
The M-Machine Operating System

by

Yevgeny Gurevich

Submitted to the Department of Electrical Engineering and
Computer Science

in partial fulfillment of the requirements for the degree of

Master of Engineering in Electrical Engineering and Computer
Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

September 1995

@ 1995 Yevgeny Gurevich. All rights reserved.

The author hereby grants to MIT permission to reproduce and
distribute publicly paper and electronic copies of this thesis

document in whole or in part, and to grant others the right to do so.

Author........
Department of Electrical Engineering and Computer Science

August 11, 1995

Certified by.....

William J. Dally
Associate Professor

-1 1 l Thesis Supervisor

Accepted by:.•.--· ".. .
A ederick R. Morgenthaler

s•i lrE 4nrS•T.e k ht.,enartment Con ttee on Graduate Theses

JAN 2 9 1996 Eig.1
LIBRARIES

The M-Machine Operating System

by

Yevgeny Gurevich

Submitted to the Department of Electrical Engineering and Computer Science
on August 11, 1995, in partial fulfillment of the

requirements for the degree of
Master of Engineering in Electrical Engineering and Computer Science

Abstract

This document details the design and implementation of an operating system written
specifically for the M-Machine, a multicomputer currently being designed at MIT. The
operating system is designed to be lightweight and flexible, able to support a UNIX-
like operating system layer interface to higher-level code, while at the same time
exposing machine primitives to user programs in a safe and efficient manner. The
operating system's central features are its support for fast and efficient thread creation
and built-in memory-coherence to present the view of global virtual memory to user-
level programs as well as higher-level protected subsystems. Four core components
are presented - the physical and virtual memory managers, the thread manager, and
the memory-coherence manager.

Thesis Supervisor: William J. Dally
Title: Associate Professor

Acknowledgments

My participation in the M-Machine project has involved the most exciting and chal-

lenging work that I have so far undertaken. I would like to wholeheartedly thank the

entire M-Machine team - Nick Carter, Andrew Chang, Marco Fillo, Steve Keckler,

and Whay Lee. Special thanks to Nick and Steve for timely feedback on this thesis.

I owe special thanks to Bill Dally, for guiding me through a large and complex

project, finding time to give feedback, giving me the opportunity to contribute to the

project, and driving me to solve more problems and deal with more complex issues.

It has been a true privilege working under your leadership.

To my parents, thanks for hanging in there and supporting me through these last

few hectic months. And thanks also to Mark, a terrific brother who's helped out so

much.

Finally, to my very good friends at KBL (and visitors), thanks for making KBL

such a welcome home to return to after long hours of work. To Hugh, Len, Pete,

Steve & Danielle [congrats], and Paulo - many happy smiles.

Contents

1 Introduction

2 Target Hardware Overview

2.1 A shared-address-space multicomputer

2.1.1 Hardware primitives for implementing shared-memory .

2.1.2 Atomic Test-and-set Memory Operations

2.1.3 Hardware-supported capabilities

2.1.4 V- and H-Threads

2.1.5 Support for Efficient Message-passing

2.1.6 Memory-mapped Access to Hardware State

3 Runtime System Overview

3.1 Differences from a Traditional Operating System .

3.2 System Thread Components

3.2.1 Event Handler

3.2.2 LTLB Miss Handler

3.2.3 Message Handlers

3.2.4 Availability and Reentrancy

3.2.5 Signalling the Event Handler

3.2.6 System Call handling in User Thread Slots .

3.2.7 Capabilities and Protection

3.2.8 Page Table Design

3.3 Breakdown of MARS into Functional Components .

15

. . . . 16

. . . . 16

. . . . 16

. . . . 17

... . 18

. . . . 19

. . . . 19

21

. 22

. 23

..... ... 24

. 25

.. 25

. 26

. 27

. 28

. 29

.. 30

. 31

3.3.1 Physical Memory Management 32

3.3.2 Virtual Memory Management 32

3.3.3 Memory-coherence Management 32

3.3.4 Process Management 33

4 Physical Memory Management 34

4.1 System Calls 35

4.2 Data Structures 36

4.3 Design Rationale 38

4.4 Page Allocation Policy 39

4.5 Implementation 39

4.5.1 Event Format 40

4.5.2 Initial Page Lookup 41

4.5.3 Fake Miss Interface 43

4.5.4 Reclaiming Pages 44

4.5.5 Unmapping 45

5 Virtual Memory Management 46

5.1 System Calls 46

5.2 Data Structures 47

5.3 Implementation 48

5.3.1 Allocation 48

5.3.2 Deallocation 49

5.4 Design Issues 51

6 Thread Management 52

6.1 System Calls 53

6.2 I)ata Structures 53

6.2.1 Thread Contexts 54

6.2.2 Signal Table 58

6.2.3 Thread Lists 59

6.3 Implementation 60

6.3.1 tFork 61

6.3.2 tExit 61

6.3.3 tSignal 61

6.3.4 tSleep 63

6.3.5 tSpawn 65

6.3.6 Scheduler 68

7 Memory-Coherence Management 71

7. 1 Internal Functions. 72

7.2 Data Structures 73

7.2.1 Coherence Directory 73

7.2.2 Software Event Table 74

7.3 Implementation 76

7.3.1 Simplified Roundtrip Coherence Path 76

7.3.2 Diverging from the Simple Case 80

8 Exposing System Calls to User Threads 95

9 Performance Measurements 98

9.1 The LTLB Miss Handler and Physical Memory Management 98

9.2 Virtual Memory Allocation 98

9.3 Thread Management 99

9.4 Memory-Coherence 99

10 Status and Future Directions 103

10.1 Key OS Features and Contributions 103

10.2 Existing Components 105

10.3 Future Work107

10.3.1 Loader 107

10.3.2 Memory-Coherence 107

10.3.3 Virtual Memory Management 108

10.3.4 UNIX Personality 108

A MARS Messages 110

B MARS Header Files 113

C MARS Assembly Code 114

D MARS C Code 115

E Sample User Programs 116

List of Figures

2-1 Thread Slots and Clusters 18

3-1 OS Components Overview by Hardware 22

3-2 OS Components Overview by Function 31

4-1 PPM Hash Table Structure 36

4-2 PPM Free Page List 38

4-3 Hash Function Calculation 41

5-1 Buddy List Structure 47

6-1 Sample Thread Management system call usage 55

6-2 Thread Context data structure 56

6-3 Context Linkages 57

6-4 Signal Entry 58

6-5 Signal Hash Table Structure 59

6-6 State Transitions in Signal/Sleep Implementation 64

6-7 Sample signal and sleep system call usage: main thread 66

6-8 Sample signal and sleep system call usage: child threads 67

7-1 MCM Software Event Table 74

7-2 End-To-End Communication in Simple-Path Coherence Protocol . . . 77

7-3 Block Invalidation in Memory Coherence Protocol 86

7-4 State Transition Diagram for Requested Blocks 88

8-1 Sample syscall.m stub 96

8-2 Sample syscall.m Idptr usage 97

8-3 Sample runtime stub 97

List of Tables

4.1 Physical Page Manager exported functions 35

4.2 LTLB Miss Event Format 40

5.1 Virtual Segment Manager exported functions 47

6.1 Thread Manager system calls 54

6.2 Thread Manager system calls 68

7.1 Event Handler's MCM functions 92

7.2 Home Node MCM functions 93

7.3 Requesting Node MCM functions 94

7.4 Event Header Format 94

9.1 Cycle count breakdown of LTLB Miss Handling 99

9.2 Cycle counts for selected PPM functions 99

9.3 Cycle count breakdown of Virtual Memory Allocation 99

9.4 Cycle count breakdown of tFork 100

9.5 Cycle count breakdown of tInstall 100

9.6 Cycle count breakdown of tExit 100

9.7 Cycle count breakdown of sender tSpawn 100

9.8 Cycle count breakdown of receiving tSpawn request 101

9.9 Cycle count breakdown of handling a BSM 101

9.10 Cycle count breakdown of home node's handling a ccrequest 101

9.11 Cycle count breakdown of requesting node's handling an ACK 102

10.1 M ARS Sources Files 106

A.1 Memory Coherence Messages 111

A.2 Thread Management Messages 112

Chapter 1

Introduction

The M-Machine is a new multicomputer currently being designed at the MIT AI

Lab. The machine's hardware features, some radically different from conventional

architectures, require a custom operating system. The operating system is meant

to define a small collection of powerful primitives which may be used to construct

interface layers in order to emulate existing, familiar operating systems. At the same

time, this low-level system code attempts to expose novel hardware features to user-

level code in a safe manner. For this reason, the low-level OS needs to be efficient and

flexible. Flexible, in terms of providing a framework of very general primitives, and

efficient in order to allow other system personalities to reside as higher-level layers

without significantly impacting performance.

Following the general trend in operating system design, the M-Machine's OS (M-

Machine Runtime System or MARS) is a loose collection of managers which work in

concert, instead of a single monolithic kernel such as in traditional implementations

UNIX. These managers provide the minimum functionality necessary for an operating

system - memory-management and process (thread) management. They form the

basis for allowing user-level programs to execute on the machine in protected, stable

manner. These low-level managers execute on each node of the M-Machine, similar to

the microkernel of Amoeba, which performs process and memory management tasks.

As in Mach, the collective managers are designed to enable the implementation of

a UNIX-like API which sits above the low-level OS layer. Such an implementation

can be efficient and at the same time, provide a common and familiar programming

environment.

As in Mach and Amoeba, the OS presented in this thesis supports lightweight

thread creation which may be used a basis for the much heavier and often inefficient

UNIX fork, although newer implementations of UNIX have moved towards this design

as well, providing more lightweight process-creation functions.

A novel addition to this operating system is low-level memory-coherence manage-

ment. Even operating systems such as Mach, which were designed in part to run

on multicomputers, do not integrate a core global shared virtual memory system. A

distributed shared memory server in Mach would operate at a higher-level. Further-

more, the global shared virtual memory, supported by hardware-based capabilities,

allow the OS to employ a single machine-wide memory map which is identical for all

processes. This differs from operating systems like UNIX, Amoeba, and Mach, where

virtual memory maps depend on the currently-executing process. A single address

space simplifies sharing and writing parallel programs. The use of capabilities free

the OS from having to use complicated software-based capability schemes to enforce

protections on shared memory. Shared virtual memory is as inexpensive to access,

and as safe from errant and malicious threads, as a thread's private memory. Like

Amoeba but unlike Mach and UNIX, the M-Machine OS does not include a pager.

Such an addition requires additional complexity, and design time for a complete I/O

system as well.

This thesis is divided into three general sections. In the first, chapter 2 provides

a quick overview of particular aspects of the M-Machine architecture which will both

shape the design of the operating system and enable it to perform its duties in an

efficient manner. Chapter 3 then provides a high-level picture of the M-Machine

operating system's structure.

The second section presents more detailed design and implementation of the four

central subsystems within the operating system - the physical memory manager, the

virtual memory manager, the thread manager, and the memory-coherence manager.

These are covered in chapers 4, 5, 6, and 7.

In the last section, the interface for user programs to the system is described in

chapter 8, some performance figures are given in chapter 9, and chapter 10 concludes

with project status and future work which needs to be done.

Chapter 2

Target Hardware Overview

This section presents a brief description of the machine architecture targetted by

MARS - the M-Machine. The M-Machine is a shared-memory superscalar multi-

computer being designed at the MIT Artificial Intelligence Laboratory. A detailed

architectural design is provided in [4]. At the high level, the M-Machine consists of

a mesh of nodes serviced by a high-speed network substrate. Each node consists of

four clusters. Clusters contain an integer, memory, and floating-point unit capable of

issuing in parallel on each clock cycle. Multiple register files and other thread state

support up to six thread contexts in hardware simultaneously. The clusters may

communicate with each other through a dedicated cluster-switch, and to four cache-

banks through a memory switch. With this design, the machine's peak issue rate is

twelve operations per clock cycle, with up to 12 outstanding memory references being

serviced by the individual cache banks at any one time. Several of the machine's

distinctive features which greatly affect its operating system design are presented in

this chapter. They include (1) hardware primitives to support global shared virtual

memory, (2) operations for atomic memory access, (3) hardware-enforced capabilities

for memory protection, (4) support for fast context-switching, and the ability to con-

currently maintain several thread contexts in hardware, (5) support for message-send

primitives at the instruction level, and (6) mechanisms for accessing hardware state

through a. memory-mapped configuration space.

