case of signaling without ISI. Using

the notation developed in Chapter 3, duo-binary signaling cor-

responds to having

1h0 = 1 , h =

and

hi = 0 for l ! k 2

This result is complemented in this chapter by calculating the

asymptotic performance for specific codes by finding or lower-

bounding the minimum free Euclidean distance achieved by the code.

It should be noted that we were unable to extend the

results in this chapter to find bounds for df for 80-PSK with ISI.

6.1 BOUNDS ON df IN THE PRESENCE OF ISI

The following discussion is based on using coded 20-PSK

(or equivalently coded 2-PAM). The results will be extended to

44-PSK, which can be generalized as 2 orthogonal 2-PAM streams in

the absence of channel crosstalk.

The signaling scheme is defined as follows:
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G: A binary input binary output rate p/q convolutional

encoder.

M: The set U = {0, 1} is mapped onto the set V = {1, -1)

given by

0 -> 1, 1 1 -1

It is noteworthy that

M(ul @ u2 ) = M(u1 ) M(u2)

F: The channel symbol sequence v generates the waveform

y(t) = h(t - kT) vk
k

The factor JEs has been left out in the expression since

it is immaterial to our discussion.

The square. Euclidean distance between the channel symbol sequences

v and v' is

D[v, v'] =f: h(t - kT)(v - v) 2 dt
0 k

E h(t - kT) h(t - eT)(vk - v•)(vk - vI) dt
k,2

= hk-£ (k - )( -v)2

= ho (vk - vk) 2

k

+
+ 2 E hi (vk -Vk')(Vk-i - Vkf-i)

i=l
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in which

hk- £ = ht-k = h(t - kT) h(t - AT) dt

and the last expression is obtained by rearranging the order of

summation and assuming

h i = 0 for lii > s

Our objective now is to express D[v, v'] explicitly in terms of

the sequence v and the difference sequence between v and v'.

Recall that exclusive -OR in U is equivalent to multiplication

in V, we may define the difference sequence & consisting of sk and

the delta sequence 6(i) consisting of 6k(i) by

v' = E vk kandk

and

6k(i) = vk vk- i

so that we have

(vk - v k)(vki - v1 i) = (vk - kVk)(vk i - ki Vk i )

Vkvk- i ( l - sk)(l - sk-i)

= 6 k(i)(l - s k)(l - Sk- i )

Since 6 k(i), sk and Sk-i can take on the values ±1 only, we have

(1 - )(1 - k i )  (v k - v)(v - v )  - ( - )( - i )k k-i) (k - kt k-i k-i) k -

104



By appropriately choosing the upper bound or lower bound with

respect to the sign of hi, we obtain the following upper and lower

bounds for D.

s
h0 (l - +ek)2 + 2 ii ( k)(1 - k-i )

i=l k

> D [v, v']

s
> ho(l - -k)2 - 2 Ihil (1 - k)(1 - k-i)

i=l k

Note in particular that in the construction of the

bounds, no reference is made to G, and the conclusion drawn should

be treated rather as a property of the M and F used.

The lower bound for D, which depends on a single sequence

E only, can be used in the Viterbi algorithm to lower bound the

free Euclidean distance.

The remaining of this section will examine the tightness

of this lower bound under various circumstances.

Defining

Ao() = ( - k)2

k

and

Ai(6,.) = 6 k(i)(l- sk)(l - &k-i )

k
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in which 6 denotes the set of 6(i), so that we may express

D[v, v'] = Ao(8) ho + 2 Ai(6, E) hi
i

The tightness of the bound depends on the degree of freedom to

choose 6 so that as many as possible of the inequalities used in

lower bounding D[v, v'] become strict equalities. The restrictions

on 6 to achieve tightness of the bound are as follows,

I. For hi < 0, we want

Ai(6, ) = (1 - & - k-i)
k

constraining

6k(i) = 1

for k's satisfying

Ek = S k-i = -1

II. For hi > 0, we want

-(1 - 6k )(I - &k-i)

constraining

6k(i) = -L
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for k's satisfying

Sk = ek-i = -1

III. Each v defining a 6 must be a codeword of G.

A v that will satisfy constraint I is v = 1 when

8(i) = 1 which corresponds to feeding an all-zero sequence into G,

hence constraint III is also satisfied. Therefore, the lower

bound is always tight if his are negative for nonzero i.

A few 8(i) which satisfy constraint II are

8(i) = -l

8(i) = Tl s

or

6(i) = sT e (i.e., 6k(i) = ekek-i )

in which the operator Ti delays the e sequence by i places. Note

that constraint III may not be satisfied.

Less nonzero his would impose less restrictions on 6,

making the lower bound fairly tight. We expect the lower bound

to be strictly tight if there is only one nonzero hi besides h o
In case there are many nonzero his, attention should be paid to

the largest hi. Mathematically, it is not possible to have many

large his.
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This section is wrapped up by considering the example

of rate ½ coded 4ý with only ho and hi nonzero (all hi's are real).
The 2 outputs of the binary rate ½ encoder are regarded as two

PAM data streams, each modulating the carriers cos 2 nfct and

sin 2nfct which are mutually orthogonal. If hi is negative, the

bound is tight by the previous discussion. If h1 is positive, we

know that 6(1) = s (for each stream) would satisfy II. It remains

to show that the v which defines 6(1) is a codeword, hence satis-

fying III. Instead, we will first prove a stronger statement for

rate ½ 4ý-PSK

Theorem

For every codeword E and v having

D[s * v, v] = Ao(s) + 2A1 ({6(l)}, s) hi
there exists a codeword, v', obtained from v

by a 1 to 1 onto mapping such that

D[s - v', v'] = Ao(s) - 2A1 ({6(l)}, s) hi

Proof

Defining 6'(l) by

61(1) = vk vk

Consider obtaining 6'(l) from 6(1) from the following 1-1 onto

mapping

6'(I) = 6(1) * E

Consequently
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D[s_ v', v'] = Ao(_) + 2A 1 {[6'(1)], _} hl

= Ao0 () + 2 C6(1)(1 - k)( - &- k-l ) hi

k

= Ao( _ ) + 2 6 k ( 1 ) Ek (1 - lk ) ( 1 - &k-1) h,

k

= Ao (s) - 2A1 ({6(1)}, _) h,

To show v' is a codeword,

6'(l) is also a codeword.

we note that 6(1) is a codeword, hence

Therefore

v' = 6'(1) • T6'(1) • T2 6'(l) - T36'(1) . . .

is also a codeword formed by multiplying the delayed versions of

the codeword 6'(l).
Q.E.D.

This theorem tells us that the distribution of the

coefficients for h, is symmetrical about 0. Furthermore, we

know that feeding an all-zero sequence [when 6(1) = 1] generates

the largest A, for given r. Therefore, the smallest A, is

-Al({l}, &) when

6'(l) = 1 -=

The next section will demonstrate how to search for

optimal rate 1 encoder with positive hi.

6.2 CODE SEARCHING

The minimum free square Euclidean distance is given by
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df = mmin i(l - & ki)2 ho -2(1 - ski)(l - sk-l ,i) h,
(Esi, )q)k

+ (1 - &k,q)2 h0 -2(1 - k,q )(l - k-l,q) h}

in which the subscript i and q corresponds to quantities associated

with the in-phase and quadrature channels. Let Ak denotes each

term in the summation. The minimization of

k

can be performed using the Viterbi algorithm. The states are

defined by using the extended state concept described in Section 3.3.

The state information at time k would be sufficient to determine

sk and sk-l for the two orthogonal channels, and consequently Ak"
The computer program first of all sets up tables showing

the possible state transitions and the value of Ak associated

with each transition. Then the minimum-free distance path is

trellis searched until every state has accumulated a metric greater

than the minimum-free distance found so far. This stopping result

is based on the fact that Ak is always nonnegative since

(1 - sk)2 ho -2(1 - Sk)(l - k-_l ) h i

equals zero if

sk= 1

and equals

4ho -4(1 - Sk-l) h,



> 4ho - 8h,

> 0

if

sk = -1

provided

h, < ho

In fact, it can be proved that h, < ½ ho if s = 1. We shall have

a small digression here to provide the proof.

Let E be a set of-positive integers such that

isE iff h i e 0. Now
1

hi = f h(t) h(t - iT) dt

Applying Parseval's theorem and assuming real h(t) give

hi f= 0 IH(f)1 2 cos 2nifT df

and consequently breaking up the integral into intervals of

[n/T - 1/2T, n/T + 1/2T] and afterwards through a change of

variable, we have

1/(2T)

S /(2T)f + cos 2nifT df
-1/(2T) n=-w
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The folded spectrum inside the square bracket is named S(f) so

that overall,

/hi /(2T)

-1/(2T)

S(f) cos 2nifT df

Now if h i = 0, we must have S(f) orthogonal to cos 2nifT in

[-1/2T, 1/2T]. Since cos 2nifT are mutually orthogonal for

nonzero i's, it follows immediately that

S(f) = 2T - + h i cos 2nifT
ieE

The set of his must satisfy

S(f) > 0 . . . *

since 1H(f)12 is real and positive for all f.

Now if E = {1}, the maximum value of hi satisfying *
is 1/2 ho so that

S(f) = T ho (1 - cos 2nfT)

which is a raised cosine spectrum.

It follows immediately that

Ak > 0

Q.E.D.

for 1 > hi > 0

if and only if

Ak > 0 for h, = 0
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This result has an important consequence concerning code catastro-

phe. The necessary and sufficient condition for a code to be

noncatastrophic in the absence of ISI is that there is no zero

weight path from some nonzero state back to itself. Therefore,

a noncatastrophic code in the absence of ISI would also be non-

catastrophic in the presence of ISI (h, < 1) when s equals 1.

The computer program watches out for loops of zero

weight to exclude code catastrophe. Optimal codes with up to 7

binary memories for various ranges of hi which are listed in

Figures 6.1 - 6.6. These codes are represented by two subgenerator

polynomials shown in Figure 7.1 for code #1 in Figure 6.1.
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Code #1:

0.1 0.2 0.3 0.4

Figure 6.1. df vs h, for y = 2
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:1011
1.1 11

Code #2' : 1 0 0 1
1011

0.1 0.2 0.3 0.4

hl

Figure 6.2. df vs h, for y = 3
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6.0

5.5

5.0

4.0

3.5
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Code #3: 10011
1.0 1 1 1

7.0

6.5

5.0.

5.0

4.5

4.0

Code #3': 1 0 0 1 1
10 101

0.1 0.2 0.3 0.4

Figure 6.3. df vs hi for y = 4
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Code #4:

8.0

7.5

7.0

6.5

6.0

5.5

0 n

1 0 1 1
10 1l1

Code #4': 1 0 0 1 0 1
101001

0 0.1 0.2 0.3 0.4 0.5

Figure 6.4. df vs h, for y
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Code #5: 101 1-0 1 1
11 1 00 1

10.0

9.0

8.0

7.0

6.0

R5n

Code #5': 1 0 0 0 10 1

0.1 0.2 0.3 0.4 0.5

Figure 6.5. df vs h, for y = 6
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Code #6: 1 0 0 1 1 0 1 1
11110101.

I

0 0.1 a

Figure 6.6. df vs h, for y = 7
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Chapter 7. PERFORMANCE EVALUATION

In this chapter, the Eb/No gain for binary rate 2/3 coded

8ý and rate 1/2 coded 44 over uncoded 44-PSK is investigated.

The minimum free distance gives the gain at high Eb/No while system

performance at moderate Eb/No is pictured by simulation. The dete-

rioration in asymptotic performance due to intersymbol interference

predicted by the previous chapter will be tested experimentally.

It is assumed that only ho = 1 and hi are nonzero in the following

discussion. Furthermore, hi is considered to be real, which implies

mso cross-couplmng of the channei.

7.1 THEORETICAL RESULTS

At high Eb/No, error occurrence is dominated by the

minimum free distance paths. Therefore, signaling schemes with

the same minimum Euclidean separation will have comparable asymp-

totic error performance. Euclidean separation for a given scheme

can be enhanced by increasing signaling power. Consequently,

asymptotic performance gain for a certain scheme over another is

the reduction in Eb/N o (in dB) which maintains the same minimum

Euclidean separation. Eb is related to Es by

Rs Eb = Es
in which Rs is the number of information bits for each repetition

interval.

a. Asymptotic Performance of Rate 2/3 Coded 80 Without ISI.

In Chapter 5, df for the best binary rate 2/3 coded 8-0

encoders of up to 6 memories were found. D[O, 2], which is also the

free square Euclidean distance for uncoded 40, is normalized to
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be 1. Therefore, if the same Eb is used for coded 8-4 as in

uncoded 44, the gain in free square Euclidean distance, denoted

by df, 8 /df,4 4 , is equal to the df listed for the codes. Conse-

quently, the coding gain of coded 84 over uncoded 44 is given by

G80/44 = 10 log (df,8 /df,44) = 10 log df

These values

Y

are tabulated as follows,

df, /df, 44

(same Eb)

2.000

2.293

2.586

2.879

3.172

presence

G8¢/40

(dB)

3.0

3.6

4.1

4.6

5.0

Theory for evaluating the minimum free distance in the

of ISI for rate 2/3 coded 84 is still lacking.

b. Asymptotic Performance of Rate 1/2 Coded 44 With ISI.

For rate 1/2 coded 44, asymptotic performance deteriora-

tion evaluated theoretically in Chapter 6 is quite noticeable if

ISI is present. The coding gain can be referenced with respect

to uncoded signaling, either without ISI, or in the presence of

ISI the effect of which is trellis decoded, or in the presence of

ISI the effect of which is not trellis decoded.

The asymptotic Eb/No gains for the rate 1/2 encoders

(Rs = 1) listed unprirded in Figure 6.2 - 6.7 over uncoded 44 PSK
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without ISI can be calculated from their free square Euclidean

distance.

G(dB) hj/h 0 equals
0.0 0 .1 0.2 0.3 0.4 0.5

Y

2 3.98 3.62 3.22 2.79 2.17 1.76

3 4.77 4.62 4.31 3.60 2.76 1.76

4 5.44 5.05 4.62 4.15 3.62 3.01

5 6.02 5.80 5.56 5.19 4.62 3.98

6 6.99 6.53 6.02 5.44 4.77 3.98

7 6.99 6.81 6.53 6.02 5.44 4.77

in which

G 10 1og df, coded 44 1
og df, uncoded 44

It has been shown in some cases [13] that the asymptotic exponent

of the bit error probability without coding is not deteriorated,

relative to the case of no ISI, if the ISI effect is trellis decoded.

If the effect of ISI is not trellis decoded, the asymptotic error

occurrences are due mainly to the weakest pulses as a result of

destructive ISI. If the receive filter is matched to the weakest

pulse, then the equivalent free distance of such a scheme can be

shown to be

O

f, uncoded 40
h,

= energy of weakest pulse = Es (1 - 2 --)
0
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In the case of no coding, trellis decoding the effect of ISI would

asymptotically recover a loss (with respect to any non-trellis

decoding) which is upper bounded by

h,
-10 log (1 - 2 -)

o

No explicit expression was obtained regarding the equiv-

alent 'free distance' for decoders which only trellis decode the

effect of the encoder but not the effect of ISI.

It is rather unlikely that h, exceeding 0.2 would be

adopted for satellite communication. For overlapped raised-

cosine [6] pulse shaping with coding (h, equals 1/6 for T = ½ Y),

asymptotic performance loss relative to the case of no ISI is

about 0.5 dB, which is typical for the other pulse shapings con-

sidered in this thesis.

c. Non-Asymptotic Loss of ISI

The non-asymptotic loss due to ISI should be less than

the asymptotic loss due to two reasons. First, many of the dis-

tances between pairs of codewords are larger than they would be

in the absence of ISI, due to reinforcement by ISI. These im-

proved Euclidean separations would reduce error occurrences non-

asymptotically but have little effect asymptotically. Second, only

a few information sequences u can make the error sequence & to

achieve the value of the lower bound for the Euclidean distance.

In effect, the occurrence of minimum distance paths is much less

frequent than in the case of no ISI.

When ho = 1 and h, = 1/2 are the only nonzero hi, asymp-

totic loss can be seen from the table in part b above to be about

2 dB or 3 dB relative to the case of coding without ISI. Previously,

Viterbi has shown by a random coding argument that the average
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loss over a code ensemble in such a case would have been about

1 dB for antipodal transmission relative to the case of no ISI.

It may be unfair to compare our results with Viterbi's since ours

are based on 44-PSK rather than antipodal signaling. Also, the

non-asymptotic performance loss should be significantly less than

2 dB or 3 dB for 44-PSK with ISI due to reasons mentioned previously.

