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ABSTRACT

REDUCIBILITIES IN RECURSIVE FUNCTION THEORY
Carl Groos Jockusch, Jr.

Submitted to the Department of Mathematics on May 13, 1966 in partial
fulfillment of the requirements for the degree of Doctor of Philosophy.

In this dissertation some reducibilities of recursive function
theory are analyzed, with particular emphasis on the relationships
between many-one reducibility and various kinds of truth-table
reducibility.

In the first section, the theory of cylinders as developed by
Rogers is given. Then the notion of "R-cylinder,, is defined for any
reducibility R, and the properties of R-cylinders are studied.

In the second section, the R-cylinders are characterized for many
kinds of truth-table reducibilities. The characterizations are employ-
ed to prove that not every btt-degree has a maximum m-degree and
several similar theorems. It is also shown that there are r.e., non-
recursive, noncreative sets A such that AxA 4m A.

In the third section, it is pointed out that the reducibilities
mentioned in the second section differ in general on the r.e. sets, but
theorems are proved to show that they occasionally coincide under
special hypotheses.

In the fourth section, the notion of "semirecursive set" is intro-
duced and studied. It is shown that there are semirecursive sets in
every tt-degree and hyperimmune semirecursive sets in every r.e. non-
recursive T-degree. It is proved that the p-degree of a semirecursive
set consists of a single m-degree, where p-reducibility is as defined in
section two. Priority constructions are used to prove that it is
possible to have r.e. semirecursive sets A and B such that A join B is
not semirecursive and r.e. sets A and B such that B is semirecursive, A
is not semirecursive, and A ettB. Finally it is shown that immune
semirecursive sets are hyperimmune, not hyperhyperimmune and in Et in
the arithmetical hierarchy and that retraceable or effectively immune
semi-recursive sets are co-r.e.

In the final section it is shown that the m-degreesof A,AxA,...
are all distinct for sets A such that A is simple but not hypersimple or
I is immune, non-hyperimmune and retraced by a total function. From
this it follows that every nonrecursive tt-degree has infinitely many
m-degrees and every r.e. nonrecursive T-degree has infinitely many r.e
m-degrees. It is also proved that every r.e. T-degree has an r.e.
m-degree consisting of a single 1-degree. The theorems on r.e. non-
recursive T-degrees depend on a construction of Yates for simple but
not hypersimple sets and use the propositional calculus as a tool.
These theorems seem to be bound together by the fact that if A is simple
but not hypersimple, then ix I Dx C. A) acts in many ways like a
creative set. Finally, the notion of "inverse R-cylinder," is defined
and shown to be relevant only for m-reducibility.
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SECTION 0 PRELIMINARIES

The principal purpose of this dissertation is to study the

relationships between various reducibilities, standard and otherwise,

of recursive function theory. This study is carried out with the aid

of the concept of "R-cylinder," the priority method of Friedberg, the

notion of a "'semirecursive set," and the propositional calculus. Among

the theorems to be proved are the fact that not every btt-degree contains

a maximum m-degree, the fact that every nonrecursive tt-degree contains

infinitely many m-degrees, and the fact that every r.e. nonrecursive

T-degree contains infinitely many r.e. m-degrees as well as an r.e.

m-degree consisting of a single 1-degree.

It is assumed that the reader is familiar with elementary recursive

function theory. Our notation, terminology, and point of view all

follow closely those of Rogers 14j . In particular, proofs will be

informal, and Church's Thesis will be freely used. Also, it is assumed

that the reader is thoroughly familiar with the s-m-n theorem and the

projection theorem (cf. Rogers r4 ), as these theoremswill be freely,

and often tacitly, applied.

We now give some of the notations to be used.

N is the set of all nonnegative integers.

Functions,. denoted f,g,h, ... , are mapping from N to N.

Partial functions, denoted , are mappings from a subset of N

into N.

Sets, denoted A,B,C, ... , are subsets of N.

A (the complement of A) is N - A.
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Numbers (or integers) denoted u,v,w, ... are elements of N.

A<,B means (3recursive f) ( V~ ) dL<A f(x)E BJ.

AM B via f means f is recursive and ( VVX )[XeA < f(x)F.Sj

A 1 B means (J recursive 1-1 f) (VX ) ) A • f(x)E1 .

A -, B via f means f is a 1-1 recursive function and

(Vx)[xetA 40- f(x) c3B].

If x = 2 + 2 + ... + 2 , where the x i are distinct, Dx

xi , x 2 , ... , xnJ; Do =

Ohus, given x, one may effectively write down a complete listing

of the finite set Dx .)

The set A is immune if A is infinite but has no infinite r.e.

subset,

set
The A is h perimmune if A is infinite and there is no recursive

function f such that for all x and y) (x y) =Df(x) n Df()

and Df(x) tA 0

f witnesses that A is not hyperimmune if f is recursive and, for

all x and y, (xf y=Df(x) Df () Y ) and Df(x) r A

A is simple if A is re. and X is immnne.

A is hypersimple if A is r.e. and I is hyperimmune.

f witnesses that A is not hypersimple if f witnesses that A is not

hyperimmune.

AXB is the set-theoretic cartesian product of A and B.

<<A,B> is the ordered pair formed from A and B.

For the following definitions, suppose that a 1-1 recursive function

from Ný(N onto N ( a pairing function) has been fixed.
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(x,y) = T(x,y)

AxB = ~x,y) ( MEA and E 11("the cartesian product of A and B' •

AI x A2 x ... xAn = A2) x A3 ) x ...xAn)

A join B =2X I XF•l J1 2X+1IX• •

?x is the x'th partial recursive function in a standard godel

numbering.

x is the domain of Ix

A set A is productive if there exists a partial recursive function

Y'such that, for all x, Wx cA A=ft)defined and Wix) e A-Wx

A set B is creative if B is r.e. and B is productive.

A set A is co-blah just in case A is blah. (Example: A is

cofinite means that A is finite.)

(AI is the cardinality of the set A.

Classes, denoted 42,0,C, are collections of sets of integers.

1L is class of all subsets of N.

Xx If(x)] is the function f.

fn(x) = ff..f x); f0(x)= x
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SECTION 1. R-CYLINDERS

In this section, the notion of R-cylinder will be defined for any

reducibility R. This concept will be used to prove that not every

btt-degree has a maximum n-degree, in contrast to the situation for

tt-reducibility. The special case of cylinders for Mn-reducibility,

as developed by Rogers U141, will be developed before the general case

to provide motikivation and tools for the general case.

DEFINITION 1.__1 (Rogers) A set A is a cylinder if there exists a

set B such that A -= BxN.

THEORET- 1.2 (.Rogers) Let A be any set.

( i ) At 1 A x N

(ii) A x NemA

(iii) A is a cylinder;=(C) L C&IA C! 1A]

pA x NsIA

Proof.

( i ) A, Ax N via Ax<x) ,o>

(ii) A x N4mA via A<x,y) 10

(iii) First suppose that A is a cylinder, and let B be any set

with A sq B x N. Assume that C A.A Then C - ~A- m B x N *,mB.

Lete C -- B via f. Then CIB x N via axtct(x), X) . It follows

that C , At which was to be shown.

Now assume that for every C if CA m A. the C1.cA. By (ii),

A x N mA" Therefore, A x N A, which was to be shown.



Finally assume tha*A x N 1, A. Since A!1 A x N by ('i) it

follows thatbA=•A x N, so that A is a 3ylinder. qed.

COROLLARY .1 (Rogers) A !nB4* A x Ne1. B x N

Proof First suppose A -AB. Then,

Ax N_, A ! B4!E L B x N

So A x N L, x N. But B x N is a cylinder, so by (ii),

Ax NTi B x N

Conversely, suppose A x N B x N. We have

A -I Ax N !Br,: x N-mB

Therefore A fmB. qed.

The Corollary shows that mr-reducibility can be characterized in

terms of l-reducibility and in fact that there is a canorical

homomorphism from the ordering of m-degrees to the ordering of 1-degrees

which is given by mapping each m-degree to the maximum i-degree in the

m-degree.

The next thaeorem gives a useful characterization of cylinders due

to Young [ 202 . A similar characterization can be found in Rogers

1 14L'.

THEIOPE'. !. (Young) A is a cylinder iff there exists a recursive

function h such that, for all x, Wh(x) is irnfinite, and

(x6A ->W C A) and (xeA =>W c A)h(x) h(x)
Proof First suppose that A is a cylinder, and Ax N -I A via f.

Let h be a recursive "uncr~ on such that, for all x,

h(x) =f(I x N)
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Then h has the desired properties.

Conversely, assume that h has the properties stated in the

theorem. Let C be any set such that C tf.A. It will be shown

that C iLA. Assume that C &n A via f, and define the recursive.

function g by induction as follows:

g(O) = f(O)

g(m + 1) = the first number y found in an effective listing

of W such that y (g(O), g(1)....,g(m)'
hf(m + 1)

Then CAI A via g. qed.

Rogers E141 has developed an analogue to the above theory in

which tt-reducibility takes the place of m-reducibility. This and

several other examples will be considered in the framework now to be

introduced.

DEFINITION 1.5 A reducibility is a transitive binary relation

between sets of integers such that for all sets A and B

A1EIB ->(AB» £ R.

NOTATIONS 1,6

( i ) If R is a reducibility, A B shall mean <(A,B~cR.

( ii) The letters R,S, and T shall be understood to range over

reducibilities.

The definition of R-cylinder is based on (iii).of theorem 1.2.
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DEFINITION 1.7 An R-cylinder is a set A such that

(B) L B &IA - B : Al

Thus, every set is a 1-cylinder, and the m-cylinders

are just the cylinders.

DEFINITION 1.8

( i ) AsaB means At-aB and B :EA.

( ii) An R-degree is an equivalent class of the equivalence

relation,=.

DEFINITION 1.9 A reducibility R is cylindrical if every R-degree

contains an R-cylinder.

1-reducibility is trivially cylindrical, and m-reducibility is

cylindrical by theorem 1.2. An example of a non-cylindrical reduci-

bility would be the trivial reducibility in which all sets are

interreducible. Indeed this reducibility has no cylinders. But

later we shall see that some ?"natural" reducibilities are not

cylindrical.

DEFINITION 1.10 If R is a cylindrical reducibility and A is a

set, then AR ("the R-cylindrification of A") denotes the 1-degree of

any R-cylinder ider in the egee of A. (AR must clearly be unique.)1

1For particular cylindrical reducibilities R, AR will often
denote, by abuse of notation, a particular R-cylinder in the R-degree
of A which can be found from A in a natural way, For example Al = A
and Am = A x N.
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With this irachinery, it is easy to prove an analogue to theorem

1.2.

THEOREPM 1.11 Let R be a cylindrical reducibility.

R

R

R
(iii) A is an R-cylinder • A • A

R
A -- B for some B

R R2
( iv) At B 4:A , B

( v ) A -- B-9t(C) L(C an R-cylinder and B -- C) -- A , C]

Proof Parts (i)- (iv) are either obvious from definitions or

are proved just as in theorem 1.2 and corollary 1.3.

To prove part (v), first assume A -- B. Let C be any R-cylinder,

and assume that B iC. We have

A -B - C

so A E•C. Since C is an R-cylinder, it follows that A i -C.

Conversely, assume that A is 1-1 reducible to every R-cylinder
Rto which B is 1-1 reducible. Then, in particular, A ! B , so

A -a B. qed.

2The statements of (i) - (iv) involve an obvious abuse of
notation which is unimportant because of the assumption that
A t1 B A Ai6B.
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COROLLARY 1.12 If two cylindrical reducibilities S and T have

the same cylinders, i.e. if

(C) 1 C is an S-cylinder <-4C is a T-cylinder2

Then S = T.

Proof Immediate from (v) qed.

Part (v) also suggests a way of obtaining a reducibility R from

a given class of sets which are to be R-cylinders.

DEFINITION 1.13 Let L be a class of .sets. Define a binary

relation R(a) on sets on integers by

<<A, B>e R(a CL) (C) i. Caa.& B r= C - A -L C

If R is a reducibility, let C(R) denote C I C is an R-cylinder3

If R and S are reducibilities R is weaker than S (S is stronger

than R). if S cR, i.e. if

(VA) (V B) [AeSB B A.&RB1

For example, if a is the class of all cylinders R(Q•R is

m-reducibility. If a is empty, the R( 0. ) is the reducibility in

which any two sets are interreducible. If a. is the collection of

all finite sets, then it is easy to verify that

<<A, B>>4CR( a, )=*jAlal JBI
LEMMA 1.14

( i ) For any L, R( 0.) is a reducibility

C ii) 0., ac =(&3 k( )• a.,) for any classes ,) a.
(iii) ScT=C(S) ((T), for any reducibilities ST.

( iv) S Re.C(S) for any reducibility S.
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(v) 0lcCR(C,) for any class ~.

( vi) R(00) = ReR( Z) for any class 4Z.

(vii) C(R) =CRC(R) for any reducibility R.

(viii) For any class a, R(C~) is the unique weakest reducibility

R such that every set inais an R-cylinder.

PROOF Parts i-v are immediate from definitions.

Part vi is proved from parts i-v:

a - CR(a) by ( v)

R(CL) : R R(,) by (ii)

Also, R(a) C RCR(0~) by (iv)

S. R() RCR(a)

The proof of vii is dual to that of vi.

(viii) Every set in•ais an R(0L)-cylinder by (v).

Now assume that every set in ais an S-cylinder for some

reducibility S.

Then (2c (S)

So R(aG) D RC(S) S,. qed.

DEFINITION 1.15 The closure of R (denoted R) is RC(R). The

closure of CL (denoted al) is CR(di,. R is closed if R = R and ais

closed if = =.

Lemmna 1.12 shows that the notion of closure defined above has

some of the usual properties of closure. For instance, the closure

:of is the smallest closed class containing ~. In particular •-•.Z

We also see from lemma 1.12 that R is closed iff R =R(Q) for some (0
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Therefore, every cylindrical reducibility is closed. On the other

hand the trivial reducibility in which all sets are interreducible is

closed but not cylindrical.

Lemma 1.12 shows that there is a natural I-1 correspondence

between closed reducibilities and closed classes that is in some ways

analogous to the correspondence between the intermediate fields of a

Galois extension and the closed subgroups of the Galois group which is

studied in Galois theory. However, a basic difference between the

two theories is that the closure operator defined here is not a

Kuratowski closure operator, i.e. we do not get a topology on ?2 from

the above definition of "closed class,, The problem is that, although

arbitrary intersections of closed classes are closed, it is not always

true that finite unions of closed ee4t are closed. To see this, let A

be any set and define

SZAA B I B A .

It is claimed that aAis closed. Well,

i •---(•D  (D  1 A => C !SI A)

Thus the reducibility R(aA ) has two degrees, one consisting of

the sets which are 1-1 reducible to A and the other consisting of the

sets not 1-1 reducible to A. Hence, the cylinders in the former

degree must be 1-equivalent to A because they are highest 1-degree in

their R( a A).degree, and the latter degree has no maximum 1-degree

(and hence no R( aA).cylinders) because it is uncountable. Thus every

member of CR(Q.) is in a, and aA is closed.

I
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For let

-R(aUQ-)

Then since E • A and E i,&, we have by transitivity

Ds- A & DA
A A _ A A

But since A and A are R(A Jt.)-.cylinders,

D•1 A, D-,A,

whence D and D are r.e. so that D is recursive and DKE. This shows

that E is an R(A u a-)-cylinder although D/A U Qi , so that aAUa-

is not closed.

The definition of R-cylinder we have chosen is in some respects

arbitrary. For instance, we could have defined A to be an R.cylinder

just in case the 1-degree of A was maximal among the 1-degreesoccurr-

ing in the R-degree of A i.e. if (B) [B_--A & A4 1,B= BA2A , and this

definition would also coincide with the definitions of Rogers for many-

one and truth-table reducibilities, although it is superficially a

much weaker requirement to put on A. We now show that these two

definitions must yield the same R-cylinders for a certain important

kind of reducibility.

DEFINITION 1.16 R is regular if every set of maximal 1-degree

in its R-degree is an R-cylinder.

1""

- 16 -

Now if A is a creative set and E is an infinite and coinfinite

recursive set,

I
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PROPOSITION 1.17 If for all A and B, the R-degree of A join B

is the l.u.b. of the R-degrees of A and B (in the partial ordering of

R-degreesinduced by R-)(i.e,, if join is an 1.u.b. for R), then R is

regular.