2.1 A shared-address-space multicomputer

The M-Machine supports a global 54-bit virtual address space across all of its nodes.

Local on-node caches are virtually-addressed, a global translation lookaside buffer

(GTLB) maintains mappings of virtual addresses to their home nodes, and system

software is required to maintain memory coherence between nodes. Memory refer-

ences which miss in the cache are handled by an external memory interface (EMI)

which probes an on-node local translation lookaside buffer (LTLB) to determine which

physical page provides backing for the referenced virtual address. Due to the design

of the memory system, lines in the cache must be backed by a local physical page so

that they may be flushed to external memory by hardware in the event of a cache-line

conflict. References which pass to the LTLB but miss there as well result in an event

record being generated which allows software intervention.

2.1.1 Hardware primitives for implementing shared-memory

In order to support an implementation of software-based coherent shared memory,

the M-Machine architecture maintains two status bits for each 8-word block of vir-

tual memory. These block-status bits, signifying whether a line is invalid, read-only,

exclusive-clean, or exclusive-dirty, are maintained by hardware in the local translation

lookaside buffer and cache. The memory system prevents an access from completing

if it violates the block-status bits, instead generating an event record which allows

system software to intervene and satisfy the access. There are three fault types: write

to an invalid line, read to an invalid line, and write to a read-only line. All events

are handled by a dedicated system thread as explained in the next chapter. System

software is expected to replicate and manage these block status bits in node page

tables when altering entries in the LTLB.

2.1.2 Atomic Test-and-set Memory Operations

In order to support access to global shared data structures in the face of concur-

rency, each word of the machine's memory includes a lock bit which is referenced

in atomic test-and-set memory operations. These synchronizing memory operations

allow programs to perform loads or stores conditional upon the status of the lock bit

(the precondition), and set the bit to a known value if they succeed (postcondition).

Conditional synchronizing memory operations return a condition which is true if the

test-and-set succeeded and the memory operation completed, and false otherwise.

Unconditional synchronizing memory operations generate events if the preconditions

they require are not met. Details of instructions are in [5].

2.1.3 Hardware-supported capabilities

In order to maintain global shared virtual memory without the use of access lists,

capabilities are used to enforce memory protection. Words may be tagged as pointers

to memory segments of a power of two bytes in length by system software, and given

out to user-level processes. User processes are only allowed to copy the pointers

as is or to modify their address portion so as to change their offsets within the

memory segment that the pointer represents. In this way, it is not necessary for the

operating system to maintain separate page tables for each process in a multi-process

environment since pointers may not be forged. As explained in [2], this presents a

problem when a thread deallocates a segment of virtual memory since the operating

system does not know a priori which threads may have been passed this pointer'.

A global garbage-collection of allocated virtual memory must be performed to find

and destroy any clones of pointers to virtual segments before such segments may be

deemed clean and available once again for allocation. However, as [2] shows that

for large address spaces, reclamation may be performed extremely infrequently. [1]

presents a more detailed description of the M-Machine's capabilities. The use of

different pointer types to allow efficient user access to system code will be revisited

in chapter 8.

1Threads may pass pointers around in messages, by writing them into memory shared by other
threads, or direct intercluster register-file writes

User vthreads (slots 0 -3)

Exception vthread (slot 5)

Event vthread (slot 4)
cluster 0 i cluster 1 cluster 2 1 cluster 3

LTLB Miss
Event
Record

hardware priority 0 priority 1
event message message
queue input input

queue queue

Figure 2-1: Thread Slots and Clusters

2.1.4 V- and H-Threads

A thread which executes on the M-Machine is identified as a V-Thread. It occupies

one of six hardware thread slots and may be composed of up to four decoupled H-

Threads, each running on a different cluster on the node. H-Threads communicate

with each other either through memory or intercluster register-file writes. More de-

tails of these mechanisms are given in [4]. At any instant, any combination of four

H-Threads from the six different V-Thread slots may be issuing instructions down

the piplines of the clusters. V-Threads are round-robin scheduled by the hardware

to allow each fair access to machine resources. Four of the hardware thread slots

are intended for user-level threads. The remaining two thread slots are meant for

system-level handlers. Certain registers in the system-level thread slots are mapped

to hardware resources such as the event and network input queues, as shown in fig-

ure 2-1. These system thread slots form the core of the M-Machine operating system

as will be described in chapter 3. The hardware support for several thread slots al-

lows for efficient context switching among available user threads for better latency

tolerance. In addition, there is no expensive penalty for invoking system handlers to

respond to events and messages since suspension and eviction of a user thread to make

room for a, system handler is not required. The handlers are always active, sleeping

until an event or incoming message requires their attention. Finally, the controlled

manner in which system handlers are invoked - similar to a protection violation in-

voking kernel mode in traditional operating systems - protects handlers from errant

threads since no direct function call is involved.

2.1.5 Support for Efficient Message-passing

Primitive hardware instructions to perform an atomic message send allow threads

to inject messages into the M-Machine's internode network without needing to call

system software. At the user-level, this allows threads to invoke handlers on a par-

ticular node if they obtain (1) an entry pointer into a message-handler routine and

(2) a pointer to a virtual memory segment mapped to the destination node. The re-

quirement for a pointer to a message-handler routine ensures that incoming messages

are serviced by trusted code which will not lock up the network input queue. At the

system level, threads are allowed to send messages directly to physical node numbers

instead of using virtual addresses. This message-send primitive is employed by the

memory-coherence management software as explained in chapter 7. A ten-word mes-

sage size limit is adequate for the system software's requirement of shipping 8-word

cache lines with some extra status information.

2.1.6 Memory-mapped Access to Hardware State

Threads on the M-Machine may access hardware state through load and store memory

operations which target configuration space. Pointers tagged with the configspace

type identify such accesses and requests are passed to configuration space controllers

in each cluster. Machine state such as the LTLB, portions of the instruction-cache,

hardware thread contexts, and status registers may be read and modified by system

software. Since the configuration address space is 54 bits, hardware state is laid

out sparcely so as to simplify hardware decoding of requested addresses. As will

become evident in the rest of this document, configuration-space access will be one

of the central tools employed by the runtime system to manage the machine. Since

configuration-space pointers allow such powerfull access, these pointers are never given

out to user-level threads, and are constructed when needed by priviledged threads or

generated directly by hardware state machines on event-record generation.

Chapter 3

Runtime System Overview

The M-Machine Runtime System (MARS) is split into two distinct pieces - system

functions which are invoked by user-level threads and execute within the caller's

thread slot, and low level handlers which perform physical memory management,

memory-coherence, and thread management. System functions allow protected sys-

tem code execution within a user thread's context with the help of the capabilities

mentioned in the previous chapter. A detailed description of system entry and exit

is provided in [1]. The operating system presented here is not truly complete, as it

lacks a design for I/O, among other components.

The current runtime system implementation uses its own data pointer when in-

voked as system code, but for simplicity still borrows the caller's stack for interme-

diate values and spill space. This, however, is actually a potential security leak since

a malicious user-level thread may pass a copy of its stack pointer to a confederate

(perhaps another H-Thread within its own slot) which may then overwrite portions

of the stack or snoop on the stack contents, hoping to encounter a pointer it is not

normally allowed to access. MARS can be modified to counter this security prob-

lem. A more secure system would employ distinct system stacks inaccessible by the

user-level caller. Such stacks may be maintained as linked lists of virtual or physical

segments allocated by the OS at boot time, and popped for use by system code when

a system function is first invoked. System handlers are invoked indirectly through

fault mechanisms and are therefore more secure, using their own dedicated stacks and

System functions executed in the 4 user thread slots

Thread Manager Virtual-Memory Manager
':Spawn

tSignal ' vmem_alloc vmem_dealloc
tFork

tSleep
tExit tSleep

. .. . i

Stubs for Handler Entry
add_ehj ob unmap_page mappage

lookup_page

................................_

: e : Low-_level handlers :execiting inSystemi tread slot
Event Handler LTLB I PO Message . P1 Message

:Miss Handler : Handler Handler

Thread Phys:cal Thread Thread
Management: Page Management: Management
scheduling Management Remote Remote

tSleep/tSignal tSleep/tSigna

Memory Memory . Memory.
Coherence Coherence: : Coherence
requests requests requests

S..... :...... .. !... i. :... .:I: : :.:....
......~~ ~: . : :........:: .• I

.1

...... i

Figure 3-1: OS Components Overview by Hardware

data segment pointers.

All components of the runtime system are designed with several key principles in

mind - handlers and system functions are meant to be lightweight, tolerate concur-

rency, and be flexible and general enough to support a variety of high-level operating

systems built from the primitives that they provide.

3.1 Differences from a Traditional Operating Sys-

tem

Unlike traditional operating systems such as the UNIX and Mach variants, MARS is

designed from the ground up to support concurrent execution of lightweight threads

in a single global virtual address space, and provide a view of coherent virtual mem-

ory even to higher-level operating system components. Unlike Mach, where message-

passing provides a secure interface for communication, communication among and be-

tween user-level processes and operating system components is accomplished through

function calls and memory access. This is in great part due to the hardware capa-

bilities which enable protected low-cost shared-memory access, and the underlying

memory-coherence protocol. MARS does, however, share several design concepts

with Mach, such as the support for synchronization primitives, inexpensive IPC, and

lightweight threads/processes.

Instead of a kernel or microkernel of linear code which is invoked by user code

through a page-fault mechanism, most system calls in MARS are handled within a

user thread slot through protected system entry. This has several key advantages -

while system calls are being performed by one user thread, other user threads are not

prevented from executing their code. In addition several system calls may be active

at any time, even the same system function (system calls must be designed to be re-

entrant and use locks when accessing shared data structures.) Finally, more critical

services such as the handling of memory protection violations and page faults are still

invoked in the traditional fault-reponse manner, but with two key differences. First,

while a system event handler is executing other threads may continue issuing until

a conflict in a hardware resource arises, in which case the system threads are given

higher priority. Second, even the faulting thread may make progress until it requires

the use of data which is being serviced by the fault mechanisms. More importantly,

even the invocation of critical OS services may be performed concurrently, with three

and sometimes four different system-level fault handlers being able to service inde-

pendent requests at the same time.

A more detailed view of the low level handlers which reside in the system thread

slot is provided in the next section.

3.2 System Thread Components

The system V-Thread, running in thread slot four on each node of the M-Machine,

is composed of four decoupled H-Threads effectively providing four independent han-

dlers which may concurrently satisfy system events. The four H-Threads are the

Event Handler (EH), LTLB Miss Handler, Priority 0 Message Handler (POMH), and

Priority I Message Handler (P1MH). All thread components remove events from

hardware-based event FIFO queues and process each event in turn. If no events are

present, handlers simply block until an event arrives, thereby allowing other threads

to issue and not stealing any execution cycles on the machine. An overview of these

system components is shown in figure 3-1. Each thread blocks on a different hard-

ware FIFO, allowing up to four events to be handled at a time. Events are usually

of fixed-length and are inserted into queues by hardware state machines. Each of the

H-Threads in the system V-Thread has integer register 14 mapped to the head of its

respective event queue. When that register is used as a source for an operation, the

head word of the next event in the hardware queue is used as the data source. Integer

register 15 maps to the body of the event, used to access all remaining words in a

hardware event. Once an event word is read out of the hardware queue, it is effec-

tively popped from the queue and may not be recovered. Therefore, most handlers

store away event words if they are intended to be used multiple times. The following

subsections describe each of the four system H-Threads.