Codes with good Hamming distance for 4ý-PSK usually have

a larger deterioration of free distance once ISI is introduced

than those with mediocre Hamming distance. This turns out to be

the case when df is evaluated during the code search. Therefore,

a random coding argument may not properly reflect the deterioration

on good codes due to ISI. The simulation performed in the next

section does seem to suggest a 2 dB loss projected asymptotically,

rather than the diminishing loss asymptotically for antipodal sig-

naling as suggested in Figure 5-11 of [13].

7.2 COMPUTER SIMULATION

Two computer programs listed in Appendix D which optimally

decode rate 1/2 coded 40 with y = 2 and rate 2/3 coded 44 with
y = 4, 6 in the presence of ISI were implemented on the IBM 3032

machine. Two additional programs which do not trellis decode the

effect of ISI (i.e., an ordinary Viterbi decoder which would be

optimal without ISI) were also written to compare their performance

loss relative to the optimal decoders.

The programs each contain an encoder which takes in a
random binary sequence. The sufficient statistics sequence {rk}
obtained by demodulation is fed into the decoder and the decoded

sequence is compared with the properly delayed input sequence.

The channel is asumed to be AWGN. As we shall see, the physical

waveform does not have to be generated in order to find {rk}.
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Recall that each rk is given by

rk = 42 ej 2 nf t r(t) h(t - kT) dt

in which

r(t) = y(t) + n(t)

where

y(t) = z s 1 (t - kT)ec2 f t + jvk/M

k

and n(t) is a zero mean uncorrelated white Gaussian process with

N
E[n(t) n(t')] = 2- 6(t - t')

The expression for rk can be reduced, by the baseband assumption

and assuming non-zero ho and hI only, to the form

rk = Yk + nk

in which

2ny 2ny 2ny2 vCOk k-1  2 Vk+ 1Yk =  {c s M + h, cos M + h cos M

2 7TVk 2 nVk-1 +n k+1- j{sin M + h l sin M + h sin

and

nk = nk,i + j nk, q

has nk, i , nk,q being zero mean Gaussian random variables of

variance a2 = N /2. All nki s and nk 's are uncorrelated,

except for consecutive nk i 's or consecutive nk q s when
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N hi
E[nk,i nk-l,i] = E[nk,q nk-l,q] 2

The value of rk can be readily generated for known v:

Let us consider the generation of a zero mean real

Gaussian sequence {uk} with

0 2 if i = j

E[u i uj] = a2 h, if li - j= 1

0 otherwise

Suppose {tk} is sequence of uncorrelated, zero mean and real

Gaussian random variables each of variance 1. It can be readily

shown that

uk = a P(tk + Utk-l)

in which

1 1 1/2
2 tQ - 2 )

p = (1 + U2)-1/2

does has the desired mean, variance and correlation with other

uk' s. Using this technique, the sequences {nk,i}, {nk,q} and

subsequently {rk} can be generated for the decoder.

The encoder with extended memory discussed in Section 3.3

is used to define the states of the decoder. Specifically, a state

is defined as the contents of the memories as well as the bits

shifted out of the end of each queue at the previous instant.

Possible state transitions and the associated branch metric are

tabulated. In some versions of the program, quantization of values

involved in the decoding is available. However, either real values
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or very fine quantization is used in the simulation. Since exten-

sive simulation is rather expensive, we have not made enough runs

to picture the effect of quantization. Such knowledge, however,

is rather valuable from an implementation standpoint.

A survivor at each state is retained by choosing the

branch transition merging into the state which makes the accumulated

metric of that state a maximum. The survivor of each state is

stored in a table. At each decoding stage the survivor which has

accumulated the largest metric is traced back 100 state transitions

to obtain the decoded information (1 bit for rate 1/2 coded 40

and 2 bits for rate 2/3 coded 80).

The encoders shown in Figures 7.1 - 7.3 were simulated

for various values of hi. Computer programs which simulate the

performance of uncoded 40-PSK and 80-PSK in the absence of ISI

were also written. The bit error performances are shown in Fig-

ures 7.4 - 7.6. Specifically, Figure 7.4 gives the simulation

results for rate 2/3 coded 8p over the AWGN channel or INTELSAT V

channel, without using controlled ISI. The simulations generating

curves 4, 5, and 6 are performed by S. Lebowitz, assuming perfect

timing and phase recovery and sufficient quantization in decoding.

Figure 7.5 simulates the performance of rate 2/3 coded 80 (y = 4)

with controlled ISI over an AWGN channel and compares the perform-

ances with and without extended state Viterbi decoding. Figure 7.6

is analogous to Figure 7.5, except the code studied is rate 1/2

coded 40 with y = 2.

One rather surprising result of Figure 7.4 is that for

y = 6 and BER = 10- s, the coding gain of 4.3 dB in the INTELSAT V
channel is significantly higher than the coding gain of 3.7 dB

for the AWGN channel. This demonstrates the robustness of the

code against real-live .channel impairments.

From Figures 7.5 and 7.6, it is seen that system per-

formance deterioration is quite noticeable if the decoder does

not trellis decode the effect of ISI.
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Subgenerators:

Figure 7.1. A Rate 1/2 y = 2 Encoder
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2.

Subgenerators:

d = 2.586f

010101

1110 01

000010

Asymptotic = 4.1 dB
coding gain.

Figure 7.2. A Rate 2/3 y = 4 Encoder
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Subgenerators: 0 1 1 0 1 0 1 1

11011001

00000110

df = 3.172 Asymptotic coding gain = 5.0 dB

Figure 7.3. A Rate 2/3 y = 6 Encoder
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O AWGN, UNCODED QPSK
@ AWGN, CODED 80 PSK

WITH 7= 6
@ AWGN, CODED 80 PSK

WAI1 1 I -

TII I I = 4

LSAT 2 WITH ACI & CCI,
UNCODED QPSK
,LSAT Y WITH ACI & CCI,-
CODED 8 B5 PSK
WITH 7=6
LSAT Y WITH ACI & CCI,
CODED 8 0 PSK
WiTH 7= 4

N
(D

Eb/N o (dB)
Performance of Rate 2/3 Coded

INTELSAT V Channel
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I· I I

0 AWGN, UNCODED QPSK

AWGN, CODED 84 PSK WITH y=4

ISI WITH hl/h 0 = 1/6, UNCODED QPSK

ISI WITH hl/ho = 1/6, CODED 84 PSK(7=4)
WITH EXTENDED-STATE VA DECODING=

SISI WITH hl/ho = 1/6, CODED 8k PSK(Y= 4):
WITH VA DECODING (NO STATE
EXTENSION)

1'

12

Eb/N o

14

(dB)

Figure 7.5. Performance of Rate 2/3 Coded 8B
over AWGN Channel with Controlled ISI
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10-3

10-4

10-5

10-6

10-7

( AWGN, UNCODED QPSK
@ AWGN, CODED QPSK
@ ISI hl/h 0 =1/2, CODED QPSK

WITH VA DECODING (BUT NO STATE EXTENSION)

® ISI hl/h 0 - 1/2 , CODED QPSK
WITH EXTENDED STATE VA DECODING

@ ISi hl/h0-=1/6 ,CODED QPSK WITH VA DECODING

@ ISI hl/h 0 = 1/6, CODED QPSK WITH EXTENDED
STATE VA DECODING

I I ! I I

0 2 4 6 8 10 12
Eb/N o (dB)

Figure 7.6. Performance of Rate 1/2 Coded 40 over AWGN Channel
with Controlled ISI
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The simulation results for rate 1/2 coded 44 in Fig-

ure 7.6 seem. to agree fairly well with the theoretical prediction

of Chapter 6. On the other hand, it is surprising to see that

the effect of ISI hardly deteriorates system performance for rate

2/3 coded 80 in Figure 7.5. A plausible explanation is that the

information sequence u which makes the error sequence s achieve

the lower bound in the absence of ISI may not bring about any

reduction iA free distance when ISI is present. In essence, there

are two mismatched patterns of variance with respect to u, one

due to the fact that the (G, M, F) is not invariant even without

ISI, and another due to the variance brought about by ISI. This

complication also explains our failure to effectively lower bound

the Euclidean free distance between any two input sequences.

The rate 2/3 decoders with 4 memories and 6 memories

theoretically have 4.1 dB and 5.0 dB asymptotic coding gain in

the absence of ISI over uncoded 44-PSK, which is comparable to

the coding gain of 3.0 dB and 3.7 dB at BER = 10- s from the simula-

tion. Even though theoretically the 6 memory code has a 0.9 dB

asymptotic gain over the 4 memory code, it is noteworthy that for

the 6 memory case, the number and the length of the minimum dis-

tance paths are increased. In fact,atypical error event: has about

10-15 errors for the y = 6 decoder, compare to 3-6 errors for the

case of y = 4. However, we do expect the decoders to achieve their

asymptotic coding gain at high enough Eb/N o -
At each Eb/No, ten thousand to half a million information

bits were decoded to obtain a reasonable average of the bit error

probability. Therefore, simulation can be statistically reliable

only for BER greater than 10 4 . An extensive study on the system

performance for the various decoders and values of h, used is very

expensive due to heavy computation requirements. Results presented

in this thesis are for the purpose of illustration rather than as

an extensive evaluation of performance.

The computer programs are documented in Appendix D.
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Chapter 8. CONCLUSION AND SUGGESTION FOR FURTHER RESEARCH

The major contribution of this thesis is unifying modula-

tion and coding as a single entity. While binary encoding which

maximizes Hamming distance is a fairly mature field, principles

for designing codes for modulation schemes and channel characteris-

tics in general are still very lacking. The conceptualization of

a transmission system as a triple (G, M, F) offers a convenient

formulation, and this thesis serves as an example for a more general

framework.

Chapter 4 offers a unified approach for pulse design,

taking into account the spectral roll-off requirements and restric-

tions imposed by the band limiting and nonlinear channel. In effect,

less than unity channel bandwidth per symbol rate can be realized

(for INTELSAT V, BW/SR = 80 MHz/60 MHz = 1.33).

The bounding techniques for minimum free square Euclidean

distance used in Chapter 5 and 6 can be used in general for variant

schemes. Using such techniques, we addressed the methods of search-

ing for optimal code for multi-phase PSK and for modulations with

controlled ISI. We have also demonstrated the robustness of rate

2/3 coded 8-4 against the INTELSAT V channel impairments through

simulation.

The main theme of Chapter 5 is left unanswered, namely,

which (G, M, F) for multiphase modulation is the best for schemes

of similar complexity. While we are satisfied with the simplicity

and performance of the binary encoders found, we suppose octal

and GF(8) encoders with better distance properties can be dis-

covered if more powerful rejection rules are adopted in the code

searching. A generalized concept of complexity (in terms of

decoder complexity, inevitable decoding delay etc.) required for

a certain level of system performance is needed for meaningful
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comparison of various classes of encoders, the formulation of which

by itself is a complex subject.

Trellis decoding the effect of ISI requires increased

complexity for the decoder. An interesting question is whether

we would be better off if the same complexity is used for an encoder

with longer constraint length. Simulation results for pulses with

significant ISI (h, > 0.1) seem to favor the encoder which also

trellis decode the effect of ISI.

For implementation purposes, we would like to know the

effect of quantization and path memory length on error performance

in the decoding process. There is a strong need in satellite

communication to advance the state of art of implementing very

high speed hardwares for Viterbi algorithm decoding.

The Viterbi algorithm is the optimal (in the maximum

likelihood sense) scheme for decoding, at the cost of exponential

increase of complexity with constraint length. Sequential decoding

algorithms on the other hand reduces decoder complexity at the

expense of increased delay, memory and computation requirements.

Between the two extreme, a reduced state decoding algorithm, if

one ever exists, seems to be a good compromise. We suspect that

the increased complexity (4 fold for rate 2/3 coded 84 with nonzero

ho , hl) due to ISI can be reduced by certain manner of ignoring

or combining some state or state transitions. Success in the treat-

ment of the ISI case may bring insight concerning reduced state

Viterbi decoding for a long constraint length encoder. Naturally,

the ignoring of states introduced by nonzero h2 , h3 , etc. is a
trivial example of this reduced state approach. Reduced state
decoding for a given encoder would inevitably deteriorate perform-
ance, but there may be gain compared with full state decoding of
the same complexity. The success of the reduced state approach

depends very much upon the 'distinctiveness' of the states. In
the case of ISI, the diminishing 'distinctiveness' as ISI is reduced
may enable us to conglomerate states together.
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In conclusion, we would like to see how the problem of

severe bandwidth and power limitation has been dealt with in this

thesis by proposing specific schemes for implementation which

acquires good performance improvement with reasonable increase of

complexity. Pulse shapings are to be chosen from those suggested

in Chapter 4 with BT product of around . 0.8 when filter loss

is less than 1 dB. It may be possible at the cost of increased

filter loss and introducing a nonzero h2 to obtain a BT product

of about 0. 7with 1/3 < e < 1/2 for the 4th order beta and truncated
sinc functions. In all cases, the quadrature component should be

staggered with respect to the in-phase component to decrease filter

loss. For very small earth terminals with severely limited trans-

mission power which would necessitate the use of a low rate coding

scheme, the rate 1/2 encoders are recommended. For transmission

systems such as TDMA which is power limited in order to reduce

ACI and OBE, the rate 2/3 coded 8ý with 4 binary memory would offer

a 3 - 4 dB gain due to coding. The full benefit of these trans-

mission schemes cannot be fully estimated until they are simulated

in a more realistic system environment.
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APPENDIX A. Analyses of Pulse Optimization
for m = 1, 2

138



From Section 4.2, hn 0 (t) is the solution associated with

the smallest X for the following boundary value problem,

2n
dt2n h(t) = (-1)nA hm(t)
subject 

t2n

subject to

t/2
h 2 (t) = 1

h(t) = 0

h(k) (± t/2) = 0

for

for

t > t/2

0 5 k n- 1

Notice that the energy of h(t) has been normalized.

Case 1. m = 1

The solution of the differential equation is the beta

function, a well-known distribution in probability theory

1 (2n + 1)! 2t n 2tn
hn (t) =- In n (1 _ )2t (1 + 2t t 5 /2n T n! n! T T

= 0 otherwise

with

r/2

-It/2
hn(t) dt = 1

1.39



Normalizing the energy gives

h n (t)
= 2£ -/2

T /2
[hn(t)]2

To evaluate the denominator, we observe that

T-/2

fT/2

1 (4n + 1)! !T
- (2n)!(2n)! 1

n! n! 2
(2n + 1)! -/2

-1/2
[hn(t) ]2

Consequently,

h O(t ) = An(1 _t)n

in which

A [(4n + 1)!] 1/2
n (2n)!

The plots

For hb(t),

of h (t)n
The value

Q{ hb

for n from 0 to 4 are given in Figure 4.1.
of B1, n can be derived from its definition.

_ - 2 (Bn)2n + 1
2n + 1 n Hb(0 ) 2

R{hb(t)} hb(t) dt

= Hb(0)
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since

Q{hb(t)} = Q{ho(t)}

R{hb(t)} = R{hno(t)}

therefore by eliminating Hb(O), we have

= B B1 , n

= 2t (n + 1
2

12t { (n + )2

Q {h (t)} 1n 2n + 1

1

SR~h ot)-1} 2n + 1

The eigenvalue is given by

n d2 n

dt 2 n

The highest order term in t of hn 0 (t)
expanding ht) to be

A (-1 )nn

can be found by binormial

-2t 2n

and subsequently

on the otherhand

S= An (2n)! (-) 2nT

t/2

f T/2
R{h n(t)} hn (t)

n! n!
n (2n + 1)!
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Pl,n

(t)

dt
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Substituting the values of X

for Pl,n gives

=, 2{ y1 (2n + 1)!
ln n!42

and R{hn (t)} into the expression

2
2n + 1

The values of

1

5.24

l1,n are

2

8.96

as follows:

3

12.40

The spectrum of

A/2

= A /2
f-/2

hn (t) is

n(1 + 2t)nT- e - jwt dt

1/2
=Ant

f1/2

47, -n-(1/2 )n! In (1/2) (1I
in which

In+(1/2)

n

)- 1/2 eJ/2 kk=0
(-1)k(n + k)!
k!(n - k)!

+ (-l)n+l e-/ 2  (n + k)!

k=O k!(n - k)! k

142
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18.95
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+ t)n
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is a special case of the modified Bessel functions of the first
kind. After a considerable amount of computation, it can be
shown that

Ho0 (w) = (r) 1 /2 -
sin w-2

H 0 (w) = (5'!) 1 /2 1 (wt)-2 2 -i

H20 () = (9) 1/2 2! ()-3 6 -2

-6 ) cos - 2 sin(2ý 2

H3
0 (w) = (13! I) 1 /2 •- (WY)-4 30 -36! 1 (F)Wt

wTsin -- 2 cos
sin wT2

sin w--
2

COS -122 (ý21 sin • + 2 cos w2

H4
0 (w) = (17! i) 1/ 2 4! (wt)-5

8!

cos -902

cos + 22

1 210 k2

(W -2

sin ýL-2
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The BT product for h n(t) is given by

1

0f
hn (t) dt 2

(2n+l) !
(4n+1)!

n!
(2n)!

