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ABSTRACT

REDUCIBILITIES IN RECURSIVE FUNCTION THEORY
Carl Groos Jockusch, Jr.

Submitted to the Department of Mathematics on May 13, 1966 in partial
fulfillment of the requirements for the degree of Doctor of Philosophy.

In this dissertation some reducibilities of recursive function
theory are analyzed, with particular emphasis on the relationships
between many-one reducibility and various kinds of truth-table
reducibility.

In the first section, the theory of cylinders as developed by
Rogers is given. Then the notion of "R~cylinder" is defined for any
reducibility R, and the properties of R-cylinders are studied.

In the second section, the R-cylinders are characterized for many
kinds of truth-table reducibilities. The characterizations are employ-
ed to prove that not every btt-degree has a maximum m-degree and
several similar theorems. It is also shown that there are r.e., non-
recursive, noncreative sets A such that AxA <y, A.

In the third section, it is pointed out that the reducibilities
mentioned in the second section differ in general on the r.e, sets, but
theorems are proved to show that they occasionally coincide under
special hypotheses.

In the fourth section, the notion of "semirecursive set" is intro-
duced and studied. It is shown that there are semirecursive sets in
every tt-degree and hyperimmne semirecursive sets in every r.e. non-
recursive T-degree. It is proved that the p-degree of a semirecursive
set consists of a single medegree, where p-reducibility is as defined in
section two. Priority constructions are used to prove that it is
possible to have r.e. semirecursive sets A and B such that A join B is
not semirecursive and r.e. sets A and B such that B is semirecursive, A
is not semirecursive, and A < yuB. Finally it is shown that immune
semirecursive sets are hyperimmne, not hyperhyperimmune and in X, in
the arithmetical hierarchy and that retraceable or effectively immune
semi-gecursive sets are co-r.e.

In the final section it is shown that the m-degreesof A,AxA,...
are all distinct for sets A such that A is simple but not hypersimple or
% is immne, non-hyperimmne and retraced by a total function. From
this it follows that every nonrecursive tt-degree has infinitely many
m-degrees and every r.e, nonrecursive T-degree has infinitely many r.e
m-degrees. It is also proved that every r.e. T-degree has an r.e.
m-degree consisting of a single l-degree. The theorems on r.e. non-
recursive T-degrees depend on a construction of Yates for simple but
not hypersimple sets and use the propositional calculus as a tool.
These theorems seem to be bound together by the fact that if A is simple
but not hypersimple, then {x | D, AY acts in many ways like a
creative set. Finally, the notion of ™"inverse R-cylinder' is defined
and shown to be relevant only for m-reducibility.
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SECTION O PRELIMINARIES

The principal purpose of this dissertation is to study the
relationships between various reducibilities, standard and otherwise,
of recursive function theory. This study is carried out with the aid
of the concept of "Recylinder," the priority method of Friedberg, the
notion of a "semirecursive set," and the propositional calculus. Among
the theoremé to be proved are the fact tﬁat not every btt-degree contains
a maximmm m-degrée. the fact that every nonrecursive tt-degree contains
infinitely many m-degrees; and the fact that every r.e. nonrecursive
T-degree contains infinitely many r.e., medegrees as well as an r.e.
n-degree consisting of a single l-degres.

It is éssumed that the reader is familiar with elementary recursive
function theory. Our notation, terminology, and point of view all
follow closely those of Rogers [}4] + In particﬁlar. proofs will be
informal, and Church's Thesis will be freely used. Also, it is assumed
that the reader is thoroughly familiar with the s-m-n theorem and the
projection theorem (cf. Rogers Eﬁg ), as thesé theoremswill be freely,
and often tacitly, applied.

we!now give some of the notations to be used.

N is the set of all nonnegative integers.

Functions, denoted f,g,h, ..., are mapping from N to N,

Partial functions, denoted ’l;"r , are mappings from a subset of N

into N,

Sets, denoted A,B,C, ..., are subsets of N,

t

A (the complement of A) is N - A.



Numbers {or integers) denoted u,v,w, ,.., are elements of N.
ALy B means (Arecursive f) ( Vx ) ]—_XEA% f{x)& BJ;
AfpBvia f méans f is recursive and (W% )[st @f(x)sgj_
A £, B means (3 recursive 1-1 f) (Vx) IXEA@f(x)SBJ.

AL | B via £ means f is a 1-1 recursive function and

(Vx)[xeas>£(x)eB].

If x = 2% &

{xl, XZ’ eaey xn}; Do =¢

@hus, given x, one may effectively write down a complete listing

X
+ ...+ 2™, whers the x; are distinct, D, =

of the finite set D,.)

The set A is immne if A is infinite but has no infinite r.e.
subset,

Thes:.z is hyperimmpe if A is infinite and there is no recursive
function f such that for all x and 7, (x#y) %Df(x) n Df(y) = ¢
and Df(x) NA# ¢

f witnesses that A is not hyperimmune if f is recursive and, for
all x and y, (x:@y%Df(x)ﬂ Df(y) =¢) and Df(x)ﬂ A# ¢

A is simple if A is r.e, and X is immune.

A is hypersimple if A is r.e. and A is hyperimmune,

f witnesses that A is not hypersimple if f witnesses that A is not

hyperimmine,

AXB is the set-theoretic cartesian product of A gnd B,

<<A,B>> is the ordered pair formed from A and B,

For the following definitions, suppose that a 1-1 recursive function

T from N¥N onto N ( a pairing function) has been fixed.



(x.y> =T(x,y)

AxB = -Z(x,y> | x€A and /)f‘c' 8}("the cartesian product of A and B"’
A x Ay x .., XA, =('--((A.1 X Az) x AB)x .ouxh)

A join B={2x| xeA} U {2x+11xeB}

P is the x'th partial recursive function in a standard godel
numbering.

W, is the domain of (Px

A set A is productive if there exists a partial recursive function
¥ such that, for all x, W cA=>YG)defined and YX) & Ay

A set B is creative if B is r.e. and B is productive.

A set A is co-blah just in case A is blah, (Example: A is
cofinite means that A is finite.)

{A] is the cardinality of the set A.

Classes, denoted Z,0,C, are collections of sets of integers.

M is class of all subsets of N,

Ax [f(x)] is the function f.

n timesy

£B(x) = PPe. £(x); £0(x)= x



SECTION i. R=CYLINDERS

In this section, the notion of R-cylinder will be defined for any
reducibility R, This concept will be used tc prove that not every
btt-degree has a maximum m-degree, in contrast to the situation for
tt-reducibility, The special case of cylinders for mereducibility,
as developed by Rogers L14], will be developed before the general case

to provide motiw¥vation and tools for the general case,

DEFINITION 1.1 (Rogers) A set A is a cylinder if there exists a
set B such that A =, BxN, |

THEOREM 1.2 (Rogers) Let A be any set.

(1) A=,4xXN

(1i) A x N<,A

(111) A is a cylinder<=(C) | CemA=C<, Al

ESAxN=A

Proof.

(1) A<, Ax¥via Ax[<x,00l

( 41) A x Nspd via ALx,y>Ixl

(iii) First suppose that A is a cylinder, and let B be any =st
with ANE, Bx N, Assume that C2,4A., ThenC=,A=,Bx N =,.8,

Lot C2pmB via f» Then C= B x N via AxL<f0,x21, It follows

hat C£,A, which was to be shown.

Now assume that for every C if Cay A, the C< A, By (ii),

AxN=, A, Therefore, A x Nz A, which was to be shown,



Finally assume thatA x N« A, Since A=<, A x N by {i}, it

follows thatA=,A x N, so that A is a cylinder, qed,

COROLLARY 1.3 (Rogers) A=,B<HA x N= B x N

Proof First suppose A £,B, Then,
Ax N2, A<nB=, Bx XN
So Ax N=,Bx N, But Bx N is a cylinder, so by (ii),
AxN<,;Bx N
Converssly, suppose A x N =<, B x N, We have
A% AX VNZpB x N =B

Therefore A 2mE. qed,

The Corollary shows that mereducibility can be characterized in
terms of l-reducibility and in fact that there is a canonical
homomorphism from the ordering of medegrees to the ordering of ledegrees
which is given by mapping each m-degree to the maximum i.degres in the
a=degres .,

The next theorem gives a useful characterization of ecylinders due
to Young [20]. A similar charachterization can be found in Rogers
[ 14l

THECREM 1 A (Young) A is a eylinder iff there exists a recursive
function h such that, for all x, Eh( ) is infinite, ard
(xed =DW & A) and (xeA=DW c A)
h{x) h{x)
Proof First supprose that A iz 2 cylinder, and A x N < A via £,

Let h e a recursive function such that, for all x,

W = f({xyx N)
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Then h has the desired properties,

Conversely, assume that h has the propertiés stated in the
theorem. Let C be any set such that C<,,A. It will be shown
that C< A, Assume that C =,,A via f, and defire the recursive.
function g by induction as follows:

g(c) = £(0)

L
L4

g(m + 1) = the first number y found in an effective listing
of W such that y § {g(o), g(l),...,g(m)}

hf(m + 1)
Then C £, A via g. _ - gqed.

Rogers [141 has developed an analogue to the above theory in
which tt-reducibility takes the place of mereducibility. This and
several other exafnples will be considered in the framework now to be
introduced,

DEFINITION 1.5 A reducibility ié a transitive binary relation
between sets of integers such that for all sets A and B

A=,B =><{A,B)) ¢ R,

NOTATTONS 1.6 |

(1) IfRis a reducibility, A< g B shall mean <KA,B>>eR.

( ii) The letters R,S, and T shall be understood to range over
| reducibiliﬁies.‘

The defimition of R-cylinder is based on (iii).of theorem 1.2,



- 11 -

DEFLNIT;QE_ 1.7 An R-cylinder is a set A such t}'%at
(8) LB2ga=>B=,4]

Thus, every set is a l-cylinder, and the mecylinders
are Just the cylinders.

DEFINITICN 1.8

(1) As_B means A%4B and B=gA,

( i1) An R-degree is an equivalent class of the equivalence
relation =g .

DEFINITION 1,9 A reducibility R is cylindrical if every R-degree

centains an Recylinder.

l=reducibility is trivially cylindrical, and mereducibility is
eylindrical by theorem 1,2, An example of a nonecylindrical reduci.
bility would be the trivial reducibility in which all sets are
interreducible, Indeed this‘ reducibility has no eylinders. But
later we shall see that some "natural" reducibilities are not
cylindrical,

DEFINITION 1,10 If R is a cylindrical reducibility and A is 2

set, then AR {"the Re-cylindrification of A") denotes the l.degrse of

any Recylinder in the R-degree of A. (AR mst clearly be unique,)

lFor particular cylindrical reducibilities B, AR will often
denote, by abuse of notation, a particular R-cylinder in the R-degree
of A which can be found from A in a natural way, For example A* = 4
and A™ = A x N,
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With this machinery, it is easy to prove an analogue to theorem
1.2,
THECREM 1,11 Let R he a cylindrical reducibility.
(1) A<, I
{ 13) .i\.Ré.lA
(1ii) A is an Recylinder <= ARes., A
A =,B for some B
( iv) AﬁuBQ'ARé, BRZ
(v) A%4B<>(C) L(C an Recylinder and B =, C) Da=,C]
‘Proof Parts (i) - (iv) are either obvious from definitions or
are proved just as in theorem 1.2 and corcllary 1.3,
To prove part (v), first assume A <. B. Let C be any R-cylinder,
and assume that B=<,C. We have
A=.B=,C
so A =.C, SinceAC is an R-cylinder, it follows that 4 <,C,
Conversely, assume that A is 1-1 reducible to every R-cylinder

R
to which B is 1-1 reducible, Then, in particular, A =,B, so

A Sz B.~ ged.

2The statements of (i)w- (iv) involve an obvious abuse of
notation which is unimportant because of the assumption that
A £, B=pA4yB.
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CORCLLARY 1_.1_._2_ If two cylindrical reducibilities S and T have
the same _cylinders, i,e, if.
| (¢) 1 C is an S-cylinder<=C is a T-cylinder )
Then S = T,

Proof Immediate from (v) qed.

Part (v) also suggests a way of obtaining a reducibility R from
2 given class of sets which are to be Recylinders,

DEFINITION 1,13 Let a, be a class of sets. Define a binary
relation R(Q) on sets on integers by

«a, BWeR(a)=(C) Lceaa B=, c=>A=C]

If R is a reducibility, let @(R) denote {C|C is an R~cylinder]}

If R and S are reducibilities R is weaker than S (5 is stronger
than R). if $cR,"  i.e, if

(va) (¥8) [ asB=pa=y8]

For example, if @ is the class of all éylinders R(A: is
m-reducibility. If @ is empty, the R( @ ) is the reducibility in
which any two sets are interreducible, If & is the collection of
all finite sets, then‘ it is easy to verify that

| &A. BYYER(@ Y=plala Bl

(i) Forany@ R(@) is a reducibility

{ 11) @<B =R(B )™ R{@) for any classes a,®.

(i11) seT=2C(5) > @(T), for any reducibilities 5,T.

( iv) Sc RE(3) for any reducibility S.
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(v) acer(@) for any class <.

( vi) R{@) = ReRrR(@) for any class &.

(vii) &(R) =CRC(R) for any reducibility R.

(viii) For any class &, R(@) is the unique weakest reducibility

R such that every set in@is an R-cylinder,

PROOF Parts iev are immediate from definitions.

Part vi is proved from paris i-v:

a < eRr@) by ( v)
.". R@ > RCRQ) by (ii)
Also, R(@) € RER(Q) by {iv)

. . R@ =RCR(Q)

The proof of vii is dual to that of vi,

(viii) Every set in@is an R{Q)-cylinder by (v).
Now assume that every set in &is an S-cylinder for some
reducibility S.

Then ACC(S)

So R{a) > Re(S)>s, qed.

DEFINITION 1.15 The closure of R (denoted R) is RC(R). The

closure of @ (denoted &) is CR(A), R is closed if R = R and Qis
closed if a=4a,

Lemma 1,12 shows that the notion of closure defined above has
some of the usual properties of closure. For instance, the closure

»f &is the smallest closed class containing 2. In particular :a_..==5:

We also see from lemma 1.12 that R is closed iff R=R{(@) for some Q@
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Therefore, every cylindrical reducibility is closed. On the other
hand the trivial reducibility in which all sets are interreducible is
closed but not cylindi-ical.

Lemma 1.1‘2 shows that there is a natural 1.1 correspondence
between closed reducibilities and closéd classes that is in soms ways
analogous to the correspondence between the intermediate fields of a
Galois extension and the closed subgroups of the Galois group which is
studied in Galois theory. However, a basic difference between the
two theories is that the closure operator‘ defined here is not a
Kuratowski closure operator, i.e. we do not get a topology on % from
the above definition of *"closed class® The problem is that, although
arbitrary intersections of closed classes are closed, it is not always
true that finite unions of closed '331‘:’31-3 closed, To see this, let A
be any set and define

a, = {8l B},

It is claimed that aAis closed., Well,

ce.mah,an'@(D < A =>C=,A)

Thus the reducibility R(aA ) has two degrees, one consisting of
the sets which are 1-1 reducible to A and the other consisting of the
sets not 1=-1 reducible to A. Hence, the cylinders in the former
degree mst be l=equivalent to A because they arefhighest 1-degree in
‘- their R( aA)-degree, ahd the latter degree has no maximum l-degree
{(and hence no R( aA)-cylinders) because it is uncountable. Thus every

‘member of CR(GA) is in @, and &, is closed.



Now if A is a creative set and E is an infinite and coinfinite

recursive set,

£ c‘ aAu a.A

For let
Peraua. )
Y

Then since E=,A and E= A, we have by transitivity

Dsn(cz va.) MCD"&R(a va_) *
A A A A
But since A and A are R(QAUQ-K)-cylinders.
D<A, D<K,
whence D and D are r.e. so that D is recursive and D<,E, This shows
that E is an R(CZA.U QK)-cylinder although D¢@, Uay, so that a'.Aua,K
is not closed.

The definition of Recylinder we have chbsen is in some respects
arbitrary. ~ For instance, we could have defined A to be an Recylinder
Jjust in case the ledegree of A waé maximal among the ledegreesoccurr-
ing in the R-degree of A i.e., if (B) LB=,A & 4<B=3B<,A], and this
definition would also coincide with the definitions of Rogers for many. -
one and truth-table reducibilities, although it is superficially a
much weaker reguirement to put on A. We now show that these two

definitions must yield the same R-cylindefs for a certain important

kind of reducibility,

DEFINITION 1.16 R is regular if every set of maximal l-degree

in its R-degree is an Recylinder,
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PROPOSITION 1,17 If for all A and B, the Redegree of A join B
is the l.u.b. of the R-degrees of A and B (in the partial ordering of
" Redegrees.induced by =gp)(i.es. if join i® an l.u.b. for R), then R is
regular,

Proof. Assume that join is an l.u.b. for R and let A have
maximal l-degree in its Redegree. Let Bsgg.

