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Abstract

This thesis studies static and dynamic scheduling in a two-station mixed queuing net-
work in which two classes of items, make-to-order and make-to-stock, are produced
at one production facility. Make-to-order items are modeled as 'open' jobs which
enter the production facility (station 1), are processed and then leave the system.
Make-to-stock items are modeled as 'closed' jobs which are produced at the same
production facility and are held in finished goods inventory (station 2) from which
demand is met. Production of make-to-stock products follows a one-for-one replenish-
ment policy. Demand for make-to-stock items cannot be backlogged; that is, demand
that cannot be met from finished goods inventory is simply lost. Demands follow a
Poisson process, service times are exponentially distributed and there are no setup
costs or delays when switching from one product to the other. In the static scheduling
scenario we develop expressions for the optimal stock level to hold in finished goods
inventory which would either minimize the average cost incurred by the system per
unit time, or alternatively which would enable a certain percentage of the demand
to be met. In the dynamic scheduling case we formulate the optimal policy which
determines the priority in which to produce the items in order to minimize the long
term discounted cost of the system. We find that the optimal policy takes the form
of a switching curve.

Thesis Supervisor: Vien Nguyen
Title: Assistant Professor, Sloan School of Management
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Chapter 1

Introduction

1.1 A Make-to-Order and Make-to-Stock Produc-

tion System

The question of when and how much to produce is of utmost importance in any

production facility. Many manufacturing systems schedule production as soon as

an order is placed for a specific product. This would make sense particularly if

the product is perishable, or customized. Such a system is a make-to-order system,

where an order placed triggers production of the good. However, in a pure make-to-

order system, the customer would have to wait from the moment of ordering until

the product is manufactured to have the order fulfilled. This may not be the best

situation from the customer's point of view, especially if the lead time is long. From

the production system point of view it may also be economically unsound to schedule

production only after an order is placed, for several reasons. For example, there

may be uncertainty in demand, leading to periods of idleness and then periods of

overload when all demand cannot be met. There may be uncertainty in the delivery

of raw material, seasonal fluctuations in the price of raw materials and, of course,

uncertainty in machine breakdowns. Considering these factors, for a product that is

not customized, it may be advantageous for the facility to hold some finished goods

inventory from which to satisfy demand, and to schedule production appropriately to

replenish the stock. Such a system is a make-to-stock production system.

Figure 1-1 is a schematic diagram of the production facility to be studied in this
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Figure 1-1: The Production System

thesis. The facility produces two types of items, one made to order and the other

made to stock. Each demand for a make-to-order item initiates production of that

item. Production of the make-to-stock items, on the other hand, follows a base-stock

policy in the following sense. Demands for make-to-stock products are filled from

inventory. Each filled demand triggers a replenishment order to restore the inventory

to a target base-stock level. (Such a production policy has also been described as an

(S-1,S) inventory policy, or a "one-for-one" replenishment system).

If a make-to-stock demand occurs when the inventory is empty, that request is

simply lost; that is, sales that cannot be filled from inventory are turned away rather

than backlogged. Observe that in this scenario, the sum of items in inventory and

outstanding replenishment orders remains constant over time and is equal to the

target base-stock level.

1.2 A Queuing Network Model

Queuing networks are extensively utilized to aid in the mathematical analysis of pro-

duction facilities. We model the system described in the previous section as the mixed

queuing network depicted in Figure 1-2. Two types of jobs are to be processed in

this system. Demand for a make-to-order product is modeled as an arrival of an

A S-
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Figure 1-2: A Two-Station Mixed Queuing Network

"open" job to station 1, and that demand is fulfilled when that job completes service

at station 1. Thus a queue of open jobs at station 1 represents the number of make-

to-order products waiting to be processed. Make-to-stock products are modeled as

a fixed number of "closed" jobs circulating between the two stations. A service at

station 2 means that one unit of demand has been filled from finished goods inven-

tory, which in turn initiates a request for a make-to-stock product at station 1. The

fixed number of closed jobs represents the target base-stock level to be maintained in

finished goods inventory. Thus, a queue at station 2, including the job in service, rep-

resents the number in finished goods inventory, from which demand for make-to-stock

products has to be met. A queue of closed jobs at station 1 represents replenishment

orders; i.e., the number of make-to-stock products waiting to be processed in order

to restore the level of the finished goods inventory to the target level.

Let us now introduce the notation. Open jobs arrive at station 1 at rate A and are

processed at station 1 with a mean time of mo. There are N closed jobs circulating in

the system which are processed at station 1 with a mean time of m, and at station 2

with mean time m2.

Throughout this thesis we assume Poisson arrivals and exponential service at

each station. Note that exponential service at station 2 indicates a Poisson arrival

process for the demand of make-to-stock products. As stated in Section 1.1, we

assume no backlogged orders, so any demand arriving when there is zero finished

goods inventory will be lost. This poses the question of whether the service epochs



at station 2 faithfully model the demand process. As in Nguyen [12], consider a time

period [t1, t2] during which the finished goods inventory is empty. All demand arriving

during [t1 , t2] will be lost. The first demand to be fulfilled would have arrived after t2.

If this order arrived at t* then t* - t 2 may have a different distribution from the other

interarrival times. However, because of the memoryless property of the exponential

distribution, we know that even if r units of time has elapsed since the last demand

arrival until t2, the distribution of the remaining time t* - t2 is still an exponential

random variable with the same mean. Thus, services at station 2 accurately model

the demand process.

The traffic intensity, p, at a station is defined as the ratio of the rate at which

work enters the station to the rate at which work can be processed at that station.

We are only interested in cases where p < 1, that is, the facility can cope with the

amount of incoming work. Thus at station 1 we require that pi = Amo + ml/m2 < 1.

We will also only consider cases where mi < m 2 for the following reason. Consider

if mi > m2, then station 1 will perpetually be a bottleneck since demand at station 2

for make-to-stock products will be greater than the rate of their production from

station 1 to maintain the finished goods inventory. So, if we ensure mi < m2 , then

make-to-stock demands can be filled.

1.3 Related Literature

Queuing models are valuable tools for analyzing manufacturing systems. Open queu-

ing networks modelling make-to-order production systems have been studied exten-

sively, originating from Jackson's paper [8]. Buzacott and Shantikumar [2] present a

variety of results stemming from these studies. The original work modelling make-to-

stock production systems as closed queuing networks is by Morse [11]. Subsequently

much analysis of production-inventory systems have been carried utilizing these mod-

els, following the fundamental work of Gordon and Newell [4]. Silver and Peterson [14]

give a good overview of such models.

Relatively less work has been carried out on mixed queuing networks modelling

both make-to-order and make-to-stock production. Baskett, Chandy, Muntz and

Palacios extended the work by Jackson [8] and Gordon and Newell [4] by illustrating



the product form nature of a class of queuing networks, including mixed queuing

networks. More recently, Heffes [6] and Akyildiz and Strelen [1] have developed algo-

rithms for computing moments of queue size distributions in mixed queuing networks.

Carr, Gullu, Jackson and Muckstadt [3] study a mixed queuing network where they

partition the products into three classes: A items are highest demand, B medium de-

mand and C low demand. Carr et al. propose that the optimal production strategy

is to hold a base stock of A items, and hold no B/C items in inventory. Additionally

B/C items are given strict priority over A items in production. Thus, drawing a

parallel with the production facility studied in this thesis, A items would be make-to-

stock and B/C items the make-to-order products. Carr et al. model their production

center as an M/D/1 queue. That is, demands for items arrive as a Poisson distri-

bution; service times for any product is deterministically one unit of time; and the

production center is one machine or resource which can process items only one at a

time. They find that their "No B/C strategy" performs best compared to a first in

first out (FIFO) policy when the traffic intensity at the production center is 0.95, in

which case its efficiency (100 x cost of "No B/C"/cost of FIFO) is 60

Nguyen [12] presents a heavy traffic analysis of a two station mixed queuing net-

work, with two classes of jobs, open and closed. Station 1 uses a FIFO service

discipline. Nguyen finds that as the traffic intensity at' station 1 tends to unity, the

workload at station 1 is a reflected Brownian motion on a finite interval, and the

partial workloads due to each type of job is a fixed proportion of the total workload

of the station. This result may seem counterintuitive in that the workload process

at station 1 need not be bounded. Refinements to the Brownian approximation are

presented and three performance measures are tested against exact solutions for the

special case of a mixed network with product form probability distributions. The

study finds that the approximation for the throughput rate is within 1% of the exact

solution for N > 15; the estimates for queue length of open customers are within

10% of the exact solutions for N > 5; and, the estimates for queue length of closed

customers are within 10% of the exact solutions for N > 15.



1.4 Organization of the Thesis

Chapter 1 of this thesis provides a framework for modeling a make-to-order and make-

to-stock production system as a mixed queuing network. A review of related current

literature on this subject matter is also presented.

In Chapter 2 we determine that this queuing network has product form steady

state probability distributions under certain conditions and derive expressions for

various performance measures.

Chapter 3 is devoted to setting a target base-stock level for the make-to-stock

products with the objective of either minimizing the average cost incurred by the

system per unit time, or of achieving a desired fill rate for the items under different

priority schemes for production.

Chapter 4 develops a dynamic model of the production facility in order to explore

various scheduling policies which would minimize the long-term discounted cost of the

system. The optimal policy is described and its performance compared with other

easily implementable policies.

Chapter 5 provides concluding remarks and suggestions for future research direc-

tions.



Chapter 2

Analysis of the Queuing- Network

2.1 Problem Description

We are interested in analyzing the queuing network described in Section 1.2, finding

closed form solutions when possible and identifying the conditions under which such

solutions hold. For this section, we assume that each station operates under the

First-In-First-Out (FIFO) discipline.