3.2.1 Event Handler

The Event Handler responds to block-status miss events, global translation lookaside

buffer misses (GTLB Miss), and synchronization misses (SYNC Miss). GTLB misses

occur when user-level message-send instructions target virtual addresses which con-

tain no address to node-number mapping in the GTLB. Synchronization misses occur

when a synchronizing memory operation fails to proceed because the referenced mem-

ory location does not have the requested precondition. The MARS system has not

been designed to handle the two latter cases, although future work makes extending

the event handler quite simple. In addition, software job queues are used by other

components of the OS to request that the Event Handler perform certain tasks, such

as evicting or installing threads. A SIGNAL event wakes the event handler to ensure

that it gets a chance to examine these software job queues. The handling of block

status miss events is a part of the memory-coherence protocol described in chapter 7.

3.2.2 LTLB Miss Handler

The LTLB Miss Handler is the most critical component of the MARS system. Due

to the nature of the M-Machine memory system, a miss in the LTLB locks up the

external memory interface until that miss is serviced. Other threads may continue

issuing operations until such time as they cause a cache miss, in which case memory

requests stack up until the EMI is freed by the LTLB Miss Handler. The LTLB Miss

Handler itself has a separate path (the bypass path) into the EMI which insures that it

may always access physical memory. Therefore, when the Miss Handler is executing,

there is absolutely no guarantee that any other thread is active and able to make

progress on the machine. This makes it especially important that the handler not

access any data structures which may be locked by other system threads. Such locked

data structures may never be released if the owner of the lock is blocked waiting for the

LTLB Miss Handler to free up the EMI for memory accesses. In addition, the handler

may only access physically-addressed memory, since a virtual address reference may

miss in the LTLB itself, causing deadlock. In its normal mode of operation, the

LTLB handler maintains the local page table which contains mappings from virtual

to physical pages, and refills LTLB entries on an address miss. The handler may

also be called through a faked miss mechanism by system software to create, remove,

or lookup the mappings that it creates. This mechanism is decribed in more detail

in section 4.5.3. Finally, since the LTLB miss handler cannot guarantee that other

portions of the event-handling system are able to make progress, it cannot cause

Block-Status, Sync, or GTLB misses, or send messages.

3.2.3 Message Handlers

The P1 and PO Message handlers receive messages from the network destined for

their node and respond by executing message-handling functions. Such functions

may implement a variety of mechanisms including remote memory transfer, remote

procedure call, and thread spawn. Others form the core of the software memory-

coherence implementation. In order to guarantee deadlock-free execution, all request

messages are sent via priority 0, and acknowledgements are returned on priority 1.

Priority I messages are intended to be handled unconditionally, eventually allowing

the network to drain of all P1 traffic and allowing all message traffic to make forward

progress. For every PO message received, at most one P1 message should be returned

as an acknowledgement.

3.2.4 Availability and Reentrancy

As mentioned previously, since the system handlers reside in an active system V-

Thread there is no need to swap in their context and save or restore user thread

state before they may begin fulfilling a request. This makes for fast and efficient

reponses to what are effectively interrupts without slowing down user code which

may be executing concurrently. In addition, there is no time wasted restoring the

register-file contents or setting up thread state for the system thread.

The limitations of the LTLB miss handler have already been discussed. In general

all event handlers are not reentrant since they are the sole mechanism available for

fulfilling their respective event requests. The event handler may not cause and events

such as block status, SYNC, or GTLB misses, to occur. In order to maintain the

progress guarantees of the network, the P1 message handler may not itself send out

messages.

A hardware mechanism prevents user-level threads (those executing in thread

slots 0-3) from issuing if the hardware event queue for the event handler rises above a

watermark. This mechanism is in place to bound the number of outstanding events in

the system and prevent hardware queue overflow. For this reason, it may be possible

that protected subsystems which execute within user thread slots may not be able to

issue instructions until the event handler has serviced events in the hardware queue.

This introduces another constraint upon event handler operation - code executing in

the event handler may not wait for locks held by code executing in user thread slots.

3.2.5 Signalling the Event Handler

In some instances other OS components, including message handlers, may request

that the Event Handler perform a function, such as a message resend, in proxy for

them. This is especially true if a message needs to be sent in response to an ACK

arriving at the P1MH. In these cases, a request record is added to a software job queue

for the Event Handler to fulfill at a future time. A signal event is then issued. In

order to avoid overflowing the hardware event queue, only a single signal event may

be in the hardware event queue at a time. This is accomplished by keeping a word

in memory (the event lockword) on which the handlers may synchronize. System

code adding a request for the Event Handler (the producer) first adds the event to

a software queue and then attempts to set the lock bit of the event lockword to full.

If the word was previously full, the set fails and the producer goes on. If the word

was previously empty, the producer adds a new SIGNAL event to the hardware event

queue. For its part, the Event Handler always resets the event lockword each time it

dequeues the SIGNAL event. This guarantees for the producers that if the lockword

is set, a previously-issued SIGNAL is still in the hardware event queue (or recently

popped from it) and will be examined by the Event Handler as detailed below.

There are two software job queues because handlers within the system thread slot,

and protected subsystems within user thread slots may be attempting to add software

jobs for the event handler. All code executing within user thread slots synchronizes

access to the job queue so that there is a single producer at a time. A job queue is a

ring buffer, with two global pointers into it - the cur pointer and the free pointer. The

cur pointer is read and modified only by the consumer (the event handler thread). It

is advanced each time a new event is read out and identifies which events have been

read out of the job queue. The free pointer is read by both producer and consumer,

but advanced only by the producer. Each time a producer wishes to add a new

event to the job queue, it reads the free pointer, and begins storing new event words

starting at the free pointer and moving down (wrapping around the end of the event

buffer if necessary). As its last action, the producer advances the free pointer with

a single store operation. This is the atomic action which signifies that a new event

is available. For its part, the event handler checks the cur pointer against the free

pointer each time it looks for an event to service. If the cur and free pointers match,

no new software events are in the job queue. Otherwise, the event handler may start

reading off the cur pointer and advancing it - servicing the next request in the queue.

This mechanism allows the event handler to safely dequeue events without needing

to acquire a lock. A second queue is used for the two message handlers to enqueue

jobs with the event handler. They also synchronize among themselves to guarantee

that there is only one thread adding events to the software job queue at a time.

Given sufficient buffer space to hold all requests, this mechanism is deadlock-free

and guarantees that all events in the software queues will eventually be handled. The

reason for using the SIGNAL event is to guarantee that requests in the software queue

will be examined by the Event Handler if no hardware events are being generated

and the Event Handler is blocked waiting for one. The SIGNAL effectively wakes

the thread so that it may look at the events stacked up in its software queues. A

producer which is unable to set the lockword and therefore add the SIGNAL event is

guaranteed that the SIGNAL word is either still in the hardware queue or is just being

removed by the Event Handler. In either case, since it had enqueued the request in a

software queue prior to attempting a SIGNAL, the producer is guaranteed that the

Event Handler will wake up and take a look at the recently added request, as long as

the Event Handler runs through the entire software queue before attempting to sleep

again. Finally, the lockword also insures that at most one signal has been placed in

the hardware queue at a time, preventing queue overflow.

3.2.6 System Call handling in User Thread Slots

Despite the great deal of infrastructure developed for handling events in the dedicated

system thread slot, many higher-level system calls may be handled by trusted software

running within a caller's user thread slot (V-Thread slots 0 to 3). Such system

functions include virtual memory allocation, thread and process creation (but not

scheduling), invocation of remote functions or spawning remote threads, bulk memory

transfer, and others. In short, most routines made available by high-level operating

systems which do not require direct manipulation of low-level data structures such

as page tables or memory-coherence directories may be safely executed within a user

thread slot. In addition, system calls which work with protected data structures

that reside in virtual memory may take full advantage of the memory-coherent global

memory supplied by low-level OS components. This layered design provides a lot of

flexibility.

3.2.7 Capabilities and Protection

Capabilities enable user threads to enter system functions in a protected manner. The

runtime system "exports" a collection of system functions during the loading of user

executables. User programs containing references to system functions are patched

with entry pointers to runtime system functions by a trusted loader. Entry pointers

may be loaded and used in jump instructions, but may not have their addresses

changed. This provides a safe entry mechanism since the system functions which

are exported are guaranteed to be entered at well-defined points. Since the setting

of the pointer bit is a priviledged operation, user programs may not forge entry

pointers of their own. This also means that as the OS evolves, the exact entry points

and number of available system functions may change, but legacy programs will still

execute correctly since patching is performed at load and not link time. In order for

system functions to gain access to the runtime's data segment and associated system-

level data, structures, a system data segment pointer is stored within the system's

code segment by the boot code. As a user-level thread enters a system function, the

entry pointer is changed to an execute-system-mode instruction pointer which points

into the system code segment. This allows the callee system function to load the

system data segment pointer by offsetting from its IP (now allowed since the IP is no

longer an entry pointer) and performing a load, overwritting the user data segment

pointer. On return to the caller, the user's data segment pointer is restored and a

jump to a return pointer switches the thread back to user mode. This process is

explained in chapter 8.

3.2.8 Page Table Design

The global virtual memory supported by the machine allows the system software to

use a single inverted page table to maintain virtual-to-physical page mappings for all

allocated memory on each node. The M-Machine uses a 4-Kbyte page size for both

physical and virtual pages. An open-hashing page table on a node with 16Mbytes

of physical memory requires only 8192 entries to be twice as large as necessary for

maximum capacity.' Assuming 4 64-bit words per entry, this works out to a 0.2%

overhead for an inverted page table. Once again, the advantages of maintaining a

single page table for all processes running on the node are clear - no switching of

tables is necessary on context switches, speeding up multiprocessing performance. In

addition, since capabilities prevent user threads from forging pointers, no additional

mechanisms are required to prevent a process from accessing virtual memory allocated

for other processes. Finally, no special support is required for shared virtual memory.

Once a process gives out a virtual pointer to another thread, the virtual segment may

be read and written by both. Several flavors of protected pointers allow processes to

set up read-only or read-write shared segments.

Since virtual segments do not necessarily need to be backed by contiguous regions

of physical memory, a chained list of physical pages is used by the physical memory

manager to dole out backing pages to virtual segments. As physical pages become

available for allocation, they are added to the free page chain in a FIFO manner. To

speed up allocation, a background process may be used to clean physical pages before

they become available for allocation. Physical memory management is detailed in the

next chapter.

'The M-Machine currently being designed is expected to have 8MBytes of on-node physical
memory.

Accessible by User Threads
Virtual Segment Manager Thread Manager
vmem_alloc tFork _getMyTC
vmem_dealloc tExit _getParent

tSpawn _getDP
hSpawn
tSignal
tSleep

Accessible by Protected Subsystems or User Thread faults
Physical Page Manager Cache-Coherence Manager
PPM_init ccrequest
PPM_map ccinvalidate
PPM_unmap ccreturnStore
PPM reclaim local ccreturnLoad
PPMreclaimremote ccNackRO

ccNackRW

Virtual Segment Manager
vmem_prime

Figure 3-2: OS Components Overview by Function

3.3 Breakdown of MARS into Functional Com-

ponents

The previous section approached the MARS design from the point of view of hardware

resources used for runtime implementation. This section provides an overview of the

runtime system as it is broken down into functional components. The runtime system

can be viewed as a collection of managers running in a largely autonomous manner

to satisfy requests. At times, managers may call upon each other to fulfill certain

requests. This is most commonly the case when system threads require access to

physical memory - they call upon the physical memory manager to allocate new

physical pages or return information on existing virtual-to-physical mappings.

3.3.1 Physical Memory Management

Physical memory management - the maintenance of the local page table and the

LTLB - is handled exclusively by the LTLB Miss Handler. Since the handler thread

is not allowed access to data structures which may be locked by other threads (as

explained in section 3.2.2), there is effectively no overlap in the information which

it maintains with that of any other thread. Access to the LTLB Miss Handler is

performed in a fault-response manner similar to traditional OS's as described above.