To show: B=<,A., We have:
A<)B join A
B join AsgA (since join is l.u.b. for R)
So, B join A% A by maximality of the l-degree of A.
Hence, B=£;A.
Thus, A is an Recylinder, which is the desired conclusion. ged.

The converse to the above proposition is false, for l-reducibility
is trivially regular, although join does not give a l.u.b, for
i-reducibility. On the other hand, any reducibilities other than =,
which have been discussed in the literature do have join as a 1l.u.b.
Also, a wide class of closed’ reducibilities as defined in definition

1.15 have join as an l.u.b.

PROPOSITION 1.18 If R is closed and weaker than =,., then join

is an l.u.b. for R.

Proof Since join gives a l-upper bound, join is an upper bound
' operation for any reducibility R. Thus it suffices to show that
A=<C,B=,C A join B%yC,

under the above hypotheses.
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Let R = R(@). Suppose A%,C and B=4C. Let Ded and C <,D,
To show:
(A join B)£,D.
Since D is an Recylinder, and A and B are each R-reducible to D,
A=, Dard B%,D
Therefore, A join B<,D since join is a l.u.,b. for mereducibility.
But since D is an Recylinder and R is weaker than mereducibility, D
is a cylinder, so

A join B =<(D. ged.

Proposition 1.i? and 1,18 show that every closed reducibility
weaker than mereducibility is regular. I do not know whether
proposition 1,18 is true without the hypothesis that R is closed,

The collection of all classes (of sets) forms a lattice under
class inclusion., We shall now show that the reducibilities also
form a lattice in a natural way and investigate the connection between
these lattices.

DEFINTTION 1,19

A=, B means A%gB and A=B

AéﬁjoinsB means that for some finite sequence of sets C,,C;, ", Cn
A=Cy, 'E:—-Cn; and .for each i, lsi=n-1, Cij=gCi+s] Or Cj=¢Ci,1-

PROPOSITION 1,20 RNS ard ‘1 join S are reducibilitiss, RNS
is the weakest reducibility stronger than both R and S and R join S
is the strongest reducibility weaker tha.n both R and S,

Proof Immediate _ ged,
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Of course, proposition 1,18 just says that the set of
reducibilities formsa lattice with join as its 1,u,b. operation and
intersection as its g.l.b, operation when it is partially ordered
under the relation "weaker than."

PROPOSITION 1,21

{1) &Ry join Ry) = C(Ry)N c(RZ)
( 11) R(av@) = R(a)n R(B)

(iii) If R1 and R2 are closed, C(Rl n RZ) =E(R1) UE(RQ

{ iv) If Qand B are closed, R(@an®P®) = R{(@) join R(M)

Proof (i). Clearly, C(Ry join Rg)c G{Rl)ﬂ C(Rz), sinecs

R, join R, is weaker than Ry and R Now suppose that A is an

1 2 2°
Ri-cylinder and an 'Rz-cylinder,, and let BéR\ join Rphte To show that
2-cylinder, it must be shown that B=;A, By

definition of Ry join Ry, there is a finite sequence C4q, Cp, 444, C

A is an R1 join R
ni

such that B=C,, 4 = Cp, and for each i, f«i%n—i

1’
C é . 3 - < . T ¥ .:5. - i t:- i 24 t é Ao
5 R:Czn' opr C:L ‘“‘“,IC:'.H' We will show by induction on i tha Ci A
Cla.A since C1= A, Now assume Ci-.‘.,.&., where l=i<n-1. Assume
Cit 1 =g Cse (The other cass is the same.)

o 3 45 e £ ~ < y -
Then by transitivity "iﬂ.*‘R-‘A‘ Thus C; . 1e‘A. Thus i
particular, Cns,A, i.e. B= 4.

The proof of (i) is irmediate and (iii) and (iv) follow from (ii) and

(1) respectively.
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In this section, we shall mostly be concerned with various |
reducibilities of the truth-table type, It will turn out that
Re=cylinders have convenient characterizations for suzh reducibilities,
These reducibilities will be defined using propositional formilas
rather than truth-table conditions.,
DEFINITION 2,1 A propositional formula (or, simply, formula)
is a statement built up in the usual way from statement letters
Pn(n &N) and the propositional connectives V,A,™ ("or", "and“, and
"notY, respectively)i
We assume that we have fixed an effective coding from the set
of formlas onto No In fact, formlas will oftsn be identified with
their code mumbers. .
DEFINITION 2.2
{ 1) A propositional formla ¢ is true of a set 4, just in
case ¢” is true in the interpretation in which each P, is
true iff ne A,
(Example: PgV P, is true of A iff 5€4 or 7€ A)
( ii) The norm of a formula ¢~(is i) is l{nl?n occurs in a"n
\There are two natural ways to obtain a reducibility from a set

of connectives. These are given in the following definition,

1'Mos”!: of the theorems to follow do not depend at all on this
particular selection of connectives. However, the word "connective"
as used here, will always mean one of the three comnectives v, A and =.
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DEFIMITION 2.3 Let U he a set of conneciives, Define two

binary relations on sets of integers by:

KA,B B> € J(U) &> (T recursive L)¥fvery connective in £(x)
is in U and (xaA@f(x) is true of B))
((A.B})o@(ﬁ} (3 recursive £) (Im) (Yx) L every connective in
£(x) is in U and “f‘(_x)néz;x and { xeA&D f(x) is true
of B 7)] 2
THEOREM 2.4 For any set U of connectives, \‘7'(il) and B(U) are
reducibilities weaker than &,,. Also v () &@(U) have join as a
l.u.b, operation,
Proof First suppose A<y B, It will be shown that LA,BWe&® (T)
let A€4,Bvia f, Thenx e AGHP is true of B. |

f(x)

Since P involves no connectives and has norm 1, we see that

f(x
KiB»edB §U§ and hence <C4,B ¢ U (U)
Now suppose that (CA,B) eV (U)& <K B,CW eV (U), Let f and g
be recursive functions such that
(x € A>f(x) is true of B) and f{x) uses only connectives from U
( x ¢ B&Hg(x) is true of C) and g(x) uses only connectives from U
Now l2t h(x) be the code mumber for the formla obtained by
substituting for every statemnt letter Pn occurring in the formula

f(x) the formuls with code mumber g(n). It is immediate to verify

- that, for all x,

“In this definition, the identification of formilas with their
code mumbers several times,
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(x e Asyh(x) is true of C) and h(x) uses only connectives
| fi‘om u. v
Therefore €A, CHET{U) so v(U) is a transif.ive relation,
The above proof also shows that ®(U) is a transitive relation, so each
relation is a reducibility weaker than £m. It is immediate to show

L L isa -
that JoinAl.u.b.' operation for &(U) and ¥(U). qed,

The above definitions yield ten reducibilities., All have been

studied in the -literature. The following table names the

reducibilities,

Definition | Name Abbreviation
TUrA=D= 7T truthetable reducibility tt
@ﬂv,A.“'})S@(ﬁl,«}'):@(@,‘l‘f) bounded truthe-table reducibility btt
T (Lv, AY) ' positive reducibility’ P
@B (Lv,A}) bounded positive reducibility = bp
7 ({a) _ conjunctive reducibility c
@ ({A) . bounded conjunctive reducibility be
v (1) disjunctive reducibility a

& (1)) | bounded disjmetive reducibility by
G (1Y) = B(L-Y) normel reducibility n
J(#)=B(¢) many-one reducibility | m

tt, btt, and mereducibilities were introduced by Post in [13].

3A positive formula is one which uses only the connectives v and A
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g-reducibility and nereducibility were introduced by Rogers [1471.
The remaining reducibilities have been studied by Lachlan in [10]
(with somewhat different terminology) and the writer,
We now characterize the Recylinders for these reducibilities.

Let A be a set, Each connective "ocperates" on A as follows:

Aq= {m|—P is true of A} = XK

A = fmm|P AP is true of A} = 4 x A

Ay= {((mmy| P vP is true of A} =X xR

IEMMA 2,5 For any connective €,

Ag £o (1A
Proof A gy fvia Anl=P.]
Ax"m via A<m,m [PmAP,]
Afagad V2 A <mn> 1P VPrl *. qed.

THEOREM 2,6 Let U be a set of comnectives, and let A be any set.
{( 1) Y(U) is cylindrical, If A#N, the eylindrification of

A is given by 470k {x

| every connective in x is in U
and x is true of A} xN
{ i1) The following statements are equivalent:
(a) A is a cylinder and A &£ mA for each connective €in U
(b) A is a\ﬁU)-cylinder
(e) A is a ®&(U)=cylinder
{

(111) B(0) = U(v)

4
¥The use of the word "via" is sxtended to truth-table reducibili-
tiss in the obvious way here.
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“(ii)

5
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Suppose A#N.” Tt will be shown that A% ) is the

J{U)-cylindrification of A, A i;Aﬂwvia AT B, , 07,
a’g¢A, and define h by

h(x) = x if every comnective inx is in U

a! otherwise
Then A‘Q“‘ma via h, so Aﬂsu)izu)ﬁ.
Now it mist be shown that AY “is a JU)acylinder.
Suppose B é\y-(u)A\Tw) . Then, since A‘@% B ﬁ{?uf&"
Therefore there is a recursive function f such that
£(x) usés only ccnnectives from U and

X & B&HI(x) is true of A

Then B<,A"™ via AxKF L. Therefors ¥ Mis 2

(U)=cylinder.

It may also be checked that N may be Recylindrified as
follows:
c
AR V) SR

N == {2 x | xen)

Let

(a)=(b). Assume that A is a cylinder and Ag&mA for each

connective € in U, Assume also that A # N, since the

case A = N, ecan be checked separately.ﬁ

The exceptional case that A = N would not appear anywhere if

we used, for each set U of connectives, an effective coding from the
formulas having only connectives in U onto N,



To show that A is a ¥{U)-cylinder, it is sﬁfficient to show
that AY®% | A, and therefore, since A is a cylinder, it is
sufficient to show that

{X’l every connective inx is ir; U and x is true of A} = wm A
If~el, let A myh via £, IfVeU, lot A «pnA via g.

If AeU, let A & m A via h,
Let a'{ A,

‘& recursive i‘ﬁnction k will now be defined to give the desired
reduction, If the formula x has some connective not in U, défine
k(x) = a'sy  k(x) is defined for other arguments by induction on the
number of connectives in the formula x., If x has no commectives, so
that x is some P , define k(x) = n. Assume now that k(y) has been
defined for all formulas y having at most m comnectives, all in U, and
that k(x) has m + 1 connectives, all in U, Then define

fk(y) if x is -~y
k(x)= § 2(<k(y), k(z) D) ifxisyvz
h( < k(y), k(2) >) ifxis yaz

It is now immediate to verify by induction on the mumber of
quantifiers in x that every comnective inxis in U and xis true of A
&) k(x) e A so that k furnishes the desired reduction,

(b) =y (c). Trivial, |

(¢) =7 (a). Assume that A is a ®(U)=-cylinder, Then A is a

cylinder since B(U) is weaker than mereducibility, Also,
by lemma 2.5, A ¢ £@(1€3) A for each€ in U, Thus, since

A is a ®(U)-cylinder, A = A for each € in U,
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(i1i) Since V(U) is cylindrical, ¥{U) is closed. By (ii)
CBU) =) |
Therefore ®B(U) = RGB(U) = REEUY =V(v) =UTv)

ged.

Since A, is M"easily calculable" for each conne;:tive €, the
above theorem gives a convenient characterization of the Recylinders
for each reduéibility R which has been considered, For instance:

C is a tt-cylinder<aC is a btt-cylinder&3C X C#wnC, C=,C and ¢
is a cylinder.

| Thus, by theorerﬁ 1.11, it gives a method of defining each of

these reducibilities from its cylinders, without referring to formulas
or truthe.tables. For instance,

A5, B (C) L(CxC&nC &CkmC &Cx Ns\C & Be\C)DAsC]

t
Finally, the theorem shows that the reducibility V{U) can be
obtained in a "natural way" from the reducibility @(U).
DEFINITION 2,7 A set A is R - complete if A is r.s. and B<€,d
for every r.e. set B,
COROLLARY 2,8 Let U be any set of connectives.,
(1) Each G(U)-degree contains a maximal l-degree iff
®(v) =),
( ii) There are btt, bp, be ‘and bq degrees which have no
maximal l-degrees,
Proof

(i) Suppose that sach ®(U)-degree contains a maximal i-degree.
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Then, since join is an l,u.b, fér ®&(U), each set of maximal l~degree
in its &(U) degree is a ®(U)-cylinder by proposition.4.17, so each
B (U)-degree has a B(U)-cylinder. Therefore B(U) is cylindrical,
Since V(U) is also cylindrical, B(U) and V7 (U) are cylindrical
- reducibilities having the same cylinders and are thus identical.
Conversely, assume ®(U) =/ (U). Then, since’ \7('0) is
cylindrical, each ®(U) degree contains a maximal l-degree.
(i1) Post [13] constructs a simple set S* which is c-complete

and proves that no simple set is btt-complete, It follows immediate-

ly that,
tt % btt
p # bp
¢c # be _
Since A43B iff 1<.B, it follows also that bg#q. qed.

The question of whether every btt-degree contains a maximal
l1-degree is due to Rogers.

Although the definitions of various reduvcibilities R given in
this section is conﬁenient for the development of the theory of
R-cylinders, a different kind of formulation,suggested by Rogers, is
often more useful in applications, This will be given now.

DEFINITION 2.9 D} is D if x#&0; D(') is {0} .

THEOREM 2.10

(1) AsB<&> (3 recursive f) (Vx )Lxe. A= D;(xsc'éé

6The non-empty sets Dj are used to characterize these reducibili-
- ties roughly because every formula has at least one statement letter.
However, the substitution of the D, for the D! would at most change
which sets are R-reducible to N and §.
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(i1) AQPB@(S rec. ) (Wx)[x € ae=Qy) L ve D%‘(x)& D;.:B]]
| $D(3 rec, P)Wx)[xe A (Vy) Lye D%(X)QD:;,!\ B¥¢1]
(iii) As‘PB4=)( 3 rec. £)(Im)(VR[IV 'Diheme
' \ €D
(xeaed(Ay) Lye Di',(y) % Dy<BY
(iv) (Rogers) A< B<EX3rec, £)(V ) rea = e
(3 u)(av)[<u,v)c.n§(x) &DicB & DIc B]

() A Bep(Irece DEAD(VHLIU DD jeme
) (u,V)GD'“‘)

(x€4e (3 u) (3 V)[<uvdeDhyy & D!, c B & DyeF])]
(vi) A€,B&EY (I rec. £)(¥x)[ xca &P £(x)€ B join Bl
Proof For all parts, observe that

By, A PxoA eeo APy 1s true of A<> D}< A where D,'ﬁ{xl,xz,...,xn}

1
Similar statements can be made for formulaes involving only disjunction
ar only negation.

(i) is immediate by the above remark. -

(11) will follow from the above remark if it can be shown that
every positive formula (i.e. formula using only A and Vv ) is equivalent
both to a conjunction of disjunctions of statement letter and to a
disjunction of conjunctions of statement letters. But both of these
facté follow from an easy induction on the number of connectives in
the positive formula.

(iii) folloﬁs by the same argument as (ii).

(iv) and (v) follow from the fact that every propositional
fqrmula is equivalenﬁ to a disjunction of formulas, each of which

is a conjunction of stamtenet letter and negation of statement:letters.
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(vi) is immediate. qed.,

Of course, similar characterizations could have been given for
any reducibility that has been introduced above., The reducibilities

in the theorem are those which have the most relevance for this paper,

COROLLARY 2,11 A.‘EPB, Br.e.=p A re.

Proof  Immediate from (ii) and the projection theorem. qed.