2.2 Quasi-Reversibility

A network of quasi-reversible queues has product-form solutions; Kelly [9]. If we can

determine conditions under which each station is quasi-reversible, then the network

will have product form stationary distributions.

Definition 1 A queue is quasi-reversible if its state x(t) is a stationary Markov pro-

cess with the property that the state of the queue at time to, x(to), is independent

of

1. the arrival times of type i customers subsequent to time to;

2. the departure times of type i customers prior to time to.

We prove the following theorem in the next two sub-sections:

Theorem 2.2.1 Suppose mo = mi = m. The queuing network shown in Figure 1-2

is quasi-reversible, and thus has product form stationary distribution.



2.2.1 Station 1

Because we assume the same service rates for both types of jobs at station 1, the

state of the queue, x, can be completely described by the number of each customer

type in the station (in queue or service). Let

no = number of open customers at station 1

nx = number of closed customers at station 1, thus

n2 = N - n, = number of closed customers at station 2,

n = total number of customers at station 1 = no + nl -

S= (no, 7n1).

For convenience, the system at station 1, that is, the queue and the service station

together, will be referred to as a queue. Open jobs are referred to as "type 0" and

closed jobs as "type 1". Following the notation from Kelly [9] we can describe the

queue in the following way:

1. Each customer requires an amount of service which is a random variable

exponentially distributed with mean m.

2. A total service effort is supplied at rate 0(n) when there are n customers

in the queue.

3. A proportion y(l, n) of this effort is directed to the customer in position 1

(I = 1,2,... ,n) when there are n customers in the queue.

4. When a customer arrives at the queue, with n customers already in queue,he

moves into position 1 (1 = 1,2,... ,n + 1) with probability 8(1, n + 1).

For both stations:

0(n) = 1 n = 1,2,...

n)= 1 l=1 n= 1,2,...
0 otherwise

1 l=n+l n= 1,2,...
(,n+1) rwis

0 otherwise



The equilibrium distribution for the queue is:

n.2_ a(i(l))r(x) = b a(i())
1=1 ¢(l)

= arrival rate of customer type i in position 1

= normalizing constant, chosen such that the probability distribution

sums to unity

In the case of station 1,

a(O(l)) =A

{1/m2
=

0 < n <N

nl = N

Let S(i, x) be the set of states in which the queue contains one more customer of

type i than in state x, with the same number of customers of the other type. Let

x' E S(i, x) and the transition rates be denoted by q(x, x').

The possible transitions are:

I) Arrivals to Station 1, x -- x' E S(i, x):

(1) An open customer arrives: x=(no, nl) --+ x'= (no + 1, nl)

q(x, x') = A6(n + 1, n + 1) = A no > 0

(2) A closed customer departs station 2 and

X=(nO, ni) -- '= (nO, n1 + 1)

arrives at station 1:

q(x, x') = a(l(1))7(1, n + 1)6(n + 1, n + 1) =

II) Departures from Station 1, x' E S(i, x) -4 x:

for 0 < nl < N

for n1 = N

where

a(i(l))

b

a(1(1))



(3) An open customer departs: x'=(no + 1, nl) --+ x=(no, nl)

q(x', x) = O(n + 1)1(1, n + 1) = 1/m no > 0

(4) A closed customer departs station 1 and arrives at station 2:

x'=(no, n1 + 1) --- x=(no, n1 )

q(x', x) = (n + 1)'y(1,n + 1)6(n + 1, n + 1) = 1/m 0 < nO < N

Any non-zero transition rate of the process x is one of the four forms given above.

Since we are assuming Poisson input to station 1, we need only to verify the follow-

ing partial balance equations to determine whether the queue exhibits the property

of quasi-reversibility:

7r(x) q(x,x') = ,r(x')q(x',x).
X'ES(i,x) X'ES(i,z)

There are two cases to consider:

Case 1: 0 nl<N

left hand side:

b(mA)(orm (A +m2 M2
right hand side:

b(mA)o+ ) + b(mA)nom2 m M2 m
b(mA)no ( Mf (A +m2 m2

= left hand side.

Case 2: nl = N

In this case, we would only have transitions (1) and (3).

left hand side:

b(mA)no (m)' (A)m2



right hand side:

m2 m

= left hand side.

Since the partial balance equations are verified, we have shown that station 1 is

quasi-reversible.

Consider the situation that mo0 i mi, then the transition rate for transition (3)

(open customer departing station 1) would be 1/mo, and the rate for transition (4)

(closed customer departing station 1) would be 1/m 1 . Then in Case 1 above, the

partial balance equations would only hold if mo = mi. Thus, for station 1 to exhibit

the property of quasi-reversibility, we require the condition that mo = mi = m.

2.2.2 Station 2

Since quasi-reversibility is an "input-output" property, we will have Poisson output

from station 1 and into station 2.

Station 2 is an M/M/1 FIFO queue with a single class of customer. From Burke's

theorem this is a reversible and a quasi-reversible queue.

From Kelly [9] theorems 3.7 and 3.12, a network of quasi-reversible queues has

product form solutions, thus we have proved Theorem 2.2.1.

2.3 Steady-state Distributions

We have established in the previous section that if we assume

1. Poisson arrivals

2. exponential service time distributions at each station, with the additional

constraint that both open and closed customers are served at the same

average rate at station 1,

then the network has product-form steady-state distributions. In addition, we require

Am < 1 and N < oo for steady state to be reached. (Note that because the "closed"



portion of the network "self-regulates" the arrival process to station 1, we actually

do not require pi = Am + m/m 2 < 1 for stability of the station.)

We now turn to the task of calculating this distribution. Let us first introduce the

notion of the throughput rate of closed customers, which we denote by a, the rate at

which closed customers arrive at either station 1 or equivalently at station 2. (Because

we are in equilibrium, on average closed customers must proceed from station 1 to

station 2 at the same rate as from station 2 to station 1.) The maximum rate at

which jobs can circulate throughout the network is the minimum of the service rates

at the two stations, namely, 1/m2. Due to periodic idleness at station 2, however,

the actual throughput rate will be strictly less than 1/m 2.

Theorem 2.3.1 Let a = ~, then the steady state probability distribution, r, for

the network is

* for a 0 1,

no + n I -a M n, .)
((no, n)= ni 1 -aNI+1 (1 - Am) (m- (Am)no

* for a = 1,

7r(no, nl) no ( -nAm) ) m )nl (Am) N+
ni N + I m2

We prove this theorem in the following subsection.

2.3.1 Probability Distribution

Following Walrand [15], the steady-state probability 7r(n) of having n customers in

an M/M/1 queue is

7r(n) = pn(l - p)

where p is the traffic intensity at the station, and a customer is of type i with prob-

ability
Aimi

pi -



At station 1, the probability of having n customers, of which no are open customers

and n1 are closed customers is

no+"( 1 - ) no + nl Am no am

) ni P i Pi

where

pi = traffic intensity at station 1

a = throughput rate of the closed customers.

At station 2, the traffic intensity is p2 = am 2. So, the probability of having n 2

N-n 1 customers at station 2 is (am 2)N-" (1--p2). Hence, putting the two expressions

together, the steady-state probability distribution of having no open customers and

nl closed customers at station 1 is

7r(no, n) = G no + n (Am)no°(am)n, (am2)N-nl

where G is the normalizing constant to ensure that

oo N

SE 7(no,n) = 1.
no=0 ni-=0

So,

1 = G [(am2)N + (no + 1)(am)(am2)N - 1

no=o

+ (no + 2)(no + 1) ( ( )N-2

(no + N)(no + N - 1)(no + N - 2) ... (no + 1)... + N!

1 m/m2 (m/m2)N= G(arn2)N 1 + /m 2  + ... + (r/r 2)N

L1 -Am (1 -Am) 2  (I - Am)N+1

For ease of notation, let
m/m,a =
1 - Am'

with which we have



G1= G 1m)[ +a+a2 +...+aN]

When a $ 1,
1-Am 1 -a

(am2 )N aN+l ,

and the steady state distribution is

7r(no, n1) = G no + n (Am)n (c)N(m)nl(m 2 )N-n1
nl

no + ni a1m n (Am) n"= nx 1 - a(T+  (1 - Am) (--- (Am)"°"

From this we can see that, as expected, the steady-state distribution is not a function

of a, the throughput rate of closed jobs.

When a = 1, the traffic intensities at both stations are equal to unity and the

queuing network is considered "balanced". Using the summation result that for a = 1,

Co a'= N + 1,
1 - Am 1

G (am2) N + I'

and the steady state distribution reduces to

7r(noni) n= ( n n ) (1)(1- Am) ( M  nl (Am)no
ni N + 1 M2

One interpretation for a is the rate of incoming make-to-stock work per unit of

time available to the production facility for processing make-to-stock products. In

Section 2.3 we mentioned the condition that Am < 1. This allows for all values of a >

m/m 2 . However, if a > 1, then the traffic intensity at station 1, p, = Am+m/m 2 > 1.

This would not be an interesting situation to analyze for an inventory model, and

hence we will restrict our study to values of a such that m/m 2 < a < 1.



2.3.2 Average Queue Length

We can use the steady-state distribution to determine the average queue length at

each station. At station 1, let E[No] denote the expected number of open customers,

and E[N1 ] the expected number of closed customers.

Corollary 2.3.2 From Theorem 2.3.1 the expected queue length at station 1 is given

by:

* for a < 1,

(am2
m

E[No]

E[N1 ]

e for a = 1,

E[No]

E[Ni]

1 - (N + I)aN (1

(1 -a)(1 - aN+l)

1 - Am

( Am 
P

Proof. Following similar steps as in the previous section,

E[No]
oo N

= EE noir(no, n)
no=O n =O

=G Z no[(am 2)N + (no +
no =

(no + 2)(no + 1) (om)(aM2 ) 2 +
2!