In general, misses to reserved virtual addresses which are kept unmapped by the LTLB

handler are used as triggers to invoke specific handler functions - such as removal of

a particular virtual-physical mapping, creation of a new one, or return of information

about an existing mapping.

3.3.2 Virtual Memory Management

Virtual memory is doled out in segments by a Virtual Segment Manager which is

composed of a series of system functions accessible by user threads. The VSM does

not allocate physical backing to the segments which it gives out, simplifying its design

and allowing it to run independent of other pieces of the system software within user

thread slots - it does not require access to hardware tables, registers, or other machine

state. At boot time, the managers on each node of the M-Machine are primed with

virtual segments which they may give out and effectively manage independently. The

underlying data structure used for tracking allocated and available segments is the

buddy list. Details of the VSM and Buddy list allocation are given in chapter 5.

3.3.3 Memory-coherence Management

The software memory coherence implementation of the M-Machine is centered around

the actions performed by Event and Message handlers on each node. The Event

Handler on a requesting node sends PO requests to home nodes in response to local

block-status miss events. The PO message handler on a shared data item's home node

receives requests for cache lines, updates a memory-coherence directory and ships out

blocks of memory as P1 acknowledgements. The P1 message handler on the original

requesting node receives the remote cache line (an implicit acknowledgement to its

request) and installs it locally. In the event of cache-line conflicts or flush requests, the

Event Handler on a node sharing remote data may be required to invalidate and, in

the case of dirty lines, return cache lines to their home nodes. The memory-coherence

implementation is detailed in chapter 7.

3.3.4 Process Management

The management of user processes is broken down into two pieces. System calls in-

voked within user thread slots are used to fork user threads and add them to lists of

ready-to-run threads. Other system calls allow threads to sleep, or signal other sleep-

ing threads. The actual manipulation of hardware thread slots for evicting threads

and/or installing new ones is performed by the event handler. This localizes access

to the machine hardware so that it is performed by a single thread which is guaran-

teed to be always active. Although not strictly necessary, this localization simplifies

aspects of the memory-coherence implementation as detailed in later chapters.

Chapter 4

Physical Memory Management

The M-Machine physical memory manager (PMM) is responsible for maintaining

virtual-to-physical page mappings on each node and keeping track of available and

allocated physical page frames. Physical memory (sometimes referred to as consisting

of backing pages) is usually the ultimate target of memory operations issued on the

M-Machine.1 In the M-Machine memory hierarchy, each node requires a PMM to

maintain mappings between virtual pages and their associated physical backing store

within a page table. Without a page frame to back it, a virtual address reference

cannot be completed. To increase memory-system performance, a 64-entry cache for

these mappings is maintained in hardware (the LTLB). The PMM is responsible for

keeping the LTLB in sync with the mappings found in the page table. Hardware

events notify the PMM when a mapping was not found in the LTLB - an LTLB Miss

Event. The PMM must find a mapping within the page table and place it in the LTLB,

perhaps evicting a conflicting mapping for a different virtual page. This chapter first

introduces a functional interface to the memory-management functions, describes the

data structures employed, and details the implementation of the memory manager. As

described briefly in the previous chapter, the LTLB Miss Handler is solely responsible

for these functions. Section 4.3 explains the rationale behind this design decision.

1 Exceptions are I/O addresses which are memory-mapped into virtual address space, and
configuration-space which is a totally separate address space.

4.1 System Calls

The PMM performs three different functions as part of its management duties -

creating virtual-physical mappings, removing these mappings, and returning existing

mapping and status information. Interface definitions are shown in table 4.1. These

system calls are meant for protected subsystem use and are only exposed to other OS

components, not user-level threads.

Function Description

Initializes the physical memory manager. The low
halfword of initword contains the physical page
number of the start of unallocated physical mem-
ory (the runtime system resides in pages below

void PPM.init(int initword) this page). The high halfword contains the num-
ber of pages to add to the local physical page pool
(the size of each node's external memory minus the
number of page frames consumed by the runtime
system).

Creates a mapping between virtual page vpn and
an available, unallocated physical page frame.
There are two pools from which to draw page
frames - one for backing local virtual addresses,

int PPMa(int vn) and one for backing virtual addresses mapped to
remote nodes. The page frame is taken from ei-
ther the local or remote-memory pool, depending
on the whether the virtual page is local or remote.
Returns the page frame number assigned to the
new mapping.

void PP ap(in vpn) Destroys the mapping of virtual page vpn with its
physical page frame.

S c ca pp) Returns the page frame ppn to the local frame
int PPMlreclaimlocal(int ppn) pool.

Returns the page frame ppn to the frame pool usedint PPMreclaim.remote(int ppn) for remote backing pages.

t M up(t Returns the number of the frame backing virtualint PPMlookup(int vpn)
page vpn. Returns -1 if no mapping is found.

Table 4.1: Physical Page Manager exported functions

VPN

VPN match -> use entry
probe

i Virtual Page #

Physical Page #

Status bits 0-31

Status bits 32-63

No Match -> reprobe

Figure 4-1: PPM Hash Table Structure

4.2 Data Structures

Two main data structures are employed by the PMM. First, the page table is an

open hash, used to store virtual to physical mappings and block-status information.

The hash table is initialized at machine boot time and sized so that it has room

for twice as many mappings as there are page frames on a node. Since the page

table is not hierarchical but a hash table, having a large, potentially sparse table is

critical for performance reasons - too small a table will result in many conflicts and

longer lookup times. Open hashing tables, as described in [3], tolerate entry conflicts

without employing chains (linked lists of entries which map to the same location in

the hash table) thereby increasing average-case performance. Each hash table entry

consists of four words - the actual virtual page number used to define the mapping,

its associated physical page number, and 128 block status bits2 packed into two words

(see figure 4-1.)

In order to actually allocate backing pages for virtual pages, the PMM needs to

2 Each page contains 512 words divided into 64 8-word cache lines. 2 Block status bits for each
of the 64 cache lines require a total of 128 bits.

maintain a list of all unallocated page frames. The most efficient data structure is a

chain of page frame numbers which resides within the unallocated frames themselves.

The PMM maintains a single 64-bit word which contains the page frame number of the

next unallocated frame which may be used as a backing page. The first word within

that frame itself contains the page frame number of the next frame to use. Thus, a

chain of available frame numbers is maintained within the unallocated frames. A page

frame chain is terminated by a -1 which is never expected to be a valid page frame

number. In figure 4-2, the free page frame chain starts at page 15, and terminates

at page 2. There are a total of 6 frames in the chain. Popping a new frame for

use simply requires reading out the frame number from the frame about to be used

and substituting it in the pointer to the next available frame. A list of allocated

frames is not required since that information is implicitly stored within the hash

table. Any frame popped from the free frames chain must be used in a hash table

entry. Conversely, removing a frame from the hash table requires that it be added

to the free frames chain. A second 64-bit word stores the frame number which is

the last available frame in a chain. This makes returning pages to the page frame

chain very simple - the tail frame's next frame entry is modified from -1 to the frame

being added to the chain. The tail frame number is then changed to reflect a new

end-of-chain page frame number.

Since the memory-coherence system is so closely tied to the OS, special provision

for frames which are used as backing for shared cache lines is made in the PMM. In-

stead of maintaining a single chain of available page frames, two chains are employed.

The first is used to allocate normal backing pages for local data. The second is a

limited collection of frames, perhaps some fraction of total on-node memory, which

may be used as backing pages for shared cache lines. Once this pool is exhausted,

shared cache lines must be evicted until an entire frame is freed up, at which time

it will become available for allocation as a backing page of remote data again. The

PPMreclaimremote call explicitly tells the PPM that a particular frame has been

cleaned and should be added to the remote backing page pool. This particular aspect

of page management is discussed further in chapter 7.

freePage 17

lastPage 2

16

1

4

15

16
2

17

1 8

Figure 4-2: PPM Free Page List

4.3 Design Rationale

The reason for placing physical memory management in the hands of a system level

handler instead of trusted code which may execute in user-level thread slots is tied

closely to the M-Machine's memory system design. Since the LTLB miss handler

needs access to the page table in order to insert and remove LTLB entries, no other

software components may lock the page table data structure (as explained in sec-

tion 3.2.2). Since locking the local page table is not allowed, there is only a single

software component which remains able to access the page table - the LTLB miss

handler itself. Because access to the miss handler is restricted to hardware-generated

events which occur only on TLB misses, a few system-level routines act as wrappers

around the special miss-response interface. These wrappers allow other system com-

ponents to make standard function calls which in turn result in forced LTLB misses

to reserved virtual page numbers. This implementation is detailed in section 4.5.3.

4.4 Page Allocation Policy

The PMM employs on-demand page frame allocation. That is, if the LTLB Miss

Handler does not find a virtual-physical mapping in the on-node page table for a

memory access which touched a particular page, it is assumed that a new mapping

needs to be created. This allows efficient use of very large and sparse virtual segments

- allocation of a virtual segment does not mean that physical backing needs to be

created immediately. Instead, individual LTLB misses to virtual pages cause page

frames to be allocated. In fact, the current runtime system only employs the PPMmap

function when performing memory-coherence management, since the common case is

for mappings to be created on-the-fly by this automatic allocation policy.

In standard operating systems, a memory reference to an unmapped virtual page is

considered a disallowed memory access (a segmentation violation or bus error) which

needs to be terminated. On the M-Machine, capabilities are used to control memory

access. Since threads may not generate pointers on their own, they may not access

arbitrary memory locations. All memory accesses which are issued by the memory

functional unit on each node's cluster have had their capabilities verified. Therefore,

a page fault is not considered a disallowed access on the machine, but rather an access

to previously unmapped memory which is still a valid memory reference.

4.5 Implementation

The PMM is implemented as a low-level handler written in assembly which pops

LTLB Miss events off the hardware event queue and passes them on to the handler

body, which is written in C. Once a new event has come in, the assembly stub moves

the four words of the event (referenced address, event header word, associated data,

and configspace pointer to the faulting thread) into argument registers as defined

by the M-Machine compiler and runtime system, and calls the body function. The

handler body then determines whether the virtual address reference which caused the

LTLB Miss is a fake virtual address and requires that special handling be employed,

or whether it is a standard reference. Upon return, the stub restores its stack and

returns to waiting for the next event to arrive.

The body of the handler is written in C, as shown in appendix D (1tlb_body.c).

It calls on functions which manipulate the data structures outlined at the beginning of

this chapter. The data structure code is also written in C and shown in appendix D.

Initialization code is assumed to set up these structures when the LTLB handler is

first spawned.

4.5.1 Event Format

The hardware-composed LTLB Miss Event consists of four words, shown in table 4.2.

The address word identifies the referenced address which caused the LTLB miss. The

header word encodes information such as the opcode which was used in the address

reference, the issuing V-Thread slot, cluster, and source and destination registers. If

the operation was a store, the opdata word contains the data which was attempted

to be stored. Finally, the faultcp is the configspace pointer to be used by the software

to write thread registers when fulfulling memory requests in software. If the faulting

operation was a load op, the pointer offsets directly into the configspace-mapped

location of the destination register of the load operation. If it was a store operation

that faulted, the configspace pointer identifies a location which updates the faulting

thread's membar counter. Conditional synchronizing operations have the faultCP

identify the their destination cc register.

Word Description

Encodes information regarding the operation which caused the
LTLB Miss and the issuing thread

Virtual Address Virtual address which was not found in the LTLB

Opdata Contains the 64-bit value which was attempted to be stored if the
faulting operation was a store op.

faultCP Configspace pointer to thread state for the faulting V-Thread.

Table 4.2: LTLB Miss Event Format

The low-level handler simply moves the message header and body words into

argument registers and calls the manager's C-based handling function.