COROLLARY 2,12 (cf. definition 1.19).
(1) q joine = p
bq join bec = bp
n joinc =n joing = n join p = tt
n join bec = n join bg = n join bp = btt
( 11) If V and W are sets of connectives, then
(V) join VW) =V U W)
B(V) join B(W) =@V v W)
Proof
(1) q join cep, trivially, Suppose A=_B. Then by the
theorem,
A= {x (D0 B2 Ble B
Therefore, A5 B, This q join ¢ = p. Similarly, by join be =bp
Now :suppbse Ag,B. Then, by the theorem,

A%,B join Bs,B

‘This statement, unlike the rest in this section, appears to

. depend on the choice of = v and Aas basic connectives, The #riter has
not explored the guestion of whether an analogue to (ii) holds for an
arbitrary selection of connectives,
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Therefore, Aé"‘s‘.m%. Thus tt < n jein p.
Now it will be shown that pcc join n. Suppose A< B,
Then

as {x|DinB#g} <, {x|{D 0 B#¢3ﬁ= 4x|Dje B} = F2,B

Therefore Aaq’.“_B* so pcc join n,
Thus tten join pen join c jbin n=n join ¢, Since n join cctt
.~ trivially, it follows that n joinc = n join p = tt., Similarly,
n join q = tt. The statements for btt follow by the same argument,
| (ii). (1) shows that all non-trivial instances of (ii) are true.
qed,
It will be shown later that it is not necessarily true that
TIVINTW) =UVaw) ‘
orB(VINB (W) =B(Vaw)
and, in particular, that m#&bgNbe.

*The following four theorems concern c-reducibility.

THEOREM 2.13 (Fischer) If S* is the simple tt-complete set
constructed by Post, then S5* x S*£,S*, Thus mereducibility and
btt-re@ucibility differ on the r.e, nonrecursive sets,
| Proof It follows immediately from Post's construction of S*
that S* is c-complete, so that if A is any r.e. set, A<, 5*, Now
assume that S* x S*=<,5%, Then Sy the characterization of
c=cylirders, it follows that A<,5*, for any r.e. set A, so that S* |
is mecomplate and thus creative., This contradicts the fact that S*
is sirpi)le, so it follows that 5* x S*f,S*. Since S* x s*s,:;ts*, it

follows that mereducibility and bttereducibility differ on the r.e.
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nonrecursive sets, ' ’ ged.

Remark. The above theorem shows that if A is any cecomplete
noncreative set, then A x A#,A. Another generalization of this
theorem, to be proved in section 5, is that if A is any set which is
simple but not hypersimple, then A x AfnA,

THEOREM 2.14 Every c-degree contains a set A such that A x A< A,
Thus there are r.e. sets A which are neither recursive nor creative
such that AxAs A. |

Proof Every c-degree contains a set A such that A x A<mA since
c-reducibility is cylindrieal. In particular, the cedegree of a
hypersimple set B contains a set A such that A x A<,A. A is r.e.,
but A is not recursive since B is not recuréive, and A is not creative
since B is not tt-complete and thus not c-complete.

Remark The above example answers a question of P.R. Young in
L19d.

A set of forrmlas in a first-order language is called a theory
if every formla deducible from formulas in the set is itself in the
set, A set of integers is called a theory if it is the image of a
theory under some 1l-1 effective coding from a first-order language
onto the integers. As Rogers has pointed out in {147, if Bis a
~ theory, then BxBs,B; for ifs ande, are formulas of the language of
the theory, tﬁen &5 and 6 are both in the theory iff the conjunction
Gaeg isi“’t.he theory. Also, it is easy to see from Young's characteri-
zation of cylinders that every theory is a cylinder. Hence every

theory is a c-cylinder.
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Feferman has shown that if A is any non-empty set, then there
is a theory B such that A<,B and B=_A., Hence every non-empty
c-cylinder is isomorphic to a theory, and, therefore, every non-empty
c-=cylinder is a theory. Since no theory can be empty, it follows
ﬁhat the'theories. are precisely the noneempty c-cylinders, The
result can be stated in more standard terminology as follows: A is
meaquivalent to some theory iff A is non-smpty and A x A< A,

THEOREM 2,15 A is a cecylinder iff A x A=A and [Al% 1.

Proof If A is a c=cylinder, then since A x A< A and A is a
cylinder, A x A<A, Also, since A is a cylinder, |Al#14.

Now assume that A x A<,A via £, and |Al#L.If A is empty, A is
certainly a cecylinder, So assume A##, and let m and n be distinct

members of A. An infinite r.,e. subset of A is def:‘med as follows:

SO = {m, n}
Sn-»-’i‘ = sn x Sn
)
n=0

It is clear by induction that each Sr1 is a subset of A, so that
B is a subset of A, Also, since f is 11, lS,,Ml=lS,,la. Thus, since
|S,}=2, B is infinite, Now let g be a recursive function such that
= X \
wg(x) f(§x}y x B)
th) is infinite since B is infinite and f is 1i-1. Also
(xe Aawg(x)c A) & (xe A= ""g(x)"' A).

Thus ngv) witnesses that A is a cylinder by Young's character=

EATS

ization, Therefors A is a c-cylinder, since A x A £, 4 gede
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The above characterization could be appliéd to yield alternative
descriptions of Recylinders for reducibilities other than |
c-reducibility (such as ttereducibility),

We now consider Rgcylinders for a few reducibilities other than
the truthetable reducibilities discussed before.

The writer knows of no good characterization of T.cylinders,
Rogers [14] has shown that if K is a creative set, then no T-cylinders
lie above K in the T-ordering. Hence the closure of T-reducibility
has a maximm degree containing K, and T-reducibility certainly is not
closed, On‘thé other hand Martin (unpublished) has shown that if
B=,A, and there is no hy‘perimﬁme set in the Te-degree of A, then
Bg,A., Thus if A is a ttecylinder and the T-degree of A has no
hyperimmne seté, A is a Tecylinder, Martin has also shown that
nonrecursive Tedegrees exist which contains no hyperimmune sets, so
that nonrecursive Tecylinders do exist. It may be that the
T-cylinders are just.the ttecylinders which have hyperimmne-free
T-degreeo8

DEFINITION 2,16 A=;B iff @ p.r.¥) (¥x )xe A &S ¥ (x) cgte &

Y(x)e Bl.
This reducibility is introduced to facilitate the discussion of
iereducibility ﬁhich will follow. If one defines

A = {x] G0) cgt. & @(0)ea}

Then Aj is.a jecylindrification of A, and A is a j-cylinder iff AsgAj.

a(Added in proof) It is easy to verify thaet the T-cylinders are
just the tt-cylinders of hyperimmune-{ree T-degree. The proof also
shows that every T-degree either consists of a single tt-degree or
contains infinitely many tt-degrees.



For,
Aj.‘-.jA via Ax[ ¢ (0)]
and A‘&'Aj via f, where f is a 1.1 recursive function
such that, for all x and v, gﬂ;w(y) = x.

Now, if B%A via ¥, and f is a, recursive function such that
Y (x) ifHx)cgt.
) = dgt. otherwise
Then x-e. BEDY(x) cgt. & ¥(x)e A@gﬂf(x) (0) cgt. & %(XB (0} ¢ A@f(x)cﬁ.‘i
so Bﬁ,A'} via f.
Thus, |3é.jAs=? stAaﬁs‘A‘;, 50 that A‘j is a jecylinder in the
Sedegree of A, |
DEFINITION 2,17 A<;B (A is isolically reducible to B) if
(3 por. 190 V)9 [xeA (V) cgt. & Y eB)]
Using Toung's characterization of cylinders, it is easy to show
that
A=<;B, B a cylinder A <;B
Hence if A is a cylinder, Aj is an i-cylinder in the i-degree of A,
However, if A is immune, then Aj is not in its i-degree, for every set
i-reducible to an immune set is immune., I do not know whether any
(Qr all) immne sets are i-equivalent to i-cylinders. 1In fact, the

only iwecylinders I know of are the je-cylinders and the finite sets,
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SECTION 3. REDUCIBILITIES ON THE R.E. SETS

It was mentioned in section 2 that many of the reducibilities
defined there differed on the r.e. sets. Actually; it may be shown
that the ten reducibilities definedv in the table on page 22 g.ll
differ on the r.e. nonrecursive sets, except that n and m coincide on
these sets., Lachlan has a general theorem to this effect in [ 101 .
The theorem is proved by a priority argument, and, of course, each
instance of the theorem may be proved by a straightforward Friedberg
type priority argument. These arguments will not be presented.

In this section it will be shown that n and m reducibility coincide
on the nonrecursive r.e, sets and that btt and bp reducibility coincide
for certain special r.e. sets., Then it will be shown by a priority
argument that there are r.e. sets A, B such that

As B, Ae.‘B, and A#,.B.

Thus, mereducibility is not the intersection of bg and be,

PROPOSITION l.l. Suppose that A and B are r.e, and NB#§ .
Then A <,B>A=,,B.

Proof Assume A and B are as above with f a recursive function
such that A<yB join B via f. Let beB and b'eB. To compute g(x),
first compute £(x). If £(x) is even, let g(x) =£&  1f £(x) is
odd, then xe i *L’;\:é $ By so look for x in A and look for ﬁ:—):-l
in B by effectively listing these sets. If x is found in A, set
g(x) = b, If -ﬁ%‘-l is found in B, set g(x) = b'. Then g is a
| recursive function, and A%€,B via g,

DEFINITION 1._2_ (Friedberg) A set A is maximal if A is r.e. and

coinfinite and for every r.e. set C, either CAX or CNAZA is finite.
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THEOREM 3,3 If A is a maximal set and A%,,B, where B is r.e.,
then A=ygB. |

Proof Assume the hypotheses of the theorem, Since A= mB’ there
is a recursive function f and a rumber m such that for all x

xXEASD> (Fu) (Fv)[<u, v>eb |

&D < B
£(x) Du B&%CB]

& Lﬁﬁgﬁ,f’thé‘m

The function f exists by part (iv) of theorem 2.9 and the
observation that the sets D_may be used in place of the D;: in that
part of the theorem.

Define

N(E) = sg.p‘{ (u,v}]-(u,v)\c Df(x) & Dv# ,S}‘

N(f) (mthe negatiddvity of f") measures, in a sense, the extent
to which £ fails to be a positive truth table reduction. In particular,
if N(£) is zero, f immediately yields a bounded positive reduction,
since in that case all the Dv's such that {u,v) occur in any Df (x)
are empty, Thus the theorem holds if f has negativity zero. Now
assume that the theorem holds for all f's which bttereduce A to B as

above and have negativity n. Let f'have negativity n + 1, and assume

A<, B via f' as above, Define a -partial recursive function ¥ by

the least < u,vy such that <u,v>e& Df(x) and v#0, if
¥ (x) = such exists
divergent, otherwise
(The element <Iu,v) will be "removed" from D

£(x) to y:.elé a

reduction of lower negativity.)
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Define the "projection functions" T, and T to be Ax,ydlx}
and A<z I y] . respectively.

Lef. C = {x{ ¥ (x) convergent & D U RC-E ¢}

mYre
ince C is r.e., either CNA is finite or CN A is finite.
Case 1 Cal is finite. Define a recursive function f by
Det(x) if W (x) dgt. (i.e. if Dpi(y) is "vositive")
De(xy = (Df:(x)*{‘f'(x)3)"{<7fﬂ'(1<),0>} if Y(x) cgte & x4CNZ
E if X €CNA .
where £ is a fixed positive "truth-table condition" which is false of
B éuch as
{ (2”: o)
where b'; B.

f is recursive since CNA is finite and the domain of ¥ is
recursive, From the definition of C, A <,,B via f. Also, f has
negativity at most n. Hence, by the induction assumption, A-“‘pr' _
Case 2. Cn3X is finite. A recursive function g will be defined by
the following instrctions. Given x, see if xeCnA, If so,. give
output 0. If noﬁ, then xe CVA. Simltaneously list C and A until
X appears in one or the other. Give output 1 if x i‘ixfst appears in-
C and output 2 if x first appears in A. Now define f:

{E if g(x) = 0

De(x) =9 Pelx) SPG} if g(x) = 1

F if g(x) =2
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where E is a fixec positive ttecondition false of B as in case 1 and
F is a fixed positive tie-condition true of B, ¢ gives a reduction of
A to B, by the definition of C,
N(f)= n, so A=y B,
Thus the theorem has been proved for all reductions of finite
negativity, so it certainly holds for all bounded truth takls

=4

reductions, ' ged,

It will be shown in section 4 that the following analogue %o
theorem 2,3, fails:
A maximal, B r.e. A £, B=A =<, B
IT can also be shown that it is not true that
A hypersimple, B r.e., A=, B ::?Aé_bPB.
THEOREM 3.4 There are r.e, sets A,B such that
A%y B, A2y,3B, and Ag B.
Proof The sets A and B will be such that, for all x
xe A&y (bxe B and 4x +1&B)

and XeALP(Ux+ 2eB or Lx+ 3 eB)

Hence A<, B and Af_-%B.

'A straightforward priority construction of the Friedberg type
will be used to ensure that A4,B. We imagine that we have two
infinite vertical lists of N which will be called the A~list and the
B-list, We also have symbols "+" and """ which can be asscciated
.with members of the A-list and the B~list as the consiruction proceeds,

Finally, we have a movable marker B]for each 1 &N which can be
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associated with mumbers in the A-list and which can be moved to
larger numbers in the A-list as the construction proceeds.

The construction will be given inductively by stages, and A and
B will be defined by

A =ixl x receives a "+ in the A~list at some stage%

B =$x|x receives a "+" in the B~list at some stage%

The purpose of the movable marker D is to prevent @i from |
yielding an mereduction of A to B. In particular, if m is
associated with a nmﬁber a: in the A-list, the construction will try

J
to ensure that

-achgi)(fj(aj)ﬁ B |
Call an integer in the A.list free if neither x nor any larger
number has any mark or marker associated with it in the A-list.and
neither 4x nor any larger rumber has any mark associated with it in
the B-list.
The construction is as follows:
Stage n (n 2 0)
‘Associate [R] with the least free integer in the A-list.
Let aéi.ai' coerd, be the present positions of the markers
q, . eeo, 1B . Let j be the smallest number i such that
| éi has neither a "+" nor a "=" in the A-list and
C/i (a.i) is convergent in n or fewer steps

(If no such i exists, go to stage n + 1,)



Let ¢= gﬂj(aj) We will try to arrange that
a'j € A& ofB

Case 1, ¢ has a "+" lin the B.list,

Put a " " by aj in the A-list and a "< " by each member of
{ll'x, B + 1, Ux + 2, Ux + 3} in thevB-list.

Case 2. c does not have a " + " in the B.List and cp{bx, hx + 13

Put 2 "=" by ¢ in the Belist and a "+" by aj in the A-list,

 Also put a "+ by each member of ill'x, coey bx + 3} -fc] in the

Belist,

ga._sghé=l}x--orc=l#x+1

Put a "4+ by ¢ irn the Belist and a "'"by a,'j in the A-list.
Also put a " = " by each member of ill-x,..., Lx "',3} -{c} in the Belist.

In any case, if j <« n, move the markers Et] such that j<k<n
down t§ free integers in the A-list, ‘

Note that the above stage was designed so that % cannot give
an mereduction between A and B if the " - "symbols introduced at that
stage are not disturbed by some later stage.

A ard B are r.e. because, given n, it is possible to determine
effectiﬁly what mmbers are put into A and B at stage n.

A £,.Band A =

°q
ing of the proof hold true for the partial listings of A and B obtained

B because the reductions given at the beginn.

~at the conclusion of each stage.
Observe that a marker is caused to move only when a marker
@such‘ that j < k (i.e, a marker of higher priority) is attacked

- (i.e. plays the role of @ in the construction,) Also, a marker
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is attacked at most once at a given location., Hence, by a simpl-
inductive argument, each marker moves only finitely often and thus.
achieves a final resting place,

Let j be any given number. Let a.j be the final resting place
of . Itis ea.sy to see t.hat if % (a.j) is convergent, then
must be attacked at some stage after m achieves its final resting
place. Assume that q%(aj) is convergent, and let n be a stage such
that is associated with aj at stage n and is attacked at that
stage. Then none of the "~ symbols introduced at that stage can
ever be changed to "4+ " signs at a later stage lestm be caused to
move, Thus, by the remark jusﬁ after the constructidn, qﬁj cannot
yield an mereduction of A to B.

Therefore A #%,B. | _ qed.

Arguments similar to the above can be used to show the distinct-

ness of the various reducibilities of section 2 on the r.e. sets.
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SECTION 4 SEBHRECURSIVE SETS

In this section, the notion of recursiveness will be generalized
to that of semirecursiveness, Some existence theorems for semie
recursive sets will be proved, the properties of semirecursive sets
will be studied, and the information thus cobtained will be applied to
the study of reducibilities.

DEFINITION 4.1 A set A is semirecursive if there exists a
recursive function f:i.;wo variables such that, for all x and v,

(i) f£{x,y) =xor £f{x,y) =y, and

( 11) (xed or yeAd)=> f(x,y) ¢ A.