For n from 0 to 4,

1.200 1.429

3

1.630 1.814

The spectrum of these five beta functions are shown in
Figure 4.2-4.6.

m=2

The energy of hb(t), by Parseval's theorem, is given by

R{hb(t)} = hb2 (t) dt

B 2 , n/2

- 2,n Hb(f)l 2 df

2, B2, nn

= IHb(O) 2 B2,n
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This, together with the expression for Q{hb(t)} which is the same
as the one for m = 1, gives

2,n = B2,n

= 2t (n 1 Q{h o (t)} 1/2n
R{h (t)l}

n

1= 2t {(n + 1) X}2
1/2n

The differential equation to be solved is

2nd 2n h(t) = (-1)n Xh(t)
dt 2 n

For n = 1,

cos L
Tt t· for -t/2 5 t <5 /2

h1 (t) =

otherwise

The half cosine pulse shape, when used with one quadrature
staggered by T/2, forms the well-known minimum shift key (MSK)
modulation. The spectrum of this pulse shape is

0z81H0( 8T 1/2n2

wt
cos -

t
2

1 - (wT/n)2

with

1 n2Bt = 2 = 1.235

IH1O(0)12 8
The value of X is n 2 /t 2 , consequently giving

P2,1 = 2 = 7.695
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For n = 2, the eigenvalues of the differential equation are

4VA, -44X, j44A, -j 44X. Defining

so that we may express

o 2 2a2at 2at 2at
h2 (t) = A cosh t + A2 sinh + A3 cos + A sin
The four boundary conditions give

The four boundary conditions give

Al

A1

cosh a + A2 sinh a + A3 cos a + A4 sin a = 0

cosh a - A2 sinh a + A3 cos a - A4 sin a = 0

A1 cosh a + A3 cos a = 0

A2 sinh a + A4 sin a = 0

Al sinh a

-A1 sinh a

A2
---- I A

+ A2 cosh a - A3 sin a + A4 cos a = 0

+ A2 cosh a + A3 sin a + A4 cos a = 0

cosh a + A4 cos a = 0

sinh a - A3 sin a = 0

In matrix form, we have

cosh a cos a 0 0 A 0
sinh a -sin a 0 0 A3  =

0 0 sinh a sin a A 0
0 0 cosh a cos a 0

should there be a nontrivial solution, either one of the sub-

determinants

cosh a cos a sinh a sin a
sinha -sin= , cosh a 2os a
sinh a -sin a cosh a cos a
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must equals zero, giving

tan a = ± tanh a

The smallest positive solution for this transcendental equation

is a = 2.365 when A1 = 0, for which case A2 1 0 would give A2 and A4
the trivial solution. Since

A1 _ sin a
A3  sinh a

we may assume

A k sin a

A3 = k sinh a

in which k normalizes the energy of h20 (t). After some numerical

computation, we have

h2 (t) = 0.1863 cosh 4.73 t + 1.4022 cos 4.73 t

The value of P2,2 is 11.9, and the BT product is 1.45.

The solution for general n is suspected to be an even

function of the form

hno(t) = Ak cosh akt cos pkt + Bk sinh akt sin pkt
k=1

in which

ak + Jk (ak 0, k > 0)

is one of the 2n-th root of (-1)n X (the smallest X of course), k

the number of such roots (in the first quadrant and on the

positive real as well as imaginary axes) and Ak , Bk are found by

matching boundary conditions. For convenience sake, these pulse

shapes will be called trigonometric-hyperbolic functions.

For m = 2 and n = 1, 2, hn0 (t) are plotted in Figures 4.7,

4.8, and their Fourier transforms in Figures 4.9, 4.10.
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Appendix B. Code Searching Algorithms for
Rate 2/3 Coded 8p
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The encoders are represented by subgenerators such as

a a a a
S= (i,0' gl . gi,) i = 1,2

in which gi. is the tap gain from the j-th register of the i-th

queue to the adder A (Figure B.1). a denotes the number of

memories of a queue. Each subgenerator will be interchangeably

expressed by its integer representation, such as

a a m£-1 a m2-2 a
gi = gi,0 m gi,l m + + ga

where m is the number of elements in the set V. The addition of

two subgenerators is given by the element-wise adding of the two

subgenerators. A subgenerator is larger than another subgenerator

by virtue of its integer representation. Two encoders are said

to be similar if they have the same minimum free Euclidean distance.

B.1 BINARY ENCODERS WITH STRAIGHT BINARY MAPPING

Let queue 1 has a = n memories and queue 2 has. a = p

memories. Then the encoder has a total of y = n + p memories.

There are 3(y + 2) taps and investigating each possible tap combina-

tion becomes prohibitive for y > 4. A number of rejection rules,

based on the structural similarity of encoders and conjectures

about tap patterns for good encoders, would serve to limit the

computation requirements effectively.

In the code searching algorithm, the subgenerators are

incremented by nested loops, from the innermost to the outermost

according to the order
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a a b b c c
g2 ' g1' 2' g ' 2 ' g1

In other words, g is incremented the most often and gc the least

often. The rejection rules used include,

Rule 1: The first and last register of any queue must

each be connected to at least one of the adders. If this condi-

tion is not satisfied, the encoder can be rejected since there is

an equivalent encoder with shorter constraint length.

Rule 2: Time reversal does not change the distance pro-

perties of an encoder. Therefore, an encoder is similar to another

encoder with reversed subgenerators. A reversed subgenerator is

given by

gi rev = i, 2 + gi,(£-1) 2-1 gi,0

If the outermost nonzero subgenerator gi satisfies gi > gi rev'
the encoder defined by the loop indices has a time reversed version

which has been considered previously. Therefore, that value of

gi can be skipped.

Rule 3: Ungerboeck [10] conjectured that for good

encoders, the adder C, which outputs the least significant bit,

is not connected to the present inputs, which is to say

c O = 010 = c22,0

The state of the encoder determines the value of C and hence which

of the sets {0, 2, 4, 6} or {1, 3, 5, 7} v(=4A + 2B + C) belongs

to. If we adopt this restriction on the encoder, the taps gc

and g2,p can also be set to zero by the time reversal argument.

Such a restriction is rather difficult to justify but it was
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adopted in our program for its 16 fold reduction in computation

requirement.

Rule 4: An encoder with q = p is equivalent to the encoder

obtained by exchanging the two queues. In other words, it is
a b c a bimmaterial to exchange the subgenerators gl, gl, gl with g2, g2,

g2 in that order. By consideration of the order of looping in

the program, an encoder can be rejected if

a 2q+1 a a a 2q+1
gl + g2 1 2

Rule 5: Consider encoders generated by exclusive-ORing

subgenerators. If v = (A, B, C) is the output of the encoder

shown in Figure B.1, we may obtain v' = (A @ B, B, C) by replacing
a a b a a bthe subgenerator ga by gl a g1 and g2 by g2  g2 . In particular,

we will consider the following transformations.

i. (A, B, C) - (A 0 B, B, C)

or by expressing v and v' by straight binary conversion,

v 0 1 2 3 4 5 6 7
-v' 0 1 6 7 4 5 2 3

ii. (A, B, C) - (A $ C, B, C)
or equivalently

v 0 1 2 3 4 5 6 7
-v' 0 5 2 7 4 1 6 3

iii. (A, B, C) - (A, B @ C, C)
or equivalently

v 0 1 2 3 4 5 6 7
-v' 0 3 2 1 4 7 6 5

152



iv. (A, B, C) > (A @ B,

or equivalently
v 0 1 2
-v' 0 3 6

v. (A, B, C) -> (A $ C,

or equivalently

v 0 1 2
>v' 0 7 2

vi. (A, B, C) - (A 0 B

or equivalently

v 0 1 2

B ( C, C)

B 0 C, C)

0 C, B, C)

3 4 5 6 7
+v' 0 5 6 3 4 1 2 7

vii. (A, B, C) - (A 0 B 0 C,
or equivalently

v 0 1 2 3
>v' 0 7 6 1

B E C, C)

For all these transformations, each element of the triple is

replaced by adding itself to those elements to the right. In

other words, only B or C can be added to A, and C to B. Using

the free Euclidean distance bound obtained in Section 5.2, it is

observed that for these transformations, Mb(v) = Mb(v') for v = 0,

2, 4, 6 and the corresponding v'. For v = 1 (or 3,7), v' can

become 5 (recall that Mb(5) = 1.707 while Mb(l) = Mb(3 ) =

Mb(7) = 0.293) under some transformations. Therefore, the above

transformations (8 altogether if we include the identity trans-

formation (A, B, C) 4 (A, B, C)) actually represent four

different cases of whether v = 1i, 3, 5 or 7 is transformed into

5. Thus, computation can be reduced by a factor of 2. In fact,

we cut the computation requirement by a factor of 8 by ignoring
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all transformations other than the identity transformation. This

restriction is justified experimentally when removing the restric-

tion for encoders of a small number of memories did not yield

encoders with better minimum free distance.

Rule 6: The best df discovered so far is remembered

and an encoder is rejected immediately when a free distance of

less than df is revealed.

There may be some other hidden symmetries which would

give additional rejection rules. The best encoder found may not

be optimal (though we strongly suspect that would not be the case)

since some of the rejection rules have not been rigorously proven.

A computer search program, which evaluates the Euclidean

distance of rate 2/3 coded 84 encoders is listed on the following

pages.
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CODE8PF.FORT
THIS PROGRAM CHECKS THE FREE EJCILI)A(N DISTANCE OF ANY BINARY
RATE 2/3 ENCODER USING THE VITERBI ALGORITHM.

ILINK STORES WHERE THE DIFFERENT
COME FROM. RMET STORES THE OCTAL
BRANCH.IOUT STORES THE TRIPLE (A,
EACH STATErWHEREAS DNEW SERVES AS
ITAP(IJ) IS THE JTH INPUT TO THE
STORAGE FOR CbNVERTING DECIMALS T

BRANCHES MERGING INTO A STATE
OUTPUT V ASSOCIATED WITH EACH
BC). DIST STORES THE METRIC AT

A TEMPORARY STORAGE FOR DIST.
ADDER I. ISTORE IS A TEMPORARY

O BINARY NUMBERS.

DIMENSION RMET(64,4),DIST(64),ITAP(3,S),DNEW(64),ILINK(64,4)
DIMENSION IOUT(3),EUCLBD(8)

EUCLBD IS THE BOUND FOR THE IEUCLlEAN FREE D ISTANCE FOR EACH
CHANNEL SYMBOL V

DATA EUCLBD/O.,.293,1.,.293,2.l,.707,1.,.293/
COMMON ISTORE(8)

DMIN IS THE MINIMUM FREE DISTANCE FOUND
LENGTH AND THE SUBGENERATORF POLFf)YNO(RMIAI
TO BINARY FORM) IS REQUESTED.

SO FAR.THE CONSTRAINT
'(SUBSEQUENTLY CONVERTED

DMIN=-1.
WRITE(6,122)

122 FORMAT(1X,'INPUT N AND Ur THE NUMBER OF MEMORIES IN EACH QUEUE')
READ*rKNKU
K=KN+KU
WRITE(6pl21)

121 FORMAT(1X,'INPFUT THE TAP GAINS "TO "THE ADDER ARIN DECIMAL FORM')
READII
WRITE(6,123)

123 FORMAT(1X,'INPFUT THE TAP GAINS TO THE-I ADDER B')
READBl12
WRITE(6,124)

124 FORMAT(lX,'INPUT THE TAP GAINS rTO THE ADDER C')
READ•r13
CALL CBIN(I1)
DO 3 I=1,8
ITAP(1,I)=ISTORE(I)

3 CONTINUE
CALL CBIN(I2)
DO 5 I=1,8
ITAF'(2rI)=ISTORE(I)

5 CONTINUE
CALL C3IN(13)
DO 42 I=1~9
IT AP(3,r1)-ITORE(1)

42 CONTINUE
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C THE TABLES FOR THE ILINK AND RMET ARE BEING FILLED. EACH I
C DENOTE ONE OF THE STATES. EACH J DENOTES ONE OF THE 3RANCHES
C GOING INTO THE STATE I. THE METRIC TABLE DIST IS INITITIALIZED
C WITH LARGE VALUES4
C

IK=2**K
DO 6 I=IrIK
DIST(I)=1O0.
DO 7 J=1,4

C
C THE PREVIOUS STATE LINKED BY "THE J-'TiH BRANCH IS FOUND. THE
C ENCODER OUTPUTS ARE FOUND AND USED TO COMPUTE THE OCTAL V
C ASSOCIATED WITH THE BRANCH TRANSITZ::ION
C.

I01=(I-i)/2**KU
IQ2=I-1-IQ1*2**KU
IQ1=IQ012+(J-1)/2
IQ2=IQ2*2+J-1-((J-1)/2)%2
ILINK(I ,J)=MOD( Q11 v 2:IN)*2iIU+MO (102 Q,2*KU)+I
IOUT(1)=O
IOUT(2)=O
IOUT(3)=0
IQ=IQ1*2**(KU+1)+IQ2
CALL CBIN(IQ)
IA=7-K
DO 8 L1=1i3
DO 9 L2=IA,8
IOUT(LI)=IOUT(LI1)'+ITAP(LYL2)>J :ST31RE(L2)

9 CONTINUE
8 CONTINUE

IOUT(1)=MOD(IOUT(1),2)
IOUT(2)=MOD(IOUT(2),2)
IOUT(3)=MOD(IOUT(3),2)
IOCTAL=IOUT(1):4,+IOUT(2)42+:OUT(3)
RMET(IrJ)=EUCLBD(IOCTAL+1)

7 CONTINUE
6 CONTINUE

C
C TRELLIS SEARCH FOR MINIMUM DISTANCE PATH
C DOO DENOTES THE MINIMUM DISTANCE. AMONGST PARALLEL TRANSITIONS.
C DSHORT IS THE SHORTEST EUCLIDEAN SEPARATION FOUND SO FAR.
C DLEASP REPRESENT THE SMALLEST METRIC AMONGST ALL THE STATES AT
C A DECODING STAGE. ICOUNT IS THE NUMBER OF STAGES THE ALGORITHM
C HAS GONE THROUGH.
C
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DO0=100.
DO 46 J=2,4
IF (ILINK(1,J).EQ.1) DOO=AMI:NI(DOO100ME'T(1,J))

46 CONTINUE
DSHORT=DOO
DIST(1)=O
DNEW(1)=1000.
ICOUNT=1

17 DLEAST=100.
ICOUNT=ICOUNT+1
IF (ICOUNT.EQ.100) GO "TO 41

C
C A SURVIVOR IS CHOSEN AMONGST THE 4 BRANCHES GOING INTO A STATE
C

DO 18 I=2pIK
DNEW(I)=DIST(ILINK(Ir1))+RMET(I,1)
DO 19 J=2,4
DNEW(I)=AMIN1(DIST(ILINK(IJ))4RMETCrT(: PJ),DNEW(I))

19 CONTINUE
C
C THE STATE WITH THE SMALLEST METRIC IS FOUND.
C

DLAAST=AMINI(DLEASTrDNEW(I))
18 CONTINUE

C
C THE METRIC TABLE IS BEING UPDATEI)
C

DO 20 I=I,IK
DIST(I)=DNEW(I)

20 CONTINUE
C
C THE THREE BRANCHES (J=2 TO 4) THAT MERGES INTO THE ALL ZERO
C STATE IS COMPARED.TO SEE WHICH ONE GIVES THE SHORTEST DRUN AT
C THAT STAGE. IF DRUN IS LESS THAN THE SHORTEST FREE DISTANCE OF
C THE ENCODER (DSHORT) FOUND SO FAR, DSHORT WOULD BE UPDATED.
C

DRUN=1000.
DO 21 J= 2,4
DRUN=AMIN1(DIST(ILINK(1,J))+RMETC(I,,J>)DI)UN)

21 CONTINUE
IF (DSHORT-DRUN.GT.*-0.000:L) GO TO 22
GO TO 24

22 DSHORT=DRUN
C
C IF DSHORT IS LESS THAN THE DMIN FOUND FOR PIREVIOUS ENCODERS, THEN
C THE ENCODER CONSIDERED RIGHT NOW IS NO GOOD. IF EVERY STATE HAS A
C METRIC (THE SMALLEST OF WHICH IS DLEAST) LARGER THAN DSHORT, THEN
C IT IS NOT NECESSARY TO GO TO FURTHER STAGES TO FIND THE MINIMUM
C FREE DISTANCE. DMIN FOR THE ENCODER IS EQUAL TO DSHORT.
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24 IF((DMIN-DSHORT).GT.O.00001) GO TO 41
IF ((DSHORT-DLEAST).GT°O.00001) GO TO 17
IF (DSHORT.LT.DOO) DMIN=DSHORT
WRITE(6,125)

125 FORMAT(1X,'THE TAP GAINS FOR YOUR ENCODER FOR THE ADDERS ABC
& ARE RESPECTIVELY:')

DO 126 L3=1,3
126. WRITE(6,127) (ITAP(L3,L4),L4=:IAv8)
127 FORMAT(1XiOI3)
41 WRITE(6,128) DMIN
128 FORMAT(1X, THE MINIMUM FREE DISTANCE I[S',lX,F10.5)

STOP
END

C
C * THE SUBROUTINE CBIN CONVERTS A DECIMAL NUMBER INTO A BINARY
C NUMBER.
C

SUBROUTINE CBIN(IDEC)
COMMON ISTORE(8)
IQUOT=IDEC
DO 1 I=1,8
ISTORE(I)=IQUOT/2**(8-I)
IQUOT=IQUOT-ISTORE(I)*2**(8-I)

1 CONTINUE
RETURN
END
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call code8P
TEMPNAME ASSUMED AS MEMBEIRNAME
INPUT N AND U, THE NUMBER OF MEMORIES
?
2 2
INPUT THE TAP GAINS TO THE ADDER AIN

IN EACH Q(JUEUIE.