4.5.2 Initial Page Lookup

The handler body code extracts the virtual page number from the miss address that

it is passed. This is a simple procedure of shifting off the 12 least significant address

bits and masking off the 10 high protection/length bits to retain just the 42-bit

page number. The virtual page number is then used to probe the page table by

calculating the hash function and indexing into the table. A thorough study of good

hash functions has not been performed. In the current implementation, the hash

function is an XOR of a 16-bit constant and the rearranged bytes of the low 32 bits

of a virtual address. C code is shown in figure 4-3.

result = (

(((vpn >> 24) & OxffL) << 16) I
(((vpn >> 16) & OxffL) << 24) I

((vpn >> 8) & OxffL) I
((vpn & OxffL) << 8)

) Oxl34aL;

Figure 4-3: Hash Function Calculation

Using the algorithm of open hashing, if the handler finds an entry marked deleted,

or a valid entry whose vpn does not match the vpn being probed, the vpn is rehashed

and probing continues. If a vpn match is found, the LTLB is accessed through

configspace to determine which existing LTLB entry is to be evicted to make room.

Since block-status bits for the virtual page whose mapping is to be evicted may

have been modified, they have to be written back into the page table before the

mapping can be evicted. Therefore, the existing entry is read from the LTLB through

configspace load operations. The vpn of the evicted entry is used to probe into the

page table and the block-status bits for that page are copied back into the hash table.

Finally, the vpn-ppn mapping and associated block status bits for the page which

is to be added to the LTLB are written into the LTLB through configspace stores,

overwritting the evicted entry. The EMI is then unlocked through a configspace

store, allowing the instruction which caused the miss to be retried automatically by

the EMI, this time presumably hitting in the LTLB. Throughout this entire procedure

the actual faulting operation is not retried by the handler, and the virtual address

never used as the target of a memory operation - the LTLB Miss Handler operates

only on physical addresses or configspace addresses.

If continual probing does not find a virtual page match, the page is determined

to have no physical backing, and a new backing page needs to be allocated. A GTLB

probe is performed to determine whether the virtual address which was referenced is

mapped to the node handling the LTLB Miss (a locally-mapped page). If it was a local

page reference, local handling is invoked. Otherwise, remote handling is performed.

These two distinct cases are described below.

Local Handling

The free page chain pointer of normal (not memory-coherence) backing page frames

is read to determine the next available frame which may be allocated. The first word

of that page is copied into the free page chain pointer, effectively popping off the

backing page. This page number is then added to the page table, creating a new

virtual-physical mapping. Block-status bits are set to exclusive (read/write) for all

lines in the page and also written into the page table. Finally, this entry is added to

the LTLB so that the next memory access to this page does not cause another LTLB

miss.

Remote Handling

An initial reference to a remote virtual page requires that a physical page from the

pool of memory-coherence pages be used for the mapping. In the simple case, a

physical page is available and is popped off the memory-coherence backing chain,

in a manner similar to that described in the section above. The only difference is

that the block-status bits for the page are set to invalid since the node does not

yet contain any remote data. When the memory operation is retried, the memory

reference no longer causes an LTLB Miss (since the mapping was written added to

the LTLB and page table) but causes a Block-Status miss instead, which then results

in the invocation of software leading to the local installation of a remote cache line.

If no physical page frames are available in the backing pool, a special physical

frame number, -1, is used as a marker, identifying the fact that no backing frames

are available. Since the block-status bits for the new mapping are still set to invalid,

there are no problems involved in using the same mapping for all virtual pages which

do not have available backing pages.3 As section 7.3.2 details, this marker page is

used as a trigger for the memory-coherence manager to perform a cleanup of existing

shared pages and make room for new ones.

4.5.3 Fake Miss Interface

As explained in the beginning of this chapter, certain virtual pages which are always

unmapped on the machine (trigger pages) are used to request direct manipulation

of the PMM data structures by the LTLB Miss Handler. Since user threads are never

given pointers to these special pages (and cannot create ones on their own), the miss

handler is guaranteed that calls to it through misses are made by trusted subsystem

code.

This mechanism, which involves threads generating memory faults to trigger ac-

tions by low-level components of the operating system, is similar to standard kernel-

entry methods of other operating systems. As outlined in the previous chapter, per-

formance is improved on the M-Machine because no actual thread swapping and

context switching is performed.

The actual virtual page numbers used as triggers for the PPMmap, PPMunmap, and

PPMlookup functions are compile-time constants in the kernel source code and may

be picked rather arbitrarily, so long as they are not a subset of the virtual pages which

may be allocated by the Virtual Segment Manager (see chapter 5). In the current

runtime implementation, these virtual page numbers start at 0x80000. To invoke the

3 The only occasion, in fact, when multiple virtual pages may be mapped to the same physical
page within a single node is when a physical backing page is unavailable, in which case all block
status bits are set to invalid.

LTLB Miss Handler, a thread issues a conditional synchronizing store instruction,

targetting one of the three trigger addresses as shown below:

/* cause a fault */
instr memu stscnd <data-register>, <trigger-address-register>, <cc>;

/* block until fault completes */
instr memu ct <cc> ...

The store instruction allows the thread to pass 64 bits of data to the LTLB Miss

Handler. In most cases, this contains the virtual page number which is to be used

as an argument to the PMM functions. By issuing an instruction conditioned on the

value of the cc register in the trigger instruction, the requesting thread blocks until

the LTLB Miss Handler has completed the request and fills the cc register. Since

the functions all have full 64-bit integer return values, the LTLB handler needs to

have a simple way to return data to the requesting thread. One mechanism is to

overwrite the integer register conventionally used as the return argument register by

the compiler - integer register 6 - with the return value. This may be done through a

configuration space store operation. In this case, the functional wrapper around the

PPMunmap primitive may look like:

PPMunmap: :
/* i6 contains the argument to this function */
instr memu stscnd i6, <trigger>, ccl; -- trigger the LTLB Handler
instr ialu ct ccl jmp RETIP; -- wait for completion
instr ; -- i6 (the return register)
instr ; -- is already set properly
instr ; -- at this point

The current implementation instead writes a single physical memory location

(called _1tlb_data_for_mh) which is then loaded by the caller to retrieve the ap-

propriate value. In order to prevent concurrent accesses to this location, a lock is

used by callers to serialize access.

4.5.4 Reclaiming Pages

The local and remote reclamation functions simply take the supplied page number

and add that page to tail of the proper physical page chain. Cleaning needs to be

performed before pages may be considered reclaimed and ready for reallocation.

4.5.5 Unmapping

When mappings need to be destroyed, the virtual page number argument to the

PPMunmap function is used to probe the page table until its entry is found. At that

time, the entry is removed from the page table and replaced by a deleted marker, as

necessary for an open-hashing table. In addition, cache lines may need to be flushed,

and the LTLB modified to remove the virtual-physical mapping.

Note that no provisions are made for when virtual-physical mappings should be

torn down. Higher level OS components make calls upon the PMM to create or

eliminate mappings, but the PMM does not need to employ any policy for when

mappings should be removed from the page table. Usually, this will be the work

of the Virtual Segment Manager, which needs to deallocate physical backing once a

virtual segment has been freed. See section 5.3.2 for more details.

Chapter 5

Virtual Memory Management

The Virtual Segment Manager (VSM) doles out segments of virtual address space for

use by user threads and other portions of the operating system. Segments are a power

of two bytes in length, with length protections enforced by the segment length field

in pointers. A buddy list allocator is used for the implementation of the underlying

allocation mechanism. Since a copy of the low-level operating system runs on each

node of the M-Machine, each node's VSM executes independently of all others. This

section describes the interface to the VSM, explains the data structures which are

employed, and then details the rather simple implementation. Design issues conclude

this chapter.

5.1 System Calls

The VSM exports a total of three functions. The first, vmemprime, is accessible only

to other protected subsystems and allows the bootstrap to initialize the allocator with

segments of virtual memory which are available for allocation. The vmem_alloc call

returns a segment of a requested size, while the vmem_dealloc call accepts a segment

for deallocation. Table 5.1 provides a brief overview.

Table 5.1: Virtual Segment Manager exported functions

Next

SOxOOo0oo00

Next

0x8300000000000

Next Segments of
Ox4000000000000 size 2A51

Next Next Next Segments of
8 bytes

Figure 5-1: Buddy List Structure

5.2 Data Structures

The VSM maintains two buddy lists for memory allocation and deallocation. A buddy

list is essentially an array of sorted linked-lists of segments (see figure 5-1). The array

has as many entries as there are segment sizes available on the machine. On the

M-Machine, an array of 51 entries allows segments to range from 8 bytes to 254 bytes

in length.

The free-segment buddy list stores information on segments which are available for

allocation. Initially empty, the list is first primed with segments by the vmemprime

call. Subsequent vmemalloc calls remove entries from this free segment list, perhaps

Function Description

Identifies the virtual segment pointed to by seg-
void vmemprime(void *segmen r) men_pr as available for allocation. The pointer

length field in the pointer's capabilities explicitly
identifies the size of the segment.

Returns a pointer to a clean segment of virtual
void *vmem-alloc(int bytecount) memory of at least bytecount bytes in size. Re-

turns a NULL pointer if no such segment may be
allocated.

Deallocates the segment of virtual memory iden-void vmemealloc(void *segmentptr)by segmenpr.
tified by segment pir.

NULL

Buddy
List
Array

NULL

-

\I

modifying it in the process, and return newly-available segments.

The dirty-segment buddy list records segments which user programs or protected

subsystems have asked to be deallocated - those that have been passed to the

vmemdealloc call. This allows deallocated segments to be collected and coallesed into

larger segments for bookkeeping pending garbage-collection. A deallocated segment

cannot be moved directly from the dirty to the clean list unless a garbage-collection

phase has ensured that there are no clones of this virtual address remaining on the

entire machine. Therefore, the dirty buddy list essentially stores segments which

are candidates for a garbage-collection phase. The current implemention of MARS

does not perform garbage-collection. Therefore, the dirty list is just a repository for

segments which will never be given out. In fact, it is possible to make the

vmemdealloc function a null function.

Finally, a statically-defined linked-list of nodes for use in both buddy lists allows

the allocator to function without needing dynamic memory-allocation itself, although

this limits the number of memory segments which may reside in the buddy lists to a

compile-time constant.

5.3 Implementation

The MARS bootstrap splits the M-Machine's global virtual memory into segments

and assigns them to different nodes. Each node's boot code calls vmem_prime with its

assigned segment, priming the free-segment buddy list data structure and allowing

subsequent allocation calls to use that memory.

Once the priming is complete, the VSM accepts calls from user-level as well as

system-level code. Since the VSM code may be running within many thread slots at

once, a lock is used to serialize access to global data structures.

5.3.1 Allocation

When an allocation call is made, the requested number of bytes is used to calculate the

smallest power-of-two-byte segment which contains at least that many bytes. As [7]

is the on-node page table. It may be inefficient for the VSM to run through all of the

virtual pages within a segment and make PPMunmap and PPMreclaimilocal calls

for each, especially if the segment is large and the number of actual pages provided

as backing for it is unknown. For small segments, the VSM cannot deallocate the

mapping because other segments within the same virtual page (and hence mapped to

a common physical page frame) may be still active. The VSM splits the deallocation

problem into three cases.

The dirty-segment buddy list is used in the reverse manner of allocation - segments

which are deallocated are coalesced with their buddies to try to form a single segment

of as large a size as possible. In the case of deallocating segments smaller than a

single virtual page, no unmapping is performed by the VSM initially. Instead, as the

segment is coalesced with other dirty segments, the VSM waits (perhaps for many

deallocations to follow) until a segment the size of a virtual page is finally formed.

This means that many small segments which had resided within the same virtual

page have all been finally deallocated. The VSM can make a single pair of calls

(PPMreclaimlocal (PPMunmap (vpn)) - that is, return the page previously used to

back the deallocated virtual page to the local page pool) at this point, passing to the

Physical Memory Manager the virtual page number of the segment.