Such a recursive function is called a selector functiom for A.

We now recall some standard detinitions,

DEFINITION 4.2 {Dekker, Myhill, Tennenbaum)

{ 1) Let A be a set and let a".o «es be the members of A in

3y
inereasing order. A is said to be retraceable if there is a partial

recursive function ¥ such that

V() =2

ard ¥(a; 44 ) =a; for eachiZzO.

o

i
Ih such a case, ¥ 1is called a partial retracing function for A.

( i) Let A be a set, A is said to be regressive if there is an
gnumeration Bg08y s eee of A and a partial recursive functiorn ¥ such
" that
¥(a,) = 2

. == ; i > .
and ‘)’(ai+ 1) a; for each 1 2 0



In such a casze, ¥ is called a partial regressing function for A,

It is =asy to show that a retraceable set i3 recursive in every in-

firite subset and that a regressive set is recursively enumerable in

every infinite subset., {See Delkker and Myhill [3] ), Hence every

AL

retraceable set is recursive or immure and svery regressive set is r,e,
or immune,

THEOREM 4.3 1If A i5 r.e, and coregressive, then A is semirecursive

Proof Suppose that A is r.e, and A is regressive, with ¥ a
partial regressing function for .

We will define a sslector funciion f: iven ¥ and 7y,
simultaneously enumerate A and i"r"(x) fnzo % and {“\If'“(y) inzo }
Stop the procedure the first time any one of the following occurs:

{ 1) xis found in A

( 3i) y is found in A

(1i1) x is found in {¥"(y)|nz0}

( iv) y is found in {‘F"(X)\nzo}

If event (i) or {iv) stops the procedure, set f{x,y) = x.

If event {ii) or (iii) stops the procedure, set f(x,y) = v.

f is partial recursive., Also f is total, for if for some X and y
the pfacedm‘e never stops, then x £ A and y € 1. Thern it is clear
from the definition of regressiveress that svent {iii) or (iv) must
oceur, Thus f is recursive,

Now suppose £(x,y)¢A. It must be shown that x ¢ A and y ¢. Al
Since f(x,y) ¢ A, f(x,y) was comupted via event (iii) or event (iv).

Suppose, without loss of generality, that it was computed with event

(i11). Thus f(x,y) =y, so y ¢ A. Hence by the definition of
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regressiveness

i"}""(y) lnzo} ch

But, by (iii) xe{¥"in=z0 13, so x¢a ard y¢A. qed.

DEFINITION 4.4 An R-degree is r.e. Lrecursive] if it contains

an r.e. [ recursive] set.

COROLLAﬁY 4,5 Every r.e. nonrecursive Turing degree contains a
semirecursive hypersimplg set.

M The hypers:‘-.inple set constructed by Dekker in each r.s.
nonrecursive T-degree has been shown by Dekker and Myhilli‘::::etrace-

able and thus ccregressive. , qed.

We now prove a more extensive existence theorem for semirecursive
sets, The present writer introduced the notion of semirecursive set
and the foliowing construction was first used by McLaughlin and Martin
to prove the existénce of a continuum of semirecursive sets.

THEOREM 4.6 For any set A, there isa set B such that B is
semirecursive, B&PA. and Aéﬂ_.B.

Proof Let A be given, To avoid trivial cases, assume that A is

infinite and coinfinite. Define a rezl number r by

r=22"
neA
For each integer x, define a rational number T, by

rez a2 - (ef. definition 2.8)
- nedy
Define B = {x | v &v}.

Now B is semirecursive with the following selector function:

: x if rye Ty
fx,y) =
¥y : if ry>ry
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Te see that B €, A, Tirst define a recursive function h by

oy
Eamny

el
g

i

the largest member of D ¢
x
To see that B< 4, it will be sufficient to show that
- ok T/ .
X& BLSD for some y such that DVC {O,i, ..a,h(x)g & ry?.rx
1
Dlca
Suppose x&B., Let D;, = AN iO,l,...,h(x)} . Then, since A is
coinfinite, it follows from the fact that r_% r and an elementary
property of binary expansions, that r 2 r , so the desired y exists.
1 X

o

~ Now suppose that such a y exists. Since D;'; CA,r = r,
: v

P

Since r= ry, it follows that r‘c.‘-’-.r and so x¢€3,
To show that A =B, we will show, by induction on n, how to
define g(n) such that
ne 4 <=>(the formla) g(n) is true of B
The induction will be uniform in n, so g will bhe recursive and
it will follow that A<,B,
T -n
e A& rzlé>leB (since T, = 2 =1)

we D)= 10}
So let g (0) be a code number for the formila "R

A

Now assume that g{0),z(1), e, g(n=-1) have 21l been defined.

LetD , D, eees D (k=2") be a list of all subsets of
R X,

iO,i, ...,n-lg . To make the procedure definite, assume x; x?‘..."x:

Now,

nes i&f\ {O,l,. -~a1’l"1;= Dxy & y;& B (where Dyf Dxlu {n})

or
20{0,1, von, ne1} =D_ &y _e B (where D_ = D_ufn})
%1 k e X,

k
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The above statement follows from the same reasoning abouﬁ binary
~ expansions that was used to show B£y A, Now by the induction
assumption, for each i the statement "A N {0.1, ...,n-l% =D, " can be
uniformly translated into an equivalent statement about B. N“;w let
g(n) be the code mumber for the formula obtéined from the right hand
side of the above equivalence when these equivalent formulas are

substituted in. This completes the induction., qed.

COROLLARY‘ 4,7 (i) (MeLaughlin, Martin) There exist 2 X,

semirecursive setis,
(i1) Every r.e. ttedegree contains an r.e.

sermirecursive set.

THEOREM 4,8 The following statements are equivalent.

(4 ) A is semirecursive. |

( ii) AxA and 8xA are recursively separable.

(111) (3 vec. h) (Y x) [DA A% P =>h(x) e 0 0 Al.

( iv) (McLaughlin, Appel) [ unpublished] A is the lower half of
of a cut in a recursive linear ordering of N (i.e. there is a
récursive ordering lihear <, 0f N such that ye A, x4y =Hxe A.)

Proof (1)<=y(ii) and (iii) == (i) are trivial. Thus it will
be sufficient to show that (1) = (iv) = (iii).

Assume (i), and let A be semirscursive with a selector function f.
A function g mapping the integers 1.1 intc the rationals will be
‘defined such that there are recursive functions fl, £, and fB with

2
g{x) ="(-1)f“(x) i’:ix_). . Then the desired recursive ordering will be
£ )



defined by
x& T E>e(x) £ g(y)
g{n) is defined by induction on n.
Define g(0) = 0
Now assume.that g(0),2(1), «ee, g(n) are all defined., Let
xo,xi, ceesX be the integers from O to n arranged in such a way that

g{xy) < g(x,)< eee < g(x, ).

]
1}

Case 1. f(n+ 1, xo) n + 1 Then define g(n + 1) = g(x,) -1.

x Then define g(n + 1)

 Case 2, fa+ 1, x ) =x,

g(xn) +1,

Case 3. Neithe;- case 1 nor case 2 applies, Then let j be the
largest number i such that f(n,xi) =n, Then define g(n + 1) =
W Note that j exists and is less than n because neither
case 1 nor case 2 applies,

This completes the definition of g. The recursive ordering =,
is defined as above., It is straightforward to verify by induction
on max { x,y} that |

YL A X&£y=>xc A

Thus {(iv) is proved.

Now assu_ms‘(iv), and let £,be a recursive linear ordering of N
such that A is the lower half of a cut in <€,. Let h(x) be the least
member under <,0f Dx if D‘ is non-femp'ty and O if Dx is empty, Then h
is a recursive function, and

Dxn A 0=3h(x)e DO A

Thus (iii ) is proved. It should be noted that (iii) can also be

proved directly froﬁ (1) without difficulty by defining h(x) |

inductively on the cardinality of D,. -~ gaed.
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The following theorem gives some simple properties of semi-
recursive sets,
THEOFEM 4,9 Let A be semirecursive and lef B be any set. Then,
(1) AmgAxA, A=gixA
(i1) B4, A=>B%,4
(i11) B =, A = B semirecursive
( iv) The positive degree of A consisis of a single medegree,
{ v ) A immne =$ A hyperimmne
( vi) A S, A => A recursive
Proof Let £ be a selector funciion for A for remainder of proof,
(1) ms“A via f, or more precisely, via A<x,y>1#{x,y)].
Thus ﬁx——ﬁs“A. The complement of A is alsc semirecuisive, sc AxA=E, A,
( 1i) By (i) and theorem 2,6 AXN is a pecylinder. Thus (ii)
follows,
(111) Assume B#£, A, Then B#,A by (ii). Lot BswA via g.
Definé h:
x if f(g(x),g(y)) = g(x)
h(x,y) = »
vy it fglx).ey)) + glx)
Thgn h ::Ls a selector function for B, so B is semirecursive,
| ( iv) Assume B=,A., To show: B=, A, By (ii) B, A, By
(iii), B is semirecursive., Hence by (ii) (applied with B and A
interchanged), A 4€mB. |
( v ) Assume that A is infinite and not hyperimmne, To show:'
A is not immine. Let k be a recursive function such that D

k(x)

-witnesses the non-hyperimmunity of A i.e., for all x and y

| Pr()" A¥p amd (x#y) = (D) 0 Pey) = g)



Let h be a recursive function suech that

D‘{f\ A% P=hix) & A,

3

hen since for each x, hk(x) € Dk(x)r\‘A’ the function hk is 2
i=1 recursive function with range z subset of A, so0 4 is not irmure,
( vi) Suppose A=g A, Then A£g A by (ii), Let A=A via g.

Then e A £(x,g(x))=x

Hence 4 i3 recursive, qed.

Many facts aboult reducibilitias can now be deduced immediately
from the preceding theorem and the constructions at the beginning of
this section,

CCROLIARIES 4,10

{ 1) Each tte-degree contains a p-degree consisting of a single
medegree.,

( 41) Zach r.e. tt-degree ccntains an r.2. p-degree consisting of

a single mwdegree,

Jde

(1i3) Yo p-complete set is semirecursive,

o~

iv) There sxists a set which is tt-complete but not p-complete,

{ v ) Not every nonrecursive r.e. ti-degree contains a simple
semirecursive set,

( vi) (Dekker) Each simple set having a regressive complement is
hypersimple.

{vii) BEach ti~degree contains incomparable p-degrees,

{viii ) Theres exist hypersimple sets A such that AxA is a cylinder.
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 Proof
(1) follows from theorem 4.6 and (iv) of theorem 4.9
( 3i) follows from Corollary 4.7 and (iv) of theorem 4,9
iii) Assume A is p-complete, and let B be any set which is
simple but not hypersimple. B is not semirecursive by ( v ) of 4.9.
Thus, since B is not semirecursive and Bf-.PA, A is not semirecursive
by (ii) of 4.9.

( iv) By (iii), the r.e., semirecursive set in the complete
tt-degree is not p=complete.

( v ) Any simple set in the complete tt-degree would be hyper~
simple, violating the theorem of Post that no hypersimple set is
ti-complete. |

~ ( vi) A simple set with a regressive complement is serdrecursive
by theorem 4.3 and hence hypersimple by (v) of 4.9

(vii) The recursive tt-degree cohtains ¢ and N, which are
p-incomparable., Any nonerecursive ittedegree contains a semirecursive
 set which is peincomparable with its complement by {vi) of 4,9.

(viii) Young 1197 has shown that if A is simple, then AxA is a
¢ylinder iff‘Axﬁ.én,A. Thus if A is any hypersimple semirecursive
set, AxA is a cylinder, neds

Further results of this kind can be obtained from a theorsm due
to Yates., This theorem will be of fundamental importance in section 5.

THEOREM 4.11 {Yates) Each r.e, nonrecursive T-degree contains a

| simple set which is not hypersimple.

Proof. See Yates [17]. | ged.



CORCLLARY 4,12

(1) Each r.e. nonrecursive T-degree contains an r.e, set which
is not semirecursive,

( ii) Each r.e. T-degree contains at least twc p-degrees.,

Proof ( i ) follows from the theorem and (v) of 4.9
( ii) follows from (i) above, from (iii) of 4,9 and
corollary 4.5. |
It will be shown that hyperhyperimmine sets are not semirecursive.
The proof is a slight strengthening of an argument due to Martin.
THEOREM 4,13 (Martin) Every infinité semirecursive set has an
infinite co-r.e. retraceable subset.
Proof Let A be infinite and semirecursive, We may assume that
A is immne, since otherwise A has an infinite r.e. subset and hence
an infinite recursive subset and the result is immediate, Suppose
’that A is the lower half of a cut in a recursive linear ordering
Z£,0f N, Define
B = {x | (Vy) L x= y@xéoy]}

It is claimed that B is the desired infinite co-r.e, retraceable
subset ' of A. Clearly B is co-r.,e. To show that BcA, assume xé€B.
Let y be any member of A which is greater than x. Then x<£,y, since
x & B, Therefore x € A by the definition of "ecut," Hence B<A,

Let b0 be the least member of B. (B will later be shown non-empty),
Then the recursive functioniwill be a retracing function for B
b if x%b
£(x) = ) )
the largest number z such that z< x and

(4wl z2uex = z=,u], otherwise
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f is total since if x >bO a number z with the required property,

i.s. bo, will exist, and hence a largest such z will sxist, Now
suppose X € B and z 4« x. Then

z & Bé';.) (Vuw L z4u éx%zﬁ.u]
The implication to the right is immediate from the definition of B
and the implication to the left follows from the fact that x ¢ B and &,
is transitive,

Thus f maps the least membef of B to itself and every other member
of B to the nexﬁ smaller member and is thei-efore a retraciﬁg function
for B.

It remains to show ‘that B is infinite. Assume not. 1Let j be a
member of which A is larger than every member of B. Now the following
recursive function g will emumerate an infinite r.e. subset of A. This
will contradict the assumption that A was immune.

g is defined inductively:

g(0) = J.
g(; + 1) = the smallest number y such that
y > g(n) and y£,g(n)

Range g is a subset of A since j& A and g is a decreasing function
with respect to the ordering %,. To show that g is total, assume the
opposite and iet n + 1 be the least argument for which g is not dafined,
Then for all v,

g(n) £ y=g(n)=,y (since <,is a total ordering)
.This says that g{n) € B, But

g{n) =
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so the assumption that j was larger than every member of B is contra-
dicted. |
" Range gvis infinite and r.e. since g is a 1-1 recursive funcﬁion.
qed.,
Now that it has been shown that every infinite semirecursive set
has an infinite retraceable subset, it is natural to inquire whether
every infinite retraceable set has an infinite semirscursive subset.
The following corollary shows that this is far from being the case.
| COROLLARY 4,14 'If a retraceable set A has an infinite semi-
reéursive subset, then A is‘recursive in K, whereK is any creative set,
Proof Suppose A is retraceable and has an infinite semirecursive
subset B. By the theorem, B has an infinite co-r.e. subset C., Since
C is an infinite subset of A and A is retraceable, A is reéufsive in C.
Thus A is recursive in K. j qéd.
COROLLARY 1_11 Each infinite co-r.e, regressive set has an
infinite co-r.e. retraceable subset.

Proof Bach such set is semirecursive by theorem 4.3. ged,

The principal corollary of theorem 4,13 will be that no hyperhyper~
simple set is semirecursivé. To be able to make a stronger statement,
we state a definition and theorem,

DEFINITION 2;1@

( 1) (Young, Martin) A set A is finitely strongly hyperimmne
(FSHI) if A is infinite and there is no recursive funciion f such that
anﬁ for all x and y, .

[ # ) Sugpen wf(y')-- $1a W,y ) finite 2V, OAHS &
‘xJ w‘r(x) =N
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{ 4i) {Yates) A function £ is basic if f is finite-cne i.e. if
the set £~1(x) is finite for each x.

THEOREM 4,17 (Martin) A set & is FSHI iff it is infinite and has
no infinite subset retraced by a basic recursive function,

Proof Just the "only if" part of the theorem will be needed, and
only this part will be proved. Suppose that the basic recursive
function f retraces an infinite subset of A, We may assure {(ef,
theorem 5,17) that f(x)< x for each x, Then for every % there sxists

an n such that £ * 1(Jf:) = f(x). Hence if we define

Wi‘(n) = fx ] n is the least number m such that
. . m
et =1 (0]

the sets W witness that A is not FSHI qed,

(n)

COROCLLARY 4,18 No FSHT set is semirecursive.