Proof. Assume that join is an l.u.b, for R and let A have

maximal 1-degree in its R-degree. Let B ALA.

To show: B*,A. We have:

A *~ B join A

B join AiSA (since join is l.u.b. for R)

i So, B join A ~*A by maximality of the 1-degree of A.

Hence, B• A.

Thus, A is an R-cylinder, which is the desired conclusion. qed.

The converse to the above proposition is false, for 1-reducibility

is trivially regular, although join does not give a l.u.b. for

1-reducibility. On the other hand, any reducibilities other than eL

which have been discussed in the literature do have join as a 1.u.b.

Also, a wide class of closed reducibilities as defined in definition

1.15 have join as an 1.u.b.

PROPOSITION 1.18 If R is closed and weaker than *m, then Join

is an l.u.b. for R.

Proof Since join gives a 1-upper bound, join is an upper bound

operation for any reducibility R. Thus it suffices to show that

A AC, BaC =A join B•C.

under the above hypotheses.
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Let R = R(O). Suppose A- AC and B:*9C. Let D.& and C4,1D.

To show:

(A join B)&,D.

Since D is an R-cylinder, and A and B are each R-reducible to D.

A -- , D and B , D

Therefore, A join B. D since join is a l.u.b. for m-reducibility.

But since D is an R-cylinder and R is weaker than m-reducibility, D

is a cylinder, so

A join B -AD. qed.

Proposition 1.17 and 1.18 show that every closed reducibility

weaker than m-reducibility is regular. I do not know whether

proposition 1.18 is true without the hypothesis that R is closed.

The collection of all classes (of sets) forms a lattice under

class inclusion. We shall now show that the reducibilities also

form a lattice in a natural way and investigate the connection between

these lattices.

DEFINITION 1.19

A*,,d B means Ai AB and A!3 B

A4. B means that for some finite sequence of sets c ,,C,"' ,c.
Sjoins

A=C1 , • =n,-% nd,for each i, 1* i*n-1, CiOjCi,1 or Ci0 50 i+ '

PROPOSITION 1.20 R nS aru R join S are reducibilities. RnS

is the weakest reducibility stronger than both R and S and R join S

is the strongest reducibility weaker than both R and S.

Proof Immediate qed.
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Of course, proposition 1.18 just says that the set of

reducibilities formsa lattice Twitlh join as its l.u.b. operation and

intersection as its g.l.b. operation when it is partially ordered

under the relation "weaker than."

PROPOSITION 1.21

( i ) C(R i join R2 ) = C(RI), C(R2)

( ii) R(auv) = R(Q.) r R(4)

(iii) If R1 and R2 are closed, C(R1 n R2 ) = C(R 1 ) UC(R2)

( iv) If aand 43 are closed, R(Qcn 6) = R(O) join R(3)

Proof (i). Clearly, e(R1 join R2)1c(R1)O•(R2 ), since

R1 join R2 is weaker than R1 and R2.  Now suppose that A is an

Ri-cylinder and an R2-cylinder, and let BtSR\join R2A. To show that

A is an R1 join R2-cylinder, it must be shown that B •,A. By

definition of R1 join R2 , there is a finite sequence C1, C2, ... , C

such that B= C1 , A= Cn , and for each i, 1fain-1

C. i aCi., or Ci C +1 We will show by induction on i that C : JA.

CIe A since CI= A. Now assume C.i iA, where li_ n-1. Assume

Ci+ 1 •, C. (The other case is the same.)

Then by transitivity A. Thus C. + A. Thus in

particular, C nAp i.e. B .sIA.

The proof of (i) is immediate and (iii) and (iv) follow from (ii) and

(i) respectively°
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SECTION 2. EXAMPLES AND APPLICATIONS OF R-CYLINDERS

In this section, we shall mostly be concerned with various

reducibilities of the truth-table type, It will turn out that

R-cylinders have convenient characterizations for such reducibilities.

These reducibilities will be defined using propositional formulas

rather than truth-table conditions.

DEFINITION 2.1 A propositional formula (or, simply, formula)

is a statement built up in the usual way from statement letters

Pn(n N) and the propositional connectives V,An, (,'or', "and", and

"not!', respectively)1

We assume that we have fixed an effective coding from the set

of formulas onto N. In fact, formulas will often be identified with

their code numbers.

DEFINITION 2.2

( i ) A propositional formulae- is true of a set A, just in

case r is true in the interpretation in which each Pn is

true iff neA.

(Example: P5v P7 is true of A iff 5C A or 7tA)

( ii) The norm of a formula r(rll) is nP occurs in c0r1.

There are two natural ways to obtain a reducibility from a set

of connectives. These are given in the following definition.

iMost of the theorems to follow do not depend at all on this
particular selection of connectives. However, the word "connective"
as used here, will always mean one of the three connectives v,A and -.



1

<<A,B >>L '.7(U) 4=- (3 recursive fX~Xvery connective in f(x)

Sis in U and (xtA4f(x) is true of B)]

(<A,B*)>> (U) (3 recursive f) (3m) (Vx) x every connective in

f(x) is in U and if(x)lJam and ( xtA4=> f(x) is true
! iB1

THIEOREM 2.4 For any set U of connectives, /Y-(U) and ((U) are

reducibilities weaker than im6 . Also J (U) &O(U) have join as a

l.u.b. operation.

Proof First suppose A, • B., It will be shown that <(A,B ))~ (U)

Let A -m1B via f. Then x A 4=>P is true of B.
f(x)

Since Pf(x) involves no connectives and has norm 1, we see that

(< A,B >>G (U) and hence << A,B > ) (U)

Now suppose that ((A,B>>4C (U) ' (< B,C (U). Let f and g

be recursive functions such that

(x A A4=f(x) is true of B) and f(x) uses only connectives from U

( x B4;*g(x) is true of C) and g(x) uses only connectives from JU.

Now let h(x) be the code number for the formula obtained by

substituting for every statement letter P occurring in the formulan

f(x) the formula with code number g(n). It is immediate to verify

that, for all x,

"In this definition, the identification of formulas with their
code numbers several times,

- 2~ 1

DEFINTITION 2.3 Let U be a se~t of connectives. Define two

b~inalry relations on sets of in~tegrers by:v
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(x•P Arph(x) is true of C) and h(x) uses only connectives

from U.

Therefore ((A, C>>)LU) soi1(U) is a transitive relation.

The above proof also shows that 0(U) is a transitive relation, so each

relation is a reducibility weaker than 4,m. It is immediate to show

that join l.u.b. operation for O(U) and d7(U). qed.
A

The above definitions yield ten reducibilities. All have been

studied in the literature. The following table names the

reducibilities.

Definition Name Abbreviati on

i (,v,,) ~^(*,WT)%A,-/%,) truth-table reducibility tt

h(IV, , 14Z(v)=d3((Ai-) bounded truth-table zeducibility btt

17( iv, 4J) positive reducibility3  p

(JV•;J) bounded positive reducibility bp

conjunctive reducibility c

03 (JAI) bounded conjwnctive reducibility be

disjunctive reducibility q

Q(i v) bounded disjunctive reducibility bq

"( ) =- Q(C1 norm-i reducibility n

-( =) O 3() many-one reducibility m

tt, btt, and m-reducibilities were introduced by Post in 1133.

3A positive formula is one which uses only the connectives v and A

--
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q.reducibility and n-reducibility were introduced by Rogers t4].

The remaining reducibilities have been studied by Lachla in in 0

(with somewhat different terminology) and the writer.

We now characterize the R-cylinders for these reducibilities.

Let A be a set. Each connective "operatest' on A as follows:

A, = Pmrpm is true of A) =

AA ,= <n)Pm Pm I is true of A = A xA

A = <m,Pn>m Pp is true of A) = A

LEMiMA 25 For any connective e,

Proof A via AnPk

A , r via k( <m,n>lPm^n

A (kvia (<m)n)m V i . qed.

THEOREM 2.6 Let U be a set of connectives, and let A be any set.

( i ) v~(U) is cylindrical. If A#N, the cylindrification of

A is given by A •= JX I every connective in x is in U

and x is true of Al xN

( ii) The following statements are equivalent:

A A ic . . da~, - d
i • • J • •JA•A= af• n or each cunnective In U

(b) A is a7(U)-cylinder

(c) A is a ~(U)-cylinder

kiii) ATU = •U)

The use of the word "via" is extended to truth-table reducibili-
ties in the obvious way here.
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( i ) Suppose A#N. 5  It Pwill be shown that A is the

VU1-cylindrification of A. AA LU )v i a .x xt < x, o>. Let

a'#A, and define h by

h(x) = 'x if every connective inx is in U

(at otherwise

Then A via h, so A _--s ) A.

Now it must be shown that A U)is a 9ZU)-cylinder.

Suppose B -u)AV(U) Then, since A Q "

Therefore there is a recursive function f such that

f(x) uses only connectives from U and

x e B4=>f(x) is true of A

Then B!6. AIO V~ via AX<(x),X<f ]. Therefore A is a

6 U).-cylinder.

It may also be checked that N may be R-cylindrified as

follows:

N= N = N= Nm = N

Ntt = N= 2 x XI x N

( ii) (a)=ý(b), Assume that A is a cylinder and A,*A for each

connective a in U. Assume also that A : N, since the

case A = N, can be checked separately.

The exceptional case that A = N would not appear anywhere if
we used, for each set U of connectives, an effective coding from the
formulas having only connectives in U onto N.

i



that A A. and therefore, since A is n ~vi~r it is

sufficient to show that

X every connective inxis in U andxis true of Af i! . A.
If-jZU, let A-, mA via f If v#U, let A &%A via g.

IfAtcU, let A ynA A via h.

Let a' A.

A recursive function k will now be defined to give the desired

reduction. If the formula x has some connective not in U, define

k(x) = a'. k(x) is defined for other arguments by induction on the

number of connectives in the formula x. If x has no connectives, so

that x is some Pn, define k(x) = n. Assume now that k(y) has been

defined for all formulas y having at most m connectives, all in U, and

that k(x) has m + 1 connectives, all in U. Then define

fk(y) if x is -iy

k(x) = g( < k(y), k(z) >) if x is y vZ

h( ( k(y), k(2) )) if x is yAz7

It is now immediate to verify by induction on the number of

quantifiers in x that every connective in x is in U and x is true of A

<=> k(x) c A so that k furnishes the desired reduction.

(b) ,-- (c). Trivial.

(c) -= (a). Assume that A is a &(U)-cylinder. Then A is a

cylinder since B(U) is weaker than m-reducibility. Also,

by lemma 2.5, A !k (lt ) A for each E in U. Thus, since

A is a O(U).cylinder, A E I A for each e in U.
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To show that A is a t?(U)-cylinder, it is sufficient to show
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(iii) Since 1U) is cylindrical, 'RU) is closed. By (ii)

0C(u)) = C(7u))

Therefore 3(U) = RC(B(U)) = RC(V7U)) =%U) =tJ7U)

de

Since A is "easily calculable" for each connective e, the

above theorem gives a convenient characterization of the R-cylinders

for each reducibility R which has been considered. For instance:

C is a tt-cylinder4*C is a btt-cylinderg4C x CaC, C a• -and 0

is a cylinder.

Thus, by theorem 1.11, it gives a method of defining each of

these reducibilities from its cylinders, without referring to formulas

or truth-tables. For instance,

AA B 4*(C) (C x C 4C & CA'• & C x NAC & B rC)-->A&,C]

Finally, the theorem shows that the reducibility V7U) can be

obtained in a "natural way" from the reducibility B(U).

DEFINITION 2.7 A set A is R - complete if A is r.e. and B!6A

for every r.e. set B.

COROLLARY 2._8 Let U be any set of connectives.

( i ) Each 6(U).degree contains a maximal l-degree iff

( ii) There are btt, bp, bc and bq degrees which have no

maximal 1-degrees.

Proof

(i) Suppose that each iE(U)-degree contains a maximal 1-degree.
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Then, since join is an 1.u.b. for M(U), each set of maximal 1.degree

in its 8(U) degree is a 8(U)-cylinder by proposition .117, so each

0d(U)-degree has a S(U)-cylinder. Therefore B(U) is cylindrical.

Since V7U) is also cylindrical, G(U) and 7-TU) are cylindrical

reducibilities having the same cylinders and are thus identical.

Conversely, assume 03(U) = 9-(U). Then, since (U) is

cylindrical, each d(U) degree contains a maximal 1-degree.

(ii) Post 113) constructs a simple set S* which is c-complete

and proves that no simple set is btt-complete. It follows immediate-

ly that,

tt # btt

p * bp

c~bc

Since. A& B iff A*.B, it follows also that bq#q. qed.

The question of whether every btt-degree contains a maximal

1-degree is due to Rogers.

Although the definitions of various reducibilities R given in

this section is convenient for the development of the theory of

R-cylinders, a different kind of formulation) suggested by Rogers, is

often more useful in applications. This will be given now.

DEFINITION 2. Dx is Dx if x#0; D! is O\ .

THEOREM 2.10

(i) A-cB4!; (a recursive f) (Vx )EX A 1D!, 0 ,,3•'

6The non-empty sets Dý are used to characterize these reducibili-
ties roughly because every formula has at least one statement letter.
However, the substitution of the D. for the Dx would at most change
which sets are R-reducible to N and .
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(ii) A,9pBC 43(3 rec. f)(Vx)Ixt&A4=(Ay)L yc DI(x)& DI C B
4"( 3 rec. f))(V x) xL A (VyY) L y DI(x)DI A B0*3)

(iii) Afa B4--( rec. f)(3 m)(V x)[ U.. ?nl A

(xf A ý3(3 y) ye&D ) & D cB3

(iv) (Rogers) A tt.-5( 3 rec, f)(V x)l[ x C. A

(3 U)(3v)L(usv)I. D(X) & D cB & D' CB

(v) AI (3rec.f)3 f)( m )([x UI UV, :Ern

(xi A4 (3 u)(3 v) L(uuv >DI (x) & DI4 C B & D c. )

(vi) A6"nB 4= (3 rec. f)(Y x) xCA4= f(x)eB join BI

Proof For all parts, observe that

x 1A Px2 A ... A pxn is true of A<• DxCA where D~t~Olx2,...,x

Similar statements can be made for formulas involving only disjunction

or only negation.

(i) is immediate by the above remark.-

(ii) will follow from the above remark if it can be shown that

every positive formula (i.e. formula using only A and V ) is equivalent

both to a conjunction of disjunctions of statement letter and to a

disjunction of conjunctions of statement letters. But both of these

facts follow from an easy induction on the number of connectives in

the positive formula.

(iii) follows by the same argument as (ii).

(iv) and (v) follow from the fact that every propositional

formula is equivalent to a disjunction of formulas, each of which

is a conjunction of stamtenet letter and negation of statement letters.
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(vi) is immediate, qed.

Of course, similar characterizations could have been given for

any reducibility that has been introduced above. The reducibilities

in the theorem are those which have the most relevance for this paper.

COROLLARY 2.11 AapB, B r.e. A e.e.

Proof Immediate from (ii) and the projection theorem. qed.

COROLLARY 2.12(cf. definition 1.19).

( i ) q join a = p

bq join be = bp

n join c = n join q = n join p = tt

n join be = n join bq = n join bp = btt

( ii) If V and W are sets of connectives, then7

7(v) join 7(w) =t v u w)

6((v) join O(W) =63(V u W)

Proof

( i ) q join ccp, trivially. Suppose ALkB. Then by the

theorem,

A Jx ID.:n Bn t Oe-,B

Therefore, A•&  B. Thus q join c = p. Similarly, bq join bc =bp

Now suppose A~StB. Then, by the theorem,

AApB join B_,B

(This statement, unlike the rest in this section, appears to
depend on the choice of- v andAas basic connectives. The iirriter has
not explored the question of whether an analogue to (ii) holds for an
arbitrary selection of connectives.
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Therefore, As B. Thus tt n join p.

Now it will be shown that pc c join n. Suppose ALp B.

Then

A -4,B DdD B fl r. I xI n Btfi I Dxe- fl::B,ýAB

Therefore As .. B so pcc join n.

Thus ttcn join pen join c join n = n join c. Since n join cctt

- trivially, it follows that n join c = n join p = tt. Similarbf,

n join q = tt. The statements for btt follow by the same argument.