DECIMAL FORM

21.
INPUT THE TAP GAINS'TO THE ADDER B

57

INPUT THE TAP GAINS TO THE ADDER C

2
THE TAP GAINS FOR. YOUR ENCODER

0 1 0 1 0 1
1 1 1 0 0 1
0 0 0 0 1 0

THE MINIMUM FREE DISTANCE IS
READY.

FOR THE ADDERS A 1 B r(C ARE RESPECTIVELY:

2.58600
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OCTAL CONVOLUTIONAL ENCODERS

A similar set of rejection rules can probably be deduced

for the octal convolutional encoders. However, the plain fact

that there are 83(y+2) (~7 x 1010 for y = 2) possible tap combina-

tions would deny exhaustive search even if the rejection rules

are powerful enough to reduce the effort by four or five orders

of magnitude. Instead, we shall employ a different tactic for

code searching, which randomizes the code search within a small

class of promising candidates. This technique enables us to obtain

an encoder with reasonable df within a much shorter period of computa-

tion. This technique can be used similarly for searching other

types of convolutional encoders. The randomization avoids a lot

of computation waste due to equivalence patterns. Imagine tasting

a large variety of cookies in a box. By picking at random, it is

rather unlikely that one would repeatedly taste the same flavor,

though it is also unlikely that one would be able to pick the best

flavor. On the other hand, a systematic picking may coincide with

the way cookies of the same flavor are arranged.

The class of encoders which will be considered consists

of those encoders which achieves the largest minimum free distance

when the input error sequence is restricted to have one nonzero

entry only. This restricted df achieved is usually very close to

the upper bound derived in Section 5.3.

Since the error sequence has only one nonzero entry, we

may restrict our attention to the tap gains of only one of the

queues. The tap gains of the other queue can be generated inde-

pendently and similarly. The tap gains of concern for y = 2 are
a a b b c c

(g1,0' g,' g,0' g ' g 1 0' g1,2). The restricted df would

not be altered by conjugating any element of this 6-tuple (the

conjugate of i is 8-i) or by pairwise interchanging any two of

the values. By a thorough computer search, the only 6-tuples which
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achieve a maximum restricted df with each element of the 6-tuple

having a value from 1 to 4 and

a <a b < b <c c
91,0 1,1 1,0  1,1 1,0 ,l

are

(1,1,1, 3, 3, 3)

(1, 1, 2, 2, 3, 3)

(1, 1,, 2 2, 3, 4)

(1, 1, 2, 3, 3, 4)

(1, 2, 2, 3, 3, 4)

The code search algorithm picks any two (or the same) 6-tuples at

random and exchange randomly two of the entries within each chosen

6-tuples, conjugating the entries during the exchange. The two

6-tuples now defines an encoder. To further reduce the candidates

of encoders, error sequences with one nonzero entry fed simultane-

ously into each of the two queues are passed into the encoder.

Again, only those encoders with the maximum achieved df for the

double error sequences are retained. The remaining encoders are

then trellis searched for the unrestricted df. Through such a

process, a large proportion of encoders is rejected since they

cannot survive the occurrences of these error sequences which most

likely induce the minimum free distance.

The documented computer algorithm is listed on the

following pages.
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octal23*fort

C THIS PROGRAM SEARCHES FOR (00GD RAITE 2/3 ENCODERS WITH 2 OCTAL
C MEMORIES.
C
C DIST STORES THE CUMULATED METRIC OF EACH OF THE 64 STATES, AND
C , DNEW IS USED AS A TEMPORARY STORAGE FOR DIST. THERE ARE 64 BRANCH
C 'GOING INTO EACH STATE, AND "THE ENC']DIER OUTPUT OF EACH BRANCH IS
C DENOTED BY RMET. THE ENCODER OUTPUT IS A FUNCTION OF THE TAP GAIN
C WHICH IS STORED IN ITAP.THE THREE OCTAL OUTPUT OF THE OCTAL
C ENCODER IS GIVEN BY IOUT. EUC(I) DENOTES 'THE EUCLIDEAN DISTANCES
C BETWEEN THE CHANNEL SYMBOL SEQUENCE I AND 0. ICODE IS THE POOL OF
C SUBGENERATORS WHERE THE ITAPS GET THEIR VALUES.
C

DIMENSION RMET(64,64),DIST(64),ITAP(4,3),ICODE(10,6)
DIMENSION IREG(4),IOUT(3),DNEW(64) ,EUC(8),IC(2)
DOUBLE PRECISION DSEED
COMMON ISTORE(4)
DATA EUC /0.,.293,1.,1.707,2.,1.707,1.,.293/
DATA ICODE /1,1rr1,1,1,1,1,1,1, i,1,1, 1 r2,1,1,1,1,2,

1 ,2t2,2,2,1,2,2,2,2,3,2,2,3,3,3,2,2,3,3,
S3,3,33,3r,3r3,r33,3,3,3,34,4,4,3,3,4,4,4/
WRITE(6,222)

222 FORMAT(' ENTER A SEED FOR 'THE RANDOM NUMBER GIENERATOR')
READ*,DSEED

C
C BY INVOKING THE RANDOM NUMBER GENERATOR, "TWO SUBGENARATORS
C ARE PICKED FROM THE IC(1) AND IC(2) ROWS OF THE POOL OF SUBGEN-
C ERATORS. THEN THE IC3 AND IC3 LOCATIONS OF EACH SUBGENERATORS
C ARE EXCHANGED AND CONJUGATED AT THE SAME TIME. THUS THE POOL OF
C SUBGENERATORS IS CONSTANTLY VARIED.
C
50 IC(1)=GGUBFS(DSEED)*9.99999+1

IC(2)=GGUBFS(DSEED)*9.99999941
IF (IC(1).EQ.IC(2)) GO TO 50
DO 51 I=1,2
IC3=GGUBFS(DSEED)*5.999994'1
IC4=GGUBFS(DSEED)t5.99999+1
ITEMP=ICODE<IC(I),IC3)
ICODE(IC(I),IC3)=8-ICODE(IC(I)rlC4)
ICODE(IC(I),IC4)=8.-I:TEMP

51 CONTINUE
C
C THE ENCODER PICKED RANDOMLY IS THEN TESTED WITH ERROR SEQUENCES
C WITH ONE ERROR FED SIMULTANEOUSLY INTO EACH QUEUE OF THE ENCODER.
C ANY ERROR PATH HAVINC DISTANCE LESS THAN 3.9 IS REJECTED.
C
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SMPAIR=1O.
DO 52 J1=1,7
DO 53 J2=1,4
SMTEMP=0.
DO 54 J3=1,6
SMTEMPF=SMTEMPF'+EUC(MOD(J1lICODE(IC(1),J3)+JI*ICODE(IC(2),J3),8)+1)

54 CONTINUE
IF (SMTEMP.LT.3.9) GO TO 50
SMPAIR=AMINI(SMPAIRSMTEMP)

53 CONTINUE
52 CONTINUE

ITAP IS NOW READ FROM ICODE.o THE V:U;TI-RBI: AL(GORITHM WILL
TO FIND THE MINIMUM DISTANCE OF THE ENCODER.

BE USED

ICODNM=ICODNM+1
ITAP(1,1)=ICODE(IC(1),1)
ITAP(21i)=ICODE(IC(1),2)
ITAP(3r1)=ICODE(IC(2),1)
ITAP(4p1)=ICODE(IC(2),2)
ITAP(1,2)=ICODE(IC(1),3)
ITAP(2,2)=ICODE(IC(1),4)
ITAP(3p2).=ICODE(IC(2),3)
ITAP(4v2)=ICODE(IC(2),4)
ITAP(1 3)=ICODE(IC(1),5)
ITAP(2 3)=ICODE(IC(1),6)
ITAP(3,3)=ICODE(IC(2),5)
ITAP(4?3)=ICODE(IC(2),6)
DSHORT=1000.

THE ENCODER IS
CONTENT OF THE

SIMULATED SO THAT THE OUTPUTS
SHIFT REGISTERS IS FOUND.

AS A FUNCTION OF THE

DO 6 I=1,64
DIST(I)=100.
DO 7 J=1,64
IOUT(1)=O
IOUT(2)=O
IOUT(3)=0
IREG(1)=(I-1)/8
IREG(2)=(J-1)/8
IREG(3)=(I-1)-IREG(1)*8
IREG(4)=(J-1)-IREG(2)*8
DO 8 L1=1,3
DO 9 L2=1,4
IOUT(L1)=MOD(IOUT(L1)+-IRE3(.L2)*I'TAPr(I..2,l:L) ,8)
CONTINUE
CONTINUE
RMET(I,J)=EUC(IOUT(1)+1)+EUC(IOUT(2)-+1)+EUJC(IOUT(3)+1)
CONTINUE
CONTINUE
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C
C THIS IS THE BEGINNING OF THE TRELLIS SEARCH. ICOUNT COUNTS THE
C NUMBER OF STAGES THE VITERBI ALGORITHM HAS PERFORMED.
C

DIST(1)=0.
DNEW(1)=1000.
ICOUNT=O

17 DLEAST=100.
ICOUNT=ICOUNT+1
IF.(ICOUNT.EQG10) GO TO 50

C
C THE 64 PATHS MERGING INTO A STATE IS COMPARED AND THE SURVIVOR IS
C PICKED. THE SURVIVOR GOING BACK TO THE ZERO STATE GIVES ONE OF
C THE FREE DISTANCES (DRUJN), WHICH IS CONPA'RED WITH THE PREVIOUS
C MINIMUM FREE DISTANCES (DSHORT) AND UPDATES DSHORT IF DRUN IS
C SMALLER THAN DSHORT. DLEAST REGISTERS THE SMALLEST ACCUMULATED
C METRIC OF THE 64 STATES, AND IF DLEAST IS GREATER THAN DSHORT,
C TRELLIS SEARCH FOR THE MINIIUM DISTANCE PATH OF THE ENCODER HAS
C BEEN ACCOMPLISHED.
C

DO 18 1=2,64
DNEW(I)=DIST(1)+RMET(I,:L)
DO 19 J=2,64
DNEW(I)=AMINI(DIST(J)+RMET(:J)YDNEUCI())

19 CONTINUE
DLEAST=AMIN1(DLEASTDNEW(I))

18 CONTINUE
DO 20 I=1,64
DIST(I)=DNEW(I)

20 CONTINUE
DRUN=1000.
DO 21 I=2,64
DRUN=AMIN1(DIST(I)+RMET(I~))DRULJN)

21 CONTINUE
IF (DSHORT-DRUN.LTO.O000001) GO TO 24
DSHORT=DRUN

C
C DMIN IS THE FREE DISTANCE OF THE BEST ENCODER FOUND SO FAR. IF
C DSHORT IS LESS THAN DMIN, THEN THE PRESENT ENCODER CAN BE
C ABANDONED. AFTER WE FINISH THE TRELLIS SEARCH FOR THE ENCODER
C AND THE MINIMUM FREE DISTANCE IrS L..ARG3ER THAN DMIN, THUS WE HAVE
C FOUND A BETTER ENCODERWHICH IS PRINTED AT THE TERMINAL.
C.
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24 IF ((.DMIN-DSHORT).GT*0.00001) GO TO 50
IF ((DSHORT-DLEAS'T).GTO.0000OO:) G(3 TO 17
DMIN=DSHORT
WRITE(6,240)

240 FORMAT(' X-----X-----X-----X-- X...X)
DO 224 I=1 3
WRITE(6r227) I

227 FORMAT(' TAP GAINS TO THE ADDER -',Y"5,,' ARE:')
WRITE(6,223) ( I'TAP (L3I ) L3=1 4)

223 FORMAT(4I5).
224 CONTINUE

WRITE(6,-225) DMIN
225 FORMAT(' MINIMUM FREE DISTANCE= ',F10.5)

WRITE(6,226) ICODNM
226 FORMAT(' NUMBER OF ENCODERS TII:EII_:.3--SIlEARCHED SO FAR= ',I6)

IF (ICODNM.LT.10000) GO TO 50
STOP
END
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call octal23
TEMPNAME ASSUMED AS MEMBERNAME
ENTER A SEED FOR THE RANDOM NUMBER GENERATOIF

1234.d0
X-----X-----X ---- X ----- X ---- X

TAP GAINS TO THE ADDER I ARE:
1 7 1 6

TAP GAINS TO THE ADDER 2 ARE:
6 6 5 6

TAP GAINS TO THE ADDER 3 ARE:
4 5 3 1

MINIMUM FREE DISTANCE= 2.05100
NUMBER OF ENCODERS TRELLIS-SEARCHED

X-----X..-----.X----X.. -----X --- X
TAP GAINS TO THE ADDER 1 ARE:

1 7 4 2
TAP GAINS TO THE ADDER 2 ARE:

3 2 3 3.
TAP GAINS TO THE ADDER 3 ARE:

2 5 7 6
MINIMUM FREE DISTANCE= 2.05100
NUMBER OF ENCODERS TRELLIS-SEARCHED

X-----X-----X-----X-----X-----X
TAP GAINS TO THE ADDER 1 ARE:
6 7 1 2

TAP GAINS TO THE ADDER
3 6 5 5

TAP GAINS TO THE ADDER
1 4 4 6

2 ARE:

3 ARE:

MINIMUM FREE DISTANCE= 2.29300
NUMBER OF ENCODERS TRELLIS-SEARCHED

READY

SO FAR=

SO FAR=

SO FAR:=
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3CTAL12.FORT'
C THIS PROGRAM SEARCHES EXHAUSTIVEILY FOR OPTIMAL RATE 1/2 OCTAL'
C CONVOLUTIONAL ENCODERS.
C 4
C DIST STORES THE CUMULATED METRIC OF THE STATES OF THE ENCODER
C WITH K-1 OCTAL MEMORIESPAND DNEW IS USED AS A TEMPORARY STORAGE
C FOR DIST. THE EUCLIDEAN DISTANCE OF THE OUTPUT OF THE J-TH
C BRANCH MERGING INTO THE I-TH STATE IS GIVEN BY RMET(IJ). THE
C ENCODER OUTPUT (IOUT) IS A FUNC'T:ON OF THE TAP GAINS, WHICH ARE
C STORED IN ITAP. EUC(I) DENOTES THE EUCLIDEAN DISTANCES BETWEEN
C THE CHANNEL SYMBOL I AND 0. ILINK(IJ) DENOTES THE PREVIOUS
C STATE CONNECTING TO THE STATE.I THROUGH 'THE J-TH BRANCH MERGING
C INTO STATE I.
C

DIMENSION RMET(64,8),DIST(64),ITAP(3,2),EUC(8)'
DIMENSION ILINK(60r8).,IOUT(2),DNEW(64)
DATA EUC /0.,.293,1.,11707,2.,1o707,1.,.293/
COMMON ISTORE(3),K
WRITE(6,130)

130 FORMAT(' PUT .IN THE NUMBER OF OC'TAL MEMORIES OF THE ENCODER.')
READ*PM
K=M+1
IF -(M.EQ.2) WRITE(6t139)

C
C IL AND IU REPRESENTS THE SUBGENERATORIS FOR THE ENCODER. IL AND
C ARE CONVERTED TO OCTAL REPRESENTATION AND STORED AS TAP GAINS.
C

IL=8**(K-1)
IU=8**K-1
DMIN=O.
DO 2 Il=1LIU
CALL OCTAL(I1)
DO 3 I=1r3
ITAP(Ii1)=ISTORE(I)