Proof The retracing function f defirned in thé proof of theorem
4,13 is a basic function so that the semirecursive set A cannot be FSHI,
It is not necessary to use the proof of 4,12, however, since it is easy
to see that each cowr.s. retraéea.ble set is retraced by some basic

recursive function. : ged,

Siiqée hypverhyperimmne sets are trivially FSHI, it of course
follows that no hyperhyperimmune set is semirscursive. Thus no hyperhyrer-
simple set is mereducible %o a coregressive hypersimple set. However,
Appel and Mci,aughlin have proved a stronger result by different methods.
THECREM 4.19 (Appel and McLaughlin) Let A be a hyperhypersimple
set ard let B be hypersimple and coregressive, Then A and B are

meincomparable,
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Proof See Avpel and McLaughlin [11 .

COROLLARY 4,20 If A is hyperhypersimple, thenAxA fepA.

Proof Let A be a given hyperhypersimple set and let B be
obtained by the Dekker construction for A, Thus B is hypersimple,
coretraqegble, and B # 1‘A‘. Now assume m.‘.mA. Then B€m A by
theorem 2.8. . But this comtradicts theorem 4.19. qed.

Note that corollary 4,20 implies, independently of corcllary 4,18,
that no hyperhypersimple set is semirecursive,

Corollary 4.18 also implies that not every r.e. bti-degree contains
an r.e, semirecursive set., In particular, no maximal set is bti-
reducible to any r.e. semirecursive set, since otherwise the maximal
set would also be bp-reducible to the semirecursive set by theorem 2.3,
and henes would itself be semirecursive, contradicting corcllary 4,18,
Corollary 4,18 also shows that there are r.e. sets A and B such that
A:ﬁttB but A cannot be tltereduced to B via any £ with "finite negativityv
in the sense of the proof of theorem 3,3, To see this, let A be a
maximal set and B be any r.e, semirecursive set in the ti-degree of A
The desired fact now follows from the proof theorem 3.2, since if 4
were ttereducible to B via some f with finite negativity, A would be
p-reducible to B and thus semirecursive.

Let A be any set, It is immediate from (vi) of theorem 4.9 that
A join A semifecursive:=§ A recursive,

Now letting A be serirecursive but not recursive, it is clear
that the join of two semirecursive sets need not be semirecursive and
that some ncn-semirecursive set can be n-reduced {and hence bti-preduced)

tc a semirecursive set., The following theorems investigate whether
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such phenomena still occur when all sets involved are required to be
-
THEOREM 4,21 There are r.e. and coretraceable ( and therefore

semirecursive) sets A,B such that A join B is not semirecursive.

| _Iir_o_-g_g The construction will define two 1.1 recursive functions
f ard go Then if we define v
xt @y Ly>xedf(y)« f(lt)l}
fx1 (3y) Ly >xaely)«gx1}

A and B will be the desired sets.

A

B

' The construction uses a single list and a set of movable markers,

The movable markers will be associated with even integers in the‘ list,
An integer 2z is said to be free in the list at a given stage if there
are no markers below it and f and E:;ndefined for all arguments y = 2.
A symbol % w:.ll be placed beside a number in the 1ist when the. marker
associated with it has been "attacked!

Stage n (nz0)

Let 22 be the least free non-zero integer. Associate the marker [n]

with 2k,

il

Define f(x) = 2x for each x<k + 1 such that f(x) has not

previously been defined.

Define g(x) = 2x for each x< k + 1 such that g(x) has not

previously been defined.

Let 2a, 2a,, ..., 23, be the present positiomsof @, a.....m.

Y
Calculate n steps in each of %_ (Zai, 2a3 + 1), Osisn, Let j be the
least number such that % (2a ,, Zaj + 1) is found to be convergent in

n stepé'and 2aj does not have a *, (If no such j exists, go to
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stage n + 1.) Puta w by 2a. If @u2a, 2a+ 1) ¢ {22y, 2a, +3
go to stage n + 1, Otherwise there are two cases.
géﬁgg‘gﬂj(Zaj, Zaj + 1) = 233
To ensure that {/5 is not a selector function for A join B, we
want to put aj into A N B, When the construction is complete, it will
be clear that
f(a\ Y=gla) =22 .
Hence we defirne
flk+2)=2k+4 (Recall that 2k was the least

free nonezero integer.)
g(k + 2)

]

P

gla,) ~1=2a, =~
J J
et

Case 2 ¢ (2a, 22 + 1) =2a_ + 1!
s d J :

In analogy to case 1, define

i

f{k+2)=f(a) -1=2a,~1
J J

gk +2) =2k + 4

Note that in cass 1, each number 2:1k s J= k< nis thrown into B
and that in case 2 each of those mumbers is thrown into A, Hence in
either case, if j<n,move sach marker [E , j%k < n down to free (even)
integers,

In either case 1 or 2, if the marker is not caused to move by
a later stage, S% cannot be a selector function for 4 join B, But, by
an inductive argument, each marker moves only finitely often, Thus if
¢j is a total function, the marker Eﬂ mist be attacked at some stage
after it achieves its final resting place, and hence % cannot be a

selector function for A join B. qed.,

1 . . 22 . .
For this proof, assume that gﬂ is the ;thpartial recursive
function of twe variables. J
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One immediate corollary to the above theorem is the fact that the
join of immune retraceable co-r.e. sets need not be regressive.
However, as Dekker has pointed out, this fact can easily be deduced

from well-known theorems in the literature.

PROPOSITION 4.20 Let A and B be r.e. sets with A<£,B. If B is
semirecursive, then A is semirecursive. |
Proof If B=# or B =N, the proposition is trivial. Otherwise

by proposition 3.1, A 4B, so A is semirecursive, if B is. qed.

Since every r.e. tt-degree contains an r.e. semirecursive set,
the tt-analogue to the above proposition fails. The following theorem
shows that even the btt-analogue to the proposition fails.
THEOREM 4.23 There are r.e. sets A and B with A €,,B and B
semirecursive and A not semirecursive.
Proof The proof combines a priority argument with a Dekker
construction in a manner similar to the proof of theorem 4.21.
The construction yields a 1-1 recursive function f. The set B
is defined from f by
B=fxl (3y) Ly>xef(y) < f(X)ﬂ
’I:hen, as Dekker and Myhill have pointed out, the set B is r.e. and
coretraceable.
The set A is defined from B by
22 & A& (3z+14 B&3z+2€B)or
(32 € B& 3z + 1€ B&3z+2e B)
2z +1 & A&D 3z2+1 &€ B&3z+2 & B

Thus A & gyuB.
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The function f will be defined with a priority argument in such
é. way to ensure that A is not sémirécursive. The construction uses a
single 1list of the integers (the A-list) and a movable marker E for
each integer i. The markers are associated with even numbersin the
list and may be moved to larger numbers as the construction proceeds.
The purpose of the i'th marker is to ensure'that %zis not a selegtor
function for A. Also, a % will be associated with certain members .of
the A-list as the construction proceeds. An even number 2k in the
B-list is called free at a given stage neither 2k nor any larger number
has any marker beside it and £ is undefined for all arguﬁents y such
that v = 3k,

The construction proceeds in stages.

Stage n

Let 2k be the least free integer, Associate the marker [f] with
2k. Now for every mumber y such that jé— 3k + 2 and f(y) has not
previously been defined, set

(y) =2y

Let 2a0, 22, sees Zanbe the present position of (0], [, cee, [0

1
Let j be the smallest number i such that 22, does not have a % and
' e
Qi (Zai. 23.i +1) is convergent ir n or fewer steps. (If no such i
exists, go to stage n + 1) Place a % by 2a _, and say that [J] is
' J
attacked.
V . \ 3 -
If glj(zaj, zaj+ 1) ¢. g2aj, Zaj + 1} then ¢j is not a selector

function for any set., In this case, proceed to stage n + 1, Other-

wise there are two cases,

2]
“ For this proof, assume that ¢§ is the i'th partial recursive
function of two variables.,
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Case 1 @P(2a ,2a +1)=2a_+1
J J J J

To ensure that ¢j is not a selector function for A, it will be
sufficient to put Zaj into A and Zaj + 1 into K. It follows from the
definition of A from B that this will be accomplished if Baj and 3aj+1
are put into B and 3aj+2 is put into B. Now when the construction is
complete it will be evident that, since ZaJ. has a movable marker
associated with it,f(y) = 2y for ye {3aj. 3a +1, 3a ;23
Thus we define

f(3k+3) = £(3a +2) -1= 6a +3 (Recall: 2k was
J J least free integer)

This definition puts each y, 3aj+2-_=. y # 3k+2 into B and hence
may interfere with earlier stages., Thus, if J < n, move all markers
(k] , jek<n to free integers in the A-list.
Case 2 (22 , 22 +1) = 2a_
J J J - J
To ensure that ¢/ is not a selector function for A, it will be
sufficient to put 251j gntc A and 2aj+1 into A, and this will be accome
plished if 3a; is put into B and 3aj+1 and 3a 42 are put into B.  Since
£(y) = 2y for y € {3a,, 3a 1, 3aj+2g , define
£(3k+3) = f(3aJ.+1), -1= 6aj+1
This definition puts each y, 3aj+1’ £ y £ 3k+2 into B and hence
may int:erfere with earlier stages. Thus, if j<« n, move all markers
E, j* k =n to free integers in the A-list,
In either case 1 or 2, if the marker G_] is not caused to move by
a later stage, Q/J. cannot be a selector function for A. But, by an
inductive argument, each marker moves only finitely often. Thus for
any mumber j, if ¢/ is a total function, the marker [j] must be attack-
ed at some stage afger.it achieves its final resting place, and hence

cannot be a selector function for A. Therefore A is not semirecursive.
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It remains only to verify that A is r.e. For convenience, the
definition of A is repeated below: |
22 A>3z +1¢B&3z2+2¢ B) or
(3zeB&32+1€&B&3z+2¢ B)
2z + 1eAED3z + 1€B & 32 +2¢€ B
From the above definition and the fact that B is r.e. it follows
that
f2z + 1) 22+ 1¢a3
is r.e, Now is claimed that
2ze A &> there exists a stage n and a marker j such
~ that j is associated with 2z at stage n and
J 1is attacked at stage n and case 1 applies
g:‘E. Band 3z + 1£B and 3z + 2&B

If the above claim can be proved, it will follow that {2zl 2z &A}.
is r.e, and hence that A is r.e. -

-To prove the claim, first assume that 2z£€A., Then, by the
definition of A, either 3z + 1B and 3z + 2 € B or {3z, 3z + 1,3z + 2}<B
If the second coﬁdition holds, then the right-hand side of the claim
trivially holds, so there is nothing to prove, Assume that 3z + 1¢3B
and 3z + 2 & B, -Then itvfollows from the construction that

£z + 1) =23z + 1) = bz + 2
£(3z + 2) = 2(6z + 2) = 6z + 4
so it follows from the definition of B that, for some y > 3z + 2
| f(y) =6z + 3
Heﬁce there is a stage n and a marker [ﬂ such that [J] is associat-

ed with 2z at stage n and is aﬁtacked at stage n and case 1 applies,
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Conversely, if $3z, 3z + 1, 3z + 2}< B, it follows from the
definition of A that 2z & A. Now assume that n and [J] exist as in
the above parégraph. Then there are two cases: |

(. i) The marker [j| is not caused to move at some stage later
than 1. Then 3z + 1 ¢ Band 3z + 2€B, so Zz'é:. A.

( ii) The marker is caused to move at somé stage after n.
Then {Bz, 3z + 1, 3z + .?.}C- B, s0 22 c'.‘ A.

This proves the claim and ccn2ludes the proof of the theorem. qed.

We have seen that immune semirecursive sets are hyperimmne but
not FSHI. We will now show that such sets are in B, in the
arit}nmatical hierarchy and that they can be shown with additional
assumptions to be co-r.e. Some of the theorems will apply to immune
sets A such that E:‘Aé,,.a rather than just immne semirecursive A.

THEOREM 4,24

(1) IfAis iMe and ﬁg,.a. then A ell,.

( 41) If A is hyperimmne (or even if no sequence of sets of

bounded cardinality witnesses A not hyperimmune), and, for any n,
nrs hu '

TxEX ...xA =, AxAx...xA, then AeX,.

Proof *
(i ) Suppose that A is immne and mémﬁ. via g. Then
(xea or yeEA)&Ha(Lx,y> )ea

‘Claim  x & AED{ (Kx,y>) | ye ) is finite

| If the claim is established, it will follow immediately that A:22
f‘or‘ '

xeAED(I u) (V) [ g xsy>)=ul
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To prove the claim, first assume x € A, Then {gXx,7>) Vyen}
is an r.e. subset of A and therefore finite,
Now sﬁppose that there were a mumber x such that x € A and
{ gkx,y>) | y ¢ N} is finite. Then, for- all z,
2 € A<y eg(<x,22) € An {g(<X,y>) | ye Ng
Thus A is recursive, contrary to assumption.
This proves the claim and therefore part (i)
(ii) Supposé that A and n are such that

= . V =
(F rec. £)(Am)(Vx)(Fy) [ (x#¢y = Doy ” Df(y) $) &

D nA+
_m-i _ _ n i} £(x) | ¢¢ & 1Df(x)1’-‘-""]
and AXee.XA €4 AX...XA

It must be shown that A 22. This will be proved by induction
on ne If n=1, the result follows immediately from (i ).
Now assume that the theorem is true for n = k. To prove the

theorem for n = k'+ 1, assume that

Ked k+1
— =
AXAX .4 oA &y AXAX, o XA

and let g be a recursive function such that
(xlé‘ A or x2£. Aori.orx £ )

D( AAED & lD &k
g Xi.,qoo,xk‘*.z) g(xl '...’xk+2)

It will be shown that the equivalence
x€ A& (AD) LD is a finite set &
V x. 'YX D a} D # ] ]
(Vx,)eeel¥x, o) [ e 2% ¢)
‘ 2 k+2
can be false only if A¢ X 2* Since the above equivalence implies that

A €E, it will follow that A< Z,.
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First assume x € A, Then sach of the sets D '
g(x,xz, oee ,Xn)

intersects A. Since these sets have cardinality bounded by k + 1,
there mist exist a finite set wﬁich intersects all of them, since
ctherwise a disjoint subccllection of the sets could be constructed to
get a sequence of sets of bounded cardinality witnessing A not hyper-
immine., (e:f the proof of lemma 5.15)

Thus, if the above equivalence is false, there must be a2 number
X ¢ & and a finite set D such that every set of the form Dg(x.xz,...xn)
intersects D, Let a be a2 fixed member of A, and define a recursive

function b of k + 1 variables by:

D -D if DADRaA= ¢
Dh(xz"..’ xk) = g(x’xz""’:{k) g(x,xg,.,. Xk)
te) if DnDnA#=P

E(X,X seeey X )
K+l x 2 k
Then h shows that AxEX.. XA %y AXAX. .5k, SO A ¢ X, by the

induetion assumption, ‘ qed.

COROLLARY 4,25

(1) There exist N, immune semirecursive sets,

1( ii) Tf A is regressive and if there is an n such that
n

P | o—m———
AKAX...KK‘“ AXAXpouxA, then Ac zzn

ne
Proof
{ 1) 3By theorem 4,3, there exist at least H,Iimmune semirecursive
sets, and by the present theorem there exist at most R, such sets,
( ii) Suppose that A is regressive. If A is r.e., there is

nothing to prove, Otherwise A is immne, and Appel and McLaughlin (1]

have proved that no immne regressive set is witressed non-hyperimmune
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ty a sequence of sets of bounded cardinality, Therefore, the vtheorem
épplies. S qed.
DEFINITION 4,26 Let A be inmne.
(1) (Smullyan) A is said to be effectively immune if there is
a reélirsive function f such that, for all x, '
W< A =W | = f(x)

( 1i) (McLaughlin) A is said to be strongly effectively immune

if there is a recursive function g such that, for all x,

W< A =D W e {0, 1,ee, g(x)}

THEOREM 1,27
(1) If A is effectively immmne and Axh <,A, then A is r.e,
( ii) If A is strongly effectively immune and semirecursive,
then A is r.e. and A is regressive,
Proof
( 1) Suppose A is effectively immne and that ﬁémﬁx via g.-
By the argument of the preceding theorem,
X e I@{g( (x,y)l) | ve m} is infinite
Let f be a recursive function such that
HC A=P ]wx'[ £ f£(x)
Let h be a recursive function such that
i) = { &( <zy>)lye N}
" Then x & A & there are more than hf(x) numbers of the form

g(<xv5"> )

Therefore, A is r.e.