(ii). (i) shows that all non-trivial instances of (ii) are true.

qed.

It will be shown later that it is not necessarily true that

t/ v)n 7(w) = 7vn w)

orI3(V)l0 (W) = W(Vn W)

and, in particular, that m*bqlbc.

'The following four theorems concern c-reducibility.

THEOREM 2.13 (Fischer) If S* is the simple tt-complete set

constructed by Post, then S* x S**~,S*. Thus m-reducibility and

btt-reducibility differ on the r.e. nonrecursive sets.

Proof It follows immediately from Post's construction of S*

that S* is c-complete, so that if A is any r.e. set, AgeS*. Now

assume that S* x S**.S*. Then by the characterization of

c-cylinders, it follows that A-e,,S*, for any r.e. set A, so that S*

is nm-comolete and thus creative. This contradicts the fact that S*

is simple, so it follows that S* x S* #S*. Since S* x S*-_•S*, it

follows that m-reducibility and btt-reducibility differ on the r.e.
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nonrecursive sets. qed.

Remark. The above theorem shows that if A is any c-complete

noncreative set, then A x A#,,A. Another generalization of this

theorem, to be proved in section 5, is that if A is any set which is

simple but not hypersimple, then A x AmA.

iTHEOREM 2.14 Every c-degree contains a set A such that A x A4,A.

Thus there are r.e. sets A which are neither recursive nor creative

such that AxA%,,A.

Proof Every c-degree contains a set A such that A x A*mA since

c-reducibility is cylindrical. In particular, the c-degree of a

hypersimple set B contains a set A such that A x AiiA. A is r.e.,

but A is not recursive since B is not recursive, and A is not creative

since B is not tt-complete and thus not c-complete.

Remark The above example answers a question of P.R. Young in

L 193 .

A set of formulas in a first-order language is called a theory

if every formula deducible from formulas in the set is itself in the

set. A set of integras is called a theory if it is the image of a

theory under some 1-1 effective coding from a first-order language

onto the integers. As Rogers has pointed out in I143 , if B is a

theory, then BxB4,B; for ifrsandr r are formulas of the language of

the theory, then r7 and r are both in the theory iff the conjunction

OAC is.the theory. Also, it is easy to see from Young's characteri.

zation of cylinders that every theory is a cylinder. Hence every

theory is a c-cylinder.
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THEOREM 2.15 A is a c-cylinder iff A x AiiIA and IAlt L.

Proof If A is a c-cylinder, then since A x A A and A is a

cylinder, A x A•,A. Also, since A is a cylinder, IAM1 i.

Now assume that A x A*,A via f, and IA(i.If A is empty, A is

certainly a c-cylinder. So assume A:#, and let m and n be distinct

members of A. An infinite r.e. subset of A is defined as follows:

SO = Im, ni

Sni = S x Sn+ n n

B= USu
no

It is clear by induction that each Sn is a subset of , so that

B is a subset of A. Also, since f is 1-1, IS,,,1 1=IS,.I Thus, since

15,6 I, B is' infinite. Now let g be a recursive function such that

W g(x) f(Zjxx B)

Wg(x) is infinite since B is infinite and f is 1-1. Also

( A) Wg(x) K).
Thus Wg(x) witnesses that A is a cylinder by Young's character-

ization. Therefore A is a c-cylinder, since A x A A, A qed.
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Feferman has shown that if A is any non-empty set, then there

is a theory B such that A., B and B-.A. Hence every non-empty

c-cylinder is isomorphic to a theory, and, therefore, every non-empty

c-cylinder is a theory. Since no theory can be empty, it follows

that the theories are precisely the non-empty c-cylinders. The

result can be stated in more standard terminology as follows: A is

m-equivalent to some theory iff A is non-empty and A x Am,,A.
1
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The above characterization could be applied to yield alternative

descriptions of R-cylinders for reducibilities other than

c-reducibility (such as tt-reducibility).

We now consider R-cylinders for a few reducibilities other than

the truth-table reducibilities discussed before.

The writer knows of no good characterization of T-cylinders.

Rogers [14] has shown that if K is a creative set, then no T-cylinders

lie above K in the T-ordering. Hence the closure of T-reducibility

has a maximum degree containing K, and T-reducibility certainly is not

closed. On the other hand Martin (unpublished) has shown that if

BmTA, and there is no hyperimmune set in the T.degree of A, then

B1ttA. Thus if A is a tt-cylinder and the T-degree of A has no

hyperimmune sets, A is a T-cylinder. Martin has also shown that

nonrecursive T-degrees exist which contains no hyperimmune sets, so

that nonrecursive T-cylinders do exist. It may be that the

T-cylinders are just.the tt-cylinders which have hyperimmune-free

T-degree 8

DEFINITION 2.16 Aa B iff (3 p.r.T) (Vx ) Lx&A 4 e (x) cgt. &

Y(x)e, B3.

This reducibility is introduced to facilitate the discussion of

i-reducibility which will follow. If one defines

A = Ix) x(O) c g t. & (() fA
Then A" is a j-cylindrification of A, and A is a j-cylinder iff AkA.

8(Added in proof) It is easy to verify that the T-cylinders are
just the tt-cylinders of hyperimmune-free T-degree. The proof also
shows that every T-degree either consists of a single tt-degree or
contains infinitely many tt-degrees.



For,

A eSA via Ax Cfx(o)l

and A ikA via f, where f is a 1-1 recursive function

such that, for all x and y, .4 (y) = x.

Now, if B_4A via ', and f is a recursive function such that

( = (x) ifY(x) cgt.
dgt. otherwise

Then xC B 4r"(x) cgt. & Yfx) A.f(x) (0) cgt. & P(x) (0) e A4£0(x)cAJ

so B -41 A via f.

Thus, B13A:: BjA &- ,A,3 so that Aj is a j-cylinder in the

j-degree of A.

DEFINITION 2.17 A- i B (A is isolically reducible to B) if

(3 p.r. i -I)() X)LEA<=* (?(x) cgt. e. & c

Using Young's characterization of cylinders, it is easy to show

that

A- B, B a cylinder3A <-iB

Hence if A is a cylinder, Aj is an i-cylinder in the i-degree of A.

However, if A is immune, then A is not in its i-degree, for every set

i-reducible to an immune set is immune. I do not know whether any

(or all) immune sets are i-equivalent to i-cylinders. In fact, the

only i..-cylinders I know of are the j-cylinders and the finite sets,
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SECTION B REDUCIBILITIES ON THE R.E. SETS

It was mentioned in section 2 that many of the reducibilities

defined there differed on the r.e. sets. Actually, it may be shown

that the ten reducibilities defined in the table on page 22 all

differ on the r.e. nonrecursive sets, except that n and m coincide on

these sets. Lachlan has a general theorem to this effect in [103 •

The theorem is proved by a priority argument, and, of course, each

instance of the theorem may be proved by a straightforward Friedberg

type priority argument. These arguments will not be presented.

In this section it will be shown that n and m reducibility coincide

on the nonrecursive r.e. sets and that btt and bp reducibility coincide

for certain special r.e. sets. Then it will be shown by a priority

argument that there are r.e. sets A, B such that

AB.B, A-3B, and A#,B.

Thus, m-reducibility is not the intersection of bq and be.

PROPOSITION 3.1 Suppose that A and B are r.e. and N#B:P a

Then A i,. B =3A 4im B.

Proof Assume A and B are as above with f a recursive function

such that A4,B join B via f. Let b LB and b raB. To compute g(x),

first compute f(x). If f(x) is even, let g(x) =f If f(x) is

odd, then xtL 4 F B, so look for x in A and look for C()--
2 1

in B by effectively listing these sets. If x is found in A, set

g(x) = b. If f Wx- is found in B, set g(x) = b. Then g is a
2

recursive function, and A,,mB via g.

DEFINITION 3.2 (Friedberg) A set A is maximal if A is r.e. and

coinfinite and for every r.e. set C, either CnA or CnA! is finite.
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THEORFEM 3 If A is a maximal set and AAbtCBe where B is r.e.,

then AsbpB.

Proof Assume the hypotheses of the theorem. Since A-- B, there

is a recursive function f and a number m such that for all x

xCA 4(3u= ) ((v)Y <u, v>CD & D C B & DC
f(x) v

& U Du U D vs m
The function f exists by part (iv) of theorem 2.9 and the

observation that the sets D may be used in place of the D' in thatX ,x

part of the theorem.

Define

N(f) = sup ' <u,v I (uv> c Df() &D
SV

N(f) ("the negatii&vity of f') measures, in a sense, the extent

to which f fails to be a positive truth table reduction. In particular,

if N(f) is zero, f immediately yields a bounded positive reduction,

since in that case all the D 's such that (u,v) occur in any D
v f(x)

are empty. Thus the theorem holds if f has negativity zero. Now

assume that the theorem holds for all f's which btt-reduce A to B as

above and have negativity n. Let f'have negativity n + i, and assume

A, ,,  via ft as above. Define a partial recursive function e by

the least <u,v> such that <u,v> e Df(x) and v O, if

• (x) = such exists

divergent, otherwise

(The element (u,v> will be "removed" from D(x) to yield a
reduction of lower negativity.x)

reduction of lower negativity.)
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Define the "projection functions" -T, and 7rTto be A(x,y)>xj

and 2<, p y)y- respective'ly.

Let C = [XI Y(x) convergent & D 7.0 flI0 ~3

Since C is r.e., either CnA is finite or CnA is finite.

Case 1 C Ai is finite, Define a recursive function if by

Df'(x) if Y"(x) dgt. (i.e. if DfI(x ) is "positive")

Df(x) - (Df,(x)-(x) x)U))(<7ri(x),O>J if Y(x) cgt. & xCfCli

E if x E. A!

where E is a fixed positive "truth-table condition" which is false of

B such as

where b' B.,

f is recursive since C A is finite and the domain of Y is

recursive. From the definition of C, A •_B via f. Also, f has

negativity at most n. Hence, by the induction assumption, A4bpB.

Case 2. •n is finite. A recursive function g will be defined by

the following instructions. Given x, see if x CIn A. If so,.give

output 0. If not, then xC VA, Simultaneously list C and A until

x appears in one or the other. Give output 1 if x first appears in

C and output 2 if x first appears in A. Now define f:

•E if g(x) = 0

Df(x) •(x )  '(x)Y if g(x) = 1

F if g(x) = 2
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N(f)e n, so A bpB.

Thus the theorem has been proved for all reductions of finite

negativity, so it certainly holds for all bounded truth ita;e

r
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where E is a fixed positive tt-condition false of B as in case I and

F is a fixed positive tt-condition true of B. f gives a reduction of

A to B, by the definition of C.

reductions. qed.

It will be shown in section 4 that the following analogue to

theorem 3.3. fails:

A maximal, B r.e. A 6 B =>A zp B

It can also be shown that it is not true that

A hypersimple, B r.e., AS-tB==AA bB.

THEOREM J.. There are r.e. sets A,B such that

AL4B , A- 64B, and A&B.

Proof The sets A and B will be such that, for all x

xLA 14~ (4xL B and 4x +icB)

and XL A4= (4x+ 2 &B or 4 x+ + B)

Hence A ý B and AibSB.

A straightforward priority construction of the Friedberg type

will be used to ensure that A4,B. We imagine that we have two

infinite vertical lists of N which will be called the A-.list and the

B-list. We also have symbols ,'"+" and "-" which can be associated

with members of the A-list and the B-list as the construction proceeds.

Finally, we have a movable marker for each i N which can be
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associated with numbers in the A-list and which can be moved to

larger numbers in the A-list as the construction proceeds.

The construction will be given inductively by stages, and A and

B will be defined by

A = x x receives a "+" in the A-list at some stagel

B = xI x receives a "+" in the B-list at some stage}

The purpose of the movable marker is to prevent j.from

yielding an m-reduction of A to B. In particular, if Ij is

associated with a number aj in the A-list, the construction will try

to ensure that

a C A 'Pi D(aj) B

Call an integer in the A-list free if neither x nor any larger

number has any mark or marker associated with it in the A-list.and

neither 4x nor any larger number has any mark associated with it in

the B-list.

The construction is as follows:

Stage n (n 2 0)

Associate 1J with the least free integer in the A-list.

Let ao,a i , ...,a be the present positions of the markers
0• n

S] , C11 , ...· . Let j be the smallest number i such that

a. has neither a "+"1 nor a "-" in the A-list and
1

Vi (ai) is convergent in n or fewer steps

(If no such i exists, go to stage n + 1.)
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Let c= O (a.) We will try to arrange that

a A A ~=> cýB

Case 1. c has a "+" in the B.-ist.

Put a " -" by a. in the A-list and a "-, by each member of

(4x, 4x + 1, 4x + 2, 4x + 3) in the B-list.

Case 2. c does not have a " + " in the B-List and c 4x, 4x + 13

Put a "-" by c in the B-list and a "+" by a. in the A-list.

Also put a "+" by each member of I4x, ..., 4x + 3 -c. ) in the

B-list.

Case 3. c = 4x or c = 4x + i

Put a "+" by c in the B-list and a "-"by a. in the A-list.

Also put a " -" by each member of 4x,..., 4x + 3 .4c in the B-list.

In any case, if j r n, move the markers Mk such that jwk n

down to free integers in the A-list.

Note that the above stage was designed so that j cannot give

an m-reduction between A and B if the " - ,"symbols introduced at that

stage are not disturbed by some later stage.

A and B are r.e. because, given n, it is possible to determine

effectively what numbers are put into A and B at stage n.

A •,0B and A S : B because the reductions given at the beginn.

ing of the proof hold true for the partial listings of A and B obtained

at the conclusion of each stage.

Observe that a marker n is caused to move only when a marker

nsuch that j '. k (i.e. a marker of higher priority) is attacked

(i.e. plays the role of in the construction.) Also, a marker
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is attacked at most once at a given location. Hence, by a simple

inductive argument, each marker moves only finitely often and thus

achieves a final resting place.

Let j be any given number. Let a. be the final resting place

of * It is easy to see that if Vj (aj) is convergent, then

must be attacked at some stage after f achieves its final resting

place. Assume that ?V(aj) is convergent, and let n be a stage such

that 9 is associated with a at stage n and is attacked at that

stage. Then none of the ,- " symbols introduced at that stage can

ever be changed to "+" signs at a later stage lest be caused to

move. Thus, by the remark just after the construction, Ifj cannot

yield an m-reduction of A to B.

Therefore A ,B. qed.

Arguments similar to the above can be used to show the distinct.

ness of the various reducibilities of section 2 on the r.e. sets.



- 42 -

SECTION 4 SEMIRECURSIV SETS

In this section, the notion of recursiveness will be generalized

recursive sets will be proved, the properties of semirecursive sets

will be studied, and the information thus obtained will be applied to

the study of reducibilities.

DEFINITION 4.1 A set A is semirecursive if there exists a
of

recursive function f two variables such that, for all x and y,

( i ) f(x,y) = x or f(x,y) = y, and

( ii) (xrA or yeA) => f(x,y) .A.

Such a recursive function is called a selector function for A.

We now recall some standard dei• .•itions.

DEFINITION ,_,2 (Dekker, MNyhill, Tennenbaum)

( i ) Let A be a set and let a0,al ... be the members of A in

increasing order. A is said to be retraceable if there is a partial

recursive function * such that

S(ao) = a
and T~(ai +i = a i for eachi-0.

Ih such a case, I is called a partial retracing function for A.

( ii) Let A be a set, A is said to be regressive if there is an

enumeration ao,a , ... of A and a partial recursive function such

that

Y(a.) = a

and '(a )= a. for each i O.
1+1 . 1
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In such a case, y" is called a partial regressing function for A.

It is easy to show that a retraceable set is recursive in every in-

firite subset and that a regressive set is recursively enumerable in

Ir a*r-. r~

every Ilnlnit5e subset. See UeKKer and$~ ..l.i L• M Hence every

retraceable set is recursive or immarne and every regressive set is r.e.

or irmmune.

TH~OPRE ,3 If A is r.e. and coregressive, then A is semirecursive

Proof Suppose that A is r.e. and ' is regressive, with • a

partial regressing flunction for A.

kie wi2 ll define a selector function f: Given x and y,

simultaneously enumerate A and IY"(x)I n 0 and '"(y) Ia 0 .