3 CONTINUE
DO 4 12=1,IU
CALL' OCTAL(I2)
DO 5 I=1,3
ITAP(I,2)=ISTORE(I)

5 CONTINUE
DSHORT=1000.

C
C THE OCTAL EJCODER IS SIMULATED TO G7(3:IVE "THE STATE TRANSITION TABLE
C ILINK AND THE OCTAL OUTPUT IOUT, AS WELL AS THE METRIC OF EACH
C TRANSITIONS (RMET).
C
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DO 6 I=1,IL
DIST(I)=100.
DO 7 J=1,8
ILINK(IJ)=(I-1)*8+(J-1)
CALL OCTAL(ILINK(IJ))
IOUT(1)=O
IOUT(2)=O
DO 8 L1=1,2
DO 9 L2=1,3
IOUT(L1)=MOD(IOUT(L1)+ISTORE(L2)*ITAP(L2,L1),8)

9 CONTINUE
8 CONTINUE

RMET(I,J)=EUC(IOUT(1)+1)+EUCC(IOUT(C2).+:I)
'7 CONTINUE
6 CONTINUE
C
C THIS IS THE BEGINNING OF 'THE TREII_:S SEARCH. ICOUNT COUNTS THE
C THE NUMBER OF STAGES THE VITERBI ALGORITHM HAS PERFORMED.
C

DIST(1)=O.
DNEW(1)=1000.
ICOUNT=O

17 DLEAST=100.
ICOUNT=ICOUNT+1
IF (ICOUNT.EQ.10) GO TO 4

C
C THE 8 PATHS MERGING INTO A STATE IS COMPARED AND THE SURVIVOR IS
C PICKED. THE SURVIVOR GOING INTO THE ZERO STATE GIVES ONE OF THE
C FREE DISTANCES (DRUN), WHICH IS COMPARED WITH THE PREVIOUS MINIMUM
C. FREE DISTANCES (DSHORT) AND UPDATES DSHORT IF DRUN IS SMALLER THAN
C DSHORT. DLEAST REGISTERS THE SMALLEST ACCUMULATED METRIC OF THE
C STATES, AND IF DLEAST.IS GREATER THAN DSHORT, TRELLIS SEARCH FOR
C THE MINIMUM DISTANCE PATH OF THE ENCODER HAS BEEN ACCOMPLISHED.
C

DO 18 I=2,IL
DNEW (I)=DIST(MODCILINK(I,:L),IL.)+:l)4RME'T(Ir1)
DO 19 J=2r8
DNEW(I)=AMIN1(DIST(MOD(IIINK(IJ),IL)+I)+RMET(IJ),DNEW(I))

19 CONTINUE
DLEAST9AMIN1(DLEASTDNEW(I))

18 CONTINUE
DO 20 I=1,IL
DIST(I)=DNEW(I)

20 CONTINUE
DRUN=1000.
DO 21 I=2,8
DRUN=AMINI (DIST(MOD(ILINK<' [ ) v:L)p:i )+RET(1,I) DRUN)

21 CONTINUE
IF (DSHORT-DRUN.LT.O.O00001) GO TO 24
DSHORT=DRUN
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C
C DMIN IS THE FREE DISTANCE OF THE BEST ENCODER FOUND SO FAR. IF
C DSHORT IS LESS THAN DMIN, THEN THE PRESENT EINCODER CAN BE.
C ABANDONED. AFTER WE FINISH THE TRELLIS SEARCH FOR THE ENCODER
C HENCE THE MINIMUM FREE DISTANCE OF THE ENCODER IS AT LEAST AS
C LARGE AS DMIN, THE SUBGENERATORS. OF THE ENCODER ARE PRINTED.
C
24 IF ((DMIN-DSHORT).GT.O00OOO1) (30 TO 4

IF ((DSHORT-DLEAST).GT.*.00001) GO TO 17
DMIN=DSHORT
WRITE(6,138)

138 FORMAT(' X-------X-----..X-. .X. X-----.X')
IK=3-M
DO 134 L4=1,2
WRITE(6,135) L4

135 FORMAT(' THE TAPS TO THE AI:DDER '14' ARE:')
WRITE(6,1p33) (ITAP(L3rL4),L3=IKr3)

133 FORMAT(3X51I5)
134 CONTINUE

WRITE(6,136) DMIN
136 FORMAT(' THE MINIMUM DISTANCE OF THE ENCODER IS ',F10.5)
4 CONTINUE
2 CONTINUE

STOP
END
SUBROUTINE OCTAL(IDEC)
COMMON ISTORE(3),K
IQUOT=IDEC
DO 1 I=1,3
ISTORE(I)=IQUOT/8**(3-I)
IQUOT=IQUOT-ISTORE(I)t*8*(3-I)

1 CONTINUE
RETURN
END
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call octal12
TEMPNAME ASSUMED AS MEMBERNAME

PUT IN THE NUMBER OF OCTAL MEMORIES OF THEE EfC(:I)31IER

X-----X ----- X- --- X-----X ------ X
THE TAPS TO THE ADDER 1 ,ARE:

1 0
THE TAPS TO THE ADDER 2 ARE:

O 1
THE MINIMUM DISTANCE OF THE ENCODER IS

X-----X-----X-----X-----X-----X
THE TAPS TO THE ADDER 1 ARE:

1 0
THE TAPS TO THE ADDER 2 ARE:

0 2
THE MINIMUM DISTANCE OF THE ENCODER IS

X-----X-----X-----X---------- X
THE TAPS TO THE ADDER 1 ARE:

1 0
THE TAPS TO THE ADDER 2 ARE:

0 3
THE MINIMUM DISTANCE OF THE ENCODER IS

X-----X----- X-----X-----X------X
THE TAPS TO THE ADDER 1 ARE:

1 0
THE TAPS TO THE ADDER 2 ARE:

0 5
THE MINIMUM DISTANCE OF THE ENCODER IS

X----- X-----X-----X----- X------X
THE TAPS TO THE'ADDER 1 ARE:

1 0
THE TAPS TO THE ADDER 2 ARE:

1 3
THE MINIMUM DISTANCE OF THE ENCODER IS

X-----X-----X-----X-----X-----X
THE TAPS TO THE ADDER 1 ARE:

1 0
- THE TAPS TO THE ADDER 2 ARE:

1 5
THE MINIMUM DISTANCE OF THE ENCODER IS

X-----X-----X.---x------X-----X
THE TAPS TO THE ADDER 1 ARE:

1 0
THE TAPS TO THE ADDER 2 ARE:

2 3
THE MINIMUM DISTANCE OF THE ENCODER IS

X-----X-----X-----X-----X-----X
THE TAPS TO. THE ADDER 1 ARE:

1 0

0.58600

1.29300

2.00000

2.00000

2.29300

2.29300

3.00000

READY
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GF8CODE.FORT'
C THIS PROGRAM SEARCHES EXHAUSTIVELY FOR RATE 2/3 GF(8) CONVOILUT
C -IONAL ENCODERSWITH 1 OCTAL MEMORY.
C
C DIST STORES THE CUMULATED METRIC OF EACH OF THE EIGHT STATES,
C AND DNEW IS USED AS A TEMPORARY STORAGE FOR DIST. *TIHERE ARE
C 64 BRANCHES GOING INTO EACH STATE, AND THE ENCODER OUTPUT OF
C EACH BRANCH IS DENOTED BY RMETo, THE ENCODER OUPUT IS A FUNCTION
C OF THE TAP GAINS WHICH ARE STORED IN ITAP. THE THREE OCTAL OU'TPUT
C OF THE EtCODER IS GIVEN BY IOUT. EUC(:) DENOTES .THE EUCLIDEAN
C DISTANCE BOUND BETWEEN I AND) 0.
C

DIMENSION RMET(8964),DIST(8),ITAP(3,3),EUCLID(8),ILINK(8,64)
DIMENSION IREG(3),IOUT(3),DNEW(8),IADD(8,8),IMULT(8,8)

C,
C IADD AND IMULT ARE THE ADDITI:ON AND) NULTIPLICATION TABLE FOR
C GF(8)
C

DATA IADD /0,1,2,3,415,6,7 1,0,3,2,5,4,7,6,
& 23rOr1,6 7r4,5 3,2,1,0,7,6,5,4,
t 4,5,6,7,0,1,2,3 5,4,7,6,1,0,3,2,
& 6,7,4,5,2,3,0,I.7t654,32O:LtIO/

DATA IMULT/ 0,0,0,0 0,0,0,00,1,2,3,4,5,6,7,
& 02,4,6,3,1,7,5,0,3,6,5,7,4,1,2,
& 04,3,7,6,2, 5.p0',SJ. p4,2,7,3,6,
& 0 6,7 1,5,3r2,4 0,7,5,2,1,6,4,3/
DATA EUCLID /0., 293l .,.293r2.•1.707,1.,.293/
COMMON ISTORE(3)
DMIN=0.

C
C 11,I2,I3 REPRESENTS THE SUBGENERATORS 01F "THE ENCODER,WHIICH ARE
C CONVERTED TO OCTAL 'REPRESENTATION.
C

DO 2 Il=1,255.
CALL OCTAL(I1)
DO 3 I=1,3
ITAP(I,1)=ISTORE(I)

3 CONTINUE
DO 4 I2=1,255
CALL OCTAL(I2)
DO 5 I=1r3
ITAP(I,2)=ISTORE(I)

5 CONTINUE
DO 41 I3=1,255
CALL OCTAL(I3)
DO 42 I=1,3
ITAP(I,3)=ISTORE(I)

42 CONTINUE
DSHORT=1000.
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C
C THE GF(8) ENCODER IS SIMULATED TO GIVE THE STATE TRANSITION TABLE
C ILINK AND THE OCTAL OUPUT IOUT, AS WELL AS THE METRIC OF EACH
C TRANSITIONS IMET.
C

DO 6 I91,8
DIST(I)=100.
DO 7 J=1764
IOUT(1)=O
IOUT(2)=O
IOUT(3)=0
IREG(1)=(J-1)/8
IREG(2)=(I-1)
IREG(3)=J-1-IREG(1)*8
ILINK(IrJ)=J-((J-1)/8)*8
DO 8 L1=1,3
DO 9 L2=1,3
IOUT(L1)=IADD(IOU'T(L1)+IIMULJT(]:REG(3<I)'+1IITAP(L2,L1)+1)+1)

9 CONTINUE
8 CONTINUE

DO 10 L1=1,3
10 CONTINUE

RMET(IJ)=EUCLID(IOUT.(1)-(I)EUCLJDC(OUT(2)+1 )+EUCL.ID(IOUT(3)+1)
7 CONTINUE
6 CONTINUE

C
C THE 64 PATHS MERGING INTO A STATE IS COMPARED AND THE SURVIVOR IS
C PICKED. THE SURVIVOR GOING INTO THE ZERO STATE GIVES ONE OF THE
C FREE DISTANCES (DRUN), WHICH IS COMPARED WITH THE PREVIOUS
C MINIMUM FREE DISTANCES (DSHORT) AND UPDATES DSHORT IF DRUN IS
C SMALLER THAN DSHORT. DLEAST REGISTERS THE SMALLEST ACCUMULATED
C METRIC OF THE STATES, AND IF DLEAST IS GREATER THAN DSHORT,
C TRELLIS SEARCH FOR THE MINIMUM DISTANCE PATH OF THE ENCODER
C HAS BEEN ACCOMPLISHED
C

DIST(1)=0.
DNEW(1)=1000.
ICOUNT=O

17 DLEAST=100.
ICOUNT=ICOUNT+1
IF (ICOUNT.EQ.10) GO TO 41
DO 18 I=2,8
DNEW(I)=DIST(11+RMET(I,1)

43 DO 19 J=2p64
DNEW(I)=AMIN1 (DIST (ILINK(I rJ) )+RME'T(:I,J) ,DNEW(I))

19 CONTINUE
DLEAST=AMINI(DLEASTDNEW(I))

18 CONTINUE
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DO 20 I=1,8
DIST(I)=DNEW(I)

20 CONTINUE
DRUN=1000.
DO 21 I=2,8
DO 44 J=1r8
DRUN=AMIN1(DIST(.I)+RMET(1,I+(J-1)*8),DRUN)

44 CONTINUE
21 CONTINUE

IF (DSHORT-DRUN.LT.-0.o00001) GO TO 24
DSHORT=DRUN

C
C DMIN IS THE FREE DISTANCE OF THE BEST.ENCODER FOUND SO FAR. IF
C DSHORT IS LESS THAN DMIN, THEN THE PRESENT ENCODER CAN BE
C ABANDONED. AFTER WE FINISH THE TRELLIS SEARCH FOR THE ENCODER
C HENCE THE MINIMUM FREE DISTANCE OF THE ENCODER IS AT LEAST AS
C FODD AS DMIN, THE SUBGENERATORS (OF THE ENCODER ARE PRINTED.
C
24 IF ((DMIN-DSHORT.).GT.0*00001) GO TO 41

IF ((DSHORT-DLEAST).GT.0.00001) G(0 TO 17
IF (DSHORT.LT.3.00001) DMIN=DSHORT
WRITE(6,141)

141 FORMAT( - X-----X-----X ------ X---.X . X')
DO 142 L4=1,3
WRITE(6,-143) L4

143 FORMAT(' THE TAPS TO THE AI)DEIER :[5p' ARE:# )

WRITE(6,144) (ITAP(L3rL4),L3=1,3)
144 FORMAT(5X3I15)
142 CONTINUE

WRITE(6,145)-DMIN
145 FORMAT(' THE FREE DISTANCE (OF THI:S CODE = ',10F5)
41 CONTINUE
4 CONTINUE
2 CONTINUE

STOP
END'
SUBROUTINE OCTAL(IDEC)
COMMON ISTORE(3)
IQUOT=IDEC
DO 1 I=1,3
ISTORE(I)=IQUOT/8**(3-1)
IQUOT=IQUOT-ISTORE(I)*8**(3-I)

1 CONTINUE
RETURN
END

173



Appendix C. Program for Searching Optimal
Rate 1/2 Coded 40 with Nonzero h,
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ISICODE.FORT'
C THIS PROGRAM SEARCHES FOR OPT:MAI.. IRATE 1/2 BINARY CONVOLUTIONAL
C ENCODER FOR QPSK WITH NONZERO Hi ONLY.
C
C IDIST STORES THE COEFFICIENT OF HO AND H11 OF THE ACCUMULATED
C METRIC OF THE ENCODER PLUS CHANNELWHILE IDNEW IS A TEMPORARY
C STORAGE FOR IDIST. THERE ARE TWO BRANCHES MERGING INTO STATE If
C AND THE ENCODER OUTPUT OF BOTH BRANCHES ARE THE SAME THUS CAN
C BE STORED IN IMET(I,3). AT STATE I, THE COEF. OF Hi ASSOCIATED
C WITH EACH BRANCH IS STORED IN IMET(Iri) AND IMET(Ir2). :THE
C ENCODER OUTPUTS IOUT AND PREVIOUS ENCODER OUTPUT IPREV ARE
C FUNCTIONS OF THE TAP GAINS ITAP. THE ACCUMULATED EUCLIDEAN METRIC
C OF EACH STATE IS RMET WHICH CAN BE CALCULATED FROM IMET. ICHPITR,
C IBR ARE ASSOCIATED WITH CHECKING CODE CATASTROPHE.
C

DIMENSION IMET(256v3),RMET(25632),IDIST(256,2),DIST(256)
DIMENSION ITAP(8,2),ICHI(50),ITR(20)rIBR(200)
DIMENSION. ILINK(256,2),IDNEW(256,2),IOUT(2),IPREV(2),DNEW.(256)
COMMON ISTORE(S)
WRITE(6,151)

151 FORMAT(' ENTER THE NUMBER OF MEMORIES OF THE ENCODER.')
READ*(K
WRITE(6,152)

152 FORMAT(" ENTER THE VALUE OF THE FIRST CORRELATION COEFH1 '
READ*,Hi
WRITE(6,153)

153 FORMAT(' GUESS A LOWER BOUND FOR DMIN TO START WITH. ')
READ*PDMIN
IL=2**K+1
IU=2**(K+1)-l

C
C- I1 AND 12 REPRESENT THE SUBGENERATORS OF THE ENCODER, WHICH ARE
C CONVERTED INTO BINARY REPRESENTATION AND STORED AS THE TAP GAINS.
C

DO 2 II=ILIU,2
CALL CBIN(I1)
DO 3 I=1,8
ITAP(I,1)=ISTORE(I)

3 CONTINUE
DO 4 I2=IL,IU,2
CALL CBIN(I2)
DO 5 I=1,8
ITAP(I,2)=ISTORE(I)

5 CONTINUE
DSHORT=1000,
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C
C THE EXTENDED STATE OF THE SYSTEM, DENOTED BY ISTATE, DETERMINES
C THE PRESENT AS WELL AS PREVIOUS OUTPUT OF THE ENCODER. IMET CAN
C BE CALCULATED FROM THESE OUTPUTS.
C