{ 11 ) Suppose that A is strongly effectively immune and semi-
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recursive, Then A is r.e. by (1). Assume that A is the lower half ;
of a cut in a recursive linear ordering £, of N, Say that y is an
o-predecessor of x if ¥ £,%. Any x in A has only finitely many
o-predecessors, because the set of its o-predecessors is an r.e. subset
of A, Thus the restriction of <, to AXA is an ordering in which
every element has only finitely many predecessors ax_rxd hence is order-
isomorphic to N with the usual ordering., Thus thei-e is an enumeration

a.o,a yeee 0of A such that

1
% <, % <6 85<q soee
Observe that if x is given, it is possible to compute effectively
an r.e, index for the set of o-predecessors of x, Thus, since A is
strongly effectively simple, there is a recursive function g such that
if x is in A, every o-predecessor of x is less than or equal to g(x).
‘Ncw the following recursive function ¥ will regress the enumera-
tion ao,ai,... of A:
aé . ifx = ag
the largest y (with respect to the ordering <,)
Y (x) = {such that y % x, y £, %X &y = g(x) if x# a
and such a y exists.

9] otherwise

Therefore, A is regressive. ged.

TEEOREM 4,28 Suppose that A is retraceable and that AxA=,,A.
Then A is r.e.
~ Proof - Suppose that ¥ is a partial recursive retracing function

for A and that g is a recursive function such that for all x and y
xeAorye ALHelx, y) e A
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Suppose also that A is nonrecursive, since otherwise the result
is immediate.

Let a, be the least member of A, Define B by

B={x1 (3n) 3y L exy)>xetg(x,y) =2, &

xf {¥etxy), Yemy)ie., ¥}l

B is r.e. by the projection theorem. It is claimed that B = A.
To show that B < K, assume that some mumber x were in BN A, Ilet n
and ¥y be such that

g(x,y) > x 2 YE(x.y) = a, & x¢} Ye(x.y), YExy), oo, Pix5}

S:‘ane X & A, g(x,y) & A, Since T”é(x,y) = a,, every member of
A which is less than g(x,y) is in ‘L‘?g(x,y),...,“f’"g(x,y)} e In
partiéular, x&{?’g(x,y),... ?"g(x,y)} , contradicting the assumption
onn and y.

To show that A € B, assume that x & A. Then the set C is infinite,
where

C = {g(x,y) | ye ASC A
For if C were finite, the obvious equivalencs
yeASg(x,y)eC

would show that A is recursive.

dince'C is infinite, there is a mumber y & A, such that gz(x,y)> x.
Since y € A, g(x,y ) &€ A, so there is a number n with Ye(x,y) = a.
Also, since g(x,y) £. Aand x € &,

x ¢ {Yexy), ¥lexy)een Vi)
Thus this n and this y show that x&B.

Therefore A = B, so X is r.e. qed.
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The above theorsm becomes false when the hypothesis that A is
retraceable is weakened to the hypothesis that A is regressive, since,
for example, if A is creative, then A is a regressive set such that
Txh4,A and X is not r.e. However, it may be shown by a slight
modification of the above proof that every regressive set A such that
-fx—zé.mA is the difference of r.e. sets. It is not known whether every
such ;et is either r.e. or co-r.e.

‘The theorem makes it easy to give some necessary and sufficient
conditions for a retraceable set to be semirecursive.

COROLLARY 4,29 Let A be retraceable. Then the following
conditions are equivalent:.

(1) A is semirecursive

(i1) TxA <mA

(ii1) 1A is r.e.

Proof Let A be retraceable.

(i) =>(ii) by part (i) of theorem 4,9

( ii) => (i1i) by the above theorem

(iii) =>( i ) by theorenm U;B qed.,

COROLLARY &;22 If A is retraceable, immne, and non-hyperimmmne,
then AXA £ A, |

Proof If A is a retraceabls set and AXA<£,,A, then by the theorem
A is r.e. Thus, since A is retraceable, if A is immune, then A is

hyperimmne. ' ged.

It is not known whether the conclusion of corollary 4.30 can be
strengthened to read that the medegrees of A, Ixk, ExAxk, ... are all

distinct. However, in sectlon 5 it will be shown under the assumpton
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that A is immine, non-hyperimmne and retraced by a tetzl recursive
function that these medegress ars all distinet.

The preceding two theorems characterize semirecursive sets which
are strongly effectively immune or retraceable fairly adeguately,
However, they do vt go far towards classifying 211 immine semirecursivs
sets, In particular, the following elementary questions remain un-

answerad:

o~

i) Is every immune semirecursive set regressive?

N

ii) Is every immune semirecursive s2t cowr.s,?

{111) Are there semirecursive sets which are both immune and
co-immine ?

The sxistence of semirecursive sets which are both immne and
co-immne would be of particular interest, since by some of the theorems

~in this ssction, such sets would have several interesting properties,
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SECTION 5. RELATIONSHIPS BETWEEN REDUCIBILITIES

In the previm;s section it was proved that every tt-degree contains
a p~-degree consisting of a single me-degres and contains incomparable
p-degrees., In this section, more results of this kind will be proved,
but by gquite different methods, Certain types of immune but not hyper-
immune sets will be studied, with propositional logic used as a tool in
‘this study. Also it will be shown _tha.t each r.e. nonrecursive T-degree
contains r.e. sets which have many of the properties of creative sets.

THEOREM 5.1 Let A be a simple set which is not hypersimple.
Let B be any set. Then {x| D& A}< B =B not immune

Propositional logic will be used to abbreviate the proof. First
we introduce some conventions. Recall what it means for a propositional
formala ¢ to be true of a set A: |
| 0" is true of A»iff 0~ is true when sach statement letter Pn is
interpreted as true when n ¢ A and false when n £ A.

Hence, wheﬁ we know that a formula ¢~ will be interpreted in a set
A, we may use the symbol " n e A" in place of the statement lettar Pe
Abbravj.ating further, we may use the symbol "Dxt-‘— A" in place of the
statement ‘

:«:16 A4 xze AAr .., Axke.A where Dx={x1,x2...., xk\s

Similar abbreviations will be freely used,

Finally étatemnts referring to two sets may be though; of as
propositional formilas to be interpreted in the join of the twe sets, e.g

'5€Aa 6 ¢B abbroviates the statement

10€ A join B & 13£4 join B.



-7 -

We will use two facts from elementary logic: the set of logical
consequences of a recursively enumerable set of formlas is itself
recursively enumerable (when formlas are coded effgctively to integers)
and when every formula in a some set of formulas is true in some fixed
interpretation, then every formla deducible from that set is also true
in the interpretation. The latter result is called the ''soundness
theorem,"

Now assume the theorem false, so that A is simple and not hyper-
simple and B is cbimmune, and

{x1D_< A}<mB

Let {Df (x)g wi‘tness the non-hyperimmnity of A. Let {x 1DX< A}émB

via g.

Consider the following set of axioms T:

n oAk
L Demy™ A p all x
2, xeA all x € A
3, DoE#p&De(x)eB all x

If 0~ is a propositional formla, let t;#‘ mean that ¢~ is provable
from the above statements by the rules of propositional calculus when
they are viewed as propositional formmlas,

Now consider the set C, where

C = ixlﬁ_xéﬁ}

Since the axioms are all true and form a recursively enumerable
set of statements, C is an r.e. subset ofiﬁ; and thus finite. But by
the axioms 3

X
DN E#f & e e B> gx)eC
Thus the set D is recursive, where

D={x| = DO PR
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For convenience in giving later proofs, the rest of this pz;oof
will be given in a lemma.
| LEMMA 5.2 Suppose that A 1s simple and not hypersimple, and that
in(x;Switnessas that A is not hyﬁersimple. Suppose that @ is a class
" of non-empty finite sets such that |
“ (1 ) Doy’ c all x
(11) DeC,yea = (D, ~ {5y} )eC
Then (x| D¢ ¢} is not recursive. |
First we note that the theorem now follows at once from the lemma.
For if we let €= li\ !'-_E;Dxn A= ¢}, then each n:embgr of C is non-empty
because each member of € intersects A, by the soundness theorem. c
satisfies conditions (i) and (ii) because of the axioms 1x and Zx.
Finally, it has already been remarked that D = ix | Dx663 is recursive,
which contradicts the lemma. '
Proof of Lemma
Suppose the lemma is false., Let € be a class of finite sets
satisfying the hypotheses of the lemma such that f{x| DXCC} is recursive.
Let ,
M= f{xlDeC & (Vy) [ D, § Dx=>Dy¢c]}
andlet g=UDp
e™ X _
It is c;laime@ that G is an infinite r.e. subset of A, If this
claim is proved, the simplicity of A will be contradicted.
Since {x ] DXF-C} is recursive, M is recursive, and thus G is r.e.
Call a set Dx minimal if x & M, Nou?' any member of € which intersects

A has a proper subset in. €, by condition (ii) on €. Hence every

minimal set is a subset of I, and G is a subset of A. Finally note



that every member D of @ has a minimal subset, e.,g. any subset D of
" .

ks d

D, which has minimal cardinality ameng the subsets of D which are

X
members of €, Thus each Df< ) has 2 minimal subset and therefore
gach D £(x) intersects 3, since all members of € are non-smpty. Hence G
o /
is infinite. ged,

CORCLLARY 5.3 If A is simple but not hypersimple, theaAxA £, 4,

Proof Assume tha*t A is simple and not hypersimple and that AxAe A
Then AxN is a c-cylinder and, since S.x{ D < A}ﬁcA, fx1 D= A} £ b
This centradicts the theorem, qed,

Since there are hypersimple semirecursive sets, the above
ceroilary, and hence the theorem, fails when the hypothesis "A is not
hypersimple” is dropped.

Theorem 5.1 implies in particular that no creative set can be
mereduced to a coimmine sef, i,s., no productive set is imrune, In this
section, several other facts about creative sets will be generalized to
sets of the form {xi DYCZ A} for simple, non~hypersimple A. The
procfs will thus give an alternate method for proving some cf the
standard facts about creative sets, More importantly, sihce Yates has
shown the existence in every r.s, nonrecursive Turing degree of a simple
set, which is not hypersimpls, the theorems to come will show that r.e.
setsrwhich share many of the properties of creative sets exist in every
r.e, nonrecursive T-degree, This in turn will make it possible to
show that each nonrscursive r.e. Turing degree shares some of the standard

properties of the complete degree.
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DEFINITION 5.4 B is a strong cylinder if B is a cylinder and
(Vo) LBeyw =DB=,0 1

PROPOSITION 5.5. If B is a strong cylinder, the medegree of B
consists of a single ledegree.

Proof Trivial. | qed.

It is well known that creative sets are strong cylinders. We
are heading towards a generalization of this fact., We first "localize"
the notion of cylinder in a way motivated by Young's chafacterization of
cylinders (theorem 1.4.)

DEFINITION 5.6 For sets D and E, D is a E-cylinder if there is

a recursive function h such that, for all x

(xeD=>W

hx) S D) & (x&D = Wy (4)= D) &

| (xeE =i,y infinite)

LEMMA 5.7 F£,D via g, D a (range g)=-cylinder =)F<, D.

Proof The proof is a straightforward relativization of the proof
of theorem 1,4), Assume F#£, D via g and let h be a recursive function
showing that D is a (range g -cylinder, Define a recursive 1.1 function
k by induction:

~ k(0) = g(0)
k(l:q + 1) = the first number found in whg( ael) which is not
a member of {O,i....,k(n)}

Then F £, D via h, qed,

THEOREM 5.8 Let A be simple but not hypersimple and let C be any

non-empty set. Then {x] Dx c A) x C is a strong cylirder.
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Proof Let a function i, (the index function) mapping finite sets
to integers, be defined by
l(Dx) =x
To see that {x| D, < A} xC is a cylinder, let
= {(1(Duu Dx)’ v | D < A}

wp( <u,v?)

Then, ’\Tp(< u,V})

Young's characterization of cylinders.

shows that §{x | D, < A} x C is a cylinder, by

Now let B = § x | D, A}, and suppose BxC£,, D via g. It mst
be shown that BxC =, D, so by the lemma it suffices to show that D is a
(range g)-cylinder. It follows from theorem 5.1 that D has an infinite
r.e. subset, since

{x| D < a}z,{x(pec a}xc £,D

(It is at his point that the fact that C is non-empty is used.)

Let G be an infinite r.e. subset of D.

Let ED £ (x)i witness that A is not hypersimple.

We now write everything we know in the form of axioms

1 Cuvy {u,v7 €BxC <&y g(<u,v>)eDd all <u,v>
2. x¢ D all x £ G
Bx x€ A all x € A
b D A 11

x £(x) * }ﬁ’ all x

The set of axioms given above is recursively enumerable and each
axiom is true when given the obvious interpretation. Hence there is
a recursive function h such that

= & De—»x &
wh(x) (‘yﬂ—%y D X DS

nd XL DU < D& D =W < D. v
a =4 h(x) x £ = h(x) D, where as before
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\'_-r 0~ means ¢~ ig provable from the above axiom.

Thus to show that D is a (range g)-cylinder it suffices to show

that
x € range g :-zywh(x) infinite

Assume the above is false, Let X be a member of range z such

that y(xyy 16 finite. et x, = gKu,svsY) . Define
c=§ﬁuu-/_rk_[(auu D)es & v,e oleln, e ia e 513

(k-%_’:d" means that ¢~ cannot be proved from T)

We will show that C gives a counterexampls to lemma 5,2 and thus
obtain a contradiction., First note that every member of C is non-ompty,
for trivially,

. [(Puo, Je s & ve ol c & & v,e 0]

Also fu| Due'c} is recursive, since

D&y Woyun, jei e vyedlen{n, € i e vec]

<';§>%; A CERERY Dua} sV 2IED x&-—-)g((u@,vaw €D
&= i€(<i(DuU Duo)’vo7>¢ Wh<xo> Xy

Since Wh (XQ) was finite, the last line gives an effective test to
see whether Duc c.

Now it must be shown that each Df(x)& C . Assume ths contrary:
let ¥ be such that Df(x)¢ €. Then

= [Pp(x)V Dy C 4 & Vo€ 0le=[p, c & ved]
But by axiom 1 : = Df(x)n ];{'#gs
B —(,e a6 v,ec
%4 D
All members of the set G are also provably not in D,  Thus

Gew
"'?{)

2(x,
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This contradicts the assumption that wg(x ) was finite.
Finally it mst be shown that D,€C, ye A = (Du- iy})%ec.
This will be proved in the form: ‘(Du - {yVec, ye ﬁDuﬁ c
Suppose (Du - $yy)¢C and y €A, Thus _
H. L@, - ¥} Jup,cae voeai.,]e-»[nuoc. A&vyea]
But then,_ since y & A, by axiom By: ,
4 L( D - tyy)v D,CA & v e o]«*{nuu Dy CA&vE o]
Combining these two equivalences it follows that
= DVD, €A&VEC ]H[Duoc A&v eo ]
Therefore Duls C, which was to be shown;
Thus it has been shov}n that the class C provides a counterexample
to lemma 5.2, and tile theorem is proved. _ qéd.
The first corollary is a special case of the theorem which
generalizes the fact that creative sets are strong cylimiers.
CORQLLARY 5_._2 If A is simple but not hypersimple, then {x\ Dy A}
is a strong cylinder.
Proof Take C = N in the theoren. qed.
Of course, the theorem also shows that the Acar‘besian 'product of a
creative sei‘t with any hon-empty set is a strong cylinder, This fact
does nc;t seem to the writer to be obvious from the classical proof
with the recursion theorem that creative sets are strong cylinders,
although the present proof would not ha.ire been simplified (except
notationally) by considering {x | D, < A} rather than §x | Dxc Ay x c.
However, this is the only example known where the present method'yields

new. information about creative sets.,
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COROLLARY 5.10 Every r.e., T-degree contains an r.e. m-degree
consisting of a single l-degree.

Proof The recursive T-degree certainly contains such an m-degree.
By the theorem of Yates mentioned in the previoﬁs section (theorem 4,11)
each nonrecursive T-degreé contains a simple but not hypersimple set A
and thus contains a strong cylinder, e.g. ixl QK<Z.A% . By proposition
5,5, the medegres of this strong cylinder consists of a single l-degree.

| qed.

Corollary 5.10 answers a question raised by P.R. Young, who
showed in [201 that every nonrecursive me-degree either consists of a
single l-degree or contaiﬁs a linearly ordered collection of l-degrees
with the order typé of the rationals gnd inquired whether there were
nonrecursive, noncreative r.e., medegree consisting of a single l-degree.

We now prove a weakened analogue of the theorem that btt-complete
sets are not simple,

THEOREM 5,11 Let A be simple but not hypersimple, and suppose
that

{xlp eaie,

Then\C is not simpls.