(no + N)(no + N - 1)(no + N - 2)... (no + 1) (am)N](Amo)no

= G(am2)N [( - m)21(1 - Am)2
2(Am)(m/m 2)

(1 - Am) 3
(N + 1)(AXm)(m/m) )• " •:•m-•

+ 2a + ... + (N + 1)aN ]= m)( [1(1 - Am) 2

- (N + 2)a+1l (1 aN+I
- aN

N+2)

I

+2)

f)

-1)
(1 - a)(1 - aN

1)(am)(am2)N-1

-a NN-1



Am )[+2a+...+(N+1)a
1 - Am 1 - aN + 1"

( Am ) [1 - (N + 2)a"N+I+ (N + 1)a" N +2

1 -Am) (1 - a)(1 - aN +1)-1) (N + 2)aN+1 (1 - a -v)
(1 - a)(1 - aN+1)

co N

E E n 17r(no,ni)
no=0o ni =0

= G (Amo)no [0 + (no + 1)(Cam)(am 2)N - 1

no=o

2(no + 2)(no + 1) )N-2S( )( (,m2 )N + ...2!
N(no + N)(no + N - 1)(no + N - 2) ... (no + 1)(&emN]

+. I

co (no + 2)(nc
SG((am)(am 2)N - 1 E (Amo)no[(no + 1) + 1!

(no + N)(no + N - 1) ... (no + 1) )N- 1

(N - 1)!

+ 1)(mmr2)

SG(m/m 2)(am2)N [(1 - Am) 2
2(m/m))

+ +- 3(1 -Am)3
+ N(m/m 2 )N - 1

Am )N+1

( )G ( [1 + 2a +... + Na N - ]

(1 - Am)
2

Am/m2

-m/m)

( 1-(N(1
a (I

1 [1 + 2a + .. + Na -

1 - (N + 1)a N + NaNN + 1

(1 - a)(1 - aN + l )

When a = 1, we have the following:

(Am)(am2)N  (N + 1)(N + 2)

(1 - Am) 2 2

- 1 (i m)( 2 )

and

E[Nj]

+ 1)a" N1 - a)
- a) ( - a

N +
l)

am2
m

... T J



(m/m2)(am2)N (N(N + 1)
E[Nx] = G (1 - Am)2  2

1 - Amrm N2
0

Let us look at the form of these functions. Consider the case where a << 1, where

the rate of incoming make-to-stock work is much smaller than the fraction of time

available to the production facility to process make-to-stock products. Then we can

take the terms in aN, for large closed job populations N, to be approximately equal

to zero:

E[No] Ma - 1) (1 - a)- 1

m 2a
a -- a-1

m

and

E[Ni] ; a(1 + a +...) a.

Taking m 2 = 1, m = 0.01 and varying values of A, Figures 2-1 and 2-2 show the

behavior of E[No] and E[NI] versus a for values of N=5, 30, and 100. For a << 1,

E[No] and E[N1 ] are quite insensitive to N, and seem to increase linearly with a.

2.3.3 Throughput Rate

Corollary 2.3.3 The throughput rate, a, of closed jobs is given by:

* for a < 1,

M2 1 - aN+1

* for a = 1,

M• N + 1
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Proof. In order to calculate a, we examine the fraction of time that station 2 is

busy. Denoting this quantity by /2 and noting that /2 = am 2 , we have

/2 = 1 - probability of being idle

= 1 - probability of all N closed customers being at station 1
oo

= 1- E r (no, N)
no=0

= 1- 1G
no 0

no+N

N ) (Am)no (am)N

= 1- G(am)N[1 + (N + 1)Am + (N + 2)(N +

= 1 - G(am)N[(1 - Am) - (N +1) ]

= 1-aN[1+a+a2 + ... +aN] - 1.

When a < 1,

and the throughput

1) 2!m)
2!

a" (1 - a)32 = 1- - a

1 - aN+I

1 - aN

1 - aN+l'

a - (1 ) • aN "
a m2 1 - aN+1

When a = 1,

2 = 1
N+I

N + 1'

and the throughput

(N)

(2.1)

(2.2)

1

(1 m2



2.3.4 Sojourn Time of a Typical Job

We define the sojourn time of a job as the sum of its waiting time at station 1 (time

spent in queue) and its service time at station 1 (time to process the job). The sojourn

times for open and closed jobs are denoted by Wo and W1 respectively.

Corollary 2.3.4 The expected sojourn time for a typical job is:

* for a < 1,

Wo = ( m) [1 - (N + 2)aNS' + (N + 1)aN+2a)(-a N +

1 - Am (I - a)(1 - aN+1)

W (- •m [ 1 - (N +1_)aN + (N)aN+1

* for a = 1,

= (I -")Am) 2
W ( m N+1

1 - Am 2

Proof. Because we have independent Poisson arrivals, we can use PASTA (Poisson

Arrivals See Time Averages) and Little's Law [10] to show that the expected sojourn

time, that is, the time for queuing and service completion, is Wo = ENOI and W1 =

E[N1] for open and closed jobs respectively. From these it is simple to derive the

desired results. o

2.3.5 Asymptotic Behavior

What can be said about the expected sojourn times of jobs as N becomes large? In

the limit as N --+ oo the terms in aN and higher powers will be approximately equal

to zero, since a < 1. Thus we have the following limits

lim E[No] -AmN-oo 1 -Am 1 -a



Am
1 - Am - m/m2'

lim E[N1] =
N-oo 1 -a

m/m2
1 - Am - m/m 2'

lim a = 1/m 2 ,
N--oo

and so,

lim E[Wo] =
N-oo 1 - Am - m/m 2'

lim E[W1 ] = m
N--oo 1- Am - m/m2

The result for the asymptotic values for the average sojourn times is as expected,

since N -+ oo would mean essentially Poisson arrivals of closed customers from an

infinite pool. Therefore, at station 1, we would have the equivalent of two independent

Poisson arrival processes of 'open' jobs, and we would expect that the system time

for one type of job to be the same as for the other.



Chapter 3

Static Control of the Production

System

3.1 Problem Description

This section is devoted to the analysis of static control policies of the make-to-order

make-to-stock production system. We assume that a priori, a service discipline is

specified for the production facility (e.g. FIFO) and that the facility follows a base-

stock policy (or equivalently, a one-for-one replenishment policy). The problem that

we study is how to set the base-stock level so as to achieve one of two objectives:

* satisfy a service level constraint for the make-to-stock demands filled from in-

ventory, or

* minimize the average cost incurred per unit time.

In analyzing the latter problem, we assume a linear cost structure with the following

costs:

1. c = cost of holding one unit of WIP of open jobs at the production center

per unit time, measured in $/unit/time

2. 1 = cost of lost sale of one unit of make-to-stock product, measured in

$/unit, and

3. h = cost of holding one unit of finished goods inventory for make-to-stock

products per unit time, measured in $/unit/time.



The WIP in the first cost item c refers to Work-In-Process of make-to-order products

at the production facility, in other words, demand waiting to be processed, or being

processed. At station 1 this is represented by the queue length of open jobs. The

second cost, 1, is incurred when there is a lost sale of make-to-stock products due to

insufficient stock in finished goods inventory.

It may be difficult to quantify accurately the costs involved, particularly in the loss

of sales, where one has the cumulative effect of immediate loss of profits and the long

term effect of loss of good will. Hence we also consider an alternate approach which is

to set a service level constraint for meeting demand for the make-to-stock products.

In other words, we decide what service level we would like to achieve in fulfilling

orders for the make-to-stock products, and use that to determine the inventory level

that would be sufficient to meet the demand. In trying to achieve this service level,

we also consider the effect of employing different policies for production at station 1,

such as, giving priority to one or other type of product to see what effect that has on

the optimal inventory level.

3.2 Service Level Constraints

Suppose we want to achieve a certain service level for the make-to-stock products.

In order to meet the target, we need to hold stock in the finished goods inventory.

From Section 2.3.3 we have 82, the fraction of time that station 2 is busy. This is

also the service level, or "fill rate", that is the fraction of demands for make-to-stock

products filled from inventory. Denoting the desired fill rate by P* we can determine

the critical value of N required to achieve this level of service.

3.2.1 First In First Out

We first consider the system where station 1 uses a first in first out (FIFO) discipline

to process the two types of products.

Theorem 3.2.1 In order to achieve a fill rate of 02 of make-to-stock products, when

jobs are processed at station 1 using a FIFO policy, the critical value of N is given

by:



* for a < 1,
In \1-p

N=
In a

* for a = 1,

N- .
1 - 2*

Proof. When a < 1, from equation (2.1) we have

1 - aN

1 - aN+1

Rearranging the terms,

/2*(1 -aN+1) =1 -a N

aN(1 - #P a) = 1 - /3

In ( 1-"a)
N=

In a

When a = 1, from equation (2.2) we have

N
X * = N- F l "

2 N+1

Again, rearranging the terms gives

N=.
1 - 02*

Consider, for example, that a 95% service level is desired. That is, we require

#= = 0.95
NN = 0.95

N 19
=. N=19

Thus, in order to meet 95% of the demand for make-to-stock products, in a balanced

network, we would need to keep a finished goods inventory of 19.
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Figure 3-1: Network as Experienced by Closed Customers

3.2.2 Priority for Make-to-Stock Products

Consider the situation if we were to give priority to one or the other type of customer

at station 1. Then we would no longer have product-form solutions. Without product-

form solutions what can we say about the system?