ISTATE=2**(K+1)
DO 6 I=1ISTATE
DIST(I)=100.
IDIST(Il)=O
IDIST(I,2)=O
IOUT(1)=O
IOUT(2)=0
CALL CBIN(I-1)
IA=8-K
DO 8 L1=1v2
DO-9 L2=IA,8
IOUT(L1)=IOUT(LI)+ITAP(L2,Lj.)*ISTORIE(L.2)

9 CONTINUE
IOUT(L1)=MOD(IOUT(L1),2)

8 CONTINUE
IMET(I,3)=IOUT(1)+IOUT(2)
DO 7 J=1,2
ILINK'( I J)=MOD(I-1 ,2r*K)*2+,J
IPREV(1)=0
IPREV(2)=O
DO 41 IN=IA,7
ISTORE(IN)=ISTORE(IN+1)

41 CONTINUE
ISTORE(8)=J-1
DO 81 L1=1,2
DO 91 L2=IA,8
IPREV(L1)=IPREV(L1)+]:TAP(L2,L):I:)S'TORIE( I2)

91 CONTINUE
IPREV(L1)=MOD(IPREV(L1),2)

81 CONTINUE
IMET(IJ)=IOUT(1)+IOUT(2)+IPREV(1)+IPREV(2)-

SMOD(IOUT(1)+IPIREV(1),2)-MOD(IOUT(2)-+IPREV(2),2)
RMET(I,J)=IMET(I 3)-H1*IMET(I J)

7 CONTINUE
6 CONTINUE

C
C THIS IS THE BEGINNING OF THE "TRELLIS SEARCH. ICOUNT COUNTS THE
C NUMBER OF STAGES THE VITERBI ALGORITHM HAS PERFORMED.
C

DO 96 I=1,50
96 ICH1(I)=-I

DIST(1)=O.
DNEW(I)=1000.
ICOUNT=1
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17 DLEAST=100.
ILEAST=100
ICOUNT=ICOUNT+I
IF (ICOUNT.EQ*50) GO TO 4

.C
C THE 2 PATHS MERGING INTO A STATE IS COMPARED AND "THE SURVIVOR IS
C PICKED. THE SURVIVOR GOING BACK TO THE ZERO STATE GIVES ONE OF
C THE FREE DISTANCE BOUNDS (DRUN), WHICH IS COMPARED WITH THE
C PREVIOUS MINIMUM FREE DISTANCES (DSHORT) AND UPDATES DSHORT IF
C DRUN IS SMALLER THAN DSHORT. AT THE SAME TIME, THE COEFFFICIENTS
C OF HO AND H1 ASSOCIATED WITH THE MINIMUM FREE DISTANCE IS STORED
C AS IHOSH AND ISISH RESPECTIVELY.
C

DO 18 I=2uISTATE
DI=DIST(ILINK(I1l))+RMET(IY1)
D2=DIST(ILINK(I,2))+RMET(I,2)
IF (D1.GE.D2) GO TO 82
DNEW(I)=D1
IDNEW(Iii)=IDIST(ILINK(I,1),1)+IMET(I,3)
IDNEW(I,2)=IDIST(ILINK(Ir),2)+IMET(Il)
GO TO 18

82 DNEW(I)=D2
IDNEW(Il)=IDIST(ILINK(Il,2)rl)+[METr(I3)
IDNEW(Ir2)=IDIST(ILINK(I,2)12)+IMET'T(:[,2)

18 CONTINUE
DO 20 I=iISTATE
DIST(I)=DNEW(I)
IDIST(Il)=IDNEW(Il)
IDIST(Ir2)=IDNEW(I,2)

C
C DLEAST REGISTERS THE SMALLEST ACCJUMULATED METRIC OF THE STATES,
C AND IF DLEAST IS GREATER THAN IDSHO[lRTr 'TRELLIS SEARCH FOR THE
C MINIMUM DISTANCE PATH OF THE ENCODER HAS BEEN ACCOMPLISHED.
C DMIN IS .THE FREE DISTANCE OF THE BEST ENCODER FOUND SO FAR.
C OF DSHORT IS LESS THAN DMIN, THEN THE PRESENT ENCODER CAN BE
C ABANDONED.
C

DLEAST=AMIN1(DLEASTDIST(I))
IF (I.EQ.1) GO TO 20
ILEAST=MINO(ILEASTIDIST(I:l))

20 CONTINUE
DRUN=DIST(ILINK(1,2))+RMET(1,2)
IHO=IDIST(ILINK(1,2),1)+IMET(1,3)
IHI=IDIST(ILINK(1,2),2)+IMET(1,2)
IF (DRUN.LT.20) ICH1(IHO)=MAXO(ICH(IH-O),IH1)
IF (DSHORT-DRUN.LT.#000001) GO TO 24
DSHORT=DRUN
IHOSH=IHO
IHISH=IH1

24 IF ((DMIN-DSHORT).GT.-0.00001) (30 TO 4
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C AFTER WE FINISH THE TRELLIS SIEARCH AN)D E14NCIE DSHORT IS AT LEAST
C AS LARGE AS DMIN, WE PRINT OUT THE CODETHE COEFFICIENTS OF 14HO0
C AND HI ASSOCIATED WITH THE MINIHUM DISTANCE PATIH (IHOMIN AND
C IH1MIN, AS WELL AS THE VALUE OF DMIN.
C

IF (DLEAST.LT.DSHORT) GO TO 17
IHOMIN=IHOSH
IH1MIN=IH1SH
WRITE(6,161)

161 FORMAT(' X-----X---- -X-- -.-X-.-.---X----X ')
DO 162 J=1,2
WRITE(6,163) J

163 FORMAT(' THE TAP GAINS TO THE ADOIJER '"15,' ARE')
WRITE(6,164) (ITAP(IrJ)rI=IA,8)

164 FORMAT(3X,8I3)
162 CONTINUE

WRITE(6,165) DSHORTIHOMINIHIMIN
165 FORMAT(' MIN. FREE DISTANCE= ',F10.5' = ',I2,' HO - ',13,' HI')

WRITE(6,166)
166 FORMAT(' OTHER FREE DISTANCES:')

WRITE(6,167)/

167 FORMAT(5X,'COEF. OF HO'r5X,'-VE OF COEF. OF Hl')
DO 168 I=1,20
IF (ICH1(I).EIG.-1) GO TO 168
WRITE(6,169) IICH1(I)

169 FORMAT(7XrI2,15XI3)
168 CONTINUE

C
C CODE CATASTROPHE IS FOUND BY CHECKING [IF LOOPS OF ZERO WEIGHT
C EXISTS
C

IK1=0
DO 44 I=2rISTATE
DO 45 J=1,2
IF (RMET(IJ).GT.0.00001) GO TO 45
IKI=IK1+1
ITR(IKI)=I

-IBR(IKI)=J
45 CONTINUE
44 CONTINUE

DO 97 IK2=1IrK1
DO 98 IK3=1,IK1
IF (ITR(IK2).NE.ILINK(ITR(IK3),IBR(:rK3))) GO TO 98
ITRACK=ITR(IK2)
ITRBR=IBR(IK2)
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DO 99 IK4=IIK1
IF (ILINK(ITRACKITRBR).NE.ITrR(CIr'4)) (30 'TO 99
ITRACK=ITR(IK4)
ITRBR=IBR(IK4)
IF (ITRACK.NE.ITR(IK2)) GO TO 99.
WRITE(6,101)

101 FORMAT(1X, 'HOWEVER, THIS IS A C(ODE: CATASTROPHE.')
GO TO 4

99 CONTINUE
98 CONTINUE
97 CONTINUE

DMIN=DSHORT
4 CONTINUE
2 CONTINUE

STOP
END
SUBROUTINE CBIN(IDEC)
COMMON ISTORE(S)
IQUOT=IDEC
DO 1 I=1,8
ISTORE(I)=IQUOT/(2**(8-I))
IQUOT=IQUOT-ISTORE(I)m*2*(8-I)

1 .CONTINUE
RETURN
END
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call isicode
TEMPNAME ASSUMED AS MEMBERNAME

ENTER THE NUMBER OF MEMORIES OF THE ENCCODER.

ENTER-THE VALUE OF THE FI[RST CORRELATION COEivHtL
,.2

GUESS A LOWER BOUND FOR DMIN TO START WITH.l

5
X-----X----X---.-X. .X-----X

THE TAP GAINS TO THE ADDER 1 ARE,
1 0 0. O' 1

THE TAP GAINS TO THE ADDER 2 ARE
.1 0 1 1 1

MIN. FREE DISTANCE= 5.20000 = 6 Ha -
OTHER FREE DISTANCES:

COEF. OF HO -VE OF COEF. OF H1

HOWEVER? THIS IS A CODE CATASTROPHE.
'X-....X-----X-----X-----X-....X

THE TAP GAINS TO THE ADDER 1 ARE
1 0 0 0 1

THE TAP GAINS TO THE ADDER 2 ARE
1. 1 1- 0 1

MIN. FREE DISTANCE= 5.20000 = 6 HO--
OTHER FREE DISTANCES:

COEF. OF HO -VE OF COEF. OF H1

10 10
HOWEVER, THIS IS A CODE CATASTROPHE.

X-----X-----x-----X-----X-----X
THE TAP GAINS TO THE ADDER 1

1 0 0 0 1
THE TAP GAINS TO THE ADDER 2

ARE

ARE
1 1 1 1 1

MIN.'FREE DISTANCE= -5.26000 = 6 HO -
OTHER FREE DISTANCES:

COEF. OF HO -VE OF COEF. OF Hi

10
10
14

X.----X-----X --. . .X-. ...X-....X
THE TAP GAINS TO .THE ADDER 1 ARE

1 0 0 1 1
THE TAP GAINS TO THE ADDER 2 ARE

1 0 1 0 1
MIN. FREE DISTANCE= 5.60000 = 6 HO
OTHER FREE DISTANCES:

COEF. OF HO -VE OF COEF. OF Hi

10

4 H1

4 H1

4 H1

2 H1
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S-----X----- X-----X-----X ----- X
THE TAP GAINS TO THE ADDER 1 ARE
10011

THE TAP GAINS TO THE ADDER 2 ARE
1 0 1 1 -1

MIN. FREE DISTANCE= 5.80000 = 7 HO - 6 Hi
OTHER FREE DISTANCES:

COEF. OF HO -VE OF COEF. OF H1
7 6
8 8
9 10

11 12
READY
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Appendix D. Program for Decoders
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R12DECOD.FORT'
C THIS IS AN OPTIMAL DECODER FOR V:I'TERB3: DECODING A RATE 1/2
C ENCODER WITH UP TO 6 MEMORIES IN THE PRESENCE OF SEVERE ISI.
C

DIMENSION ITERM2(128,2),ILINK(128,2),IDIST(128),IOUT(2)
DIMENSION IQRT(128),IPATH(128,100),ITAP(2,6),ITERM1.(4),INPUT(128)
DIMENSION IDNEW(128),RCOS(4),RSIN(4),ISTORE(:LOO),R(2)
DOUBLE PRECISION DSEED
COMMON IREG(6),K
NR=2
WRITE(6,141)

141 FORMAT(1X,'INPUT THE NUMBER OF MEMORIES OF THE ENCODER')
READ*•MEMORY
K=MEMORY+1
WRITE(6,142)

142 FORMAT(lXr'INPUT THE FIRST ISI C(EFF2:CIENT HI')
READ*pH1
WRITE(6,143)

143 FORMAT(1X,'INPUT THE SCALING FACTOR FOR PHE GUANTIZER')
READ*oFACTOR
WRITE(6,p44)

144 FORMAT(1X,'INPUT THE LENGTH OF OTHIE SJURVIVOR TO BE STORED')
READ*PIMEM
WRITE(6pl45)

145 FORMAT(1X,'INPUT THE SEED FOR THE RANDOM NUMBER GENERATOR')
READ*,DSEED
WRITE(6,146)

146 FORMAT(1X,'HOW MANY BITS YOU WANT TO RUN FOR EACH ROUND?')
READ*PNTOTAL

C
C ALPHA AND BETA ARE EVALUATED FOR GENERATING RANDOM SEQUENCES
C WITH CORRELATED CONSECUTIVE ELEMENTS SHOWN IN CHAPTER 7 OF
C. THE THESIS.
C

ALPHA=O.
IF (ABS(H1).GT..0001) ALPH4A=.5/H:1-SORiT((.5/H1)**2-1)
BETA=1./SQRT(1+ALPHA**2)

C
C ITAP(IJ) IS THE TAP GAIN FROM THE J-TH REGISTER (INPUT INCLUDED)
C TO THE I-TH ADDER. RCOS AND RSIN ARE EVALUATED AND STORED SO
C THEIR VALUE CAN BE RETRIEVED WITHOUT COMPUTATION WHEN NEEDED.
C

WRITE(6,147)
147. FORMAT(1X,'INPUT THE TAP GAINS IN A BIN. SEQUENCE FOR ADDER A')

READ *X(ITAP(1lI)rI=1,K)
WRITE(6r148)

148 FORMAT(1X,'INPUT THE TAP GAINS IN A BIN. SEQUENCE FOR ADDER B')
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READ ,(ITAP(2,I)rI=1,K)
PI=3.1415926
DO 15 I11=1,4
RCOS(Ill)=COS((Ill-1)*PI/2.+PI/4.)
RSIN(Iil)=SIN((Il1-1)*PI/2.+PI/4.)

15 CONTINUE
C
C THE TABLES FOR DECODING IS GOING TO BE SET UP. EACH STATE IS
C REPRESENTED BY A NUMBER ISTATEo NS'TA'tE IS THE TOTAL NUMBER OF
C STATESINCLUDING THOSE DUE TO ISI.
C

NSTATE=2**K
DO 1 ISTATE=1,NSTATE
CALL CBIN(ISTATE-1)

C
C THE OUTPUT (IOUT) OF THE ENCODER OF EACH STATE IS CALCULATED.
C THE CHANNEL SYMBOL IORT IS THEN OBTAINED BY GRAY MAPPING.
C

DO 2 Il=1,2
IOUT(Il)=O
DO 3 I2=1,K
IOUT(I1)=IOUT(Il)+ITAP(IiJ3:2)>IIRE(3(12)

3 CONTINUE
IOUT(Il)=MOD(IOUT(Ii),2)

2 CONTINUE
IQRT(ISTATE)=IOUT(1)+IOUT(2)+1
IF ((IOUT(1).EQ.1).AND.(IOUT(2).EQ.O)) IORT(ISTATE)=4

C
C THE INPUT INTO THE ENCODER CORRESPONDING TO EACH STATE IS
C COMPUTED. THEN THE PREVIOUS STATE OF THE ENCODER WHICH IS LINKED
C TO THE PRESENT STATE BY THE THE BRANCH IB IS FOUND.
C

INPUT(ISTATE)=IREG(1)
DO 4 IB=1P2
DO 61 I=2,K
ILINK(ISTATEIB)=ILINK(ISTATEIB)4IREG(I)*(2**(K-I+1))

61 CONTINUE
ILINK(ISTATEIB)=ILINK(ISTATEIB)'+IB

4 CONTINUE
1 CONTINUE

C
C THE FOLLOWING CALCULATES THE CORRECTION TERM (ITERM2) FOR EACH
C STATE IN THE PRESENCE OF ISI AS GIVEN BY THE FORMULA FOR THE
C THE METRIC IN CHAPTER 3 OF THE THESIS. IN THE EXPRESSION,IRD
C PERFORMS A ROUNDING FUNCTION AFTER SCALING BY FACTORX*2
C

DO 5 ISTATE=1,NSTATE
DO 6 I4=1,2
ITERM2(ISTATEI4)=IRD(HI*COS( (I(R'T(II-INIK(ISTATE,14))-IQRT(ISTATE)

)*PI/2.)*(FACTOR**2))
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6 CONTINUE
5 CONTINUE

71 WRITE(6,150)
150 FORMAT('INPUT THE ENERGY PER BIT TO NOISE RATIO IN DB')

READ*,DBNO
WRITE(6,151)

151 FORMAT(1X,'IF THE DECODED SHO'(]ULD (OR SHOULD NOT) DACODE ISI,
& ENTER 1 (OR 0)')
READ*PIMPRVE
RTEMP=SQRT(.125*10**(-DBNO/10.))
RNOISE=RTEMP

C
C STATE METRIC (IDIST), THE PAST NOGISE SAMPLES (PNSE) , THE
C CONTENT OF THE REGISTERS OF THE ENCODER (IREG), THE PRESENT AND
C PAST CHANNEL SYMBOL OUTPUT (IQ) ARE INITIALIZED TO BE ZERO.
C