Stop the procedure the first time any one of the following occurs:

( i ) x is found in A

(ii) y is found in A

(iii) x is found in 'Y"(y)lnzO

( iv) y is found in j'"(x)\no)

If event (i) or (iv) stops the procedure, set f(x,y) = x.

If event (ii) or (iii) stops the procedure, set f(x,y) = y.

f is partial recursive. Also f is total, for if for some x and y

the procedure never stops, then x ' A and y & A. Then it is clear

from the definition of regressiveness that event (iii) or (iv) must

occur, Thus f is recursive.

Now suppose f(x, y)A. It must be shown that x , A and y A.

Since f(x,y) f A, f(x,y) was comupted via event (iii) or event (iv).

Suppose, without loss of generality, that it was comrputed with event

(iii). Thus f(x,y) = y, so y f ý.. Hence by the definition of
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regressiveness

But, by (iii) X r{"Y(y) In• O , so xfA and y~A. qed.

DEFINITION 4.4 An R-degree is r.e. trecursive3 if it contains

an r.e, Lrecursive] set.

COROLLARY 5 Every r.e. nonrecursive Turing degree contains a

semirecursive hypersimple set.

Proof The hypersimple set constructed by Dekker in each r.e.
to be

nonrecursive T-degree has been shown by Dekker and Myhill coretrace.

able and thus coregressive. qed.

We now prove a more extensive existence theorem for semirecursive

sets. The present writer introduced the notion of semirecursive set

and the following construction was first used by McLaughlin and 'Martin

to prove the existence of a continuum of semirecursive sets.

THEOREM 4,6 For any set A, there is a set B such that B is

semirecursive, B_-A, and A&,B.

Proof Let A be given. To avoid trivial cases, assume that A is

infinite and coinfinite. Define a real number r by

neA

For each integer x, define a rational number r byx

r x - ' (of. definition 2.8)

Define B = x ,

Now B is semirecursive with the following selector function:

S if r >r



To see that B -p A, firs define a recursive function h by

h(x) = the largest member of D ,
x

To see that B •fA, it will be sufficient to show that

xe Be>for some y such that D C 0,i, ... ,h(x) & r xr,

Dc A

ySuppose xe-. Let f = A ,jI,...,\h(x) Then, since A is

coinfinite, it follows from the fact that r X r and an elementary

property of binary expansions, that r ~ r , so the desired y exists.
y x

Now suppose that such a y exists. Since D' c A. r r.y y
Since r : r , it follows that r ~r and so xe ,B.

x y x

To show that A-attB, we uwill show, by induction on n, how to

define g(n) such that

nA <~t (the formula) g(n) is true of B

The induction will be uniform in n, so g will be recursive and

it will follow that A SLtB.

0 A-4E r :14=> I B (since r = 1  =1)

So let g (0) be a code number for the formula "P ."

Now assume that g(0),g(1), ... , g(n-1) have all been defined.

Let DD , D , ... , D (k = 2n ) be a list of all subsets of
x1  x2 xk

0,0, ... ,n- . To make the procedure definite, assume x x 24...4x k

Now,

&aA =A 1...n-1 = DA1 to 1' B (whey,- D3, Dx19 tn )
or

or

A 0,1, .... n D = D & yfe, B (,where Dj = UD ii)
xk kk k
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The above statement follows from the same reasoning about binary

expansions that was used to show B-6 A. .ow by the induction

assumption, for each i the statement "AA iO,1, ... ,n-11 D x" can be
A.

uniformly translated into an equivalent statement about B. Now let

g(n) be the code number for the formula obtained from the right hand

side of the above equivalence when these equivalent formulas are

substituted in. This completes the induction. qed.

COROLLARY 4 ( i ) (McLaughlin, Martin) There exist 2 N

semirecursive sets.

(ii) Every r.e. tt-degree contains an r.e.

semirecursive set.

TEMOREM.! 4.8 The following statements are equivalent.

( 5 ) A is semirecursive.

( ii) AxA and AxA are recursively separable.

(iii) (3 rec. h) (V x) IDxn A# =th h(x) LDx A .

( iv) (McLaughlin, Appel)j unpublished] A is the lower half of

of a cut in a recursive linear ordering of N (i.e. there is a

recursive ordering linear Foof N such that yeA, x& y x A.)

Proof (i)4ý* (ii) and (iii) =,(i) are trivial. Thus it will

be sufficient to show that (i) - { (iv) J# (iii).

Assume (i), and let A be semirecursive with a selector function f.

A function g mapping the integers 1-1 into the rationals will be

defined such that there are recursive functions f , f2, and f w3th
f. X ) f2 X)e

g(x) =(,.1) 1 Then the desired recursive ordering will be

f3 (X)
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defined by

Aday~g(x) - g(y)
g(n) is defined by induction on n.

Define g(O) = 0

Now assume that g(O),g(1), *.., g(n) are all defined. Let

XOX1 , ... ,xn be the integers from 0 to n arranged in such a way that

g(x)< eg(xi)< ... < g(xn).

Case 1. f(n + 1, x0 ) = n + I Then define g(n + 1) = g(xO ) -1.

Case 2. f(n + 1, x n) = xn  Then define g(n + 1) = g(x n ) +1.

Case 3. Neither case I nor case 2 applies. Then let j be the

largest number i such that f(n,x.) = n. Then define g(n + 1)

•(x÷g~l Note that j exists and is less than n because neither

case 1 nor case 2 applies.

This completes the definition of g. The recursive ordering -o,

is defined as above. It is straightforward to verify by induction

on max xc,yl that

Y e A, x _oy--- x c A

Thus (iv) is proved.

Row assume (iv), and let 4- be a recursive linear ordering of N

such that A is the lower half of a cut in "oo Let h(x) be the least

me~ber under J oof D if D is non-empty and 0 if D is empty. Then hx x X

is a recursive fýnction, and

D n A 0 h(x) e D x A
x x

Thus (iii ) is proved. It should be noted that (iii) can also be

proved directly from (i) without difficulty by defining h(x)

inductively on. the cardinality of Dx . qed.
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The following theorem gives some simple properties of semi.

recursive sets.

THEOREM 4.9 Let A be semirecursive and let B be any set. Then,

( i ) AAxA, A-mcAxA

( ii) B4,A =!>B

(iii) B v A = B semirecursive

( iv) The positive deg-ree of A consists of a single rmndegree.

( v ) A immune =Q A hyperimmune

(vi) A1 A =QA recursive

Proof Let f be a selector function for A for remainder of proof.

( i ) AxAmsA via f, or more precisely, via '(x,y>tf(x,y) .

Thus AxA1,mA. The complement of A is also semirecursive, so AxAa-A.

( ii) By (i) and theorem 2.6 AxN is a p-cylinder. Thus (ii)

follows.

(iii) Assume B-A A. Then B-,A by (ii). Let B kA via g.

Define h:

x if f(g(x),g(y)) = g(x)
h(xy) =

y if f(g(x),g(y)) + g(x)

Then h is a selector function for B, so B is semirecursive.

(iv) Assume Bi A. To show: BmA. By (ii) BEd A.

(iii), B is semirecursive. Hence by (ii) (applied with B and A

interchanged), A A B.

( v ) Assume that A is infinite and not hyperimmune. To s]

A is not immune. Let k be a recursive function such that D
k(x)

witnesses the non-hyperim.munity of A i.e., for all x and y

Dk(x)n A : and (x y) - (Dk(x) n Dk(y ) )

By

how:



Let h be a recursilve function such that

D A Af A >h(x)&A.
x

Then since for each x, hk(x) Dk(x)" A, the function hk is a

1-1 recursive function• •ith range a subset of A, so A is not immune.

( vi) Suppose As .. Then A _ by (ii). Let A4mA -via g.

Then x A f(x, g (x)) > x

Hence A is recursive, qed.

Many facts about reducibililts can now be deduced immediately

from the preceding theorem and the constractions at the beginning of

this section.

COROLLARIES 4,10

( i ) Each tt-degree contains a p-degree consisting of a single

m-degree.

( ii) Each r.e. tt-degree contains an r.e. p-degree consisting of

a single m-degree.

(iii) No p--conmlete set is semrnirecursive.

( iv) There exists a set which is tt-corplete but not p-complete.

( v ) Not every nonrecursive r.e. tt-degree contains a simple

semirecursive set.

( vi) (Dekker) Each simple set having a regressive complement is

hypersimple.

(vii) Each t.t-degree contains incomparable p-degrees.

(;iij) There exist hypersimple sets A such that AxA is a cylinder.
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Proof

( i ) follows from theorem 4.6 and (iv) of theorem 4.9

( ii) follows from Corollary 4.7 and (iv) of theorem 4.9

(iii) Assume A is p-complete, and let B be any set which is

simple but not hypersimple. B is not semirecursive by ( r') of 4.9.

Thus, since B is not semirecursive and B. A, A is not semirecursive

by (iiU of 4.9,

( iv) By (iii), the r.e, semirecursive set in the complete

tt-degree is not p-complete.

( v ) Any simple set in the complete tt-degree would be hyper-

simple, violating the theorem of Post that no hypersimple set is

tt-complete.

( vi) A simple set with a regressive complement is sermirecursive

by theorem 4.3 and hence hypersimple by (v) of 4.9

(vii) The recursive tt-degree contains 0 and N, which are

p-incomparable. Any non-recursive tt-degree contains a semirecursive

set which is p-incomparable with its complement by (vi) of 4.9.

(viii) Young t193 has shown that if A is simple, then AxA is a

cylinder iff AxA im, A. Thus if A is any hypersimple semirecursive

set, AxA is a cylinder. qed.

Further results of this kind can be obtained from a theorem due

to Yates. This theorem will be of fundamental importance in section 5.

THEOREM 4.11 (Yates) Each r.e. nonrecursive T-degree contains a

simple set which is not hypersimple.

Proof. See Yates L173] qed.
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COROLLARY 4.12

( i ) Each r.e. nonrecursive T-degree contains an r.e. set which

is not semirecursive.

( ii) Each r.e. T-degree contains at least two p-degrees.

Proof ( i ) follows from the theorem and (v) of 4.9

( ii) follows from (i) above, from (iii) of 4.9 and

corollary 4.5.

It will be shown that hyperhyperimmune sets are not semirecursive.

The proof is a slight strengthening of an argument due to Martin.

THEOREM 4.12 (Martin) Every infinite semirecursive set has an

infinite co-r.e. retraceable subset.

Proof Let A be infinite and semirecursive. We may assume that

A is immune, since otherwise A has an infinite r.e. subset and hence

an infinite recursive subset and the result is immediate. Suppose

that A is the lower half of a cut in a recursive linear ordering

A.of N. Define

B = x \ (V y)lx4 y 4x oy

It is claimed that B is the desired infinite co-r.e. retraceable

subset' of A. Clearly B is co-r.e. To show that BcA, assume xC B.

Let y be any member of A which is greater than x. Then x foy, since

x & B. Therefore x f A by the definition of "'cut." Hence BcA.

Let bO be the least member of B. (B will later be shown non-empty).

Then the recursive function will be a retracing function for B:

b if xdb
f(x) = o a

the largest number z such that za x and

(I u)j za xS x => z: f*u , otherwise
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g(n) A y=-> g(n)Aby

This says that g(n) 4 B. But

g(n) :j

(since btis a total ordering)
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f is total since if x >b 0 a number z with the required property,

i.e. b , will exist, and hence a largest such z Twill exist. Now

suppose x• B and z . x. Then

z L B4= (Y u) L 74 u !x s4ZA u1

The implication to the right is immediate from the definition of B

and the implication to the left follows from the fact that x e B and -o

is transitive.

Thus f maps the least member of B to itself and every other member

of B to the next smaller member and is therefore a retracing function

for B.

It remains to show that B is infinite. Assume not. Let j be a

member of which A is larger than every member of B. Now the following

recursive function g will enumerate an infinite r.e. subset of A. This

will contradict the assumption that A was immune.

g is defined inductively:

g(0) = j.

g(n + 1) = the smallest number y such that

y > g(n) and y&-,g(n)

Range g is a subset of A since j3 A and g is a decreasing function

with respect to the ordering 4o" To show that g is total, assume the

opposite and let n + 1 be the least argument for which g is not defined.

Then for all y,
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so the assumption that j was larger than every member of B is contra-

dicted.

Range g is infinite and r,e. since g is a 1-1 recursive function.

qed.

Now that it has been shown that every infinite semirecursive set

has an infinite retraceable subset, it is natural to inquire whether

every infinite retraceable set has an infinite semirecursive subset.

The following corollary shows that this is far from being the case.

COROLLARY 4.14 If a retraceable set A has an infinite semi.

recursive subset, then A is recursive in K, whereK is any creative set.

Proof Suppose A is retraceable and has an infinite semirecursive

subset B. By the theorem, B has an infinite co-r.e. subset C. Since

C is an infinite subset of A and A is retraceable, A is recursive in C.

Thus A is recursive in K. qed.

COROLLARY 4,15 Each infinite co-r.e. regressive set has an

infinite co-r.e. retraceable subset.

Proof Each such set is semirecursive by theorem 4.3. qed.

The principal corollary of theorem 4.13 will be that no hyperhyper-

simple set is semirecursive. To be able to make a stronger statement,

we state a definition and theorem.

S;FINITION 4._16

( i ) (Young, Martin) A set A is finitely strongly hyperimmune

(FSHI) if A is infinite and there is no recursive function f such that

and for all x and y,

[(ix Y) w(x)f Wf(y) 3 W() finite & wf(xpA &
U Wt(x) N
K
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( ii) (Yates) A function f is basic if f is finite-one i.e. if

the set fCl(x) is finite for each x.

THEOREM 4,. (Martin) A set A is FSHI iff it is infinite and has

no infinite subset retraced by a basic recursive function.

Proof Just the "only if" part of the theorem will be needed, and

only this part will be proved. Suppose that the basic recursive

function f retraces an infinite subset of A. We may assume (of.

theorem 5.17) that f(x)% - x for each x, Then for every x there exists

an n such that fn + (x) = fn(x). Hence if we define

f(n) = x J n is the least number m such that

f+.1'= m (x)
the sets Wf(n) witness that A is not FSHI qed.

COROLLARY 4,18 No FSHI set is semirecursive.

Proof The retracing function f defined in the proof of theorem

4.13 is a basic function so that the sermirecursive set A cannot be FSHI,

It is not necessary to use the proof of 4.13, however, since it is easy

to see that each co-r.e. retraceable set is retraced by some basic

recursive function. qed.

Since hyperhyperimmune sets are trivially FSHI, it of course

follows that no hyperhyperimmune set is semirecursive. Thus no hyperhyper-

simple set is m-reducible to a coregressive hypersimple set. However,

Appel and McLaughlin have proved a stronger result by different methods.

THEOREM 4.19 (Appel and McLaughlin) Let A be a hyperhypersimple

set and let B be hypersimple and coregressive. Then A and B are

n-incomparable.



- 55-

Proof See.Appel and McLaughlin 11l .

COROLLARY 4.20 If A is hyperhypersimple, thenAxA #A.

Proof Let A be a given hyperhypersimple set and let B be

obtained by the Dekker construction for A. Thus B is hypersimple,

coretraceable, and B - A. Now assume kkA. Then B Am A by

theorem 2.6,. But this contradicts theorem 4.19. qed.

Note that corollary 4.20 implies, independently of corollary 4.18,

that no hyperhypersimple set is semirecursive.

Corollary 4.18 also implies that not every r.e. btt-degree contains

an r.e. semirecursive set. in particular, no maximal set is btt-

reducible to any r.e. semirecursive set, since otherwise the maximal

set would also be bp-reducible to the semirecursive set by theorem 3.3,

and hence would itself be semirecursive, contradicting corollary 4.18.

Corollary 4.18 also shows that there are r.e. sets A and B such that

A ttB but A cannot be tt-reduced to B via any f with "finite negativity"

in the sense of the proof of theorem 3.3. To see this, let A be a

maximal set and B be any r.e. semirecursive set in the tt-degree of A

The desired fact now follows from the proof theorem 3.3, since if A

were tt-reducible to B via some f with finite negativity, A would be

p-reducible to B and thus semirecursive.

Let A be any set. It is immediate from (vi) of theorem 4.9 that

A join A semirecursive =4 A recursive.