Consider a priority discipline at station 1 such that if there are any orders wait-

ing in queue then make-to-stock products are always processed before make-to-order

products. If it happens that a make-to-order product is being processed when a

replenishment order comes in for a make-to-stock product then the make-to-order

product is ejected and sent to the head of the queue, and the make-to-stock product

is processed, after which, service for the make-to-order product restarts where it left

off. Such a priority is known as FIFO preemptive resume priority for make-to-stock

products.

Let us give such priority for make-to-stock products. Then, although there are

no product form solutions, we can still say something about the system and possibly

calculate a threshold value for N in order to achieve a certain service level. With

such a priority the closed customers experience an M/M/1 queue at both station 1

and station 2, as if no open customers were present, as in Figure 3-1. The state of

the system can be represented by a birth and death Markov chain, as in Figure 3-2,

where the numbers within the circles represent nl, or the number of closed customers

at station 1.
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Figure 3-2: Birth and Death Markov Chain

Let p, 1 = probability{n1 closed customers at station 1 and N - n1 at station 2}

then,

Pn = - po; for 0 < nx < N.

Using the normalization N'Z po, = 1, we get

= ( ) ) [1 - ()N+1

M2 \m2 /

Following the earlier procedure for calculating the expected number of closed

customers at station 1, we get,

ErNn=( m/m 2  1 + N(r/r 2)N+1 - (N + 1)(r/ 2)N
E[N] 1 - m/mr2) 1 - (m/M 2)N+)

As we would expect with such a priority discipline, the probability distribution and

expected queue length for closed jobs is not a function of A, and therefore a, because

closed jobs are not affected by open jobs in the system.

Theorem 3.2.2 In order to achieve a fill rate of 03 of make-to-stock products, when

closed jobs are given FIFO preemptive resume priority over open jobs at station 1,

the critical value of N is given by:

In[ m2 / - .
N= 1/ 1.

ln(m2/m)

'V / --

saw



Proof. Consider the fraction of time station 2 is busy:

S= 1 - probability{all N closed customers at station 1}
M2) (M) "1]-1

= 1- 1 1(- 2 ) -1

m M

(2\ [1 - (m2/m)N]
-- m [1-- (mn2/m)N+l ] "

For a particular service level, /3', we can solve for N:

02* M ] N+1(M rn2)N+1

m m

In [m2/m-0]

In(m2/m)

Behavior of the critical stock level

Consider the case where m << m2, then N seems to be well approximated by

N k A[ln(1/1 - i3)], where A is some constant. Figure 3-3 shows a plot of N versus

13 for m/m 2 = 0.01 and also of A[ln(1/1 - ,P)] with A = 0.2. Figure 3-4 shows a

similar plot but with A = 0.2152 illustrating that the approximation is very good.

The plots show that even a large change in the level of service required would only

mean a small change in N. This is as expected since m << m2 means that the rate

of production from station 1 is much greater than the demand rate for make-to-stock

products. Hence in the case shown, for example, in order to meet a service level

requirement of 95%, one would need a finished goods inventory of just one.

As m/m 2 -+ 1, the curve resembles N (1/1 - /3) more closely. However,

approximating the function with N r (1/1 - f2*) leads to an overestimate for N, as

in Figure 3-5. A plot of N = 0.8/(1 - #) seems to give a better approximation, as

in Figure 3-6.
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For p~ very small (03 << 1), N grows linearly with 08:

(1 - m/m2)
ln(m2/m)

3.2.3 Priority for Make-to-Order Products

We now consider giving FIFO preemptive resume priority to make-to-order products

at station 1. As in the previous section, we no longer have product-form solutions.

This time the open customers experience an M/M/1 queue at station 1, as if no closed

customers were present. Thus we can calculate the average Work-in-Process for make-

to-order products and the average number of replenishment orders for make-to-stock

products at station 1. However since the departure process from station 1 is not a

Poisson process, we cannot determine a critical stock level to maintain in order to

achieve a certain service level at station 2.

3.3 Minimum Cost Objective

3.3.1 Problem Description

We now turn to the task of setting an optimal base-stock level in order to minimize

the average cost incurred by the production system per unit time. As described in

Section 3.1, we assume that the costs are linear. We would expect that c < h, since c

represents just the cost of an order waiting to be processed. In other words, for c, we

need only to consider the cost of holding raw material, whereas for h, we also need to

consider labor costs and capital tied up in holding the products as finished goods. We

would also expect that h < 1, that the cost of losing a sale because demand cannot

be satisfied from the finished goods inventory is greater than holding a product in

the finished goods inventory. Thus I would represent the selling price of a finished

product, plus possibly some penalty for loss of good will for not meeting demand.

We chose three different combinations of [c, 1, hi], which might realistically model

the costs incurred in the production facility. They are:

1. c=1, I=10, h=2

2. c=l1, 1= 100, h=2



3. c = 1, I = 250, h = 4

3.3.2 General Solution for the Production System

Theorem 3.3.1 The average cost for the production system per unit time is given

by:

* for a < 1,

E[S] (m2a 1 - (N + 2)aN+I +-(N + 1)aN+2

Em (1 - a)(l - aN+1)

I [a (1,- a)
+ -)

m2 (1 - aN+1)

[N(1 -a) -a + aN+
(1 - a)(1 - aN + 1)

* for a = 1,

EE[1 c ( 1) (• N+••2 +)(3 -m2) (N)
(m 2 m2 m 2

Proof. The cost due to WIP at station 1 is c multiplied by the expected queue

length of open customers. The cost due to holding finished goods inventory is h

multiplied by the expected queue length of closed customers at station 2. Consider

the cost due to lost orders at station 2. The fraction of time that inventory is zero

is the fraction of time that the station is idle, which is, 1 - ,2. At this time, orders

still come in at a rate of 1/m2. Therefore, the number of lost orders per unit time is

(1 - 0 2)/m 2. Hence the expected cost per unit time for the network is,

E[S] = cE[No] + 1(1 - P2)/m2 + h(N - E[Nl])

For a < 1, substituting the expressions for E[No], E[Ni] and P2, from Sections 2.3.2

and 2.3.3 and simplifying, gives

1 - aN

1-02 = 1- 1 - aN+i



aN(1 - a)

(1 - aN+1)

and,

N -[a - (N + 1)aN+l + NaN+2]
(1 - a)(1 - aN+l)

N[1 - aN+l - a + aN + 2] - [a - (N + 1)aN+l + NaN+2 ]
(1 - a)(1 - aN +l )

N(1 - a) - a + aN+1

(I - a)(1 - aN+1)

E[S] 2a [1 -(N + 2)acN+ + (N + 1)aN+ 2

Em (I - a)(1 - aN+1)
1 aN(1 - a)

m2 (1 -aN+l)

[ N(1 -a)- a + aN+1

(1 - a)(1 - aN+l)

This expression, as it stands, does not afford a clear intuitive understanding of

the cost function. So, we must look for simplifications or approximations which will

clarify the form of the function. We pursue this strategy in the next section in order

to get a good approximation for the optimal N* which would minimize E[S], when

a<1.

For the case of a balanced network, a = 1, again using the expressions for E[No],

E[Ni] and #2 from Sections 2.3.2 and 2.3.3, we have

N - E[N ] = N - -1 --(m Nm 2) T
= 3-~)

Thus,

N - E[N1 ]

therefore,

(3.1)

E[S] =cM N+2(m 2 S 1 )+(3 m2 N
Sm2 ~N +1 m/ 2/



Corollary 3.3.2 For a

by:

= 1 the optimal N* which minimizes the average cost is given

- 1

Proof. In order to determine the critical value of N which minimizes the cost

function, we take the derivative with respect to N and set E'[S] equal to zero.

c m2 1 h 3 m - m2
E'[S] = - m + - (3- + )2  027m 2 M (N +1)2

which yields

We also have that
21/m 2E"[S] = 1) > 0.

(N +1) 3

Thus we have determined the N* which minimizes the cost function when a = 1.

Note that N* must be greater than or equal to one. Substituting for N* we have

E[S]mi - c -( -1)+h(3 -1
m m

+ -1)+ h (3 -
m+ 21/m2, m

1[c(h3 + h (3 - 21

+ 1 (2 ) [c (M2 - h2 +

21 - + -1 [c( 21)+h(3- )
M2 m m) 2 m m

The above expression for N* makes intuitive sense in that we would expect to

hold less finished goods inventory if either the WIP holding costs or finished goods

22/mm

m 2m



holding costs were to increase, and, if just the cost due to lost sales was to increase

then we would expect to hold more in the finished goods inventory.

3.3.3 Approximations: Low Demand for Make-to-Stock Prod-

ucts

Approximation 3.3.3 For a < 1, given a low demand for make-to-stock products,

the optimal N* which minimizes the average cost is given by:

N* P t21/m2
c -l+ +h 3- m2)

m m

Turning to the case where a < 1, let us consider that there is low demand for

make-to-stock products, say, one unit per week, which would mean m 2 = 1. In this

case we find that the critical value of the inventory level determined for the balanced

network case, Nbal, provides a good approximation to both the N, t1i and E[S]min.

That is,

21/m2N* 21/ -1. (3.2)
\c -1) + h (3 - m2m m

Tables 3.1, 3.2 and 3.3 compare the actual values of N* and E[S]min with the values

for a balanced network.

3.3.4 Approximations: High Demand for Make-to-Stock Prod-

ucts

It may be more realistic to look at a demand rate of, say, a thousand units of make-

to-stock products per week. Taking m2 = 10- 3 and m = 0.8 x 10- 3 we find the

balanced network simplification a poor model for the cost function and so we must

find a better approximation.