For segments of moderate size (smaller than the number of physical pages on a

node) which are deallocated, the above design will not work since the segment already

spans many pages. Instead, unmap and reclaim calls are made for each page within

the segment. Finally, for very large segments, the PMM must be called to unmap

the entire segment, which requires that the PMM search for all entries in the page

table which match a range of virtual pages (not just a single one) and remove all such

mappings. This is especially efficient for very large segments, since the number of

pages which need to be tested is limited by the amount of on-node physical memory.

and [6] explain, this may lead to wasting both virtual and physical address space since

a little less than half of the entire segment may go to waste (e.g. a call to allocate a

segment of 129 bytes will return a segment of at least 256 bytes in size). The waste

of virtual address space is not a great problem, given the large size of the machine's

address space. Physical address waste is limited a maximum of a single page, due to

the policy of on-demand page allocation. That is, since only those virtual addresses

which are targetted by a memory operation require physical backing, having a large

number of allocated but unused virtual pages at the end of a segment does not cause

wasted physical page frames to be allocated.

A search of available segments in the clean buddy list then begins for a segment

of the appropriate size. This is a simple procedure given that the requested segment

size is known - the free-segment array is indexed to find if any segments of the needed

size exist. If the array entry is non-NULL, the linked list of segments of the requested

size is modified as a segment is popped off the list. The pointer to the newly-allocated

segment is returned to the caller. If no segments of the needed size exist, the allocator

begins looking for larger segments, simply by moving up in the free-segment array,

looking for linked-lists of larger and larger segments. Any larger segment that is found

can be repeatedly split into two until the correct size segment is once again available.

Leftover segments are added to the buddy list in the process, for later allocation.

The on-demand allocation of page frames simplifies VSM implementation since

no mappings from virtual pages within the allocated segment to frames need occur -

the LTLB Miss Handler will perform those tasks as each virtual page is touched.

5.3.2 Deallocation

As mentioned previously, virtual segments which are deallocated are added to the

dirty-segment buddy list and need to pass a garbage-collection phase before being

added to the clean list. However, an initial unmapping phase must occur to remove

any virtual-physical mappings used by the segment, in order to free up physical

memory. The need to deallocate physical backing from a segment actually poses a

problem because the only data structure which lists all allocated physical page frames

5.4 Design Issues

For a machine with a large virtual address space, such as the M-Machine, buddy list

allocators are quite efficient because they can quickly manage segments of memory

which vary greatly in size. The fact that segment-size is encoded directly into all M-

Machine pointers make this scheme even more efficient - a call to deallocate a segment

uses the segment-size field to determine which low address bits of the pointer to ignore,

and which high bits to use when searching for a segment's buddy.

The unmapping of backing page frames for segments seems the most inefficient

aspect of the VSM design, and can be improved if a bitmap of which virtual segments

actually have physical backing is maintained for each segment which is allocated.

This increases overhead, however, and requires more storage space for such bitmaps.

It is not clear, for example, how to maintain a mapping-bitmap for a segment of 224

bytes. Such a segment spans 4096 page frames, requiring 64 words for a bitmap. The

advantages of the current design lie in the fact that once a segment has been allocated

and returned to a user thread, all information pertaining to its existence is no longer

maintained by the VSM, until a call is made to deallocate it. At that point, the

segment itself is provided to the VSM, which may add it to the dirty-segment list and

start keeping track again. In fact, the reason for maintaining the dirty segment list (as

opposed to a more simple linked-list of deallocated segments) is not for performance

improvements, but rather for storage efficiency - fewer individual segment-information

nodes need to be maintained if dirty segments are naturally coalesced. If two buddies

are combined to form a larger segment in the dirty segment list, this frees up one

more segment-information node which may be reused by the system.

Chapter 6

Thread Management

In traditional operating systems, a process represents a basic vehicle for executing

code. Processes may be composed of threads which cooperate and share an address

space and any special structures assigned to their collective process by the operating

system. In MARS, there is no real concept of a heavyweight process. Since all privi-

leges are granted through pointers given out by the system, all threads are protected

from each other, yet any subset may cooperate on a task as well.

The MARS thread mananger is responsible for allocating and destroying user-level

threads, scheduling threads to run in the available user thread slots, and managing

interthread synchronization through the tSignal and tSleep interfaces. Threads

which synchronize through explicit message-passing or shared-memory have no need

for the thread manager to aid in their communication. The sleep and signal interface

allows multiple threads to sleep on a single signal and be all awakened when it arrives,

and even for a single thread to provide a signal mask, so that it is possible to group

signals into categories and allow threads to pick which types of signals they wish to

receive.

Instead of using some integer to identify each process (thread) which has been

created by the thread manager, a context pointer is used instead. A context pointer

is a pointer of type key whose address portion names a virtual memory segment which

contains state information about the thread (the thread context.) Since this pointer

cannot be used to read or write memory, it may be returned to user-level threads

as a magic cookie, identifying a particular thread. When an operation needs to be

performed on the underlying thread state, a privileged system function may simply

modify protections on the pointer from key to read-write, without the need to index

into a process table. As will become evident, context pointers are used extensively

within the thread management system to identify and track threads.

6.1 System Calls

This section describes the system calls available to user threads for accessing thread

manager functionality. All of these system calls may safely execute as priviledged

code in user thread slots since they do not modify any hardware state. Table 6.1 lists

the common thread manager calls.

This set of system calls provides a great deal of functionality to user threads with

a very simple interface. An example of how these calls are used is given in figure 6-1.

In this example, the main parent thread spawns off a child to execute the function

foo and then sleeps on a T_CHILD_EXIT signal, waiting for the child to complete.

There is no explicit tSignal, because the signal is performed by the tExit function

which the parent passed to the child. The getDP function returns the parent thread's

data pointer so that the child may share all of the parent's data structures.

More complex examples of system call use will be given later in this chapter.

In addition to the above system calls, several internal functions of the thread

manager are invoked by the Event Handler and Message handlers. These include

actual scheduling, and low-level signal reception.

6.2 Data Structures

The thread manager uses a structure called a thread context to store information

about each live thread on its node. A signal table is used to manage the signal/sleep

interface. Finally, pointers to chains of thread contexts maintain information on

active threads. These structures are described in this section.

Function __ Description

Creates a new thread which will begin execution
at address IP. The thread's data pointer is set to

void *tFork(void *IP, void DP. When the thread exits, it will jump to retIP.
*DP, void *retIP, int The number of arguments passed to the function
numargs, void *parent, ...) at IP is given in numargs, followed by the argu-

ments themselves. parent is usually left NULL.
This function returns a key pointer identifying the
newly-created thread.

Standard exit procedure usually passed as the
void tExit(int retval) retIP to tFork. Signals its parent thread with a

TCHILDEXIT signal and return-value reival.

Forks a thread on remote node given by node. The
data pointer is the same as the thread which called
this function. The forked thread will start execut-

void *tSpawn(int numargs, ing at IP and signal its parent when done. The
void *IP, int node, ...) number of arguments being passed to the function

at IP and the argument list itself is also given.
Returns a key pointer identifying the spawned
thread.

Puts the calling thread to sleep until a signal ar-
rives which targets the sigword. The mask allows
the calling thread to only be wakened by a subset

int tSleep(void *sigword, int mask) of all signal arriving for the signal word. A mask
of 0 will always match a signal. Returns the data
which was send to the signal word (see tSignal.)
The signal word must be a key pointer.

Attempts to wake all threads sleeping on sigword.
The data is the data returned to all matching

int tSignal(void *sigword, int data) sleepers. If no sleepers are found, a dormant sig-
nal is recorded. The signal word must be a key
pointer.

Table 6.1: Thread Manager system calls

6.2.1 Thread Contexts

The thread manager defines a thread context data structure which is used to store

information about each live thread. Several linked-lists of thread contexts group

these threads into collections of running, pending, and kill threads. Running threads

are the user-level threads actually occupying V-Thread slots on the manager's node.

Pending threads are waiting to be scheduled to run on the hardware. Blocked threads

are sleeping on a signal and should not be swapped into a thread slot until wakened

int foo(int i, int j) {
int x = 0;

printf("This is function foo!\n");

printf("let's calculate i + j : %d\n", i + j);
printf("foo exiting");
return i + j;

int main(int argc, char **argv) {
char *mydp;
void *child;
int i;

mydp = _getDP(); /* _getDP returns the thread's own data pointer */
child = tFork(foo, mydp, tExit, NULL, 2, i, 10);
printf("main: forked foo (child pointer is 'p)\n", child);

i= tSleep(child, T_CHILD_EXIT);
printf("main: woken with signal Ox%x\n", i);
return 0;

Figure 6-1: Sample Thread Management system call usage

(they are stored implicitly in a signal table described later). Kill threads are waiting

to be garbage-collected and removed from service. Together with running threads,

kill threads may occupy hardware thread slots, but should be evicted by the thread

scheduler.

Figure 6-2 shows a C structural definition of a thread context. The main sections

of the context structure are the individual H-Thread contexts, (which define the entire

register state of the H-Threads that compose the user thread), global thread state

information, and linkages to other contexts.

The HContext structure simply contains space for all of the integer, floating-point,

and condition registers of a particular H-Thread, the four restart instruction-pointers

(used when installing a thread for execution), hardware and software memory-barrier

counters (count how many memory references the thread still has outstanding in the

system), and a scoreboard of which registers are vacant.

struct ThreadContext f
struct ThreadContext *Next;

struct ThreadContext *Parent;
struct ThreadContext *Sibling;

struct ThreadContext *Children;

struct HContext hthreads[4]; /* register state for each H-Thread */

int VSlot;
int flags; /* hFull and hIssue bits IIIIFFFF */
int SCC ; /* stall-cycle counter */
int SCL ; /* stall-cycle limit

int signalData; /* data passed when thread woken */
int need_to_block; /* thread is blocked for a signal */
int need_to_wake; /* signal has arrived

int need_to_sleep; /* thread has asked to sleep

Figure 6-2: Thread Context data structure

Global state information records which H-Threads of the user thread are active

and may issue. When a thread is first forked, only the first H-Thread is active. If

the thread spawns other H-Threads to neighboring clusters, this value will change.

Thread flags are composed of eight bits in two 4-bit bitmaps - called hFull and hIssue.

The hFull bitmap records which H-Threads are part of the V-Thread represented by

the thread context. The hIssue bitmap is used as a mask to tell hardware which H-

Threads may issue operations down their cluster pipelines. Special state information

used in the signal/sleep implementation is also part of global thread state. The

signalData field records the data word with which a thread was wakened. The three

state bits of needtoblock, needto_wake, and need_to_sleep are used by the scheduler

to help decide which of the pending/running lists is to receive this thread. These state

bits will be discussed in detail in the section on signalling. Finally, the thread Stall

Cycle Limit (SCL) and Stall Cycle Counter (SCC) are used by the the M-Machine

hardware to generate events if a particular user-level thread has been stalled and

unable to issue for a certain number of cycles.

The linkages (Next, Parent, Sibling, and Children) allow thread contexts to

Running . . Next " Next
Parent Parent

Sibling j Sibling
Children • Children

- - - -Ir

Pending N

Kill Next

Parent

Sibling

Children

Figure 6-3: Context Linkages

be threaded onto several linked-lists at once. The main pointer is Next, which is

used in the running, pending, and kill lists mentioned above and described in detail

in a later section. The Parent pointer points to the thread's parent. Usually, the

parent is the thread which tFork'ed the thread, although a different parent may be

substituted (this is the parent argument to the tFork call). The Sibling pointer is

a secondary linked list, which winds itself through all of the children of a particular

parent thread. That is, even if the children of a particular parent are strewn around

different pending/running/kill lists, this single list can identify all of the children

of the parent regardless of where they are. This makes it easy to find and kill all

children of a particular parent thread, without needing to look through all lists of

threads (looking for contexts with a particular parent). Finally, the children pointer

is the head of the Sibling list, which resides with the parent. Figure 6-3 makes this

structural arrangement more explicit.

In this example, the first thread on the pending list is the parent of three threads

- one also on the pending list, and two others that are running. One of its children is

the parent of a thread which is on the kill list.

Threa.d contexts reside in virtual address space, and are dynamically allocated by

the tFork call. Since all virtual addresses are unique across the entire machine, a

thread context unambiguously identifies a thread to all operating system components

across all nodes of the machine. All threads may access their own context pointer

through a call to _getMyTC, and the context pointer of their parent with _getParent.