DO 75 I=INSTATE
75 IDIST(I)=0O

IE=O
INBITS=0O
PNSE1=0.
PNSE2=O.
DO 21 I=1,K
IREG(I)=0

21 CONTINUE
IQ1=O
I02=0
INDEX=1

18 DO 62 I=2,K
IREG(K-I+2)=IREG(K-I+1)

62 CONTINUE
C
C THE FOLLOWING LINES REPRESENTS AN ENCODER. A RANDOM NUMBER
C GENERATOR. GIVES THE INPUT TO THE ENCODER (IREG(1)). THE PREVIOUS
C CHANNEL SYMBOLS (IQ1 AND I02) ARE ADVANCED AND THE ENCODER PUTS
C OUT A NEW IQ1.
C

IREG(1)=GGUBFS(DSEED)+.5
DO 19 Il=1,2
IOUT(Il)=O
DO 20 I2=1,K
IOUT(I1)=IOUT(Il)+ITAP(:[l I2) IREG(<I12)

20 CONTINUE
IOUT(Il)=MOD(IOUT(Il),2)

19 CONTINUE
IQ3=IQ2
IQ2=IQ1
IQ1=IOUT(1)+IOUT(2)
IF ((IOUT(1).EQ.1).AND.(IOUT(2).E).0)) IQ01=3
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C
C THE CORRELATED NOISE SEQUENCES ARE GENERATED ACCORDING TO THE
C TECHNIGUE MENTIONED IN CHAPTER 7 OF THE "THESIS. ICR AND ICI
C FORM THE REAL AND IMAGINARY PART OF T1HE SUFFICIENT STATISTICS..
C ITERMI CORRESPONDS TO THE FIRST TERM OF THE EXPRESSION FOR THE
C METRIC.
C

CALL GGNML(DSEED,NRrR)
CNSE1=(R(1)+ALPHA*PNSEI)*BETA
CNSE2=(R(2)+ALPHA*PNSE2)*BETA
PNSE1=R(1) *
PNSE2=R(2)
ICR= IRD(((COS(IQ2PPI/2.+PI/4)4H1.<(COS(IQ1*PI/2+P:I/4).+

& COS(IQ3*PI/2+'I/4)))/2+CNSE1RNOISE)*FA(TOR2)
ICI=-IRD(((SIN(IQ2*PI/2+PI/4)+H1*(SIN(IO1*PI/2+P1I/4).+

a SIN(IQ3*PI/2+PI/4)))/2+CNSE2*RNOISE)*FACTOR**2)
DO 7 15=194
ITERM1(I5)=IRD((RCOS(I5)*ICR-RSIN(15)*ICI)*2)

7 CONTINUE
C
C THE FOLLOWINGS SIMULATE A DECODER WHICH INPUTS THE SUFFICIENT
C STATISTICS ICR AND ICI (OR ANY INPHASE AND QUADRATURE SAMPLED
C VOLTAGES OF THE DEMODULATOR) AND TRELLIS SEARCH FOR THE
C MAXIMUM LIKELIHOOD SEQUENCE. IDLARG IS THE LARGEST METRIC FOR
C THE STATES AT A STAGE OF DECODING.
C.

IDLARG=-10000000
DO 8 ISTATE=1rNSTATE

C
C FOR EACH STATETHERE ARE TWO BRANCHES (IBRCH) MERGING INTO IT.
C THE SURVIVOR IS CHOSEN AND THE STATE METRIC-IS UPDATED AND STORED
C TEMPORARILY IN IDNEW. THE PREVIOUS STATE IN THE PATH OF THE
C SURVIVOR IS STORED IN IPATH.
C

IDMRGE=IDIST(ILINK(ISTATE,1))-ITERM2(ISTATE,1)*IMPRVE
IBRCH=1
ITEMP=IDIST(ILINK(ISTATE,2))-ITERM2(ISTATE,2)*IMPRVE
IF (IDMRGE.GE.ITEMP) GO TO 9
IBRCH=2
IDMRGE=ITEMP

9 IDNEW(ISTATE)=IDMRGE+ITERMI ( .[RT(IS'ATl'E))
IPATH(ISTATEINDEX)=ILINK(ISTATERIBRCH)

C
C THE STATE WITH THE LARGEST METRIC (ILARGE) IS FOUND AND STORED.
C
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IF (IDNEW(ISTATE).LE.IDLARG) GO TO 8
IDLARG=IDNEW(ISTATE)
ILARGE=ISTATE

8 CONTINUE
C
C THE SURVIVOR WITH THE LARGEST ME'TRIC :I3S TRACED BACK A NUMBER OF
C STATES TO FIND THE DECODED INFORMATION SEQUENCE.IPOINT SERVES AS
C A F'OINTER TRACING FROM ONE STATE TO ANOTHIER. THE LOCATION OF
C STORAGE FOR ILARGE AT THE PRESENT DECODING STAGE IS POINTED TO
C .BY THE POINTER CALLED INDEX,WHICH IS INCREMENTED BY MODULO
C ARITHMETICS. THE INPUT TO THE ENCODER IS STORED BY A CIRCULAR
C STRUCTURE CALLED ISTORE, SO THAT IT MAY BE RETRIEVED LATER FOR
C COMPARISON WITH THE DECODED SEQUENCE.
C

IPOINT=ILARGE
ITRACE=ISTORE(INDEX)
ISTORE(INDEX)=IDELAY
IDELAY=IREG(1)
DO 10 I7:=1,INDEX
IPOINT=IPATH(IPOINT INDEX+I.--17)

10 'CONTINUE
IF (INDEX.EQ*IMEM) GO TO 17
ITIMES=IMEM-INDEX
DO 11 I8=rITIMES
IPOINT=IPATH(IPOINTIMEM-18.4:L)

11 CONTINUE
17 IF ((INBITS.GT.IMIEM).AND.(ITRFACE.NE-.INPU'T(IPOINT))) IE=IE+1

C UPDATE DISTANCE TABLE-
DO 12 ISTATE=1,NSTATE
IDIST(ISTATE)=IDNEW(ISTATE)

12 CONTINUE
INDEX=INDEX+I
IF (INDEX*GT.IMEM) INDEX:=1

C
C IE IS THE NUMBER OF BIT ERRORS MADE. THE BIT ERROR PROBABILITY
C IS COMPUTED. FOR EVERY 10000 BITSTHE BER WOULD BE PRINTED UNTIL
C THE DECODER HAS DECODED THE REQUIRED NUMBER OF BIT (NTOTAL).
C

INBITS=INBITS+1
IF (MOD(INBITS,10000).NE.0) GO TO 68
BER=IEt*1/INBITS
WRITE(6,180) INBITSIErBER

180 FORMAT(1XI6,' BITS ARE DECODIEDERRORS=',I5,'BER=',F7.6)
68 IF (INBITS.LT.NTOTAL) GO TO 18

WRITE(6,270)
270 FORMAT(' X-----X-----X-----X-....X X')

IF (1.EQ,1) GO TO 71
STOP
END
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C
C CBIN CONVERTS A DECIMAL NUMBER INTO A BINARY NUMBER
C

SUBROUTINE CBIN(IDEC)
COMMON IREG(6)rK
IQUOT= IDEC
DO 16 I=1,K
IREG(I)=IQUOT/2~**(K-I)
IQUOT=IQUOT-IREG(I)%2~* (K-:I)

16 CONTINUE
RETURN
END

C
C IRD PERFORMS A ROUNDING FUNCTION.
C

FUNCTION IRD(RE)
IF (RE.GE.O.) IRD=RE4.5
IF (RE.LT.O.) IRD=RE-.5 '

RETURN
END
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call rl2decod
TEMPNAME ASSUMED AS MEMBERNAME
INPUT THE NUMBER OF MEMORIES OF THE ENCODER

2
INPUT THE FIRST ISI COEFFICIENT H1

.2
INPUT THE SCALING FACTOR FOR THE QUANTIZER

10
INPUT THE LENGTH OF THE SURVIVOR TO BE" STOREDI:I

100
INPUT THE SEED FOR THE RANDOM NUMBER GENERATORJ

2345
HOW MANY BITS YOU WANT TO RUN FOR EACH ROUND?

50000
INPUT THE TAP GAINS IN A BIN. SEQUENCE FOR ADDER A

101
INPUT THE TAP GAINS IN A BIN. SEQUENCE FOR ADDER B

INPUT THE ENERGY PER BIT TO NO:[.SE RATIO IN DB

3
IF THE DECODE SHOULSHOULD ( SHOULD NOT) DECODE -NIS3I: ENTER 1 (OR 0)

I
10000-. BITS ARE DECODEDrERRORS= $6BER4=.005600
20000 BITS ARE DECODEDERRORS= 95BER=OO04750
30000 BITS ARE DECODEDERRORS= 123BE-R=.004:L00
40000 BITS ARE DECODEDERRORS= 172BER=.004300
50000 BITS ARE DECODEDERRORS= 214BER=.004280

X.----.----X-----XX-----X-----X
INPUT THE ENERGY PER BIT TO NOISE RATIO IN DB

4
IF THE DECODED SHOULD (Ol SHOULD NOT) DECODE IS:3~ ENTER 1 (OR 0)

10000 BITS ARE DECODEDERRORS= 1OBER=.OOi1000
20000 BITS ARE DECODED,ERRORS= 26BER.001:300
30000 BITS ARE DECODEDERRORS= 38BER==.001267
40000 BITS ARE DECODEDERRORS= 45BER:=.OO.1.25
50000 BITS ARE DECODEDPERRORS= 54BER=.00:L080

x-----X-----X-----X-----X-----X
NPUT THE ENERGY PER BIT TO NOISE RATIO IN D•B

READY
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.R23DECOD.FORT'
THIS IS AN OPTIMAL DECODER FOR VITERBI DECODING A RATE 2/3
CODE WITH UP TO "6 MEMORIES IN THE PRESENCE OF ISI.

DIMENSION
DIMENSION
DIMENSION
DOUBLE PRECISION
COMMON IREG(8),K
NR=2
WRITE(6,140.)

140 FORMAT(1X,'INPUT
READ*PKNKU
K=KN+KU+2
WRITE(6,141)

141 FORMAT(4X,'INPUT
READ*yH1
WRITE(6,142)

142 FORMAT(1Xt'INPUT
READ*s FACTOR
WRITA(6,143)

143 FORMAT(1X,'INPUT
READ*,IMEM
WRITE(6,144)

144 FORMAT(1X,'INPUT
READ*YDSEED
WRITE(6r145)

ITERM2(2564),ILINK (256,4),DIST(256) , IOUT(3)
IMET(256) IPATH (256150) , ITAP(3,6) , ITERM1(8) ,R(2)
IDNEW(256)rRCOS(S) ,RSIN(8), ISTORE(2,150) INPUT(256,2)

DSEED

N AND Up THE NLJUMBEID OF MEMORIES IN EACH QUEUE')

THE FIRST ISI COIEFFICIENT')

THE SCALING FACTOR FOR "TH4E OUANTIZER')

THE LENGTH OF THE SURVIVOR TO BE STORED')

THE SEED FOR THE RANDOM NUMBER GENERATOR')

145 FORMAT(1X,'HOW MANY BITS YOU WANT 'TO RUN FOR EACH ROUND')
READ*~NTOTAL

ALPHA AND BETA ARE EVALUATED FOR GENERA'T[ING RANDOM SEQUENCES
WITH CORRELATED CONSECUTIVE EL.EMENTSE SHOWN IN CHAPTER 7 OF
THE THESIS.

ALPHA=O.
IF (ABS(H1).GT.0.000001) ALPHA=.5/H1-S(2RT((.5/H1)*2-1)
BETA 1*/SQRT(1+ALFHA**2)
PI=3.1415926

C
C
C
C
C

ITAP(IrJ) IS THE TAP GAIN FROM 'THE J-'TH 'REGI:STER (INPUT INCLUDED)
TO THE I-TH ADDER. RCOS AND RSIN ARE EVALUATED AND STORED SO
PHAT THEIR VALUE MAY BE RETRIEVED LATER WITHOUT COMPUTATION
WHEN NEEDED.
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WRITE(6,147)
147 FORMAT(1X,'INPUT THE TAP GAINES IN A B1[N. SEQUENCE FOR ADDER A')

READ*,(ITAP(1lI),I=1,K)
WRITE(6,148)

148 FORMAT(1X,'INPUT THE TAP GAINS IN A BIN. SEQUENCE FOR ADDER B')
READt,(ITAP(2,)rlI=1,K)
WRITE(6,149)

149 FORMAT(1X,'INPUT THE TAP GAINS IN A BIN. SEQUENCE FOR ADDER C')
READX,(ITAP(3,I),I=1,K)
DO 15 I11=1,8
RCOS(I11)=COS((Ill-1)*PI14.+PI/8.)
RSIN(111)=SIN((I11-1)*PI/4.+PI/8.)

15 CONTINUE
C
C THE -TABLES FOR DECODING. IS GOING TO BE SET UP. EACH STATE
C IS REPRESENTED BY A NUMBER :ISTATE.NSTATE IS THE TOTAL NUMBER OF
C STATES, INCLUDING THOSE DUE TO ISI.
C

NSTATE=2**K
DO 1 ISTATE=1NSTATE
CALL CBIN(ISTATE-1)
DO 2 Il=1,3
IOUT(Il)=O
DO 3 I2=1,8
IOUT(Il)=IOUT(Il)+ITAP(Il:[2)I -IRE<(I(:[2)

3 CONTINUE
IOUT(Il)=MOD(IOUT(Il),2)

2 CONTINUE
IMET(ISTATE)=IOUT(1 )*4+IOUT(2)24t:IOUT(3)+1

C
C THE INPUT TO THE ENCODER CORRESPONDING TO EACH STATE IS
C COMPUTED. THEN THE PREVIOUS STATE OF THE ENCODER WHICH IS LINKED
C TO THE PRESENT STATE BY THE BRANCH (13) IS FOUND.
C

INPUT(ISTATE,1)=IREG(1)
INPUT(ISTATE,2)=IREG(2+KN)
DO 4 I3=1,4
ILINK(ISTATE,13)=2"-MOD(:3,2)
DO 160 I6=1,KU

160 ILINK(ISTATEI3)=IREG(K-1641:t)4294#16+ILINK(ISTATE r 3)
ILINK(ISTATEI3)=((I3-1)/2)t2**(KU+I)+ILINK(ISTATEP,3)
DO 161 I6=1,KN

161 ILINK(ISTATEI3)=IREG(K-KU'-I6)2:~*(I<UJ+I416 )+ I- INK(ISTATE,13)
4 CONTINUE
1 CONTINUE

C
C THE FOLLOWING CALCULATES THE CORRECTION TERM (ITERM2) FOR EACH
C STATE IN THE PRESENCE OF ISI AS GIVEN BY THE SECOND TERM OF THE
C FORMULA FOR THE METRIC DERIVED IN CHAPTER 3 OF THE THESIS. IRD
C PERFORMS A ROUNDING FUNCTION AFTER SCALING BY FACTOR**2
C
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DO 5 ISTATE=1,NSTATE
DO 6 I4=1,4
ITERM2(ISTATEr4)=IRD(H1*COS((:<C ET(I:..:[NI<(ISTATEr4) )-IMET(ISTATE)

& )*PI/4.)*FACTOR**2)
6 CONTINUE
5 CONTINUE

71 WRITE(6,150)
150 FORMAT(1X,'INPUT THE ENERGY PER BIT TO NOISE RATIO IN DB')

READ*PDBNO
RTEMP=SQRT(.0625*10~*(-DBNO/10.))
RNOISE=RTEMP

C
C STATE METRIC(IDIST),THE PAST NOISE SAMPLES (PNSE), THE CONTENT
C OF THE REISTERS OF THE ENCODER(IREG), THE PRESENT AND PAST
C CHANNEL SYMBOL OUTPUT (IOCT) ARE :IN•[:IALIZED TO BE ZERO.
C

DO 79 I=IsNSTATE
79 IDIST(I)=0.