E [SI ---
m2 = 1
m = 0.8 -- - - - --- -

[c, I , h] N-actual E[S1-actual N-bal.ntwk E[S]forNbal 1% off E[Slact

a=0.9 2 5.37 2 5.37 0.00
a=0.95 2 5.6 2 5.6 0.00
a=0.99 2 5.79 2 5.79 0.00

[1,100,2]
a=0.9 8 16.95 7 16.95 0.00
a=0.95 8 18.53 7 18.53 0.00
a=0.99 8 19.98 7 19.98 0.00

11,250,41
a=0.9 9 36.87 8 37.45 1.57
a=0.95 9 40.27 8 40.43 0.40
a=0.99 10 43.41 8 43.41 0.00

Table 3.1: Performance of Balanced Network Approximation

ETS
m2 = 5
m=3

[c, I h] N-actual E[S]-actual N-bal.ntwk E[SiforNbal % off E(S]act
(1, 10, 21
a=0.9 1 2.74 1 2.74 0.00
a=0.95 1 2.87 1 2.87 0.00
a=0.99 1 2.97 1 2.97 0.00

_1_100_2
a=0.9 3 8.69 3 8.69 0.00
a=0.95 3 9.17 3 9.17 0.00
a=0.99 3 9.57 3 9.57 0.00

(1,250,41I
a=0.9 4 18.24 4 18.24 0.00
a=0.95 4 19.1 4 19.1 0.00
a=0.99 4 19.82 4 19.82 0.00

Table 3.2: Performance of Balanced Network Approximation



m2 = 10

m. - = -7 -------_-_ -------------------- ----.-_-_---_ --- _ ----... ...--... .. ....... . -. .

[c, I , h] N-actual E[S1-actual N-bal.ntwk E[SlforNbal % off E[Slact
[1, 1 0 , 21- -- ----.. . . . . __ 2 . . . . .. .
a=0.9 1 1.29 1 1.29 0.00
a=0.95 1 1.36 1 1.36 0.00
a=0.99 1 1.41 1 1.41 0.00

1 100,2_

a=0.9 2 5.68 2 5.68 0.00
a=0.95 2 5.93 2 5.93 0.00
a=0.99 2 6.13 2 6.13 0.00

[1,250,4----------
a=0.9 3 12.22 2 12.3 0.65
a=0.95 3 12.62 2 12.75 1.03
a=0.99 3 1 3 2 13.1 0.77

Table 3.3: Performance of Balanced Network Approximation

Approximation 3.3.4 For a < 1, given a high demand for make-to-stock products,

the optimal N* which minimizes the average cost is given by:

I nlah-(m'-l)c
In (1/m2)(1-a)2

In a

Since we have m 2 << 1, and c < h << 1, for small N's, E[S] can be approximated

by the term

,, I (1 - a +1)a (3.3)

However, for m2 << 1, the number we must hold in finished goods inventory will not

be small. So let us examine the function as N becomes large. The dominant term

then is the finished goods holding cost. Since N(1 - a) >> aN+ - a we have

hNE[S] N
(1 - aN +I ) (3.4)



In order to compute the N*, we looked at the intersection of these two curves,

that is, we equated equations (3.3) and (3.4). This did not provide a satisfactory

approximation. However, the intersection of the second curve, equation (3.4), with

the actual E[S] function, equation (3.1), did give a good estimate, especially when

h << 1. Equating the two gives

m 2a 1 [1 - NaN+1(1 - a) + aN+1(a - 2)

m (1 - a)(1 - aN + l )

r aN(1 - a) a
+I_ -h a 0 (3.5)

m2 (1 - aN+1) (1 - a)(1 - aN+l)

For large N and with a < 1, we have 1 >> aN+l(a - 2) - NaN+l(1 - a), and

equation (3.5) reduces to:

-•a 1 c + IaN(l - a)2 -_ha, 0

(1M2

which yields
ah-(r--.-l)c

In (1/m2)(1-a)-
approx In a

The conditions under which this approximation holds are:

1. a<l1

2. m2 << 1, so that N* >> 1

3. ah - (-2 - 1)c < (l/m)(1 - a)2

The results of this approximation are given in Tables 3.4, 3.5 and 3.6 and as can

be seen, even if N* is far off, the value of E[S],mi, predicted by this approximate

model is very close to the actual value.



E[S]
m2=0.001
m = 0.0008

[c, I, h] N-actual E[Si-actual N-approx E[SlforNaprx % off E[S]act

a=0.95 54 113.38 52 113.71 0.29
a=0.99 80 179.67 * * *

_1,100,2]
a=0.9 60 121.43 61 121.62 0.16
a=0.95 96 195.57 97 195.68 0.06
a=0.99 205 433.96 174 448.13 3.26

[1,250,4]
a=0.9 62 250.01 62 250.01 0
a=0.95 100 404.35 100 404.35 0
a=0.99 223 916 189 947.24 3.41

* Negative value is obtained since condition 1 is violated

Table 3.4: Performance of Second Approximation

E[S]

m2=0.005
m = 0.003

[c, I, h] N-actual EISJ-actual N-approx E[SlforNaprx % off E[Sact
[1, 10, 2]

a=0.9 25 55.04 26 55.22 0.33
a=0.95 31 71.85 27 72.89 1.45

(1,100,21 _
a=0.9 45 95 48 96.22 1.28
a=0.95 66 143.58 71 145.14 1.09

............... - •...... T ...... . . ] ........ :: -- -- --............................. ................. --....

(1,250,4]_
a=0.9 47 193.63 49 194.69 0.55
a=0.95 70 293.02 72 293.45 0.15

Table 3.5: Performance of Second Approximation



E[S-
m2=0.01

m = 0.007

[c, 1, hl N-actual E[SI-actual N-approx E[S]forNaprx % off ES]act
[1, 10, 2]
a=0.9 20 42.88 18 43.3 0.98
a=0.95 23 55.4 10 82.41 48.75

I1,100,2]
a=0.9 39 82.52 40 82.81 0.35
a=0.95 54 119.92 55 119.98 0.05

11,25014]
a=0.9 41 168.36 42 168.9 0.32
a=0.95 58 245 57 245.11 0.04

Table 3.6: Performance of Second Approximation



Chapter 4

Dynamic Control of the

Production System

4.1 Problem Description

In this section, we are analyzing the mixed queuing network with a fixed number,

N, of make-to-stock jobs, to determine the best scheduling policy for processing the

two types of jobs. We again have Poisson arrival of make-to-order jobs with rate A to

station 1, and exponential service rate at each station, with rate z at station 1 (same

rate for both types) and rate I2 at station 2. Let u(t) be the action to be taken at

time t. The allowable actions are:

* process make-to-order jobs, denoted by 0

* process make-to-stock jobs, denoted by 1

Let Xt be the queue length at station 1 of type i customers, including the one in

service. Then Xt=o = (xo, xl) represents the initial queue length of open and close

jobs respectively. The state space of the problem is Z 2 where Z is the set of integers.

The objective is to determine the best policy for processing jobs at station 1 so as to

minimize the total discounted cost:

E e-'t [cXo + h(N - Xt)]dt + E•l e-
k=-1



where

a = discount rate

Tk = instants of lost sales

Since it is most expensive to have lost sales, we could conjecture that station 1 should

process make-to-stock jobs if their number in finished goods inventory falls below a

threshold value, and process make-to-order jobs otherwise.

We can show that the problem is equivalent to a discrete time problem, as in

Walrand [15].

* Let potential transitions be all arrivals and all the service completions (that

would occur if the queue were never empty), at station 1. These potential

transitions occur at a rate:

A + P + P2

* Consider the discounting as resulting from terminating the process after a ran-

dom time, exponentially distributed with parameter a. Once the process is

terminated we incur no additional cost, so the cost to be paid at time t is the

original cost provided that the process is running. Thus the average cost at

time t given the evolution of the system is equal to e- a t times the original cost.

Hence, the discounted cost for the original process is the undiscounted cost for

the terminated process.

* We can consider the termination of the process as an additional potential tran-

sition. Therefore, potential transitions occur at rate:

A+±L+IL2 +a

By scaling time, one can assume that:

A+U+0z2 +a= 1

thus potential transitions occur at each unit of time.



Letting rk be the kth potential transition time, the cost can be written as:

E { [cX, + h(N - Xt)]dt + E 1 {0lost sales at time rk}
Sk=0 rk k=1

Decision epochs are the starts of services of either type of job. The transition proba-

bilities are:

(=

= -
P2 =

xI = o0 + 1, X:

/ zo, =

x = o - 1, z

l0 = zo ,  1

terminated process

otherwise

x1

x, + 1

x1

-1

0 < <N

X1 = N

Suppose that there are T time units remaining before termination of the process.