The pointers that are returned are key-type pointers, to prevent user threads from

actually modifying thread state.

6.2.2 Signal Table

In order to maintain information on which threads have performed signals and which

threads have tried to sleep, the thread manager uses a chained hash table of signal

entries.

A signal entry records information about a thread which has asked to be put

to sleep, or a signal which has been made before any thread has slept on it (see

figure 6-4.)

typedef struct se {
struct se *next;
int signal_word;
int signaldata;
struct ThreadContext *sleeper;

} signalentry;

Figure 6-4: Signal Entry

If a thread has slept on a signal word, the two arguments to the sleep call (sig-

nalword and mask) are recorded along with the thread context of the thread making

the sleep call (sleeper in the signal entry. If the entry is recording a signal for which

no thread has slept yet, sleeper is NULL and the signaldata is the actual data passed

to the tSignal call.

signal Signal Hash Table

chain of entries - searched for singal_word match
probe • .

next next

signal_word signalword

signal_data signal_data

sleeper sleeper

next

signal_word

signal_data

sleeper

Figure 6-5: Signal Hash Table Structure

Signal entries are split into chains and referenced from the signal hash table, to

improve lookup speed. The unique signalword is hashed and identifies the chain,

which may then be searched for matching entries. Signal entries may be dynamically

allocated in a manner similar to thread contexts, or a fixed number may be statically

allocated at compile-time into the runtime system (similar to what is done by the

virtual segment manager.)

6.2.3 Thread Lists

The low-level scheduler employs thread lists, headed by pointers to Pending, Running,

and Kill lists. All threads active on a node belong to one of these lists, or have

sleeper entries in some signal table (effectively the collection of blocked threads). This

guarantees that thread manager components have a way to find all active threads on

the node by following these structures. The Next pointer in a context lets it be

threaded in one of these lists. A thread may be in only one of these lists at a time.

6.3 Implementation

When the thread manager is initialized, it sets up a blank signal table and resets the

running, pending, and kill thread lists to contain a single running thread - the boot-

strap. Calls to the manager's system calls will begin modifying these structures. It

was briefly noted that the thread manager is really composed of system calls execut-

ing in user thread slots and a low-level scheduler tied into the event-handler system.

For this reason, the thread management implementation uses a producer-consumer

model for servicing requests. User-accessible system calls invoke functions which set

up and sometimes modify thread state. After certain global data structures are mod-

ified, the event handler is signalled through its software job queue to perform the

low-level scheduling tasks. This two-phase design simplifies the implementation of

individual thread manager components. It also allows thread manager subsystems to

execute in conjunction with the scheduler without relying on locks to serialize access

to common data structures - all data structures which are modified by the portion of

the thread manager which runs in the event handler slot do not interfere with other

thread manager functions.

In general, producers create or modify thread contexts which are then added to

the running, pending, and kill lists by the scheduler (this list modification is per-

formed when the event handler responds to certain signals). The scheduler examines

these lists each time it is invoked and performs lowl-level functions such as thread

eviction and installation. The following sections describe the producer's contribution

to handling system calls. It is important to note here that in all critical sections

of the portion of the Thread Manager that runs in user thread slots, a lock called

the userthreadLock is used to serialize access to global data structures among user

threads. This lock is not accessed by the low-level scheduler, and hence does not

cause it to block in any of its activities.

6.3.1 tFork

The tFork function needs to allocate a new thread context by calling on the virtual

segment manager, and fill an initial H-Thread with information passed to it. It

allocates a new thread stack, again calling on the VSM, and pushes arguments on

the stack exactly as the called thread expects to see them. The return pointer is set

up as well, so that the exit function passed to the tFork is the last function executed.

Parent/child/sibling linkages are updated to reflect the fact that a new thread has

been created and that it belongs to some parent. If the parent pointer passed to the

fork call is NULL, the thread executing the fork call is considered the parent (this

is the common case). Remote parents are a special case, which are handled within

the tSpawn implementation. Finally, the event handler is signalled to add the new

thread context to the pending list. This signifies that the thread is ready to execute

and is waiting to be scheduled into an available thread slot.

6.3.2 tExit

The tExit call must mark its own thread for termination since it is executed within

the very user thread which is trying to exit. First, the thread calls tSignal on its own

context pointer with a return value of T_CHILDEXIT. Any thread waiting for this

particular child to exit (most likely its parent) will be wakened.

The sibling list is modified to reflect the termination of this thread. The event

handler is then signalled to add the thread to the kill list. The event handler removes

the thread from the running or pending lists and adds it to the kill list. Finally, tExit

blocks on an empty register to prevent stealing any more execution cycles. Eventually,

the scheduler will be invoked and terminate the thread which had been added to the

kill list.

6.3.3 tSignal

The tSignal system call is used by a thread to signal another thread, passing it a

64-bit data word. Signals are made upon signal words, which are key pointers given

out by the operating system. The most common signal words are the thread context

pointers exchanged by the parent and child during a tFork call. Other signal words

may be obtained simply by calling on the operating system to demote the protections

of a virtual-memory read-only or read-write pointer to key.

The tSignal call takes a signal word and a 64-bit data word as arguments and

determines which signal table to examine. If the address defined by the signal word

is mapped to the thread manager's own node, the local signal table is examined.

Otherwise, a message is sent to the node where the signal word is mapped, and a

TM local to that signal table is invoked. The TM determines whether an address is

remote or local by making a call to _sysGPRB, a function which performs a GTLB

probe and returns the node number to which an address is mapped. This allows

threads on different nodes to signal each other and for all thread managers to quickly

decide which signal table needs to be referenced.

Once a local TM is invoked to examine the signal table, the signal word is used

as the input to a hash function and an index into the signal hash table is calculated.

This index identifies a chain of signal table entries which is to be searched to find a

match or matches (for multiple sleepers) on the signal word. In order for a signal to

match an entry, it must meet three criteria.

1. the signaLword field of the entry must match the signal word passed to tSignal

2. the signaldata [mask] field in the entry bitwise ANDed with the signal_data
passed to tSignal must be nonzero (unless the mask is 0, in which case this
criterion is always considered satisfied)

3. the sleeper field of the entry must be non-NULL.

For each match that is made, the thread identified by the sleeper context pointer

is wakened (this process is described below.) Once all sleepers have been wakened,

the signal operation has completed. If no sleepers were found, a dormant signal entry

is added. This means that the signal is added to the signal hash table and waits

for a sleeper to come along, at which point the thread which attempted to sleep on

the signal is automatically wakened. Such dormant signals are added to the ends of

the signal chains, to handle cases where multiple dormant signals for the same signal

word are added. In these cases, the signals are meant to be popped off in a FIFO

manner, until they are all used up.

For each thread context which needs to be wakened, the tSignal system call must

decide whether the wakening occurs locally or remotely. Once again the TM probes

the GTLB, this time to determine whether or not the sleeper thread context is mapped

to the local node. If the thread context is remote, a Wake message is sent to the

appropriate home node of the thread. Otherwise, the event handler is signalled to

set a thread's wake data. This causes the thread context's signalData field to be

written with the signal data passed to tSignal, and the need_to_wake field set to true,

signifying that if the thread happens to be blocked, the scheduler should move it to

the pending list.

6.3.4 tSleep

A user thread calls tSleep when it wishes to block, stopping execution until a signal

wakes it. This is especially useful when a thread has spawned off some children

which are to perform long-latency operations and wishes to be informed when these

operations have completed. Although it is possible for the parent thread to spin on

global memory locations waiting for child thread to modify them, this is extremely

inefficient if the child processes are expected to take a long time to complete their

operations, and the parent has no other work to perform.

For this reason, the calling thread identifies itself as sleeping on a particular signal

word, and also passes a mask as data. This mask is used to filter out certain signals to

the signal word which the sleeping thread does not wish to see (as described above).

As in the case of tSignal, the signal word is used to probe the GTLB to find the home

node of the signal table. If the signal table is remote, the thread asks to be put to sleep

locally and sends a message to be added to the remote signal table. It is important

to note here that it is possible for the message to arrive and a dormant signal to be

found which would cause a wake message to be returned, all before the local TM is

able to put this thread to sleep. The needtosleep, need_to_wake, and need_toblock

tlnstall
. . Running

tEvict

SYStSleep
eh (EVENTSLEEP)

tPutToSleep

eh(EVENT_SLEEP)

tPutToSleep

Pending
needto_sleep
need to wake

eh(EVENTSLEEP)

tPutToSleep

tinstall Running
Pending Running need_to_sleep
need to sleep needtosleep eh(EVENTWAKE) need towake

tEvict

eh(EVENT_SLEEP) eh(EVENT_SLEEP)

tPutToSleep tPutToSleep

need to block

tEvict

eh(EVENT_WAKE)

Pending
needto_wake
needtoblock

tHandleSignals

Running
needtoblock

eh(EVENT_WAKE)

Running
needto wake
need to block

I tHandleSignals

Figure 6-6: State Transitions in Signal/Sleep Implementation

bits define state-transitions to handle such cases. Figure 6-6 shows a state-transition

diagram where a thread state is a function if its needtozxxx bits and whether it is

running, pending, or neither. Transitions occur as a result of the low-level scheduler

performing routine scheduling tasks, or being invoked as a result of signals to the

event handler (EVENT-SLEEP and EVENT_WAKE). Certain functions are automatically

invoked as a result of these signals (such as tPutToSleep and tHandleSignals).

Finally, whether as a result of a Sleep message from a remote TM or the fall-

through case of a local tSleep call, the TM needs to add a sleeper for the signal word

to the signal table. Again as in the tSignal case, the signal word is used as the hash

input to find a chain of signals. The chain is examined for any dormant signals to this

Pending

word. If a, dormant signal is found and the data within it filters through the mask

provided by the calling thread, the thread is immediately wakened. If the thread

was local to the signal table, the data is returned directly to the thread without the

thread having ever been put to sleep. Otherwise, a wake message is sent to the home

node of the sleeper thread.

If no dormant signal entries are found, a new sleeper entry is made. Finally, if

the TM is still executing locally, it makes a call to sysSignalSleep, which asks the

scheduler to move the thread off the running list (if possible) and consider it blocked

until a signal arrives. At the same time, this action causes the thread to empty the

return-value register and block on it. Whenever this register is written (as a result of

the scheduler restarting a thread which is being wakened by a signal) the thread will

resume execution and return a value to the caller of tSleep.

Figures 6-7 and 6-8 show an example of the use of signal and sleep calls for in-

terthread synchronization. The parent thread forks a child called longprint, which in

turn forks off longprint_child. Longprint then waits for its child to signal it. Mean-

while, the main parent sleeps on a signal from longprint. longprint_child signals its

parent and then goes to sleep, waiting for longprint to signal it. At this time, both

main and longprint are sleeping on the same signal word. When longprint is wakened

by its child's signal, it signals to its own threadcontext pointer, waking both its child

and its parent. Finally, longprint waits for its child to exit before exiting itself. The

main thread waits for longprint to exit.

6.3.5 tSpawn

The tSpawn system call is a good example of how lower-level thread manager prim-

itives may be composed to form a more useful function. A tspawn is essentially a

request by the user to fork a thread on a remote node and still have the child's thread

context be returned to the parent. The tSpawn implementation first creates a nonce

which will be used for a signal/sleep pair. In the current implementation, this nonce

#include <stdio.h>

#include "syscalls.h"
#include "tsignal.h"

int main(int argc, char **argv) {
void *child;
int i;

printf("Sample signal/sleep program\n");
child = tFork(longprint, _getDP(), tExit, 6, NULL, 1, 2, 3, 4, 5, 6);
printf ("main: forked off %p\n", child);
i = tSleep(child, TALL_SIGNALS);

printf("main: woken with Ox%x\n", i);
/* wait for a while */
for (i = 0; i < 900; i++)
i = tSleep(child, Ox100);
printf("main: woken with Ox%x from child %p exit\n", i, child);
return 0;

Figure 6-7: Sample signal and sleep system call usage: main thread

is simply a newly-allocated segment of virtual memory used and then discarded.1 A

message is then generated, and the nonce and arguments to the spawn are sent to the

destination node. Finally, the calling thread performs a tSleep on the nonce, waiting

to be notified when the new thread has been created. It expects the return value of

the tSleep (the data when it is signalled with tSignal) will be the thread context of

the new child.