Proof Suppose the theorem is false. Let A be simple, and let
{'Df(xigwitness that A is not hypersimple. Suppose that C is a simple
set such that there exists a recursiverfunction g and a number m such
that, for all x,

Deh<>@uuen y &0,80] & \u‘ZJDf,(X?u\"‘ m
Now consider the following axioms T 3 i
1 B T# 4G Luedy () = 0,0 T#8] all x

2x x & A all xe A
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3 xe& 0 ' all xe C

4 D O A 11

x Dy A TP e

~ Let ;;”mean that the formula ¢~ is provable from the above axioms.,

= n\._

Let € {Dxl!-:rnx L#93

We will apply lemma 5.2. Cis clearly a class of non-empty sets
which satisfies conditions (i) and (ii) in lemma 5.2. Thus, to get a
contradiction, it is sufficient to show that {x |\ Dxbcgis recursive,

Observe that by axiom 1x’

T

where Dg(x) = iui, u2,...,un)5 . By the assumption on the boundedness

o D0 K#F<&HI Dy 0 Eae;j&y_-r D0 TEP&e s+ & =Dy 0 C+¢

of the reduction,hadsnh for u in any Dg(x)' Thus to see that
Slxh-;DXn K#ﬁ} is recursive, it is sufficient to show that S]{1 is
recursive for all n where

5. =ful |D)4n sl=D T4}

n

This is proved by induction on n using techniques similar to those
in the proof of lemma 5.2. So is trivially recursive. Now assume that

Sn is recursive., Let

CPES CA | PR & k= DN C#f e (Yv)[D, Du=§\71€bvf\5¢¢]§

‘nel
= flu‘ ues g & (VV)[ Dv-;chnu.3 vf.‘Sn];

Since the set of axioms given above is r.e. 3,4 1s r.e. By
the induction sssumption Sn is recursive, Hence Mn }s r.e, Let
. :
¢, .41= U p,

1
N7 Ge M.,

o . . - . is s s z
Since M 1 is r.e., Jn*l Cis r,e. Also, G,(1 +1 182 subset of C,

since, by axioms 3, x &€ M 'f'—)D < C, Thus M is finite and hence G
n+ X Nl Nl

-

is finite. - But now, the equivalence



ué s S ue G or, for some v such that
n+1 n+1
D, & D,, Ve&Sy
shows that S " is recursive, completing the induction. qed,

n+l

COROLLARY 5.12 If A is simple but not hypersimple, then the
medsgrees of A, AxA, AXAxA, ... are all distinct.

Proof Suppose the corollary is false., Let A be a simple but

not hypersimple set and n a number such that A" * 1:’-.,“An, where for all
k>0,
k factors
k _° v

A. = AJCOCOXA
Let A, = {x | |DJek & Dy € 4} . It is easy to check that for

all k > 0,

k

A A

"7k

m

Hence An + 16"‘An' say via g, so that }
Dxc. A& le|s n+ 1 & Dg(x)cA & IDX]‘.‘. n
A recursive function h will now be defined so that fx 1D < Y&, 4y
via h.
if IDK‘é.n, define h(x) = x.
If \Dxpn, let y be the smallest number so that Dyc b and

Il =n+1. LetD =(D -D)UD Observe that
“ x! X v

g(y)’
lo_ i< |D | and (D, A4 D < A)

D

11y ees had cardinality

If for any set Dx all the sets Dx

t L
greaber than n, then the numbers ID.,:,L ‘Dx! |\ ++.. would form a strietly

decreasing chain of integers,which is impossible.

m
Thus if \Dxpn, define Dh(x) = Dx.’,.—“ﬁ’;‘, where m is the smallest

™
mumber such that )Dx,",‘,"—"ﬂf._ n:

o
sen
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Clearly, ix\ ch. A} é“Ah via h. But also, AP é.bp A, so

i,x‘ DXC- A3 épr' which contradicts the theorem, with A = C. qed.

COROILARY 5,13 TEvery r.e., nonrecursive T-degree contains infinite-
lly many r.€. m-dégrees..
Proof By the theorem of Yates, each such T-degree contains a
simples but not hypersimplé set A, and hence the m-degrees of
A, AxA . . .

from the desired infinite collection ged.

In view of the well known theorem of Post that no creative set can
be bttereduced to 2 simple set, it is natural to imquire whether ssts of
the form S_xl Dx [ A} for simple, non~hypersimple A can be bttereduced
to simple sets. The writer has been unable to answer this question,
although the methods of the previous theorem do show some promise,

More precisely, if the conclusion of lemma 5.2 could be sirengthened to:

"Then {xl D ¢ C.’, is not recursively separable from {Xl D, < Ai "
it would follow by an ela.boration of the methods of theorem 5.11 that no
set of the form $x | Dx c A} for simple but not hypersimple A could
be bti-reduced to a simple set.

ft is also natural to ask whether sets of the form ‘(x\ DxC A.} for
simple but not hypersimple A can be ttereduced to hypersimple sets.
Since A Ep {:{ { D;CC. A’; , this is equivalent to asking whether simple
but not hypersimple sets can be ttareduced to hypersimple sets, Here
again the answer is not known, but we can prove a positive anzlogue to
the‘ classical theorems,

1

THECREM 5.14 No simple, none=hypersimple set can be pereduced to



any hypersimplg set,
Proof The first part of the proof consists of a lemma which
shows that it suffices to prove the theorem for c-reducibility.
LEMVMA 5,15 C hyperimmne =5 ix[ D €0 ; hyperimmne

Proof of Lemua Suppose that {x | D <0 Yis infinite and not

hyperimmne., Let D"x(x) witness that {x | D€ \3 is not hyperimmne,

x 2

define a recursive function k by

Assume 0 ¢ UD, (x) to avoid difficulties with the empty set. Now

={u | u is the largest member of some set Dy’ with

v € Dh(x)g

Now each Dk(x) intersects C, because each Dk(x) contains some

Dy(x)

memoer of a subset of C,. However, the sets Dk(x) need not be disjoint.
On the other hand, they can be made disjoint using a simple techniquue

due to Post: define a recursive function 1 by

D =D
1(0)  "k(0)
Dl(n +1) = Dk(y) where y is the smallest fumber such that

D is disjoint from U D_,.
k() ieo 1(1)

To show that C is not hypersimple, it is sufficient to show that
1 is total, i.e. that the number y referred to in *he definition of 1

always exists., Suppose that this ¥y fails to exist Ffor some n + 1.

n
Then every D intersects the finite set U Dyrgy o Thus some
' k(y ) =TT i=0 1(E)
mumber U is in infinitely many Dk(y)' ‘Thus, by the definition of
Dk(y}' u 1s the largest member of infinitely many sets, whiech is
impossible, Thus 1 is total. qed,

Proof of theorem Suppose the theorem is false, and let A £, B,
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where B is hypersimple and A is simple but not hypersimple. Let
= p n
D= fxln n B#p}
Since D is r.e., and

D= §{=x| D & B3
D is hypersimple by lemma 5.15. Also A #.D, by theorem 2,9, Let f
be a recursive function such that, for all x, '

X &€ ASDD < D

£(x) }
Let D g(x) witness that A is not hypersimple. Define a recursive

function p' by

D = U D
(y)
p(x) ye Dg(x) J

Each D x intersects 3. Define the r.e, set E by

p(
2= {rl (0 [oun 20 13

Since each Dp(x\ intersects §, each member of E is the canonical

4

index of a set intersecting B. lLet k be a recursive function with

range E, Now, just as in the proof of lemma 5.15, the D can be

k(x)
replaced by a subsequence of disjoint sets to witness B not hypersimple

unless there is some finite set, say F, which intersects every Dk(x)'
If F is such a set, then F nB intersects every Dp(x)' Thus some

mumber m € By would be in D for infinitely many x and

p(x)
i‘(x))’

would be an infinite r.e. subset of A, contradicting the assumption that

ixku&D

A is simple. Thus the Dk ( 'y °an be disjointified to witness B not
X,

hypersimple, ged.,

A coun{;erpart. to the above theorem for mereducibility was first

prgved by Yoﬁng. Martin has proved the btt-analogue of the above theorem.
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Cne corollary of the above theorem is that every r.e. Turing degres
contains ét least two p-degrees, However, this fact has already been
pointed out as coreollary 3.10.

We now turn to noner.e. sets. The goal of the present section is
to prove that every nonrecursive ttedegree contains iﬁfinitely many |
medegrees, For the preéent methods, the analogue of the simple but
not hypersimple sets will be the immune but not hyperimmune sets which
are retraced by total functions,

PROPOSITION 5.16 Every nonrecursive tt-degree contains a set
which is immune buf not hyperimmine and retraéed by a (total)recursive
funetion, |

Proof

The binary tree is the collection of all finite sequences of O's
and 1;5, .

| Let 0~ be a 1-1 effective coding of the binary tree onto the
integers such that, for any sequences a and b in the binary tree,
a lénger than b =) G‘(a) > ¢(b)

Let B be any given nonrecursive set. With B associate first the
infinite sequence S = cB(O), cé(l). «es, where cg is the characteristic
functibn of~B. Now associate with B the set A, where A,is defined by

A= iQ‘(a) | a is a finite initial subsequence of S%

It is claimed that A is the desired immune not hyperimmune set

retraced by a récursiva function such that A =, B.

First we show that B, A, We have B .‘.$A. since, for all n

n & B & some seqﬁence of length n ending in a 1 isin A °  and

given n, one can effectively compute the cannonical index for the set
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of all code numbers‘for sequences of length n which end in a 1. Also,
A #,B, since for all n |
n e A@ the sequence with code number n is a finite initial
subsequence of -
<eg(0), eg(l), vee ?
and the right hand side of the above equivalence can be written as a:
ttecondition on B uniformly in n. |
Now we show that A is retraceable, Define a function f which
maps finite sequences to finite sequences by.
a,if a is the empty sequence
'f(a) =4 the sequence obtained from a by deleting the last
term of a, otherwise
Now let f' be the corresponding function mapping N to N;
f1 =g fo! |
By the condition that longer sequences have larger code numbers,
f' is a retracing function for A. By the effectiveness of the coding,
f' is recuréive.
Since A is retraceable and nonrecursive, A is immune. The sets
{-Dg(n)% witnesses that A is not hyperimmne, where
“Dg(n) = ix ] x is the code number for a sequence of length ﬁ}
ged,
THEOREM 5.17 Suppose that A is retraced by a total recursive
function. Then,
(1) AxAsp,A
( 11} If A is immﬁne but not-hyperimmuns, then the m-degrees of

A, AxA, AxAx4,...
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are all distinet,

(1ii) If A is immne but not hyperimmne, then A and A are
meincomparable,

( iv) If A is not hyperimmne, A = ‘,:Aj.

Proof Suppose for the proof of all parts, that A is retraced by
the recursive function f£'., Then the recursive function f also retraces
A, ’#hers

f£r(x) if £'(x) = x
f(x) =
% if f'(x)k > X

f will be used throughout the proof because it has the useful
property that f(x) = x for all x,

Some terminology will be introduced now for this proof only.
Let "x retraces to y' mean

@) [n Z 08 £7(x) = ¥}

Since f(x) £ x for all x and there are no infinite descending
chains of integers, {<x,y> \x retraces to y} is a recursive set.

Let "x and y are comparable'" mean that x retraces to y or y
retraces Lo x, and let "x is incomparable with y" mean that x and 7
are not compérable.

(i) 'To show that 4xA £, 4, let a' be a fixed member of A, and
define the recursive function g' by

pd if x retraces to ¥y
g {(<x,¥y>)=\y if y retraces to x
a! if x and y are incomparable
It is claimed that AxA£,A via g's If both x and y are in A,

then x and v are comparable, so g'( L X,y ) =x or g'(<x,¥y7) = 7.
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Therefore g'( < x,y > ) € A, Conversely, if g'( < x,y> ) € A, then
g (< x,y>) # a', so g'"( < x,y> ) retraces to both x and y.
Therefore, x and y are in A, This proves part (i).

( ii) To prove part (ii), assume for reductio ad absurdum that A

is immmne and not hyperimmne and

k+l factors k factors

- -

AxBXesoXK £, AXBX...XA

where k is fixed. Since it is easy to check that for all j>o0

j factors

Bdx.k = {71101 & 38 D 0 a4}

it follows that ,
tv 1 o & k+l & D O Abplamby | o |« k&0 Ag3
Let g be a recursive function such that for all y with ID < k+l,
| \Dg(y)] & k and (Dyﬂ A+¢<=-;>Dg( % nNA#P)
The properties of f and g are now used to obtain an r,e. subset

BofA. LetB = Biu -}32, where

Bl=§_x[ (Ey)[,lDI‘-k+1&x€-Dy&x1smcomparablemth
~every member of Dg(y):l}
B, = s_x ‘ (3 L 1D \‘- k+l & x is mcompa.rable with every member

of Dy & x retraces to some member of D 2(3) ]}

B1 and 82 are r.e., so B is r.s, To see that Bic T, suppose

that some mumber x were in Biﬂ A. Let y be such that ‘Dyls k+l and x€D

and X is incomparable with every member of Dg(y). Since

y

xeD A A DA A #§; hence D 0 A#@. But any element of A is

y y g(y)

comparable with x, so D ) contains a number comparable with x, contrary
g\y

to assumption., Thus B, € A.

To see that BZC- 1, suppose that some number X were in Bz N 4,
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Let y be such that 1Dyl € k+1 and x is incomparable with every member

of D and x retraces to some member of D .
vy : g(y)

is incomparable with every member of Dy' D N A= ﬁ . Hence Dg(y)n A =¢
¥ : \

Since x € A, and x

But x retraces to some member of Dg(y),so x retraces to a nonmember of
A, which is impossible. Thus BZ €¢l, soBcX,

It will be shown that B is "large" in 4 sense to be made precise
with the use of ,the. recursive function n definéd below:

| n(x) = the least mumber m such that _fm {x} = f™(x)

Observe that n(x) ("the norm of x") is always defined because
f(x) £ x for all x and there are no infini.te descending chains of integérs.

(Note: This proof can be visnalized in terms of the "retracing
tree." (cf. Rogers [14] ). For exampie, n(x) is the "level" of x in the
retracing tree,) 4

Mow it is claimed that for every j there are at. most 2k rumbers
which have norm j and are not in B, (Recall that k was fixed earlier,)
To facilitate the proof of the claim, a partial ordering £ 2 of N will,
be defined such that any two mmbers x and y are comparable with respect
to € if and only if n(x) = n(y). x %,y is defined inductiveiy on

n(x) = n(y):

XL,y méans xe yif n(x) = n(y) =0
X£, 4y means nf{x)£enf(y) or (f(x) = £{y) and x< y)

if n(x) = n(y) > 0, and u<yv has already been
defined for all u,v with n{u) = n(v) < n(x).

The above definition makes Sense because, if n(x) » C, then
nf(x) € n(x).
It i5 easy to verify that&,is a partial ordering under which any

two mumbers of equal norm are comparable and that for any x,y, and z
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pe

x£,y = x) =, t%y)

(Intuitively, x£,y means that x and y have the same level in the
retracing tree, and x is to the left of y in the tree, if the tree is
soéed so that code numbers increase as one moves from left to right
at a given level,)

Now suppose the claim made above is false, i.e assume that there
is some number j such that 2k + 1 nonmembsers of B have norm j. Let

Kqrese,X be 2k + 1 nonmembers of B of norm j. Assume that the

2k + 1
X, are indexed so that

‘ L N §
T2 “ 2 T 1 g
Let Dy = gxl, x}, XE; oy XZk + 1}. Since no member of Dy is in

Bl, every member of D 1is comparable with some member of D ( ). But
y g\y

since | D | =k + 1, |D |% k. Thus there is some member w of D
y g(y) zg(y)

QN

which is comparable with two distinet members, say x2m i1 and Xy . 1

of D ., Thus, since x and x have the same level, there is
v 2m + 1 2n + 1

a z such that
A z
f(‘{2m+1) = f(xpy 4 q) =¥

Assume m<n, It will be shown that x €3 . This will give

2m + 2
the desired contradiction and prove the claim. Note that

-

P X < X
2n+1 2 om+2 "€ Topaq

o, pa z Z¢
Thus f (x2m N 1) £, f (xzm . 2) fzf (x5 &+ 1)
, |
So ' f (x2m N 2) = W,

Now consider the set D ( = i xi, x3,oo., X2k + 1}). avery

y
member of D is incomparable with x since x D, and
. 7 P 2m + 2’ 2m + 2 f y
every member of Dy has the same norm as x, x Also X v 2



-retraces to some member, w, of D Thus x e Bz, which was
o

g(y)’ 2n + 2
to be shown.