Now letting A be semirecursive but not recursive, it is clear

that the join of two semirecursive sets need not be semirecursive and

that some ncn-semirecursive set can be n-reduced (and hence btt-reduced)

to a semirecursive set. The following theorems investigate whether



- 56 -

such phenomena still occur when all sets involved are required to be

r.e.

THEOREM 4.21 There are r.e. and coretraceable ( and therefore

semirecursive) sets A,B such that A join B is not sedmirecursive.

Proof The construction will define two 1-1 recursive functions

f and g. Then if we define

A = x (3 y) y > x & f(y) f(x)

B = jx I (3 y) i y > x & g(y) g(x)J

A and B will be the desired sets.

The construction uses a single list and a set of movable markers.

The movable markers will be associated with even integers in the list.

An integer 2z is said to be free in the list at a given stage if there

are no markers below it and f and g undefined for all arguments y A z.

A symbol; will be placed beside a number in the list when the marker

associated with it has been "attackedil

Stage n ( )

Let 2k be the least free non-zero integer. Associate the marker

with 2k.

Define f(x) = 2x for each x -k + 1 such that f(x) has not

previously been defined.

Define g(x) = 2x for each xA k + I such that g(x) has not

previously been defined.

Let 2a0 , 2al, ... , 2an be the present positionsof , •,...,

Calculate n steps in each of f (2ai , 2ai + i), O i'n. Let j be the

least number such that qV (2aj, 2aj + 1) is found to be convergent in

n steps and 2a. does not have a . (If no such j exists, go to
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stage n + 1.) Put as by 2a. If i(2a.,, 2a.+ 1) 12ai, 2a +1i

go to stage n + 1. Otherwise there are two cases.

Case 1 -. (2a, 2a+) = 2a.
J J1 3J

To ensure that f. is not a selector function for A join B, we
3

want to put a into A B. When the construction is complete, it will

be clear that

f(a.) g(a.) = 2a,.
J 3

Hence we define

f(k + 2) = 2k + 4 (Recall that 2k was the least
free non-zero integer.)

g(k+ 2) = g(a.) 1 =2a.- 1

Case 2 (2a , 2a. ÷ 1) 2a. + 1

In analogy to case 1, define

f(k + 2) = f(a.) - 1 = 2a.- 1

g(k + 2) = 2k + 4

Note, -hat in case i, each number 2ak , j ! k A n is thrown into B

and that in case 2 each of those numbers is thrown into A. Hence in

either case, if j<n, move each marker LIM, j4k : n down to free (even)

integers.

In either case 1 or 2, if the marker is not caused to move by

a later stage, 9. cannot be a selector function for A join B. But, by

an inductive argument, each marker moves only finitely often. Thus if

Qj is a total function, the marker U must be attacked at some stage

after it achieves its final resting place, and hence j cannot be a

selector function for A join B. qed.

For this proof, assume that V. is the j hpartial recursive
function of two variables.

I i6



- 58 -

One immediate corollary to the above theorem is the fact that the

join of immune retraceable co-r.e. sets need not be regressive.

However, as Dekker has pointed out, this fact can easily be deduced

from well-known theorems in the literature.

PROPOSITION 4.20 Let A and B be r.e. sets with A 6 B. If B is

semirecursive, then A is semirecursive.

Proof If B = # or B = N, the proposition is trivial. Otherwise

by proposition 3.1, A -"B, so A is semirecursive, if B is. qed.

Since every r.e. tt-degree contains an r.e. semirecursive set,

the tt-analogue to the above proposition fails. The following theorem

shows that even the btt-analogue to the proposition fails.

THEOREM 4.23 There are r.e. sets A and B with A b lB and B

semirecursive and A not semirecursive.

Proof The proof combines a priority argument with a Dekker

construction in a manner similar to the proof of theorem 4.21.

The construction yields a 1-1 recursive function f. The set B

is defined from f by

B= x ((y) y > x & f(y) f(x)13

Then, as Dekker and Myhill have pointed out, the set B is r.e. and

coretraceable.

The set A is defined from B by

22z A <: (3z + 1 B & 3z + 2 C B) or

(3z2 B & 3z + 1 e B & 3z + 2 c B)

2z + 1 C. A4 3z + 1 C B & 3z + 2 & B

Thus A - 1tB.
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The function f will be defined with a priority argument in such

a way to ensure that A is not semirecursive. The construction uses a

single list of the integers (the A-list) and a movable marker I for

each integer i. The markers are associated with even numbersin the

list and may be moved to larger numbers as the construction proceeds.

The purpose of the i'th marker is to ensure that 9~ is not a selector

function for A. Also, a * will be associated with certain members of

the A-list as the construction proceeds. An even number 2k in the

B-list is called free at a given stage neither 2k nor any larger number

has any marker beside it and f is undefined for all arguments y such

that y - 3k.

The construction proceeds in stages.

Stage n

Let 2k be the least free integer. Associate the marker w with

2k. Now for every number y such that y4- 3k + 2 and f(y) has not

previously been defined, set

f(y) = 2y

Let 2a , 2a1 , ".., 2a be the present position of r, ,. ...,,I0 1 n

Let j be the smallest number i such that 2a. does not have a *- and

.i (2a.,i 2a. + i ) is convergent in n or fewer steps. (If no such i

exists, go to stage n + 1) Place a $ by 2a., and say that • is

attacked.

If C1.(2a k- 2a+ 3 ) + 2a, 2a. + 1 then P is not a selector

function for any set. In this case, proceed to stage n + 1. Other-

wise there are two cases.

2 For this proof, assume that is the i'th partial recursive
function of two variables.
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Case 1 j(2a., 2a + 1) = 2a + 1
j i

To ensure that VPj is not a selector function for A, it will be

sufficient to put 2a. into A and 2a + 1 into '. It follows from the
3 j

definition of A from B that this will be accomplished if 3a. and 3a .+1

are -nnt ino R and -3+ is t io B Nr rh trhi iA3 p

complete it will be evident that, since 2a. has a movable marker

associated with itif(y) = 2y for y6 j3aj, 1, .+1, 3a.+21

Thus we define

f(3k+3) = f(3a.+2) -1= 6a.+3 (Recall: 2k was
3 3 least free integer)

This definition puts each y, 3a.+2 1 y * 3k+2 into B and hence

may interfere with earlier stages. Thus, if j 4 n, move all markers

M , je-k 4 n to free integers in the A-list.

Case 2 9P.(2a., 2a.+1) = 2a
3 j j

.4.1,,.4. +t b, 4..,... - ?.L b.~-- L 9

o. L1LL ensure s. ~ no~ a! e.~~ IM AT III1!-IfT Y I 1T r'
3 P

sufficient to put 2a into A and 2a +1 into A, and this will be accom-

plished if 3a. is put into B and 3a.+1 and 3a.+2 are put into B. Since

f(y) = 2y for yL &3aj, 3a +1, 3a.+2 , define

f(3k+3) = f(3a +1) - 1 = 6a.+1
3 J

This definition puts each y, 3a.+1 -5 y z! 3k+2 into B and hence

may interfere with earlier stages. Thus, if j n, move all markers

131 j. k =--n to free integers in the A-list.

In either case 1 or 2, if the marker 0 is not caused to move by

a later stage, Pj cannot be a selector function for A. But, by an

inductive argument, each marker moves only finitely often. Thus for

any number j, if 9. is a total function, the marker j must be attack-

ed at some stage after it achieves its final resting place, and hence

cannot be a selector function for A. Therefore A is not semirecursive.
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It remains only to verify that A is r.e. For convenience, the

definition of A is repeated below:

2z 4. A4>(3z + 1 0 B & 3z + 2 e B) or

(3z & B & 3z + 1 z B & 3z + 2 B)

2z + 1&A =>3z + ilB & 3z + 2 C B

From the above definition and the fact that B is r.e. it follows

that

2z + I I 2z + 1 A•

is r.e. Now is claimed that

2zeA P, > there exists a stage n and a marker j such
that j is associated with 2z at stage n and
j is attacked at stage n and case I applies
or
3z & B and 3z + I&B and 3z + 2tB

If the above claim can be proved, it will follow that [2z 2z e A)

is r.e, and hence that A is r.e.

To prove the claim, first assume that 2z A. Then, by the

definition of A, either 3z + 1 B and 3z + 2 c B or 32z, 3z + 1,3z + 21CB

If the second condition holds, then the right-hand side of the claim

trivially holds, so there is nothing to prove. Assume that 3z + 1~B

and 3z + 2 e B. Then it follows from the construction that

f(3z + 1) = 2(3z + 1) = 6z + 2

f(3z + 2) = 2(6z + 2) = 6z + 4

so it follows from the definition of B that, for some y 1 3z - 2

f(y) = 6z + 3

Hence there is a stage n and a marker ( such that 0 is associat.

ed with 2z at stage n and is attacked at stage n and case 1 applies.
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Conversely, if j3z, 3z + 1, 3z + 21c B, it follows from the

definition of A that 2z 6 A. Now assume that n and r exist as in

the above paragraph. Then there are two cases:

( i ) The marker ¶., is not caused to move at some stage later

than n. Then 3z + I 4 B and 3z + 26B, so 2z'& A.

( ii) The marker is caused to move at some stage after n.

Then ý3z, 3z + 1, 3z + 2 C B, so 2z & A.

This proves the claim and cncnludes the proof of the theorem. qed.

We have seen that immune semirecursive sets are hyperimmune but

not FSEI. We will now show that such sets are in E2 in the

arithmetical hierarchy and that they can be shown with additional

assumptions to be co-r.e. Some of the theorems will apply to immune

sets A such that ~i •, A rather than just immune semirecursive A.

THEOREM 4.24

( i ) If A is immune and AxAAm A, then A Ce .

( ii) If A is hyperimmune (or even if no sequence of sets of

bounded cardinality witnesses A not hyperimmune), and, for any n,

AxAx .. A.x x ***xA then Ae2.

Proof'

( i ) Suppose that A is immune and -AxA mA via g. Then

(x A or Y A)4 &g(<x,y) )&A

Claim x C A44ý g((x,y>) ye N is finite

If the claim is established, it will follow immediately that Ac,,

for

x A<V(3 u) (V y) L g(( x,y>) .u3
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To prove the claim, first assume x C A. Then jg(<x,y>)

is an r.e. subset of A and therefore finite.

Now suppose that there were a number x such that x .A and

j g(4x,y>) I y 4 N) is finite. Then, for all z,

z a A4 g(< x,z>) C An g(<x,y)) I ye Nj

Thus A is recursive, contrary to assumption.

This proves the claim and therefore part (i)

(ii) Suppose that A and n are such that

-( rec. f)(a m)(V x)(3 y) L (x#y D f Df(x) f(y)
D I'At ,a in

"÷' n -f(x) ..
and Ax...xA a, Ax...xA

It must be shown that Ae .72. This will be proved

on n. If n = 1, the result follows immediately from (i

Now assume that the theorem is true for n = k. To

theorem for n = k + 1, assume that

AxAx...A &m AxAx .. xA

and let g be a recursive function such that

(x A or x 2a A or... or xk + 2L A)'

D 2AA O & DDg(x to*X I
g(xk+2 )  g(xl ,. k+2

It will be shown that the equivalence

x cK Ad4(x D) L D is a finite set &

2) ... Xk+2) g(x , ..t

L'f(x)

by induction

).prove the

prove the

k+1

k+2

can be false only if A -2. Since the above equivalence implies that

A a 2, it will follow that AL E 2.2 2

\y cN

= ) &

14.V"
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First assume x & A. Then each of the sets D
g(x,x2 ,.. ,xn)

intersects A. Since these sets have cardinality bounded by k + 1,

there must exist a finite set which intersects all of them, since

otherwise a disjoint subcollection of the sets could be constructed to

get a sequence of sets of bounded cardinality witnessing A not hyper-

vimrmune. (,t the proof of lemma 5.15)

Thus, if the above equivalence is false, there must be a number

x e A and a finite set D such that every set of the form D
g(xX2,...xn)

intersects D. Let a be a fixed member of A, and define a recursive

function h of k + 1 variables by:

JD- D if D nD A = fA
Dh(x k) (x,x2...,xk) g(xx... xk)

g(x,x 2 ..., x)

Then h shows that Axx...x: AxAx...xA, so A bI 2 by the

induction assumption. qed.

COROLLARY 4.2

( i ) There exist No iimmne semirecursive sets.

( ii) Tf A is regressive and if there is an n such that

AxC...xA A" AxAx...xA, then A C 2.
2

Proof

( i ) By theorem 4.3. there exist at least H, immrmne semirecursive

sets, and by the present theorem there exist at most H, such sets.

( ii) Suppose that A is regressive. If A is r.e., there is

nothing to prove. Otherwise A is immune, and Appel and McLaughlin 'll

have proved that no immune regressive set is witnessed non-hyperimmune
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by a sequence of sets of bounded cardinality. Therefore, the theorem

applies. qed.

DEFINITION 4.26 Let A be immuine.

( i ) (Smullyan) A is said to be effectively immune if there is

a recursive function f such that, for all x,

W C A =4 WWx1 f(x)
x

( ii) (McLaughlin) A is said to be strongly effectively immune

if there is a recursive function g such that, for all x,

WxC A x WxC JO, 1,..., g(x)l

THEOEM 4.7

( i ) If A is effectively immune and AxA -~A, then A is r.e.

(ii) If A is strongly effectively immune and semirecursive,

then A is r.e. and A is regressive.

Proof

( i ) Suppose A is effectively immune and that AxA 4mA via g.

By the argument of the preceding theorem,

x ( • Ig ( ( x,y> ) NT is infinite

Let f be a recursive function such that

x x

Let h be a recursive function such that

h(x) = g( <' x,y> ) y N3

Then x A 4~ there are more than hf(x) numbers of the form

g ( x,y) )

Therefore, A is r.e.

( ii ) Suppose that A is strongly effectively immn~ne and semi-
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recursive. Then A is r.e. by (i). Assume that A is the lower half

of a cut in a recursive linear ordering ao of N. Say that y is an

o-oredecessor of x if y S- x. Any x in A has only finitely many

o-predecessors, because the set of its o-predecessors is an r.e. subset

of A. Thus the restriction of t-6 to AXCA is an ordering in which

every element has only finitely many predecessors and hence is order-

isomorphic to N with the usual ordering. Thus there is an enumeration

a ,a ,... of A such that

a90 <o alo a2<0 o a ""

Observe that if x is given, it is possible to compute effectively

an r.e. index for the set of o-predecessors of x. Thus, since A is

strongly effectively simple, there is a recursive function g such that

if x is in A, every o-predecessor of x is less than or equal to g(x).

Now the following recursive function Y will regress the enumera-

tion a0,al,... of A:

a0  if x = a,

the largest y (with respect to the ordering to

e(x) = such that y • •x, y -ox, & y g(x) if xf a

and such a y exists.

0 otherwise

Therefore, A is regressive. qed.

TIHEOREIM 4.28 Suppose that A is retraceable and that -xAv" A.

Then A is r.e.

Proof Suppose that *Y is a partial recursive retracing function

for A and that g is a recursive function such that for all x and y

x & A or yC . A<- g(x, y) a A



- 67 -

Suppose also that A is nonrecursive, since otherwise the result

is immediate.

Let a 0 be the least member of A. Define B by

B = Jx (3 n) (3 y) [ g(x,y) > x &+Y"g(x,y) = a &

x Yg(x,y), Y g(x,y),...,9 g(xy).

B is r.e. by the projection theorem. It is claimed that B = A.

To show that B A, assume that some number x were in B n A. Let n

and y be such that

g(x,y) > x &* Yg(x,y) = ao & x # Yg(x,y), jg(x,y),..., 3g(x,y)

Since x & A, g(x,y) & A. Since '(g(x,y) = ao, every member of

A which is less than g(x,y) is in iig(x,y),..., Y"g(x,y) . In

particular, x e [g(x.y),... '"g(x,y)l , contradicting the assumption

on n and y.

To show that A c B, assume that x c A. Then the set C is infinite,

where

C = g(x,y) J ye Al C A

For if C were finite, the obvious equivalence

y & AS# g(x,y) e C

would show that A is recursive.

Since'C is infinite, there is a number y C A, such that g(x,y)>x.

Since y A, g(x,y ) C A, so there is a number n with Yrg(x,y) = ao .