Let VT(xo, x 1) denote the expected minimum cost for the T time units given an initial

queue length at Station 1 of (xo, x1 ). This cost would be a function of xo, x1 and VT-1

where VT-1 represents the"future minimum cost" or the expected minimum cost with

T - 1 time units remaining. Then the dynamic programming equations to be solved

for the different initial conditions (zo, xi) are the following:

Case 1: xo > 0 and 0 < x < N

VT(xo, x1 ) = co + h(N - ) + VT1((xo + 1,xl) + 2 VT-1(xo, X + 1)

+plmin{VT_l(xo - 1, x1 ), VT-1(xo, X - 1)} (4.1)

Case 2: xo > 0 and zx = N

VT(xo, zx) = czo + h(N -zx) + AVT-1 (xo + 1, x) + 2 {l + VT-1(xo, x1 )}

+ymin{VT_l(xo - 1, xl), VT_-(xo, x1 - 1)} (4.2)

where



Case 3: 0o > Oandx =O

VT(Xo0, X1) = czo + h(N - xl) + AVTl(xo+ 1,xl) + Is2VT-1(Xo, 1 + 1)

+P2VT-,(X0 - 1,Xl)

Case 4: xo = 0 and 0 < xl < N

VT(xo, xi) = cxo + h(N -xl) + AVTl(xo 1, Xl) + ± 2VT-1(xo, zX + 1)

+,PVT-1(xo, Xl - 1)

(4.3)

(4.4)

Case 5: xo = 0 and xl = N

VT(xo, x1) czo + h(N - xl) + AVT-_(xo + 1, lX) + /12 {/l+ VT-1(xo, Xl)}

+-VT-1(xo,xl -1) (4.5)

Case 6: xo = 0 and xl = 0

VT(xo, x1) = cxo+ h(N - xl)+ AVT-l(xo + 1,xl) +- 
2 VT-1(xo, Xl + 1) (4.6)

Consider case 1: the first term is the WIP holding cost; the second term is the finished

goods holding cost; the third term is the future minimum cost if the next transition

is a demand for a make-to-order product; the fourth term is the future minimum

cost if the next transition is a demand for a make-to-stock product; the fifth term is

the future minimum cost if the next transition is a service. This last term indicates

that one has the choice of processing either type of product, depending on which

would represent the greater savings. In case 2, if the next transition is a "service" at

station 2, we incur a lost sale and then the system remains in the same state.

4.2 Properties of the Optimal Policy

We follow Ha's [5] method for analyzing the model as follows. Let S be the set of

functions defined on Z 2 such that if v E S, then v exhibits the following properties:



* Convexity

v(xo - 1, xi) - v(xo, zl)is decreasing in xo

v(xo, xi - 1) - v(xo, zx)is decreasing in x,

* Supermodularity

v(xo - 1, xl) - v(xo, xl)is decreasing in xl

v(xo, x, - 1) - v(xo, xl)is decreasing in xo

* Diagonal dominance

v(xo, x1 - 1) - v(xo - 1, xl)is decreasing in zx, and increasing in xo.

Note that supermodularity and diagonal dominance together imply convexity; see

Appendix A.

We define the optimal operator G as

Gv(xo, xi) = cxo + h(N - xi) + Av(xo + 1, xi) + L2v((o, xi + 1)

+/tmin{v(xo - 1, x1), v(xo, x1 - 1)} + constant

constant =
0

IL21

case 1

case 2

Proposition 4.2.1 If v E S, then

1. min[v(xo - 1, xj), v(xo, zx - 1)] E S

2. Gv E S

The proof for Proposition 4.2.1 is given in Appendix B.

we can prove the following theorem:

Based on this Proposition

where



Theorem 4.2.2 1. The optimal cost function V is convex, supermodular and

has diagonal dominance.

2. There exists an optimal stationary policy.

3. Given the WIP levels x0o and xl, there exists a function B(xo) such that

it is optimal to produce make-to-stock products if xl > B(xo) and produce

make-to-order products otherwise.

4. B(xo) is nondecreasing in xo.

The proof of Theorem 4.2.2 is given in Appendix B. Part (2) states that B(xo) is

stationary over time. Part (3) states that make-to-stock jobs should be processed if

their inventory level falls below [N - B(xo)], and also gives the form of the optimal

policy. The function B(xo) is defined by

B(xo) = min{xzi : V(xo - 1,x1) - V(xo, xl - 1) > 0}

This function is a switching function which determines the priority for production.

Part (4) shows that if it is optimal to produce product i in preference to product j, it

remains optimal to do so if either the number of orders for i increases or the number

of orders for j decreases. This follows from the diagonal dominance of V.

4.3 Computation of the Optimal Policy

We compute the optimal policy using the value iteration method, as discussed in

Howard [7]. As mentioned in Section 4.1, we keep a fixed number, N, of make-to-

stock jobs. Since the number of open jobs in the system could be infinite, we need to

truncate the state space in order to make the computing feasible. We let the maximum

number of open jobs be M. Then the term AVT-l(zo + 1, x1) in equations (4.1), (4.2)

and (4.3) is approximated at the boundary x0o = M by the following term:

A{c + VT-1(M, xl)}.

The reasoning for this follows the same logic as for the lost sales cases (equations (4.2)

and (4.5)), that is, if we have a demand for a make-to-order product when x0o = M,



we incur a cost c for that time period and then the system remains in the same state.

We computed the costs for values of M = 70, 75 and 80. We found that the costs for

the latter two cases differed only in the first decimal place and the optimal policy in

all three cases is the same and hence chose the value of M = 80. The costs used are

c = 1, I = 100 and h = 2, and the target base stock level, N = 10. The iteration

process was stopped when VT(xo, xl) - VT-1(xo, xz) < 0.0001VT(zo, zl).

The parameters to be used for these computations were determined bearing in

mind the conditions that A + P + 12 + a = 1 and pi = + E < 1. As mentioned in

Section 1.2, we will only consider cases where y > 12. Additionally we will not take

p. to be much greater than P2 since this would mean that make-to-stock items would

be produced much faster than they were being requested, thus the case would not be

so interesting. Taking a = 0.01,

* for Pl = 0.8

U = 0.55, A = 0.04, 92 = 0.4

* for P, = 0.98

p = 0.50, A = 0.09, /12 = 0.4.

The optimal policy for these values is shown in Figures 4-1 and 4-2. These figures

illustrate that as stated in Theorem 4.2.2, the switching function, B(xo), is indeed

increasing in x0 . The interpretation of Figure 4-1, for example, is that if all 10 closed

jobs are at station 1 and there are less than 56 open jobs waiting, then production

priority should be given to closed jobs. Similarly, if there are 9 closed jobs and less

than 19 open jobs waiting to be processed, then priority should be given to the closed

jobs.

Note that if the system starts in the shaded region, the optimal policy dictates

serving closed jobs. This would push the system towards the curve B(xo) in a westerly

or north-westerly direction. Conversely if the system starts in the unshaded region,

optimally open jobs should be served and the system is pushed towards the B(xo)

curve in an southerly or south-easterly direction.
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Figure 4-1: The Optimal Policy for p = 0.8
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Figure 4-2: The Optimal Policy for p = 0.98



Case [c,l,h] pli ( 2, X, t)
Al [1,100,21 0.8 (0.55,0.04,0.4)
A2 0.9 _,(0.52,0.07,0.4)
A3 0.98 (0.50,0.09,0.4)
B1 [1,250,4] 0.8 (0.55,0.04,0.4)
B2 0.9 (0.52,0.07,0.4)
B3 0.98 (0.50,0.09,0.4)

Table 4.1: Scenarios for Comparing Scheduling Policies

Initial Condition (xO,xl ) = (0,0)
Efficiency = 100 x (cost of optimal policy)/(cost of policy)

Policy (1) Policy (2) Policy (3) 3 Policy (4)
Case Priority open. 1Priority closed Priority open Priority open

unless xl=N unless xl>N-1
Al 99.69% 91.65% 99.87% 99.44%
A2 99.08% 82.15% 99.64% 98.41%
A3 98.48% 75.15% 99.47% 97.40%
B1 99.40% 93.64% 99.64% 99.17%
B2 98.06% 86.78% 98.85% 97.53%
B3 96.53% 82.14% 97.94% 95.84%

Table 4.2: Comparison of the Optimal Policy With Other Scheduling Policies

4.4 Comparison of the Optimal Policy With Other

Scheduling Policies

We would like to compare the performance of the optimal policy with other scheduling

priorities. We tested the optimal policy against the following four policies:

(1) Non-premptive priority for open jobs.

(2) Non-premptive priority for closed jobs.

(3) Serve closed jobs if their number at station 1 (replenishment orders) is N,

otherwise serve open jobs.

(4) Serve closed jobs if their number at station 1 is N - 1 or N, otherwise serve

open jobs.



Worst Initial Condition (xO,xl) for policy
Efficiency = 100 x (cost of optimal policy)/(cost of policy)

Policy (1) Policy (2) Policy (3) Policy (4)
Case Priority open Priority closed Priority open Priority open

unless xl=N unless xl1N-1
Al (10, 10) (11,4) (7,9(8,9)

84.10% 53.37% 94.91% 85.83%
A2 (9,10) 1 0,4) (6,9) ............ (7,9) ....

87.83% 52.30% 96.33% 87.22%
A3  (7,10 (9,3) ...... (4,9) (6,9)

90.26% 51.89% 97.30% 88.21%

Table 4.3: Comparison of the Optimal Policy With Other Scheduling Policies

We used two different cost cases and tested them under three values of the traffic

intensity at station 1. These scenarios are summarized in Table 4.1. The results

comparing the optimal policy with these four scheduling policies are presented in

Table 4.2. Policy (2) performs the worst and policy (3) performs the closest to the

optimal policy. Note that the extent to which the optimal policy outperforms the

other policies depends upon the initial condition of the system. For example, if the

system were to start with all N closed jobs at station 1 and yet production priority

was always given to open jobs, we would expect this policy to do significantly worse

than the optimal policy. However, if the system were to start with station 1 empty

and employ such a scheduling policy we would expect a better performance. This is

illustrated in Table 4.3 which indicates, for each policy, the initial condition with the

highest cost relative to the optimal policy, and the percentage by which it is higher.

Thus, following policy (1) when Pi = 0.8 and the system starts with station 1 empty

the total discounted cost is 0.27% worse than the optimal policy. However, if there

are ten open jobs and ten closed jobs initially waiting at station 1 then policy (1)

performs 18.83% worse than the optimal policy. As one might expect, given the

chosen parameters, a policy of always giving priority to closed jobs performs the worst.