PNSE1=0.
PNSE2=O.
IE=O
INBITS=0O
DO 21 I=1,K
IREG(I)=O0

21 CONTINUE
IOCT1=0.
IOCT2=0
INDEX=I

C
C THE FOLLOWING REPRESENTS AN ENCODER. A RANDOM NUMBER GENERATES
C THE INPUTS TO THE ENCODER (IREG(1) AND IREG(KN+2)). THE PREVIOUS
C CHANNEL SYMBOLS (IOCTI AND IOCT2) ARE ADVANCED AND THE ENCODER
C PUTS OUT A NEW IOCT1
C

18 IF (KN*EQO0) GO TO 165
DO 162 I=IKN

162 IREG(KN+2-I)=IREG(KN+1-I)
165 DO 163 I=IKU
163 IREG(K+1-I)=IREG(K-I)

IREG(1)=GGUBFS(DSEED)+.4999
IREG(KN+2)=GGUBFS(DSEED)+.4999
DO 19 Il=1,3
IOUT(Il)=O
DO 20 I2=1,8
IOUT(I1)=IOUT(Il)+ITAP(I1 2)*IREG(:2)

20 CONTINUE
IOUT(Il)=MOD(IOUT(Il),3)

19 CONTINUE
IOCT3=IOCT2
IOCT2=IOCT1
IOCT1=IOUT(1)*4+IOUT(2)*2+IOUT((3)
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C
C THE CORRELATED NOISE SEQUENCES (CNSE1 AND CNSE2) ARE GENERATED
C ACCORDING TO THE TECHNIQUE MENTIONED IN CHAPTER 7 OF THE THESIS.
C ICR AND ICI FORM THE REAL AND IMAGINARY PART OF THE SUFFICIENT
C STATISTICS. ITERMI CORRESPONDS TO THE FIRST TERM OF THE
C EXPRESSIKN FOR THE METRIC.
C

CALL GGNML (DSEEDNRiR)
CNSE1=(PNSE1*ALPHA+R(1))*BETA
CNSE2=(PNSE2*ALPHA+R(2))*BETA
PNSE1=R(1)
PNSE2=R(2)
ICR= IRD(((COS(IOCT2*PI/4+PI/8)+H*I (COS(IOCTI*PI/4+PI/8)+

COS(IOCT3*1PI/4-IPI/8)) )/2+RNOI:SE*C'NSE1)*FACTOR* 2)
ICI=-IRD(((SIN(IOCT2*PI/4+PI/8)+H1*(SIN(IOCT7*PI/4.+PI/8))+

SIN (IOC'T3J)PI/4+II/8) ) )/2+RN([SEq*CNSE2)*FACTOR3*2)
DO 7 I5=1,8
ITERM1(I5)=IRD((RCOS(I5)*ICR-RSIN(15)*ICI)*2)

7 CONTINUE
C
C THE FOLLOWING SIMULATE A DECODEIR A1HICH INPUTS THE SUFFICIENT
C STATISTICS ICR AND ICI (OR ANY INPHASE AND QUADRATURE SAMPLED
C VOLTAGES OF THE DEMODULATOR) AND TRELLIS SEARCH FOR THE MAXIMUM
C LIKELIHOOD SEQUENCE. IDLARG IS THE LARGEST METRIC FOR THE STATES
C AT A STAGE OF DECODING.
C

IDLARG=-10000000
DO 8 ISTATE=1,NSTATE

C
C FOR EACH STATE, THERE ARE FOUR BRANCHES (16) MERGING INTO IT.
C IDMERGE IS THE METRIC OF THE SURVIVORAHICH LAST BRANCH IS IBRCH.
C THE SURVIVOR IS STORED IN THE TABLE IPATH. THE STATE METRIC IS
C THEN UPDATED.
C

IDMRGE=IDIST(ILINK(ISTATE,1))-ITERM2(ISTATE,1)
IBRCH=1
DO 9 I6=2,4
ITEMP=IDIST(ILINK(ISTATEI6))-ITERM2(ISTATEI6)
IF (IDMRGE.GEO.ITEMP) GO TO 9
IBRCH=I6
IDMRGE=ITEMP

9 CONTINUE
IDNEW(ISTATE)=IDMRGE+ITERM1 (rIMET(:ISTATIE))
IPATH(ISTATEINDEX)=ILINK(ISTATEIBRCH)

C
C THE STATE WITH THE LARGEST METRIC(ILARGE) IS FOUND AJD STORED.
C

IF (IDNEW(ISTATE).LE.IDLARG) GO TO 8
IDLARG=IDNEW(ISTATE)
ILARGE=ISTATE

8 CONTINUE
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C THE SURVIVOR WITH THE LARGEST METRIC IS TRACED BACK A NUMBER OF
C STATES TO FIND THE DECODED INFORMATION SEQUENCE. IPOINT SERVES
C AS A POINTER TRACING FROM ONE STATE TO ANOTHER. THE LOCATION OF
C STORAGE FOR ILARGE AT THE PRESENT DECODING STAGE IS POINTED TO
C BY THE POINTER CALLED INDEX, WHICH IS INGREMENTED BY MODULO
C ARITHMETICS. THE INPUT TO THE ENCODER IS STORED BY A CIRCULAR
C STRUCTURE CALLED ISTORE, SO THAT I:T MAY BE RETRIEVED LATER FOR
C COMPARISON WITH THE DECODED SEQUENCE.
C

IPOINT=ILARGE
ITRI=ISTORE(1,INDEX)
ITR2=ISTORE(2 INDEX)
ISTORE(1,INDEX)=IDLAYI
ISTORE(2pINDEX)=IDLAY2
IDLAY1=IREG(1)-
IBLAY2=IREG(4)
DO 10 I7=1,INDEX
IPOINT=IPATH(IFPOINT INDEX+:L--I7)

10 CONTINUE
IF (INDEX.EQ.IMEM) GO TO :1.7
ITIMES=IMEM-INDEX
DO 11 I8=rIlTIMES
IPOINT=IPATH(IPOINTIMEM-I8+1)

11 CONTINUE
17 IF ((ITR1.NE.INPUT(IPOINT,:L))°+AND. (INB:l'TS.GT.IMEM*2)) IE=IE+1

IF ((ITR2.NE.INPUT(IPOINT,2)).AND,(INBITS.GT.IMENM2)) IE=IE+1
C
C THE DISTANCE TABLE IS UPDATED
C

DO 12 ISTATE=1,NSTATE
IDIST(ISTATE)=IDNEW(ISTATE)

12 CONTINUE
C
C THE INDEX AND THE COUNT FOR NUMBER OF DECODED BITS ARE
C INCREMENTED. IE IS THE NUMBER' OF BIT ERRORS MADE. THE BIT ERROR
C ' PROBABILITY- IS COMPUTEDi FOR EVERY 10000 BITS, THE BER. WOULD BE
C PRINTED UNTIL THE DECODER HAS, DECODED "THE REQUIRED NIJMBER OF
C BITS (NTOTAL).
C

INDEX=INDEX+1
IF (INDEX.GT.IMEM) INDEX=1
INBITS=INBITS+2
IF (MOD(INBITS,10000).NE,0) (3O TO 75
BER=IEt*1/INBITS
WRITE(6,180) INBITSIEBER

180 FORMAT(1XI6,'.BITS ARE DECODEDERROR:=',I5,' BER=',F7°6)
_75 IF (INBITS.LTNTOTAL) (30 TO 18
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WRITE(6,270)
270 FORMAT(' X-----X-- -- X--- -X----X X --- X')

IF (1.EQ.1) GO TO 71
STOP
END

C
C THE SUBROUTINE CBIN CONVERTS A DECIMAL NUMBER INTO A BINARY
C NUMBER
C

SUBROUTINE CBIN(IDEC)
COMMON IREG(8),K
IQUOT=IDEC
DO 16 I=1,K
IREG(I)= IQUOT/23 (K-I)
IQUOT=IQUOT-IREG ( I ),*2* (K.-I)

16 CONTINUE
RETURN
END

C
C IRD PERFORMS A ROUNDING i-UNCTION:,
C

FUNCTION IRD(RE)
IF (RE.GE.0.) IRiD=RE+.5
IF (RE.LT.O.) IRD=RE-.5
RETURN
END

195



call r23decod
TEMPNAME ASSUMED AS MEMBERNAME
INPUT N AND Ur, THE NUMBER 01F MEMORIES IN EACH (UEUE

2 2
INPUT THE FIRST ISI COEIIFFIC IENT

.166667
INPUT THE SCALING FACTOR FOR THE QUANTIZE'R

10
INPUT THE LENGTH OF THE SURVIVOR TO BE STORED -
?

100
INPUT THE SEED FOR THE RANDOM NUMBER GENERATOR

456
HOW MANY BITS YOU WANT TO RUN FOR EACH ROUND

50000
,INPUT THE TAP GAINS IN A BIN.

0 1 0 1 0 1
INPUT THE TAP.GAINS IN A BI:N.

S1 1 0 0 1
INPUT THE TAP GAINS-IN A BIN.

SEQUENCE FOR ADIDER A

SEQUENCE FOR ADDER B

SEQUENCE FKR ADDER C(

0 0 0 0 1 0
INPUT THE ENERGY PER BIT TO NOISE RATIO IN I'B

5
10000 BITS ARE DECODEDERROR=
20000 BITS ARE DECODEDERROR=
,30000 BITS ARE DECODEDERROR=
40000 BITS ARE DECODEDERROR=
50000 BITS ARE DECODEDERROR=

0 BIER=.0
12 BER=.000600
12 BER=. 000400
32 BER=.o 000800
42 BER= .000840

X-----X ----- X----. --. X---X--
INPUT THE ENERGY PER BIT TO NOISE RATIO IN DB

6
10000 BITS ARE DECODEDrERROR= 13 BER=.001300
20000 BITS ARE DECODEDERROR= 13 BER=.O006.50
30000-BITS ARE DECODED,ERROR= 13 BER=.000433
40000 BITS ARE DECODEDERROR= 13 BER=.000325
50000 BITS ARE DECODEDERROR'= 13 BER=.000260

X.....-X-----X...X.-----X-----X
INPUT THE ENERGY PER BIT TO NOISE RATIO IN DB

6
10000 BITS ARE DECODEDERROR= 0 BER=.0
20000, BITS ARE DECODEDERROR= 0 BER=.O
30000 BITS ARE DECODEDERROR= 0 BE--R=.O
40000 BITS ARE DECODED,ERROR= -0 BER=.0O
50000 BITS ARE DECODEDERROR= 0 BE-R=.O

----- X-----X-----X-----X-----X
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Appendix E. Miscellaneous Programs
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PSK.FORT'
C THIS PROGRAM EVALUATES THE BIT IEiRROR RATE 01 4-'S-lSK BY SIMUIJAT:ION.
C

DIMENSION R(2)
NR=2
WRITE(6,21)

21 FORMAT(1X,'INPUT THE ENERGY I'ER 3BIT TO NOISE LEVEL (IN DB).')
READi*EBNO
WRITE(6,22)

22 FORMAT(IX,'HOW MANY BITS YOU WANT TO SIMULATE?')
READ•rNTOTAL
WRITE(6,23)

23 FORMAT(1X, INPUT THE SEED FOR THE" RANXDONH NUMBER GENERATOR?')
READ, DSEED
AVAR=SQRT( 0625*10**(-EBNO/10.))
WRITE(6,27) AVAR

27 FORMAT(' INPUT THE VALUE',rF-'.7,' I.ACNI :[INTO THE PROGRAM.')
READ*,FACTOR
NERROR=O
NBITS=O

3, CALL GGNftL (DSEEDNRR)
A1=R(1)
A2=R(2)
RCR= *5+AFAFACTOR
RCI=A2*FACTOR
IF (RCR*LT*O) GO TO I
IF (ABS(RCI) GT ABS(RCR)) NERRORF=:'ERRR41:L
GO TO 2

1 IF (ABS(RCI) *GTABS (RCR)) NEFRF;:=iERROR1:
IF (ABS(RCI).LT.ABS(RCR)) NERROR=N--ERROR.l+2

2 NBITS=NBITS+2
IF (MOD(NBITS,10000).NE.O) GO TO 3
PERROR=NERROR*I./NBITS
WRITE(6,26) NBITSPERROR
IF (NBITS.LT.NTOTAL) GO TO 3

26 FORMAT(' BER FOR ',17,' BITS . 1 ''F•.7)
25 STOP

END
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6all Psk
TEMPNAME ASSUMED AS MEMBERNAME
INPUT THE ENERGY PER BIT TO NOISE LEVEL (IN DB).

2.5
HOW MANY BITS YOU WANT TO SIMULATE?

30000
INPUT THE SEE" FOR THE RANDOM NUMBER GENERATO(]R?

3345 .
INPUT THE VALUE.1874736

.1874
BER FOR
BER FOR
BER FOR
READY

10000 BITS IS
20000 BITS IS
30000 BITS IS

BACK INTO 71-THE PROGRAMo

*0294000
*0285000
*0285000
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S F'SK8*FORT"
C THIS PROGRAM EVALUATES THE BIT ERROR RATE OF 8-PSK.
C

DIMENSION R(2)
NR=2
WRITE(6,21)

21 FORMAT(' INPUT THE ENERGY PER BIT TO NOISE RATIO (IN DB)')
READtEBNO
.WRITE(6p22)

22 'FORMAT(' WHAT IS THE TOTAL NUMBEIZR 01F BITS YOU WANT TO SIMULATE?')
READ*,NTOTAL
WRITE(6,23)

23 FORMAT(' INPUT THE SEED FOR "THE RAN(DOitN NUMBER (3ENEIRATOR.•')
READ*~DSEED
AVAR=SQRT(.0625*10**(-EBNO/10.)*.666667)
WRITE(6,24) AVAR

24 FORMAT(' INPUT THE VALUE 'vF8.+7' IENTO THE PROGRAM.')
READ*,FACTOR
NE=O
NBITS=O
S1=COS(3.1415926/8)/2
S2=SIN(3.1415926/8)/2

3 CALL GGNML (DSEEDNRrR)
A1=R(I)
A2=R(2)
RCR= S1+AI*FACTOR
RCI= S2+A2*FACTOR
ANGLE=ATAN2(RCIVRCR)/(3.141.5926/4.)
IF (ANGLE.LT*0) ANGLE=ANGLE+8
IANGLE=ANGLE
IF ((IANGLE.EO.1) OR.(IAN3LE.E 3).CR.( :IANGLE.E4.7)) NE=NE+1
IF ((IANGLE.EQG2).OR*(IANGLEQ.EG4).OIR.(IANGLE.IEQ.6)) NE=NIE+2
IF (IANGLE.EQ*5) NE=NE+3
NBITS=NBITS+3
IF (MOD(NBITS,30000)'NE.6) GO TO 3
PERROR=NE*4I/NBITS
WRITE(6,26) NBITSPF'ERROR

26 FORMAT(' FOR 'rI9,' THE BER IS ',FS.7)
IF (NBITS.LT.NTOTAL) GO TO 3
STOP
END
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call Psk8
TEMPNAME ASSUMED AS MEMBERNAME

INPUT THE ENERGY PER BIT TO NOISE RATIO (IN DB)

6
WHAT IS THE T(OTAL NUMBER OF: BITS YOU WAN'T TO SIMULATE?'

100000
INPUT THE SEED FOR *THE RANDOM NUMBER GENERATOR.

4540
INPUT THE VALUE .1023045 INTO THE PRO3GRAM.

.1023
FOR 30000ATHE BER IS .0200000
FOR 60000 THE BER IS .0194833
FOR .- 90000 THE BER IS .0195889.

FOR 120000 THE BER IS *0200000

READY
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, .FLTRLOSS.FORT'
C THIS PROGRAM EVALUATES THE FILTEER L.)OSS OF POILSES WHICH ARE
C SYMMETRICAL ABOUT THE CENTER. THE MAXIMUM AMPLITUDE IS FOUND
C CONSTRUCTIVELY SUPERIMPOS:0NG SHIFTEI VERSIONS OF THE PULSE.
C THEN THE FILTER LOSS IS CALCULATED ACCORDING TO0 THE FORMULA
C GIVEN IN THE THESIS.
C

DIMENSION F'ULSE(300,8),AMP(300).
8 READ *,(PULSE(Il,),I=1,16)

DO 11 I=17,300
11 PULSE(Ir1)=0.

DO 1 I=1,16
PULSE(I+16,1)=PULSE(16-I+1,1Y

1 CONTINUE
DO 2 JI=4,16
DO 9' K1=2,8
DO 10 K2=19300
FULSE(K2pK1)=O

10 CONTINUE
9 CONTINUE

DO 3 J2=2,8
DO 4 J3=132
PULSE(J3+2*Jl*(J2-1)sJ2)=PUJLSE(%J3,1)

4 CONTINUE
3 CONTINUE

DO 5 J2=1,300
SUM=0.
DO 6 J3=1,8
SUM=SUM+FULSE(J2,J3)

6 CONTINUE
AMP(J2)=SUM

5 CONTINUE
AMAXU=0.
AMAXS=O.
DO 7 J2=1,250
RI=2*(AMP(J2)**2)
R2=AMP(J2)~*2+AMP(J2f+J1)*2.
IF (R1.GT.AMAXU) AMAXU=R1
IF (R2.GT.AMAXS) AMAXS=R2

7 CONTINUE
FLI= 10*ALOGIO(AMAXU*J1/31o),
FL2= 10*ALOG10(AMAXS3*J:/3:Lo)
WRITE(6,*) J1,FL1,FL2

2 CONTINUE
READ *PIC
IF (IC.EQG1) GO TO 8
STOP
END
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