Also, since g(x,y) C A and x C A,

x ill g(x-y), jpag(x,y)#..., 'g(xyY)
Thus this n and this y show that xcB.

Therefore A = B, so A is r.e. qed.
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The above theorem becomes false when the hypothesis that A is

retraceable is weakened to the hypothesis that A is regressive, since,

for example, if A is creative, then A is a regressive set such that

Idix ,mA and A is not r.e. However, it may be shown by a slight

modification of the above proof that every regressive set A such that

AxA .A is the difference of r.e. sets. It is not known whether every

such set is either r.e. or co-r.e.

The theorem makes it easy to give some necessary and sufficient

conditions for a retraceable set to be semirecursive.

COROLLARY 4.29 Let A be retraceable. Then the following

conditions are equivalent:.

( i ) A is semirecursive

( ii) AxA AmA

(iii) i is r.e.

Proof Let A be retraceable.

( i ) ~ (ii) by part (i) of theorem 4.9

( ii) = (iii) by the above theorem

(iii) -~( i ) by theorem 4.3 qed.

COROLLARY 4.30 If A is retraceable, immune, and non-hyperimmune,

then AxA •'A.

Proof If A is a retraceable set and AxAEIA, then by the theorem

A is r.e. Thus, since A is retraceable, if A is immune, then A is

hyperimmune, qed.

It is not known whether the conclusion of corollary 4.30 can be

strengthened to read that the m-degrees of A, xAp, AxA9A, ... are all

distinct. However, in section 5 it will be shown under the assumpton
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that A is im~mne, non-hyperimmine and retraced by a total recursive

function that these m-degrees are all distinct.

The preceding two theorems characterize semirecursive sets which

are strongly effectively immune or retraceable fairly adequately.

However, they do not go faIr towards classifying all imimne semirecursive

sets. In particular, the following elementary questions remain un-

answered:

(i ) Is every in•mune semirecursive set regressive?

(ii) Is every inmmune semirecursive set co-r.e.?

(iii) Are there semirecursive sets which are both immrne and

c o-immune?

The existence of semirecursive sets which are both immune and

co-imrn-une would be of particular interest, since by some of the theorems

in this section, such sets would have several interesting properties.
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SECTION 5. RELATIONSHIPS ETWEEN REDUCIBILITIES

In the previous section it was proved that everyj tt-degree contains

a p-degree consisting of a single m-degree and contains incomparable

p-degrees. In this section, more results of this kind will be proved,

but by quite different methods. Certain types of immune but not hyper-

immune sets will be studied, with propositional logic used as a tool in

this. study. Also it will be shown that each r.e. nonrecursive T-degree

contains r.e. sets which have many of the properties of creative sets.

THEOREM 5.1 Let A be a simple set which is not hypersimple.

Let B be any set. Then (x IDxC AA,,B 4B not immune

Proof

Propositional logic will be used to abbreviate the proof. First

we introduce some conventions. Recall what it means for a propositional

formula 0- to be true of a set. A:

0" is true of A iff 0- is true when each statement letter P isn

interpreted as true when n e A and false when n # A.

Hence, when we know that a forrmula d" will be interpreted in a set

A, we may use the symbol " n e A" in place of the statement letter P,.

Abbreviating further, we may use the symbol "D C- A" in place of the
x

statement

xit AA X2  A ... A xk C A where D = tx ,x .. xk

Similar abbreviations will be freely used.

Finally stateements referring to two sets may be thought of as

propositional formulas to be interpreted in the join of the two .sets, e.g

5 A AA 6 B abbreviates the statement

10tA join B & 13 0A oin B.
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We will use two facts from elementary logic: the set of logical

consequences of a recursively enumerable set of formulas is itself

recursively enumerable (when formulas are coded effectively to integers)

and when every formula in a some set of formulas is true in some fixed

interpretation, then every formula deducible from that set is also true

in the interpretation. The latter result is called the ,"soundness

theorem.,t

Now assume the theorem false, so that A is simple and not hyper-

simple and B is coimmune, and

x IDx CA AtB

Let Df(x)3 witness the non-hyperimmunity of A. Let x IDxC AmB

via g.

Consider the following set of axioms T:

1 D f (allx
x f(x)

2 x F A all x . Ax

3 D A D A g(x) ZB all x
x

If 6 is a propositional formula, let "- mean that #- is provable

from the above statements by the rules of propositional calculus when

they are viewed as propositional formulas.

Npw consider the set C, where

c= : x - xf B)
Since the axioms are all true and form a recursively enumerable

set of statements, C is an r.e. subset of B, and thus finite. But by

the axioms 3x
T) A A x x

Thus the set D is recursive, where

T x
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For convenience in giving later proofs, the rest of this proof

will be given in a lemma.

LEMMA 5.2 Suppose that A is simple and not hypersimple, and that

Df(x witnesses that A is not hypersimple. Suppose that e is a class

of non-empty finite sets such that

( i) D (• all x

( ii) OXC e y A : (Dx - jyf )y

Then (x I D GCe is not recursive.

First we note that the theorem now follows at once from the lemma.

For if we let C= ýDxl bD A = = - , then each member of C is non-empty

because each member of C intersects 1, by the soundness theorem. C

satisfies conditions (i) and (ii) because of the axioms 1 and 2 .
x x

Finally, it has already been remarked that D == x I Dxe) is recursive,

which contradicts the lemma.

Proof of Lemma

Suppose the lemma is false. Let C be a class of finite sets

satisfying the hypotheses of the lemma such that jx\ Dx @l is recursive.

Let

M x Dxe- V y) ý D J D =!> D d
and let G UDx

It is claimed that G is an infinite r.e. subset of A. If this

claim is proved, the simplicity of A will be contradicted.

Since jx 1 Dx&! is recursive, M is recursive, and thus G is r.e.

Call a set D minimal if x & M. Now any member of C which intersects

A has a proper subset in C, by condition (ii) on C. Hence every

minimal set, is a subset of A, and G is a subset of A. Finally note
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that every membrer D of C has a minimal ubsubset, e.g. any subset D ofx J
Dx which has minimal cardinality among the subsets of D which arex

embers of Thus- each (x) has a minimal subset and therefore

each D intersects G, since all members of C are non-empty. Hence G

is infinite. qed.

COROLLARY i If A is simnrle but not hypersimple, thenAxA.A A.

Proof Assume that A is simple and not hypersimple and that A -A4mA

Then AxN is a c-cylinder and, since xt Dx C A3cA, IxI DxC A,3 A.

This contradicts the theorem. qed.

Since there are hypersimple semirecursive sets, the above

corollary, and hence the theorem, fails when the hypothesis "A is not

hypersimple," is dropped.

Theorem 5.1 implies in particular that no creative set can be

m-reduced to a coirmmune set, i.e. no productive set is immune. In this

section, several other facts about creative sets will be generalized to

sets of tbh form jx I D C AC for simple, nor-hypersimple A. The

proofs will thus gilve an alternate method for proving some of the

standard facts about creative sets. More importantly, since Yates has

shown the existence in every r.e, nonrecursive Turing degree of a simple

set which is not hypersimple, the theorems to come will show that r.e.

sets which share many of the properties of creative sets exist in every

r.e. nonrecursive T-degree. This in turn will make it possible to

show that each nonrecursive r.e. Turing degree shares some of the standard

properties of the complete degree.
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DEFINTTION 5.4 B is a strong cylinder if B is a cylinder and

PROPOSITION 5.5. If B is a strong cylinder, the rm-degree of B

consists of a single 1-degree.

Proof Trivial. qed.

It is well known that creative sets are strong cylinders. We

are heading towards a generalization of this fact. We first "localize"

the notion of cylinder in a way motivated by Youngts characterization of

cylinders (theorem 1.4.)

DEFINITION 5.6 For sets D and E, D is a E-cylinder if there is

a recursive function h such that, for all x

(xeD = Wh(x)C D) & (XeL=Wh(x)c*D) &

(x eE -Wh(x) infinite)

LEMMA 5.7 F mD via g, D a (range g)-cylinder =-) FA- D.

Proof The proof is a straightforward relativization of the proof

of theorem 1.4). Assume F-gD via g and let h be a recursive function

showing that D is a (range.-cylinder. Define a recursive 1-1 function

k by induction:

k(O) = g(O)

k(n + 1) = the first number found in Whg( n1 ) which is not

a member of t0,1,...,k(n)

Then F , ID via h. qed.

T~EOREM 5,8 Let A be simple but not hypersimple and let C be any

non-empty set. Then [xl Dx c Al x C is a strong cylinder.
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Proof Let a function i, (the index function) mapping finite sets

to integers, be defined by

i(Dx) = x

To see that fx IDx c- A xC is a cylinder, let

W = <i(Du UD ) v> I A
p(<u,v>) I u x' x

Then, Wp(< u,v>) shows that iZx Dx C A) x C is a cylinder, by

Young's characterization of cylinders.

Now let B = j x \ Dx C A3, and suppose BxC_,D via g. It must

be shown that BxC d:- D, so by the lemma it suffices to show that D is a

(range g)-cylinder. It follows from theorem 5.1 that D has an infinite

r.e. subset, since

( x Dc Aý Dx Dx c A x C. WI

(It is at his point that the fact that C is non-empty is used.)

Let G be an infinite r.e. subset of D.

Let IDf(x) witness that A is not hypersimple.

We now write everything we know in the form of axioms

1 <u,vy <u,v> C B x C <4> g(< u,v>)fD all <u,v>

2 xQ D all x f G

3 x CA all x C A

4 XD f CA 1n all x
x f(x)

The set of axioms given above is recursively enumerable and each

axiom is true when given the obvious interpretation. Hence there is

a recursive function h such that

Wh(x) = D f; x D 0 x DL

and xf-D W Dh(x) ' D x x D = Wh(x)c D, where as before
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T- r means Cr is provable from the above axiom.

Thus to show that D is a (range g)-cylinder it suffices to show

that

x range g W•Wh(x) infinite

Assume the above is false. Let x0 be a member of range g such

that Wh  is finite. Let x0  g(<uo v > ) . De-
h(x0) -g((u,). rie

6= D'uu;,, c & v -,p - uc v, s

(G' means that r cannot be proved from T)

We wil show that C gives a counterexample to lemma 5.2 and thus

obtain a contradiction. First note that every member of C is non-empty,

for trivially,

i C(DUrj,)Ic A & vc C +-DuC 4& t 1
Also ulIU Due is recursive, since

D ( (DuU Du,)C v & Be C14-> A & VL C
u E(z-(D<i Du Ve)) 2 4-+C(u ,v ) &

g((i(Duu Duo) hv, V (x7 ) x
Since IW was finite, the last line gives an effective test to

h(x0 )
see whether D & ,e

Now i must be shown that each D(x). C . Assume the contrary:

let x be such that Df(x) ~ . Then

.. ID f(x)u 'uC A & v,& C03*-,DU C &

But by axiom lx: t Df(fx)l

S-(Du)C A & vA

All members of the set G are also provably not in D. Thus

CT C W
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This contradicts the assumption that W was finite.
g(x 0 )

Finally it must be shown that DueC, yE A => (Du•y ) .

This will be proved in the form: (Du - tyl) tC, yC A -- Du

Suppose (Du - y )4 Cand y e-A. Thus

T [(Du "- y  )UDuoCA & v 0oeC.4->Du A & v o C 0

But then, since y L A, by axiom 3y:

SL(D - y  ) u A & vo 0 u*-* D u• c:A & vo 0)

Combining these two equivalences it follows that

Du DUo CA & v o 0 e C [Duo C A &vo v o

Therefore DUC e, which was to be shown.

Thus it has been shown that the class C provides a counterexample

to lemma 5.2, and the theorem is proved. qed.

The first corollary is a special case of the theorem which

generalizes the fact that creative sets are strong cylinders.

COROLLARY 5.9 If A is simple but not hypersimple, then x j DxC A)

is a strong cylinder.

Proof Take C = N in the theorem. qed.

Of course, the theorem also shows that the cartesian product of a

creative set with any non-empty set is a strong cylinder. This fact

does not seem to the writer to be obvious from the classical proof

with the recursion theorem that creative sets are strong cylinders,

although the present proof would not have been simplified (except

notationally) by considering x Dx c A rather than jx I D x A x .

However, this is the only example known where the present method yields

new. information about creative sets.
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COROLLARY 5.10 Every r.e. T-degree contains an r.e. m-degree

consisting of a single 1-degree.

Proof The recursive T-degree certainly contains such an m-degree.

By the theorem of Yates mentioned in the previous section (theorem 4.11)

each nonrecursive T-degree contains a simple but not hypersimple set A

and thus contains a strong cylinder, e.g. txI D C Aý. By proposition

5.5, the m-degree of this strong cylinder consists of a single 1-degree.

qed.

Corollary 5.10 answers a question raised by P.R. Young, who

showed in L203 that every nonrecursive m-degree either consists of a

single 1-degree or contains a linearly ordered collection of i-degrees

with the order type of the rationals and inquired whether there were

nonrecursive, noncreative r.e. m-degree consisting of a single 1-degree.

We now prove a weakened analogue of the theorem that btt-complete

sets are not simple.

THEOREM 5ri Let A be simple but not hypersimple, and suppose

that

x I Dx C Aj :-p C

Then C is not simple.

Proof Suppose the theorem is false. Let A be simple, and let

SDf(x witness that A is not hypersimple. Suppose that C is a simple

set such that there exists a recursive function g and a number m such

that, for all x,

Dx3 (~u) uD(x) A DuC( u& u D u m

Now consider the following axioms T

i Dxifl #(->(Vu) tu.Dg(x) '" Dunk ]  all x

2 x -A all x LA
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3 x C all x a Cx

4 D () A ) n all xx f(x)

Let Ir mean that the formula o- is provable from the above axioms.

Let C := D I ý- D n A •0
x T x

WTe will apply lemma 5.2. eis clearly a class of non-empty sets

which satisfies conditions (i) and (ii) in lemma 5.2. Thus, to get a

contradiction, it is sufficient to show that Ix\ Dxa& is recursive.

Observe that by axiom 1 ,
x

D X^ T uln c lko T Du2( C.#&P , & uDune =
TX T2 Tn

where Dg(x) u, u2,...,un . By the assumption on the boundedness

of the reduction, lDul1m, for u in any Dg(x) .  Thus to see that

xt;-Dxn A; is recursive, it is sufficient to show that Sn is

recursive for all n where

Sn =u Du6 & n & DDO # D1

This is proved by induction on n using techniques similar to those

in the proof of lemma 5.2. SO is trivially recursive. Now assume that

S is recursive. Letn

Ml D= !.em 1Dujikn+1 & .Dun C# & (Yv)lDvc Du lv

u uS,,1 & (Vv) Dv.Du = V S1 n

Since the set of axioms given above is r.e. Sn,1 is r.e. By

the induction assumption S is recursive. Hence M is r,e. Let
n n1u

Gn = _ Du

Since is re., G is r.e. Also, Gn + 1 is a subset of C,

since, by axioms 3, x M !M D c~- C. Thus M is finite and hence G
n+ n+1i n1l

is finite. But now, the equivalence
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u Sn u = ue G or, for some v such thatn +1 n + I
Dvc- D u , vSn

shows that Sn+1 is recursive, completing the induction.

COROLLARY _I52 If A is simple but not hypersimple, then

m-degrees of A, AxA, AxAxA, ... are all distinct.

Proof Suppose the corollary is false. Let A be a simp

not hypersimple set and n a number such that An + rAn, wher

k > 0,

qed.

the

le but

e for all

k factors

k
A= Ax...xA

Let Ak = x D k & Dx  A

all k > 0,

It is easy to check that for

k
A mA

k

Hence An + 1 ~An, say via g, so that

DxC A & I Dx n + 1 4> Dg(x),cA 3 Dx 1D)- n

A recursive function h will now be defined so that jx I D A) 4m An

via h.

If ID . n, define h(x) = x.

If ID >n, let y be the smallest number so that D D and

IDj n +1 . Let D =(D - D )VD . Observe that
y x' x y g(y)

D , I D D and (D C, A 4=>D C A)
x x x

if for any set D all the sets D ,, Dx,,, ... had cardinality
xx

greater than n, then the numbers IDx, Dxd, ,... would form a strictly

decreasing chain of integerswhich is impossible.