Consider the case when P1 = 0.9 and the system starts with (9,3) and policy (2) is

chosen. This means that although seven make-to-stock items are already in finished

goods inventory, make-to-stock orders are given priority in production. The chance

that there will be more than seven demands for make-to-stock items before another



Initial condition (0,0) Worst initial condition (xO,xl)
Policy Efficiency Policy .... .Efficiency,

for N=2* for N=2*
Optimal 100% Optimal 100%
Policy (3) 100% Policy (3). 99.23%
Policy (2) 99.70% Policy (2)1 96.87%
Policy (1) 98.32% Policy (1)1 94.63%
Policy (4) 94.35% Policy (4) 87.89%
* the ranking remains the same for N=1

Table 4.4: Ranking of the Policies for N = 2

Initial condition (0,0) Worst initial condition (xO,xl)
Policy . Efficiency Policy Efficiency

for N=3* for N=3*
Optimal 100% Optimal 100%
Policy (3) 99.92% Policy (3) 99.29%
Policy (1) 98.14% Policy (1) 94.02%
Policy (2) 97.20% Policy (2) 91.80%
Policy (4) 94.30% Policy (4) 88.39%

Table 4.5: Ranking of the Policies for N = 3

one is produced is so small that the optimal policy actually performs 92.34% better

in this case.

Looking at Tables 4.2 and 4.3 one is struck by the dismal performance of policy (2).

The reason for this is the choice of N. If N is much smaller than the optimal value

for minimum cost of the system it would make little sense to give priority to closed

jobs since we would just be increasing the holding costs for finished goods inventory.

However, if N were much smaller, then policy (2) may fare better. Consider case A2

for example, with pi = 0.9, I = 0.52, A = 0.07 and P2 = 0.4 and [c, 1, h] = [1, 100, 2].

From equation (3.2) we get NPIFO ; 4 which gives us an idea for the size of Noptima*.

The results of comparing the optimal policy with the other four scheduling policies

for different values of N are presented in Tables 4.4 - 4.7. The policies are ranked in

order of performance. As one can see from Table 4.4, for small N policy (2) and (3)

are very close to optimal. However, as N increases, policy (2) quickly assumes last

position in the ranking; Tables 4.6 and 4.7.



Initial condition (0,0) Worst initial condition (xO,xl)
Policy [ Efficiency Policy Efficiency

for N=4* for N=4*
Optimal 100% Optimal 100%
Policy (3)_ 99.69% Policy (3) 99.30%
Policy (1) 98.00% Policy (1) 93.13%
Policy (4) 94.69% Policy (4) 88.39%
Policy (2) 93.23% Policy (2) 84.23%
* the ranking remains the same for 3<N<14

Table 4.6: Ranking of the Policies for N = 4

Initial condition (0,0) Worst initial condition (xO,xl)
Policy i Efficiency Policy Efficiency

for N=14* _ for N=14*
Optimal 100% Optimal 100%
Policy (3) 99.77% .Policy (3) 94.37%
Policy (1) 99.74% Policy (4)1 86.07%
Policy (4). 99.31% --Policy (1) 84.83%
Policy (2) 83.42% Policy (2) 44.21%
* the ranking remains the same for N_14

Table 4.7: Ranking of the Policies for N = 14



As discussed in Section 4.3 the state space of the problem is divided into two

regions and the optimal policy determines the best priority for scheduling depending

upon the region. For example, in Figure 4-1 if the system were to start in the shaded

region and production priority was given to open jobs then we would be moving away

from th optimal strategy and incurring higher costs. Interestingly, this contradicts

the policy described by Carr et al. [3], who propose a "No B/C strategy". That is,

as discussed in Section 1.3, the B/C items would be our equivalent of open jobs and

would always be given production priority over A items, or closed jobs. our optimal

policy clearly states that priority for B/C items would be a sub-optimal strategy to

pursue if the system were to start in the "shaded region".



Chapter 5

Conclusions and Further Research

In this thesis we model a production facility which produces two types of items,

one make-to-stock and the other make-to-order, as a mixed queuing network. We

first consider a static model in the sense that a service discipline is specified for the

production facility and a base-stock policy for the make-to-stock items is followed.

The problem of setting a target base-stock level, N*, was tackled with one of the

following two objectives in mind: the first was to achieve a desired fill rate for the

make-to stock products, or alternatively, the second was to minimize the average cost

incurred by the system per unit time. In trying to achieve a particular fill rate we

derived expressions for N* given either a FIFO priority scheme at the production

facility or a pre-emptive resume priority for the make-to-stock products.

For the second objective of minimizing the average cost per unit time, we con-

sidered a FIFO service discipline. We derived an exact expression for N* when the

traffic intensity at station 1, pl, is unity. When P, < 1 we develop approximations for

N* for the case where demand rate per week for make-to-stock products is low and

also for the case where their demand rate per week is high. We note that for the low

demand case, both the Napprox and the corresponding minimum cost are very close

to the actual values. However, for the high demand case, although the N pro• is not

very close to N,,,,i, the minimum cost evaluated using this approximation is very

close to the actual minimum cost.

Next we turned to a dynamic model of the system to determine the best scheduling

policy at the production center. We found that the optimal policy is a switching



function. The function divides the state space into two distinct regions, such that

if the system starts in one region it would be optimal to give production priority

to make-to-oder items, whereas starting in the other region would indicate giving

production priority to make-to-stock items. We compared the optimal policy with

four other scheduling policies and found that the cost of the optimal policy can be

upto 44.21% less than the cost of the chosen policy depending upon the initial state

of the system.

We have modeled the production facility as a mixed queuing network and in order

to analyze this network a number of simplifying assumptions were made. This work

could be extended to relax some of these assumptions. For example:

* each type of product could have a different service rate at the production center,

* a different service time distribution could be considered since the exponential

distribution may not accurately represent what actually happens at a produc-

tion facility,

* demand could be batch arrivals,

* due dates and machine failure could be a consideration,

* set-up costs could be included in the analysis when switching production of the

items,

* a different cost structure could be considered for the system.

However, by pursuing these recommendations we may render the problem in-

tractable. Nevertheless, using this work as a basis, simulations could be run to gain

further insight.

Returning to the comment in section 4.4 regarding the article by Carr et al. [3],

we note that the optimal policy developed in this thesis may be in contradiction

to the policy in their paper. Further investigation is required, however, using the

parameters of their work and applying it to a suitable situation which would validate

either policy.



Appendix A

Proof of Convexity of

To show convexity of v, we need to show:

(1) v(xo - 1, x1 ) - v(xo, xl) is decreasing in xo

(2) v(xo, x1 - 1) - v(xo, zl) is decreasing in xj.

For part (1), if v(xo - 1, x1 ) - v(xo, xl) is decreasing in x0 , then we must have

v(xo - 2, xl) - v(xo - 1, xl) Ž v(xo - 1, xl) - v(xo, x 1).

From supermodularity of v, we have

V(Xo - 1, x1 - 1) - v(x0 - 1, 2) v(xo, - 1) - v(xo, x1)

=* V(XO - 1, x - 1) - V(xo, x - 1) _ V(xo - 1, X) - v(xo, X1).

From diagonal dominance of v, we have

v(xo, xz - 1) - v(xo - 1, x1) > v(x0 - 1, x - 1) - v(xo - 2, x1 )

=: V(xo - 2, X1) - v(Xo - 1, x1) Ž v(Xo - 1, X1 - 1) - v(Xo, xi - 1).

Thus

v(xo - 2, xl) - v(xo - 1, xl) > v(xo - 1, xz) - v(xo, xj).



For part (2), if v(xo - 1, xl) - v(xo, Xl) is decreasing in zl, then we must have

v(xo, x1 - 2) - v(xo, x 1 - 1) > v(xo, x1 - 1) - v(zo, x1).

From supermodularity of v, we have

V(xo - 1, 21 - 1) - v(xo, X, - 1) 2 v(xo - 1, 1) - v(Xo, x1 )

:> v(xo - 1,Xl - 1) - v(xo - 1,xi) v(xo, X -_1) - v(xo, xi).

From diagonal dominance of v, we have

v(xo, x1 - 2) - v(xo - 1,x1 - 1) 2 v(xo, z 1 - 1) - v(xo - 1, x1)

• V(xo, X1 - 2) - v(xo, xz - 1) > v(xo - 1,x - 1) - v(xo - 1, x1 ).

Thus

v(xo, x1 - 2) - v(xo, x1 - 1) > v(xo, Xi - 1) - v(xo, Xz)



Appendix B

Proof of Optimal Policy-

Proof of Proposition 4.2.1

Define function m by m(xo, x1 ) = min[v(xo - 1, xi),v(xo, x - 1)]. We want to

show that if v E S then m E S also; that is, m is convex, supermodular and has

diagonal dominance. We take an arbitrary point (xo, xl) E Z 2 and consider all

possible values of m at that point and its neighboring points and show that m exhibits

these properties in each case.