ES

The fact that A is not hyperirmmune will now be used. Let

O
that since A is infinite and not hyperimmune there is a recursive funct-

a_, al,... be the members of A in increasing order., Rice has shown

ion h which majorizes A, i.e, which is such that for 2ll n,
h(n) > an\

We now define a sequence of disjoint sets Dp(x) all intersecting
A, To find Dp(x)’ list B until at most 2j numbers which have norm x
and are less than h(x) have not appeared in the list of B, 3y the
previdus argument, this state of affairs must be reéched for every x.
Then let Dp(x) be the set whose members are these at most 2j numbers
which have-norﬁ x and are less than h(x) and have not yet appeared in

the listing of B, Now D n A#$ because a_&D 0 A. Now the

p(x) p(x)
proof could be conculded at this point by quoting a lemma of Appel and
McLaughlin [1] which states that no regressive immne set is witnessed
nonhyperimmine by a collection of sets i?p(x)% of bhounded cardinality,
since we have, for all x, ‘Dp(x)lé.Zj. However, we prove below just

the special case of the Appel=-McLaughlin lemma needed for the proof,

LEMMA 5.18 If A is an irmune set retraced by a2 total function

and{Dl( §1mitnesses that A is not hyperimmune, then there is no constant
L k(x
¢ such that, for all x
RIN B
o(x)

Proof of lemma Suppose there were such a constant ¢, Consider

C = iy\ ( 3x) [ Every member of Do retraces to y ]}

(x

(We continue to use the terminology of the prcof of the theorem)
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" Since each Dp(x) intersects A, C is an r.e. subset of A and thus
finite. |
Let y_ be a member of A which is not in C. Define Dp'(x) by

D =D -4z [
ot (x) o(x) {z | 2 Dp(x) & z does not retrace to yo}
p'(x)

This is so because if D fails to intersect A, then D
p'(x) p(x

contained a member of A which did nqt retrace to Yor 1.0, Dp(x) mst

It is claimed that all but finitely many D intersect A,

) mast have

have contained a number to which Yo retracéd, and there are only fin:}:tely
many such numbers. Thus by eliminating these finitely many sets we
obtain t.he sets Dp '1(x) which witness A nonhypersimple and which are
bounded in cardinality by c-1, since each Dp(x) contained a number which
did not retrace tov yo. Iterating this procedure ¢ times, we obtain a
sequence of emplty sets witnessing the nonhypersimplicity of A, which is
absurd. ' | qed.

Since the Dp (x) defined in the proof of the theorem are bounded in
cardinality, we have contradiction, and part (ii) is proved.

(iii) To prove part (iii), assume that A is immne and not hyper-
immne. Assume also that A and A are mecomparable, so that AS A,
Then by part (i),

AxA = W AXA = WA

This contradicts part (ii).

To prove part (iv), assume that A is non-hyperimmne. Let the
functions n and h be as in the proof of part (ii).
Then, for any x

x e L& (ay) [y#x & n(y) = n(?t) &y<hn(x) & ye A]

Thuslzép A, so A__‘.P—A. and A':“PK. ged.
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COROLLARY 5.19
( i) Every nonrecursive tt-degree contains infinitely many
medegrees.
( ii) Every nonrecursive tt-degree contains a p-degree with
‘incomparable m-degrees.,
Proof
(i) By proposition 5,16 each nonrecursive tit-degree contains an
immne but not hyperimmune set A which is retraced by a recursive
function. Thas it contains the medegrees of
AA X Ayees
and by theorem 5,18 tﬁis is an infinite collection of medegrees.
| ( ii) By pfoposition 5.16 each nonrecursive tt-degree contains
an immne but not hyperimmune set A which is retraced by a total functiam.
By theorem 5.17 the positive degree of A contains the»m-degrees of A and 4
which afe incomparable, qed.
We now show that svery r.e. honrecur#ive tt-degrée contains a
strong cylinder.
THECREM 5,20 If A is an r.e, nonrecursive set,Att is a strong
‘cylinder, where A'® is defined>as {klx is true of AYe (cf. theorem 2.6)
Proof For any 2% 35 a cylinder. Let A be r.e. and none
recursive and suppose A £,,B via g, It must be shown that A =, B, so
by lemma 5.7 it i#»sufficient to show that B is a (range g)-cylinder,
Let h be a recursive function such that for all y,
Wh(y) = {f(x'A (ne A)) l f(x) =y &n¢ A%
U Afxy (-ned) |fx)=y &neal

(Recall that formulas are conventionally identified with their
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code numbers so that, for example, x A (n & A) refers to the code
mumber for the formula obtained by conjoining the formla with code
number x with the-formula "ne &)

To show that B is a (range g)-cylinder it is sufficient to show

& ye& range “g=) Wh(y) infinite

Note that for any x,y, and nwithn ¢ A and f(x) = y

yeBeyxeate (x an e n) eatep (xvanen)est

g(xchA)cB g(xv-neA)eB
Thus (y & B =

W
7 h(y)
Now suppose that wh

. 6_ c — .
were finite for some number y. in range g.

(¥5) 0 |

Let Vo = g(xo). We will get a contradiction by showing that A is

recursive,

First suppose that yoe. B. Then, for all n,

1
nEA&P g(x 2 nep)e Mh(yo)

" The arrow to the right above is immediate from the definition of

W . To prove the arrow to the left, assume that g(x.A n e A)e
n(yg) 0
W « Since y &£B, W CB, sog(x.Ané€¢pA)eB, Thus

h(y,) Yo h(y,) &%

(xo Anep)eatt so (ne a)e Att,  Therefore, n €4, _
But the aqui\falence proved above shows that A is recursive, since

W is finite,
h(y,)
Now suppose that yo {: .B. Then, for all n,

nea X vV —"nejd) &V .
&alx, h(v,)

The arrow to the right above is irmediate from the definition of
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W . To prove the arrow to the left, assume that -

h(yp) ‘

g{x v £ Aer . ince y. € B, El (x ¥ =n B,
O(KO - n & A) dﬁ(yo) ) Since y, ¢ B, Jh(yo}c » se glxy € Ae

Thus (XOV “neié Att, so (n¢a)¢g A%, Therefore ne 4.
Again, we have that A is recursive,
Thus we see that Wh(y) is infinite for y € range g, and the proof

is complete, qed,

COROLIARY 5.21 Every r.e. tt-degree contains an medegree consiste
ing of a single 1-degree,

Proof The recursive ti-degree obviously contains an medegree
consisting of a Single li-degree and each nonrecursive r.,e, tt-degree
contains a strong cylinder, which, by pronesition 5.5, belongs to an

medegree consisting of a single l-degree. qed,

It should be noted that corollary 5.21 is not a2 generalization of
corollary 5.10, which states that every r.e. Turing degree contains an
r.e. m=degree consisting of a single l-degree. , The common generalization
of these two corollaries, i.e, the statement that every r.e. Lt-degree
contains an r.e. medegree consisting of a single l-degree, would follow
immediately from corollary 5.9 if it coﬁld be shown that svery r.e.
nonrecursive tt-degree contains a simple set which is not hypersimple,
Likewiss, it would follow that every r.e, nonrecursive tt-degree contains
infinitely many mpdégrees. However, it is probably not the case that
BVeTY T.e. nonrecursive tt-degree contains a simple set which is not
hypersimple,

In theorem 5,21 the hypothesis that A is not recursive obviously

cannot be dropped. The writer does not know whether the theorem remains
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true when the requirement that A be r.e. is dropped.

We now study an inversion of the notion of R-cylinder. As we
shall see, the notion seems to be of interest only for mereducibility.

DEFINITION 5.22 Let R be a reducibility. A is an inverse
Recylinder if |

wB)[A2eB = 4 £,8)
Adsan inverse cylinder if A is an inverse mecylinder.

'Since strong cylinders are precislj the sets which are both
cylinders and inverse cylinders, we have already shown that a variety
of inverse cylinders exist, ~ We now show, however, that practically no
reducibilities R strictly weaker than mereducibility have any inverse
R-cylinders,

THEOREM 5.23 No reducibility R weaker than bq (or be) reducibility
has any inverse R=-cylinders.,

Proof Suppose it can be shown that there are no inverse
bq-cylinders.. Then it follows trivially that no reducibility R weaker
than bq has any inverse R-cylinders, Also, since

Aebt}a@z €yB & A%, B&DL% B
it follows that there are no inverse be-cylinders and hence no inverse
Recylinders for any reducibility weaker than be-reducibility.
Thus it is sufficient to show that there are no inverse bg-cylinders.
Suppose that.some set A is an inverse bgecylinder.

Case 1 A is finite, Then let B be any coimmne set. We have

Thus, A= b“B .

Thus, since A is an inverse bq-cylinder, A #,B. Hence A4 ,-ﬁ.
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Thus a cofinite set is 1-1 reducible to an immme set, which is
impossibie .
| Case 2 A is infinite, Let B be a set which is both immune and
coimmune, (Post has shown the existence of such sets.) Let C be given
by
C = (A joir A) QO (B join B)

" Note that the set C is a subset of the immne set B join B and that
C is infinite, since A is infinite. Thus C is immne., Note also that
xe A& (xeC)or(x+1)ecC

so that A £y C, so A=  C, Thus since A is infinite, A is immune,

8
Let a be any member of A, We have AsyA - fal , so AQKA - {a‘ , and
therefore A %, A = {a} . But this last statement contradicts a well-

- known theorem of Dekker and Myhill, since A is immune. qed.

We now study inverse (m)-cylinders. Note that it follows from
the proof of the previous theorem that no inverse cylinder is mereducible
to any immne set. Hence not all m-degrees contain inverse cyiinders
and, in particular, there are cylinders which are not inverse cylinders.
However, it is not known whether there are inverse cylinders which are
not cylinders. Tt is also not known whether the join of two inverse
cylinders is an inverse cylinder, although, of course, the join of two
cylinders is é cyliﬁder. Below will be given two theoremswhich will
make it easy to explore the connection between these questions.

THEOREM 5.24 For any set A, the following statements are equivalent,

| (1 5 ‘A is a cylinder

( 41) * A join A is a cylinder
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(iii) A join A& A

Proof (i) => (ii) since the join of ﬁwo cylinders is always a
cylinder. (i) = (iii) since it is always true that A join A=A,

To prove (ii) =Y(i), assume that A join A is a cylinder and that
g is a recursive function such that, for all x

4 .< A join A)
g(x) g(x

&\

W is infinite & (x & A join A =9 1

&(x &€ A join A =D W < A join A)

g(x)
g exists by Young's characterization of cylinders. Now let h be
a recursive fun;:tion such that, for all x,

Wh(x)

Then h witnesses that A is a cylinder by Yourg's characterization.

= {xl2xe oy OF (1) ’“’é(x)\i

Now suppose that A join A =, A, It must be shown that A is a
cylinder. Let a number x be given. Define a sequence {Sii of finite

sets inductively:

S = {x3}

.0
5.4 ={f2) )\ xes}u {2+ xes 3
Since £ is 11, |8"| =2". Thus :y:s“ is infinite. Also,
if y € Sn, y € Aiff x© A, Thus if we let h be a recursive function
such '_.,that,, for each x, wh (x) is Eosn' h witnesses that A Iis a cylinder,
' qed.
The above theorem allows one to prove a special case of
Young's result that every nonrecursive; n-degree either consists of a
single 1-degree or containsa collection of 1-degrees which is linearly

ordered under £, with the order type of rationals.

COROLLARY 5.25 Every me-degree either consists of a single 1-degree



or contains an infinite collection of i-degrees with the order type of
the integers.

Proof If an medegree does not consist of a single l-degree it
contains a no;x-cylinder A. Define the sequence Ai inductively:

AO-":A

Ao A" join A7
“Then from the equivalence (i)4&= (ii) in the theorem, each An is
a non-cylinder, so by the equivalence (i) @ (iii) we h;ve
An <, An + 1. '
Since for all n, AnEMA, the proof is complete. qed.
THEOREM 5.26 If either A or B is a cjlinder, then the 1-degree
of A join B is the least upper bound to the l-degrees of A and B in
the l-crdering. _
Proof For‘ar.xy, A and B, the l-degree of A join B is an upper
bound to the l-degrees of A and B, Now assume that A is a cylindeér, .
To show that the l-degree of A join B is the l.u.b. to the 1-degrees of
A and B we must show that for any set C with A ¢ ,C and B = ,C, it is
the case that |
A join B £, C
‘Assume that A= ,C via f and B.#,C via g. Let h be a recursive
function such that, for all x, | |
e ()< W) & e B 5 D

We now define a 1-1 recursive function k by induction so that

infinite & (x & A =W,

A join B £, C via k:



k(0) = f£(0)

k(2n)

y where y is thq first number found in an
effecti§e listing of f(Wh(n)}such that
v ¢ {k0), k(1),...k(2n-1)} . (n>0)
k(2n+1) = g(n) if g(n) £ {k(O), k(1),e.0,k(2n)} . Other-
wise use the instructions below to compute
k(2n+1).

If g(n) & $ (0), k(1),...k(2n)} , list the sets £(i n(x) foT XEn
until g(n) is found in one of these sets, say f(W£(z)). Then let
k(2n+1) = y, where y is the first number found in an effective listing
of f(3 h(z))such th;t v ¢ §x(0), k(1), ..., k(20)3 .

Clearly, if k is total, A join B £,C via k.

k is clearly defined for even arguments and for odd arguments
.2n+1 such that g(n) ¢ Ek(o), K(1), eoe, k(2n)3 . So it is sufficient
to show that k(2n+1) is defined when g(n) & {k(0), k(1),...,k(2n)3 .

It follows from the definition of k, that for any m £ 2n, either

k{m) = g(u) where u < n, or k(m) € J‘U":.‘:’:‘C(!:\T},l(x)). Since

g(n) € {kgo), k(l),...,k(Zn)} then g(n) = g(u) where u< n, or

g(ﬁ)é xll f(wh(x)). Since g is 1-1, it follows that g(n )¢ g,,f(‘%(x))

so it is apparent from the definition of k that k(2n+1) is defined. qged.

In contrast to the above theorem, it may be shown that A jein B
is never a least upper bound to A and B in the l-ordering when A and B
are immmne. In fact, Young [18] has shown that if A and B are simple

sets incomparable under <, , then A and B have no l.4.b.in the l-ordering.
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CORCLLARY 5,27

(1) IfAis a strong cylinder and B is an inverse cylinder,
then A join B in an inverss cylinder,

( i1) If A and B are str&ng eylinders, then A join B is a strong
cylinder,

Proof

{ 1 ) Suppose that A is a strong cylinder and B is an inverse
zylinder and

A join B £C,

It must be shown that A join B2, C., Since A and B are mereducitle
to A join B, A and B are each m-reducible to C. | Since A and B are
inverse cylinders, it follows that A and B are each l-reducible to C,
Since A is a cylinder, the theorem implies that A join B is lereducible
to C,

( ii) Suppose that A and B are strong cylinders, Then by part
(i), A join B is an inverse cylinder, Also, since A and B are cylinders,

4 join B is a cylinder, so A join B is a sirong cylinder. qed,

Fad

The question of whether every inverse cylinder is a cylinder or,
aquivalently, whether every inverse cylinder is a strong cylinder, has
veen left open. The following corollary gives an alternative formila-

tion of the question,

COROLLARY 5.28 The following two propositions are equivalent,

1) Evéry inverse cylinder is a cylinder,

{ 1i) The join of any two inverse cylinders is an inverse cylindar,
Proof

Assume (i) and let 4 and B be inverse cylinders. Thus A and B are
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strong cylinders. Then by the preceding corollary, A join B is a
strong cylinder and thus an inverse.cylinder. |

Assume (ii), and let A be an inverse cylindér. By (ii), A join A
is an inverse . cylinder,. Thus, since A join A £,A, A join A<, A,
Now it follows from thecrem 5.25 that A is a cylinder. qed.

It is easy to show that if A is a éylinder and B is any set, then
AxB is a eylinder. VThe corresponding statement for inverse cylinders
is false, for if A is an inverse cylinder and B is empty, then AﬁB is
empty and hence not an inverse cylinder, However, the writer does not.
know whether AxB is an inverse cylinder when A is an inverse cylinder
and B is non-empty. The inverse cylinders sxhibited in theorem 5.8, i.e
sets of the form {x ‘ QKCLA g x C for simple but not hypersimple A
and noneempty C, have the property that their cartesian product with
any non-empty set is still an inverse cylinder. However, it does not
seem clear that the inverse cylinders exhibited in theorem 5.20, i.e.
sets of the form Att for r.ec, but not recursive A, share this property,

mich less whether all inverse cylinders share this property.
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