Thus if I D>n, define Dh(x) = D -- where m is the smallest

number such that ) Dx V
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Clearly, jx D C Aý, A, via h. But also, An SA A, so
x n bp

xl Dxc. A4 bA, which contradicts the theorem, with A = C. qed.

COROLLARY .131 Every re. nonrecursive T-degree contains infinite-

ly many r.e. m-degrees.

Proof Sy the theorem of Yates, each such T-degree contains a

simple but not hypersimple set A, and hence the m-degrees of

A, Ax . . .

from the desired infinite collection qed.

In view of the well known theorem of Post that no creative set can

be btt-reduced to a simple set, it is natural to inquire whether sets of

the form jx D Al for simple, nn-hypersimple A can be btt-reduced

to simple sets. The writer has been unable to answer this question,

although the methods of the previous theorem do show some promise.

More precisely, if the conclusion of lemma 5.2 could be strengthened to:

"Then jx I D. C is not recursively separable from {x D cx  A"

it would follow by an elaboration of the methods of theorem 5.11 that no

set of the form x Dx C A) for simple but not hypersimple A could

be btt-reduced to a simple set.

It is also natural to ask whether sets of the form x I D C Ak for

simple but not hypersimple A can be tt-reduced to hypersimple sets.

Since A -• x I DC A , this is equivalent to asking whether simple

but not hypersimple sets can be tt-reduced to hypersimple sets. Here

again the answer is not known, but we can prove a positive analogue to

the classical theorems.

TH•O•PM _j14 No simple, non-hypersimple set can be p-reduced to
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any hypersimple set.

Proof The first part of the proof consists of a lemma which

shows that it suffices to prove the theorem for c-reducibility.

LEMA 5.15 C hyerimmune => x I Dx C C hyperimmune

Proof of Lemma Suppose that Ix D C. C ýis infinite and not
x

hyperimmune. Let Dh(x) witness that x I DxC is not hyperimmune.

Assume 0 0 U Dh(x) to avoid difficulties with the empty set. Nowx

define a recursive function k by

Dk(x) =u i u is the largest member of some set D with

y Dh(x)

Now each Dk(x) intersects C, because each Dk(x) contains some

member of a subset of C. However, the sets Dk(x) need not be disjoint.

On the other hand, they can be made disjoint using a simple techniquue

due to Post: define a recursive function 1 by

D(0) = Dk(0)
Dl(n + 1) = Dk(y) where y is the smallest number such that

D is disjoint from U Dk(y) i.o l(i)
To show that C is not hypersimple, it is sufficient to show that

1 is total, i.e. that the number y referred to in the definition of 1

always exists. Suppose that this y fails to exist for some n + 1.

Then every D intersects the finite set U D . Thus some
k(y-) o 1=(i)

number u is in infinitely many (y). Thus, by the definition of

Dk(y ) , u is the largest member of infinitely many sets, which is

impossible. Thus 1 is total. qed,

Proof of theorem Supose e th theorem is false, and let A p B,
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where B is hypersimple and A is simple but not hypersimple. Let

D x= x D B

Since D is r.e. and

D= xi DXCx

D is hypersimple by lemma 5.15. Also A •. D, by theorem 2.9. Let f

be a recursive function such that, for all x,

x t A fOff(x)c D

Let Dg(x) witness that A is not hypersimple. Define a recursive

function p by

p(x) U Df(y)
Sy Dg(x)

Each Dp() intersects D. Define the r.e. set E by

E= ly (3x) [(DU D) D D 3
y p(x)

Since each Dp(x) intersects B, each member of E is the canonical

index of a set intersecting B. Let k be a recursive function with

range E. Now, just as in the proof of lemma 5.15, the Dk(x) can be

replaced by a subsequence of disjoint sets to witness B not hypersimple

unless there is some finite set, say F, which intersects every Dk(x)

If F is such a set, then F nB intersects every D p(x. Thus some

number A C BI, would be in Dp(x) for infinitely many x and

f(x)

would be an infinite r.e. subset of 1, contradicting the assumption that

A is simple. Thus the D can be disjointified to witness B not
k(xc)

hypersimple. qed.

A counterpart to the above theorem for m-reducibility was first

proved by Young. Martin has proved the btt-analogue of the above theorem.
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One corollary of the above theorem is that every re. Turing degree

contains at least two p-degrees. However, this fact has already been

pointed out as corollary 3.10.

Te now turn to non-r.e. sets. The goal of the present section is

to prove that every nonrecursive tt-degree contains infinitely many

m-degrees. For the present methods, the analogue of the simple but

not hypersimple sets will be the iimmune but not hyperimmune sets which

are retraced by total functions.

PROPOSITION 5.16 Every nonrecursive tt-degree contains a set

which is inmmne but not hyperimmune and retraced by a (total)recursive

function.

Proof

The binary tree is the collection of all finite sequences of O's

and l's.

Let a- be a 1-1 effective coding of the binary tree onto the

integers such that, for any sequences a and b in the binary tree,

a longer than b => f-(a) > 6(b)

Let B be any given nonrecursive set. With B associate first the

infinite sequence S = cB(0), cB(1), ... , where cB is the characteristic

function of B. Now associate with B the set A, where A is defined by

A = IC(a) i a is a finite initial subsequence of S

It is claimed that A is the desired immune not hyperimmune set

retraced by a recursive function such that A =.t B.

First we show that B -t A. We have B A A, since, for all n

n £ B '- some sequence of length n ending in a I is in A and

given n, one can effectively compute the cannonical index for the set
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of all code numbers for sequences of length n which end in a 1. Also,

A -tVB, since for all n

n C A4=0 the sequence with code number n is a finite initial

subsequence of

(<cB(O), c(a I), ... )>

and the right hand side of the above equivalence can be written as a

tt-condition on' B uniformly in n.

Now we show that A is retraceable. Define a function f which

maps finite sequences to finite sequences by

f(a) = by deleting the last

Now let ft be the corresponding function mapping N to N;

f' = G-fr - !

By the condition that longer sequences have larger code numbers,

f' is a retracing function for A. By the effectiveness of the coding,

ft is recursive.

Since A is retraceable and nonrecursive, A is immune. The sets

Dg(n)f witnesses that A is not hyperimmune, where

D = x I x is the. code number for a sequence of length

qed.

THEOREM 51Z Suppose that A is retraced by a total recursive

function. Then,

( i ) AxA4, A

( ii) If A is immune but not hyperimmune, then the m-degrees of

A, AxA, A AxxAi,..

nj
6k Ig
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are all distinct.

(iii) If A is immune but not hyperimmune, then A and A are

nm-incomparable.

( iv) If A is not hyperinmmune, A MpA.

Proof Suppose for the proofoff all parts,that A is retraced by

the recursive function f'. Then the recursive function f also retraces

A, where

f,(x) if f'(x) A x
f(x) =

x· if ft(x) > x

f will be used throughout the proof because it has the useful

property that f(x) : x for all x.

Some terminology will be introduced now for this proof only.

Let "x retraces to y" mean

(3n) Ln z 0 & fn(x) = Yl

Since f(x) - x for all x and there are no infinite descending

chains of integers, i(x,y> \x retraces to y is a recursive set.

Let "x and y are comparable" mean that x retraces to y or y

retraces to x, and let "x is incomparable with y" mean that x and y

are not comparable.

(i) 'To show that A-xA k A, let a' be a fixed member of A, and

define the recursive function g' by

x if x retraces to y

g<(<x, y) = if y retraces to x

a' if x and y are incomparable

It is claimed that AxA!mA via g'. If both x and y are in A,

then x and y are comparable, so gt( x,y > ) = x or g'((x,y)) = y.



- 87 -

Therefore g'( < x,y> ) e A. Conversely, if g'( < x,y> ) A, then

g'(< x,y> ) a', so g,( < x,y> ) retraces to both x and y.

Therefore, x and y are in A. This proves part (i).

( ii) To prove part (ii), assume for reductio ad absurdum that A

is immune and not hyperimmune and

k+1 factors k factors

AxAx...xA A AxAx...xA

where k is fixed. Since it is easy to check that for all j > 0

j factors

AxAx...xA m yI \ D j -j& D 0 A 4
Y Y

it follows that

kY I Dy k+ A#j &.j y I IDy 1 k & D A *fi
Let g be a recursive function such that for all y with I D16 k+1,

IDg(y) d. k and (D n A ;#<= Dg A )

The properties of f and g are now used to obtain an r.e. subset

B of 1. Let B = B B2, where

B1 = x x (3y) IDy j•I k+1 & x e Dy & x is incomparable with

every member of Dg(y)31

2 = xI (7Y)y) JD i k+1 & x is incomparable with every member

of D & x retraces to some member of D y

B and B are r.e., so B is r.e. To see that B C. A, suppose
1 2 1

that some number x were in Bi A. Let y be such that ID Y[ k+1 and x D

and x is incomparable with every member of Dg(y) Since

x C D y A, D An A ; hence D g A*# . But any element of A is
y y g(y)

comparable with x, so D contains a number comparable with x, contrary
g(y)

to assumption. Thus B. CA

To see that B c. A, suppose that some number x were in B2  A.
2 2
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Let y be such that ID ~- k+1 and x is incomparable with every member

of D and x retraces to some member of Dg(y). Since x A, and x

is incomparable with every member of D , D A =( . Hence D n A =
y y g(y)

But x retraces to some member of D so x retraces to a nonmember of

A, which is impossible. Thus B2 r T, so B C A.

It.will be shown that B is "large" in d sense to be made precise

with the use of the recursive function n defined below:

n(x) = the least number m such that fm x = fom(x)

Observe that n(x) ("the norm of x"') is always defined because

f(x) , x for all x and there are no infinite descending chains of integers.

(Note: This proof can be visualized in terms of the ,retracing

tree." (cf. Rogers [14 ). For example, n(x) is the "level" of x in the

retracing tree,)

Now it is claimed that for every j there are at most 2k numbers

which have norm j and are not in B. (Recall that k was fixed earlier.)

To facilitate the proof of the claim, a partial ordering - of N will

be defined such that any two nulmbers x and y are comparable with respect

to 4,if and only if n(x) = n(y). x - y is defined inductively on

n(x) =n(y):

x mey neans x6 y if n(x) = n(y) = 0

x_• y means nf(x)_,.nf(y) or (f(x) = f(y) and xe y)
if n(x) = n(y) 0, and ugyv has already been
defined for all u,v with n(u) = n(v)2 n(x).

The above definition makes sense because, if n(x) > 0, then

nf(x) " n(x),

It is easy to verify that ,is a partial ordering under which any

two nuwybers of equal norm are comparable and that Lor any x,y, and z
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xeY fz x) e fZ Y)

(Intuitively, x-iy means that x and y have the same level in the

retracing tree, and x is to the left of y in the tree, if the tree is

coded so that code numbers increase as one moves from left to right

at a given level.)

Now suppose the claim made above is false, i.e assume that there

is some number j such that 2k + 1 nonmembers of B have norm j. Let

X•1"".x2k + 1 be 2k + 1 nonmembers of B of norm j. Assume that the

x. are indexed so that

X1 - 2 X A 2 X2k + 1

Let D = x , x , x, ... , xk Since no member of D is in
y 3 2k 1 y

B , every member of D is comparable with some member of D . But
I Y g(y)

since I D I- k + 1, Dg( y)-6 k. Thus there is some member w of Dg(y)

which is comparable with two distinct members, say x and x
2m + 1 2n + 1

of D . Thus, since x 2 + and X2n have the same level, there is

a z such that

the de

f (x2m + = f(X2n + 1) =w

Assume mrn. It will be shown that x2m +

•sired contradiction and prove the claim.

2m + 1 2m + 2 2n r 1

Thus f (x2 +) f + 2)  f z( 2n2m.+ 1 2m + 2 --g 2n

2LB2 -
2Note t2A

NIote that

This will give

+1)

So f (X2m + 2) = w.

Now consider the set D ( = hx 1 , x 3 , X., X2k±+ i). very

member of D is incomparable with x , since x D , and
Y 2m + 2 2m + 2 y

every member of D has the same norm as x2m + 2 Also x
y 2m + 2
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retraces to some member, w, of D _ Thus x B , which was
g(y 2r - 2 2

to be shown.

The fact that A is not hyperimmune will now be used. Let

aO, ai,... be the members of A in increasing order. Rice has shown

that since A is infinite and not hyperimmune there is a recursive funct-

ion h which majorizes A, i.e. which is such that for all n,

h(n) > a n

We now define a sequence of disjoint sets Dp(x) all intersecting

A. To find Dp(x) , list B until at most 2j numbers which have norm x

and are less than h(x) have not appeared in the list of B. Dy the

previous argument, this state of affairs must be reached for every x.

Then let Dp(x) be the set whose members are these at most 2j numbers

which have norm x and are less than h(x) and have not yet appeared in

the listing of B. Now Dp( )n A-# because ax L Dp( x) A. Now the

proof could be conculded at this point by quoting a lemma of Appel and

McLaughlin [1] which states that no regressive immune set is witnessed

nonhyperimmune by a collection of sets tDp(x)) of bounded cardinality,

since we have, for all x, Dp(x)I 2j. However, we prove below just

the special case of the Appel-McLaughlin lemma needed for the proof.

L4Ak' 5.18 If A is an immune set retraced by a total function

and Dk(x[ witnesses that A is not hyperimmune, then there is no constant

e such that, for all x

DP(x) 
4c

Proof of lemma Suppose there were such a constant c. Consider

C = o yt (3x) [Every member of Dt retraces to y )

(We continue to use the terminology of the proof of the theorem)
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Since each Dp(x) intersects A, C is an r.e. subset of A and thus

finite.

Let yo be a member of A which is not in C. Define Dp,(x ) by

DpI(x) = D - I  &Dp(x) z does not retrace to yo)

It is claimed that all but finitely many Dp intersect A.
p1(x)

This is so because if Dp,(x ) fails to intersect A, then Dp(x) must have

contained a member of A which did not retrace to yo, i.e. Dp(x) mnst

have contained a number to which Yo retraced, and there are only finitely

many such numbers. Thus by eliminating these finitely many sets we

obtain the sets D which witness A nonhypersimple and which arep1"(x)

bounded in cardinality by c-1, since each Dp(x) contained a number which

did not retrace to yo. Iterating this procedure c times, we obtain a

sequence of empty sets witnessing the nonhypersimplicity of A, which is

absurd. qed.

Since the Dp(x) defined in the proof of the theorem are bounded in

cardinality, we have contradiction, and part (ii) is proved.

(iii) To prove part (iii), assume that A is immune and not hyper-

immune. Assume also that A and A are m-comparable, so that A---A.

Then by part (i),

AxA z MAxA w * A

This contradicts part (ii).

To prove part (iv), assume that A is non-hyperimmune. Let the

functions n and h be as in the proof of part (ii).

Then, for any x

x y A4>( y) y 7 x & n(y) = n(x) & y hn(x) & y A]

Thus A- A, so A pA and A-pA. qed.
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COROLLARY 5
( i ) Every nonrecursive tt-degree contains infinitely many

m-degrees.

( ii) Every nonrecursive tt-degree contains a p-degree with

incomparable r-degrees.

Proof

( i ) By proposition 5.16 each nonrecursive tt-degree contains an

immune but not hyrperimmune set A which is retraced by a recursive

function. Thus it contains the m-degrees of

.A,A x A,...

and by theorem 5.18 this is an infinite collection of m-degrees.

( ii) By proposition 5.16 each nonrecursive tt-degree contains

an immune but not hyperimmune set A which is retraced by a total function.

By theorem 5.17 the positive degree of A contains the mr-degrees of A and

which are incomparable. qed.

We now show that every r.e. nonrecursive tt-degree contains a

strong cylinder.

tt
THEOREM 5.20 If A is an r.e. nonrecursive set,A is a strong

cylinder, where Aut is defined as fxlx is true of Al. (of. theorem 2.6)

Proof For any A,Att is a cylinder. Let A be r.e. and non-

recursive and suppose A i-,mB via g. It must be shown that A sL B, so

by lemma 5.7 it is sufficient to show that B is a (range g)-cylinder.