Let vii denote v(xo - i, x1 - j). Figure B-1 shows the function v evaluated at

(zo, xl) and its neighbors. Since v E S, we have the following inequalities:

Convexity

VO00 - V10  V10 - V20

Voo - V01  01 -0V 02

V01 - V11 >V11 - 21

V1 0 - VII > V11 - V12

> V 2 0 - V3 0

> v02 - v03

Supermodularity

V00 - vlo  > Vol - V11

vol - V02  V11 - 12

V00 - V01 Vo10 - V11

> V02 - 12

> V2 0 - V2 1



V20  V10  Vo

vll Vol

Vo 2

0 -

I I I i P•

x 1-3 x1-2 x1-1 xI

Figure B-1: Values of v evaluated at points in Z 2

Diagonal Dominance

> V11 - V2 1

Ž V1 1 - V 1 2

V 10 - V20

SVol - V02

Ž • 20 - V30

V V02 - V0 3

For convenience, denote

mi = m(xo - i, xi -j)

= min[vi 1,ij, vij- 1]

Let aij = indicator variable that indicates the optimal action when the state is (zo -

i, zl - j). Then aij = 1, if vi,j- 1 < vi-lj. Thus,

a 0 if mij = vi-1,j
aij = 1 if mij = vj-1

x2-2 -

x2-3 -

V02 - V12

V 2 0 - V 2 1

Vol01 - vi1i

V10 - V11



Consider the following matrix of indicator variables:

a01
aoo

The possible cases for this matrix are:

If alo = 0, open customers are being served, then when there is 1 more open

customer in the system we must still serve open customers. Then aoo : 1, and the

following configuration is not possible:

1 0 J

Similarly, if a01 = 1, closed customers are being served, then when there is 1 more

closed customer in the system we must still serve closed customers. Then ao0 = 0,

and the following configuration is not possible:

a11

alo

00



Then the remaining cases are:

r

L

0

0

Supermodularity

Consider the following matrix of indicator variables:

Iao a all
aoo00 ao10

We want to show that

moo - mlo 2 mol - mi 1

Case 1: [0 0
0 0

ol0 = vi1

mo0 = 10o

mlo = V2 0

11 = V2 1

moo - mlo0

V4 1 1 < V 0 2-+ Vll < Vo2

-- V1 0 < V0 1

-4 V2 0 < V 1 1

SV21 V 1 2

- V1 0 - V2 0

> vll - v21 from supermodularity of v

- mol - mil



Case 2:

-V1 1 < V 0 2

-+ V10 < Vo01

-+ 1 1 < V2 0

-- V 2 1 < V1 2

=7 1 0 - V11

> Vo01 - V11i

Ž> V 1 1 - V 2 1

= mo0 -- mi

since 10 < ol0 1

from convexity of v

Case 3: [
0 0

mo -- llo = V10 - V20

> o10 - V 1 1

> V 11 - V 1 2

= mo0 - Mil

since V20 < v11

from convexity of v

ol0 =- V1 1

•00 - 7 1 0

mlo V- 1 1

ll - V 2 1

ol0 = V 1 1

mO o - Vl 0

M10 - V2 0

M11 -= 1 2

v+ 1 1 < V02

- V1 0 < Vol01

-+ V2 0 < Vii

-4 V 1 2 < V2 1

Mo00 - m10



ol0 V= ll

Mo0 = vol

o10= V-1 1

M11 = V 2 1

-+ 211 < V 0 2

-4 V0 1  7V1 0

-'+ V11 V 2 0

-4 V2 1 • 1 2

= V01 - V11

> vll - v21  from convexity of v

= mo - mil

Case 5:
0

o01 = V 1 1

Moo = V10

lo = V 1 1

M11 = V 1 2

-" V1 1 < V 0 2

-- V1 0 < Vo0 1

- V1 1 -5 V 20

-- V 1 2 - V2 1

- V1 0 - Vll

Svll - v12  from convexity of v

-mo - mil

M01 V02

O0 = ol01

-+ V0 2 1 Vll

-+ V0 1 V710

Case 4:
0

'1

Case 6: 0

1

Mo00 - 10

mo0o - mlo



in1 0 = V 1 1

Mn1 1 = U 2 1

-Z llV < V2 0

-+ V 2 1 < V 12

mo0 - 10 -= ol01 - V11

> V 0 2 - V1 2

>2 V 0 2 - V2 1

= moI - mi1

from supermodularity of v

since V21 < V12

iJ

io0 1 = ll

oo0 0 = vol

in10  Vll

ill = V1 2

- V1 1 < V 0 2

-+ V0 1  V1 0

-+ V1 1 5 V 2 0

-+ V 1 2 < V 2 1

= V01 - V11

> vll - v12  from convexity of v

= mo0 - mil

=01 V- 0 2

o10 = V1 1

M 11 = V1 2

-- V0 2 < Vl

-4 V0 1 < V10

-V V 1 1 V20

-V V1 2 - V2 1

Case 7:

mo0 -- mlo

Case 8: 1

Ii
1J



- Vo1 - V11

> v02 - V12  from supermodularity of v

= mo0 - mil

Since (xo, xi) is arbitrary, the following holds for any (xo, xl):

m(zo - 1, x1 - 1) - m(Xo - 1, Xl) Ž m(xo, x 1 - 1) - m((X0, 21)

Therefore m is supermodular.

Diagonal Dominance

Consider the following matrix of indicator variables:

Sa01  all
alo a 20

We want to show that

Case 1:
0

o0 1 -- 1m1 Ž10 - M20

mol = ll -- V11 < 00 2

mll = V2 1 V- 2 1 < V1 2

mo10 = V20  -+ V20 < V11

n 2 0 = )30 V 30 < V V2 1

SVll11 - 2 1

Ž v 2 0 -- 3 0

= • 1 0 - m 2 0

from diagonal dominance of v

ol0 1 - Mil

mo0o - m10o



Case 2:

-V V1 1 < V 0 2

--+ V2 1 < V1 2

-- U20 < Vll

--+ 2 1 < V3 0

= V1 1 - V 2 1

> V2 0 - V3 0

>Ž V2 0 - V2 1

- 10o - m 2 0

from diagonal dominance of v

since v21 < V30

Case 3:

mo0 1 - V 0 2

i 1 1 -= V2 1

mlo0 = V20

m 20 = V30

V-+ 0 2 - V11

--+ 21 < V1 2

-4 V2 0 < V1 1

--+ V3 0 < V2 1

=V0 2 - V 2 1

Ž V02 - V 1 2

> v20 - V30

mlo - m 20

since v21 < V 12

from diagonal dominance of v

11i
M01 1 1

M11= V2 1

M10= V2 0

m20 V U2 1

01 - Mi 1 1

0

M 0 1 - Mil



Case 4: [
1]i

Mn0 1 -- 11  = V 1 1 - 2 1

= mlo - m 2 0

Case 5: 11
in 0 1 = V0 2

1 1 -= 2 1

M 1 0 = V 20

M 2 0 = V21

V 02 • V 1 1

V-2 1 < V 1 2

V V2 0 < V 1 1

-2 2 1 • V3 0

= V02 - V 2 1

> V02 -- V12

Ž V1 1 - V 2 1

~U V2 0 - V 2 1

= mlo - m 20

since v21 < v12

from diagonal dominance of v

since v20 < v11

Case 6: [

--+ 02 V V11

M0 1 = V 11

M11 -- 2 1

i•10 = 01 1

M 2 0 = V 2 1

-V V11 < V02

-+ V 2 1 < V1 2

-V V1 1 • V 2 0

- V2 1 < V3 0

M 0 1 - Mi1 1

o01 = 02



S11 - V21 -+ v 2 1 < 712

Mn10 = -ll + Vl < V2 0

Mn20 = V21 -4 V2 1 • ?V30

M101 -- i11  = 002 - V21

> V02 - V12  since v2 1 < y 12

>2 v1 - V21  from diagonal dominance of v

= i 10 - m 20

Case 7: 0

in 0 1 = Vi V1 1 < 0 2

i11 = 12 V- 12 < V21

10 = ll - v1 1 V v 20

M 2 0 = 21 21 _21 V 30

o0 1 -- 11 = 711 - V1 2

> v11 - v21  since v12 _ v21

Sml - m 20

Case 8: [ 1

o01 = 02 "-- 0 2 • V11

• 1 1 = 12 --' 21 2  V 221

10 = V111  -4 V1 1 V2 0

M 2 0 =21 --+ V2 1 UV30



n 0 1 -- il = )02 - V12

> vll - v21 from diagonal dominance of v

= n 1 0 - m20

Since (xo, xi) is arbitrary, the following holds for any (xo, xs):

m(xo, xi - 1) - m(xo - 1, x1 ) > m(xo - 1, x1 - 1)-- m(xo - 2, x1)

Therefore m has diagonal dominance. 0

Convexity The minimum of two convex functions is also convex, therefore m is

convex.

Thus we have shown that if v E S then m E S. o

For part (2), since the other terms in the dynamic programming equations are linear,

they are also convex, supermodular and have diagonal dominance. Since S is closed

under addition, and multiplication by positive scalars we have the desired result that

Gv E S. 0

Proof of Theorem 1

For v E S define the function

B(xo) = min{xz : v(xo - 1, xl) - v(xo, x, - 1) > 0

We prove Theorem 1 based on Ha [5] and Porteus [13]. Let a structured decision rule

be one that chooses to process closed jobs if their number in finished goods inventory

falls below a threshhold value, as in part (2) of Theorem 1. As shown by Porteus,

since S is complete the limit of any convergent sequence in S will be in S. From the

optimality equations one can see that the function B(xo) as defined above is optimal

and from Theorem 5.1 of Porteus [13] parts (1), (2) and (4) hold.



For part (3), by definition of B(xo),

v(xo - 1, B(xo) - 1) < v(xo, B(xo) - 2)

From diagonal dominance of v, since v(zo, zl - 1) - v(zo - 1,x1) is increasing in xo,

we have

v(xo + 1, B(xo) - 2) > v(Zo, B(xo) - 1)

But in order for this to hold, since v(xo, xl - 1) - v(zo - 1, xj) is decreasing in xl, we

must have

B(xo + 1) > B(xo)

Thus B(xo) is increasing in xo.