Let h be a recursive function such that for all y,

Wh(y) = [f(x A (nt A)) I f(x) y & n•E A6

U f(x Y (-n &A)) f f(x) = y n tA

(Recall that formulas are conventionally identified with their
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code numbers so that, for example, x A (n e A) refers to the code

number for the formula obtained by conjoining the formula with code

number x with the formula "n 4A)

To show that B is a (range g)-cylinder it is sufficient to show

that

y r B Wh(y) C B, y h• Wh(y) CB
y yPrange g - WTh(y) infinite

Note that for any x,y, and n with n c. A and f(x) = y

y a B x cAtt4=> (xAn C A) LAtt4= (xv . ncA) EAtt

g(xA n .A)CB g(xV nc A)e B

Thus (y e B Wh() C B) & (yB Wh(y) c .).

Now suppose that Wh(yo) were finite for some number yO in range g.

Let yO = g(xO). We will get a contradiction by showing that A is

recursive.

First suppose that YO e B. Then, for all n,

nCA4=0 g(x A n - A) e Wh(yo)

The arrow to the right above is immediate from the definition of

Wh(Yo). To prove the arrow to the left, assume that g(xO A n e A)C.

Wh( . Since y o B, Wh( B so g(x0 A n C A)e-B. Thus

(x A n c A)cAtt, so (ne. A) . Att. Therefore, n EA.
0-

But the equivalence proved above shows that A is recursive, since

W is finite.
h(yo)

Now suppose that y A B. Then, for all n,

nC A 4=g(x v -- nc A) e W
0 h(y o )

The arrow to the right above is immediate from the definition of
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Wh(YO). To prove the arrow to the left, assume that
h(y 0)

g(x -n A) Since yO e B, y0c .,, so g(xv -re A) B.

Thus (x V'n c A) Att, so (n A) Att. Therefore ncA.
0

Again, we have that A is recursive.

Thus we see that Th(y) is infinite for y i range g, and the proof

is complete. qed.

COROLLARY 5.21 Every r.e. tt-degree contains an m-degree consist-

ing of a single 1-degree.

Proof The recursive tt-degree obviously contains an m-degree

consisting of a single 1-degree and each nonrecursive r.e. tt-degree

contains a strong cylinder, which, by proposition 5.5, belongs to an

r-degree consisting of a single 1-degree. qed.

It should be noted that corollary 5.21 is not a generalization of

corollary 5.10, which states that every r.e. Turing degree contains an

r.e. m-degree consisting of a single 1-degree. The common generalization

of these two corollaries, i.e. the statement that every r.e. tt-degree

contains an r.e, m-degree consisting of a single 1-degree, would follow

immediately from corollary 5.9 if it could be shown that every r.e.

nonrecursive tt-degree contains a simple set which is not hypersimple.

Likeiwise, it would follow that every r.e. nonrecursive tt-degree contains

infinitely many m-degrees. However, it is probably not the case that

every r.e. nonrecursive tt-degree contains a simple set which is not

hypersimple.

In theorem 5.21 the hyýpothesis that A is not recursive obviously

cannot be dropped. The writer does not know whether the theorem remains
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true when the requirement that A be r.e. is dropped.

We now study an inversion of the notion of R-cylinder. As we

shall see, the notion seems to be of interest only for m-reducibility.

DEFINITION 5.22 Let R be a reducibility. A is an inverse

R-cylinder if

(VB) 1A40=B = A -, B

A is an inverse cylinder if A is an inverse m-cylinder.

Since strong cylinders are precisly the sets which are both

cylinders and inverse cylinders, we have already shown that a variety

of inverse cylinders exist. We now show, however, that practically no

reducibil.t4es R strictly weaker than m-reducibility have any inverse

R-cylinders.

TIEOREM 523 No reducibility R weaker than bq (or be) reducibility

has any inverse R-cylinders.

Proof Suppose it can be shown that there are no inverse

bq-cylinders. Then it follows trivially that no reducibility R weaker

than bq has any inverse R-cylinders. Also, since

AnB4A 4 B & A BA 4=

it follows that there are no inverse bc-cylinders and hence no inverse

R-cylinders for any reducibility weaker than bc-reducibility.

Thus it is sufficient to show that there are no inverse bq-cylinders.

Suppose that some set A is an inverse bq-cylinder.

Case I A is finite. Then let B be any coimmune set. We have

A I-MB.

Thus, A S- $B,

Thus. since A is an inverse bq-cylinder, A 4 B. Hence A•. B.
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Thus a cofinite set is 1-1 reducible to an immune set, which is

imnossible,

Case 2 A is infinite. Let B be a set which is both immune and

coimmune. (Post has shown the existence of such sets.) Let C be given

by

C = (A joir A)(% (B join )

Note that the set C is a subset of the immune set B join B and that

C is infinite, since A is infinite. Thus C is immune. Note also that

x & A4 (2x C) or (2x + 1) C

so that A AbtC, so AB-, C. Thus since A is infinite, A is immune.

Let a be any member of A. WTe have A 6A - Jal , so A~-A A- tal , and

therefore A - A -, a) . But this last statement contradicts a well.

known theorem of Dekker and Myhill, since A is immune. qed.

We now study inverse (m)-cylinders. Note that it follows from

the proof of the previous theorem that no inverse cylinder is m-reducible

to any immune set. Hence not all m-degrees contain inverse cylinders

and, in particular, there are cylinders which are not inverse cylinders.

However, it is not known whether there are inverse cylinders which are

not cylinders. It is also not known whether the join of two inverse

cylinders is an inverse cylinder, although, of course, the join of two

cylinders is a cylinder. Below will be given two theoremswhich will

make it easy to explore the connection between these questions.

THEOREM .. For any set A, the following statements are equivalent.

( i ) A is a cylinder

( ii) :A join A is a cylinder
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(iii) A join Ad1 A

Proof (i) -- (ii) since the join of two cylinders is always a

cylinder. (i) (•(iii) since it is always true that A join A mA.

To prove (ii) =>(i), assume that A join A is a cylinder and that

g is a recursive function such that, for all x

Wx ) is infinite & (x L A join A _ W•x ) A join A)
g(x) g(xJ

& (x L A join A c Wg(x )  A join A)

g exists by Young's characterization of cylinders. Now let h be

a recursive function such that, for all x,

W (X)= Jx 2x W (X) or (2x + 1) W9Xh(x) g(x)

Then h witnesses that A is a cylinder by Young's characterization.

Now suppose that A join A & A. It must be shown that A is a

cylinder. Let a number x be given. Define a sequence LSi of finite

sets inductively:

S :=x

Sn =(f(2x) x LS U Sf(2x +1) XLSn*IC U n
Since f is 1-I, Snl = 2n .  Thus U Sn is infinite. Also,

nna

if y E Sn , y 4 A iff x & A. Thus if we let h be a recursive function
00

such that,, for each x, W is U Sn, h witnesses that A is a cylinder.
h(x) ne

qed.

The above theorem allows one to prove a special case of

Young's result that every nonrecursive m-degree either consists of a

single 1-degree or containsa collection of 1-degrees which is linearly

ordered under - with the order type of rationals.

COROLLARY 5.25 Every m-degree either consists of a single 1-degree
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or contains an infinite collection of 1-degrees with the order type of

the integers.

Proof If an m-degree does not consist of a single 1-degree it

contains a non-cylinder A. Define the sequence Ai inductively:

n + i = An join An

Then from the equivalence (i)4? (ii) in the theorem, each A is

a non-cylinder, so by the equivalence (i)< ~(iii) we have

An An +

Since for all n, A n=,A, the proof is complete. qed.

THEOREM 5.26 If either A or B is a cylinder, then the 1-degree

of A join B is the least upper bound to the 1-degrees of A and B in

the 1-ordering.

Proof For any A and B, the 1-degree of A join B is an upper

bound to the 1-degrees of A and B. Now assume that A is a cylinde.rer,

To show that the 1-degree of A join B is the l.u.b. to the 1-degrees of

A and B we must show that for any set C with A Cd C and B : %C, it is

the case that

A join B . C

Assume that A -1 C via f and B- dC via g. Let h be a recursive

function such that, for all x,

h(xinfinite & (x A =Wt W A) & (xC IXE *Wh(x•c A
h(x) h(x) h(x)

We now define a 1-1 recursive function k by induction so that

A join B &I C via k:
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k(O) = f(o)

k(2n) = y where y is the first number found in an

effective listing of f(Wh(n)) such that

y ( k(O), k(1),...k(2n-1) . (n>O)

k(2n+1) = g(n) if g(n) k(O), k(1),...,k(2n)J . Other-

wise use the instructions below to compute

k(2n+1).

If g(n) de k(O), k(1),...k(2n)1 , list the sets f(Wh(x)) for x - n

until g(n) is found in one of these sets, say f(Wh(z).ý Then let

k(2n+1) = y, where y is the first number found in an effective listing

of f(Wh(z))such that y fk(O), k(1), ... , k(2n) .

Clearly, if k is total, A join B E 1C via k.

k is clearly defined for even arguments and for odd arguments

2n+1 such that g(n) 0k(O), k(1), ..., k(2n)3 . So it is sufficient

to show that k(2n+l) is defined when g(n) e Jk(O), k(1),...,k(2n)

It follows from the definition of k, that for any m & 2n, either

k(m) = g(u) where u < n, or k(m) CU f(Wh(x)). Since

g(n) . (k(O), k(1),...,k(2n) then g(n) = g(u) where u 4 n, or

g(n) & U f(Wh(x)). Since g is i-i, it follows that g(n ) U Uof(h(x))

so it is apparent from the definition of k that k(2n+l) is defined. qed.

In contrast to the above theorem, it may be shown that A join B

is never a least upper bound to A and B in the i-ordering when A and B

are immune, In fact, Young L18] has shown that if A and B are simple

sets incomparable under & ,, then A and B have no lu.b.in the 1-ordering.
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COROLLARY 5.

( i ) If A is a strong cylinder and B is an inverse cylinder,

then A join B in an inverse cylinder.

( ii) If A and B are strong cylinders, then A2join B is a strong

cylinder.

Proof

( i ) Suppose that A is a strong cylinder and B is an inverse

cylinder and

A join B £mC.

It must be shown that A join B-L C. Since A and B are m-reducible

to A join B, A and B are each m-reducible to C. Since A and B are

inverse cylinders, it follows that A and B are each I-reducible to C.

Since A is a cylinder, the theorem implies that A join B is 1-reducible

to C.

( ii) Suppose that A and B are strong cylinders. Then by part

(i), A join B is an inverse cylinder. Also, since A and B are cylinders,

A join B is a cylinder, so A join B is a strong cylinder. qed.

The question of whether every inverse cylinder is a cylinder or,

equivalently, whether every inverse cylinder is a strong cylinder, has

been left open. The following corollary gives an alternative formula.

tion of the question.

COROLLARY 5.28 The following two propositions are equivalent.

( i ) Every inverse cylinder is a cylinder.

( ii) The join of any two inverse cylinders is an inverse cylinder.

Proof

Assume (i) and let A and B be inverse cylinders. Thus A and B are
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strong cylinders. Then by the preceding corollary, A join B is a

strong cylinder and thus an inverse cylinder.

Assume (ii), and let A be an inverse cylinder. By (ii), A join A

is an inverse cylinder., Thus, since A join A m A, A join A.-e A.

Now, it follows from theorem 5.25 that A is a cylinder. qed.

It is easy to show.that if A is a cylinder and B is any set, then

AxB is a cylinder. The corresponding statement for inverse cylinders

is false, for if A is an inverse cylinder and B is empty, then AxB is

empty and hence not an inverse cylinder. However, the writer does not

know whether AxB is an inverse cylinder when A is an inverse cylinder

and B is non-empty. The inverse cylinders exhibited in theorem 5.8, i.e

sets of the form (x I DxCA J x C for simple but not hypersimple A

and non-empty C, have the property that their cartesian product with

any non-empty set is still an inverse cylinder. However, it does not

seem clear that the inverse cylinders exhibited in theorem 5.20, i.e.

ttsets of the form A" for r.e. but not recursive A, share this property,

much less whether all inverse cylinders share this property.



- 102 -

BIBLIOGRAPHY

E(1 K. I. Appel and T. G. McLaughlin, "On properties of Regressive Sets,,,
Transactions of the American Mathematical Society, vol. 115, 1965,
pp. 83-93.

213 J.C.E. Dekker, "A Theorem on Hypersimple Set," Proceedings of the
American Mathematical Society, vol. 5, 1954, pp. 791-796.

3)3 J.C.E. Dekker and J. Myhill, "Retraceable Sets," Canadian Journal of
Mathematics, vol. 10O 1958, pp. 357-373

147 J.C.E. Dekker, "Infinite Series of Isols," Proceedings of the
Symposia in Pure Mathematics, vol. V: Recursive Function Theory,
American Mathematical Society,. Providence, Rhode Island, 1962,
pp. 77-96.

15J P. C. Fischer, "A Note on Bounded-truth-table Reducibility,",
Proceedings of the American Mathematical Society, vol. 14, 1963
pp. 875-877.

L61 s. Feferman, "Degrees of Unsolvability Associated with Classes of
Formalized Theories," Journal of Symbolic Logic, vol. 22, 1957
pp. 161-175.

L71 R. Friedberg, "Two Recursively Enumerable Sets of Incomparable Degrees
of Unsolvability," Proceedings of the National Academy of Sciences,
USA, vol. 43, 1958, pp.236-238

18] R. M. Friedberg, "Three Theorems on Recursive Enumeration. I.
Decomposition II. Maximal Set III. Enumeration with Duplication,,'
Journal of Symbolic Logic, vol. 23, 1958, pp.309-316 .

L91 R. M. Friedberg and H. Rogers, Jr., "Reducibility and Completeness
for Sets of Integers," Zeitschrift far Mathematische Logik und
Grundlagen der Mathematik, vol. 5, 1959, pP. 117-125.

L10i A. H. Lachlan, "Some Notions of Reducibility and Productiveness,"
Zeitschrift fur Mathematische Logik und Grundlagen der Mathematik,
vol. 11, 1965, pp. 17-44

1111 T. G. McLaughlin, "On a Class of Complete Simple Sets," Canadian
Mathematical Bulletin, vol.8, 1945, pp. 33-37.

t123 J. Myhill, "Recursive Digraphs, Splinters, and Cylinders,"
Mathematische Annalen, vol. 138, 1959. pp. 211-218.

t131 E. L. Post, "Recursively Enumerable Sets of Integers and their
Decision Problems," Bulletin of the American Mathematical Society,
vol. 50, 1944, pp. 284-316.



- 103 -

t143 H. Rogers, Jr., Theory of Recursive Functions and Effective
Computability, McGraw-Hill, 1966.

t15) R. M. Smullyan, Theory of Formal Systems, Annals of Mathematics
Studies, No. 47, Princeton, New Jersey, 1961.

1167 C.E.M. Yates, "Recursively Enumerable Sets and Retracing Functions,"
Zeitschrift fur Mathematische Logik und Grundlagen der Mathematik,
vol. 8, 1962, pp. 331-345.

£171 C.E.M. Yates, "Three Theorems of the Degrees of Recursively
Enumerable Sets," Duke Mathematical Journal, vol. 32, 1965, pp.461.

t181 P. R. Young, On the Structure of Recursively Enumerable Sets, MIT
Doctoral Dissertation, 1963.

1191 P. R. Young, "A Note on Pseudo-creative Sets and Cylinders," Pacific
Journal of Mathematics, vol. 14, 1964, pp. 749-753.

1202 P. R. Young, "Linear Orderings under 1-1 Reducibility," to appear
in Journal of Symbolic Logic.



- lo4 -

BIOGRAPHICAL NOTE

Carl Jockuseh, Jr. graduated from Alamo Heights High School in

San Antonio, Texas, in 1959. He then attended Vanderbilt University

in Nashville, Tennessee, for one year. He transferred to Swarthmore

College in Swarthmore, Pennsylvania, in 1960 and received his B.A.

from Swarthmore in 1965 with Highest Honors.

He enrolled at the Massachusetts Institute of Technology in 1965.

He has been a National Science Foundation Graduate Fellow for each

of his three years at the Institute. He has published three abstracts

in the Notices of the American Mathematical Society which summarize iWae

of the results in this thesis:

'Cylinders and Positive Reducibility," vol. 12 (1965), p. 720

"Semirecursive Sets," vol. 12 (1965), p. 816

"Relationships between Reducibilities," vol. 13 (1966), p. 385

He is a member of Phi -Beta Kappa, Sigma Xi, and the American

Mathematical Society.