On the receiving node, a message-handler dispatch function processes the tSpawn

request. The Spawn message is unpacked and arguments formatted for a tFork call.

This time, instead of a parentTC of NULL being passed, the TC of the remote parent

is substituted (this was passed in the message, along with argument list, IP, and so

on), allowing linkages to be set up correctly. After the tFork completes and returns a

thread context, the message-handler performs a tSignal on the nonce passed within

the spawn request message, passing the child thread context as data. This eventually

1 Since the VSM returns pointers as Read/Write, a demote call is made to change the protections
to key pointer.

int longprint_child(int i, int j) {
int sleepval;

printf("longprint3_child: i * j = %d\n", i * j);
tSignal(_getSelfTC(), Ox112);

/* now wait until longprint signals me */

printf("longprint_child: going to wait for longprint to signal me\n");

sleepval = tSleep(_getParent(_getSelfTC()), TALL_SIGNALS);

printf("longprintchild: woken with Ox%x and exiting\n, sleepval);
return 4;

int longprint(int i, int j, int k, int 1, int m, int n) {
int x = 0;
void *child;

int sleepval;

printf("longprint: %d, %d, %d, %d, %d, %d\n", i, j, k, 1, m, n);

child = tFork(longprint_child, _getDP(), tExit, 2, NULL, 5, 11);

if (child) {
printf("longprint: forked off %p, and sleeping on it\n", child);

sleepval = tSleep(child, T_ALL_SIGNALS);
printf("longprint: woken with Ox%x from child %p\n", sleepval, child);

for (x = 0; x < 200; x++)

if (!(x % 20))
printf("longprint: /d\n", x);

tSignal(_getSelfTC(), 0x223);

/* sleep on child exiting */

sleepval = tSleep(child, TCHILDEXIT);

printf("longprint: child %p exited\n", child, sleepval);
}

printf("longprint exiting");
return 1;

Figure 6-8: Sample signal and sleep system call usage: child threads

wakens the calling parent who receives the child thread context just like the return

value of a. tFork.

6.3.6 Scheduler

The scheduler portion of the Thread Manager runs as part of the event handler -

responding to requests placed in the software job queues. Requests are summarized in

table 6.2. The generic EVENT_SCHEDULE is the most interesting to cover because

it encompasses the important tasks of installing and evicting threads.

Request Arguments Description

Perform generic scheduling: wakes threads which
have needtowake set. Terminates threads on the

EVENTSCHEDULE kill list. Attempts to install threads on the pend-
ing list, perhaps evicting running threads to make
room.

Puts thread identified by thread context pointer
tc into a blocked state. If the thread is already
running, it is moved to the front of the running

EVENT-SLEEP tc queue so it is the first to be swapped out if an
eviction is necessary. If thread is on the pending
list, it is removed from the list so as not to be mis-
takenly installed during scheduling. Sets thread's
need.to.block state bit.

Adds thread identified by thread context pointerEVENTYORK tc
tc to the Pending list.

Sets the need.to-wake state bit of the thread iden-
tified by tc. Sets the thread's signalData field to

EVENTWAKE tc data data. If the thread is not currenly occupying a
thread slot (running) it is added to the pending
list.

EVENTKILL tc Adds the thread identified by tc to the kill list.

Table 6.2: Thread Manager system calls

The scheduler completes three tasks when asked to perform scheduling.

Cleaning Killed Threads

First, all threads in the kill list are popped and terminated, if possible. Their thread

context is freed, the hardware thread slot state that they occupy (if they are still

installed in a thread slot) is reset and the thread slot marked as unoccupied. If

threads which are popped off the kill list still have outstanding memory events which

are to be resolved in software or outstanding hardware events, the threads may not

be terminated and are added back to the kill list. A check in the code which runs

through the kill list makes sure that recirculating threads into the kill list does not

cause an infinite loop of pushes and pops.

Signal Handling

The thread scheduler then deals with outstanding signal-handling. A thread which

is (1) in the pending or running lists, (2) has its needto_wake state bit set, and

(3) has its needtosleep bit unset, is set active by copying signalData into the

appropriate return register. If it is occupying a thread slot, the thread's return-

register (il0) is written with the contents of the context's signalData field directly

(using a configuration-space write). Otherwise, the register is modified within the

thread context and the empty bit for that register set to full so that the register can

be read the next time that the thread is installed into a thread slot. In both cases,

the needtowake bit is reset.

Installing Threads

In its third task, the scheduler pops a thread off the pending list (the candidate)

and attempts to install it into a free user thread slot. If no free thread slots exist, a

thread is popped off the running list and evicted (if possible). Eviction involves halting

all H-Threads which are issuing within the V-Thread - accomplished by writing to

the thread flags region of configuration space mapped to the hardware thread slot

which the thread occupies. The thread flags are modified to zero out the hIssue

bits for the thread. Then, for each active H-Thread within the V-Thread, all of the

register-file state is copied into the thread context. Four H-Thread IP's for use in the

thread-restart process are read out from each cluster. Finally, state like software and

hardware membar counters are updated. Once eviction succeeds, the thread context

is pushed to the end of the pending list.

When a free thread slot has been found for the candidate, a reverse of the evic-

tion process begins. First, the candidate's hFull thread flags are written into the

configuration space mapped to the thread slot into which it is being installed. These

flags set the hFull bits for all H-Threads which are to run within the candidate. This

has the effect of resetting all thread state within individual clusters. This is a safe

procedure since no hIssue bits are set, so the thread will not attempt to issue from a

non-existing IP. Then, individual H-Thread state is updated by reading thread con-

text data and writing into the thread slot through configspace. After all register-file

and membar counter state has been written, a series of 4 IP writes are made for each

H-Thread. These writes prime a hardware restart engine which fetches instructions

and can restart a thread. Lastly, the candidate is pushed to the end of the running

list.

Chapter 7

Memory-Coherence Management

This chapter details the M-Machine's software-based memory-coherence protocol. As

mentioned in previous chapters, the software implementation is closely tied to other

OS components, such as the Physical Memory Manager and Thread Manager. The

memory-coherence system provides the view of a single globally-shared virtual address

space which is accessible by user threads independent of the node on which they

execute. That is, any thread which performs a memory-reference to a word of virtual

memory will have that request satisfied even if the segment of virtual memory is not

mapped to the thread's home node. Each word of virtual memory is mapped, through

the GTLB and a software Global Page Table (not implemented in the current runtime

system), to an M-Machine node - the home node of that data. For purposes of the

memory-coherence protocol described in this paper, the granularity is on an 8-word

block basis (words in each 8-word block of memory must have the same home node

in common). The term "memory block" (or just "block") refers to an 8-word section

of virtual memory, the size of an individual cache-line, which may be shared among

several nodes. In the rest of this chapter, the home node means the node to which

a particular block of memory is mapped, and a requesting node is used to identify a

node which wishes to access data from the home node. In rare instances, the home

and reqesting nodes may be the same.

In broad terms, the memory-coherence manager allows threads to transparently

read and modify blocks of memory which are not mapped to their local nodes. Load

and store operations which attempt to access off-node data fault to software with

block-status misses (BSM). A portion of the memory-coherence manager (MCM)

which runs in the event-handler thread enqueues BSMs into a software event ta-

ble, and sends out request messages for accessed blocks. Message-handing functions

in the PO and P1 Message Handler threads respond to request messages by modifying

local coherence directories, local cache, and the LTLB, and send blocks to requesting

nodes. Local message handlers on requesting nodes accept responses to the MCM

requests sent out by the event handler and install blocks locally. The cache and

LTLB of the requesting node is modified, and events pending to the block which were

enqueued in the software event table are popped and satisfied at this time.

The following sections briefly describe the internal functions used by the MCM,

present data structures employed by the home and requesting sides of the coherence

protocol, and details the MCM implementation, including a state-machine model for

tracking individual memory blocks.

7.1 Internal Functions

The MCM is split into three components which run as part of the event handler, and

the two message handler threads. Table 7.1 lists the functions executed by the event

handler thread. These functions may be grouped into three categories - functions

which are executed as part of the requesting node's initial handling of blocks-status

misses, functions which are executed in proxy for a requesting node's P1 Message

Handler, and functions which are executed in proxy for a home node's P1 Message

Handler. The proxy functions are actually wrapped up in the event handler's routine

which services the software job queue, and are therefore shown in a stylized manner

which does not actually appear in the source code.

The home node's MCM handles incoming requests for blocks, as well as acknowl-

edgements for block invalidations which it sends out. These functions are outlined in

table 7.2.

Lastly, the requesting node's MCM handles home node responses to the requests

that were sent out by its own event handler. It also responds to invalidation messages

coming from the home node. These functions are outlined in table 7.3.

7.2 Data Structures

Each node's MCM uses two data structures - one for managing blocks for which the

node is a home node, and the other for tracking requests for blocks which the node

makes in its capacity as a requesting node. The home-node information is stored in

a coherence directory, while requested blocks are stored in a software event table.

7.2.1 Coherence Directory

The coherence directory is simply a linked list of lists. Each toplevel entry in the

list contains the address of a block of memory which is shared by at least one node,

state information about the block, and a list of nodes which share that block (these

are nodes to which this block has been sent). Blocks may be in one of three states.

Read shared blocks may have multiple nodes which share them. Exclusive shared

blocks may only be held by a single node. Transitioning blocks are in the process of

being revoked from all sharers because a conflicting request for them has been made

(a request for a readonly or exclusive copy for a block which was held exclusive by a

different node, or a request for an exclusive copy if the block was held readonly by at

least one node).

Functions are provided to add a new sharing node for a particular block

(CCDirectory_addSharing) to the directory, and remove a sharing node from the

list of nodes sharing a particular block (CCDirectory-popSharing). Other functions

access and modify block state.

This current implementation is not efficient in terms of search time. Future imple-

mentations of the directory should use a chained hash table to access shared addresses

with greater speed.

Software Event Table

Number of
physical
pages used
for backing

Event Queue Node
next next
address F address

Sstate state
invalidate ptr invalidate ptr
events events
tail I tail

next next next
header header i header
address address address
data data i data
CP CP . . CP

Individual
Block-status
Miss event

Event Table Entry
VPN

status

queue pointer

next one event queue
address entry per shared

eidate ptr 8-word memoryinvalidate ptr_
events block
tail

Figure 7-1: MCM Software Event Table

7.2.2 Software Event Table

The software event table is used by the cache-coherence manager to record block-

status miss events which are being handled in software and maintain information

about the status of blocks which have been requested from a home node. The table

contains three-word entries and implictly maps physical page frame numbers to virtual

page numbers and queues of requests. That is, the ith entry in the table refers to the

ith page frame on the local node which is used as backing for remote virtual memory

blocks. This table is statically-sized at link time, or at the time that the Physical

Memory Manager is asked to reserve a range of frames for backing of remote memory

with the PPMlocal2remote function. Figure 7-1 shows event table layout.

The event table is probed with both a virtual address and a physical page frame

number to access event queues for that block. The frame number is used to directly

index into the table and locate a table entry. The table entry's virtual page number

field is compared against the page number portion of the virtual address. If the

numbers match, the pointer to the entry's queue of requests is followed (the structure

of the queue is described below). If no vpn match is made, the frame number is

considered stale, and a page-table probe (PPMlookup) must be performed. In this

way, the software event table functions almost like a reverse page table, except that

information that it holds may be stale and inconsistent with the local page table.

State information is associated with each table entry as well. Currently the only

state information is a bit which informs the caller that the physical frame associated

with the entry is marked for eviction, and no new events should be added to its queue.

The last component of the event table entry is the software queue entry pointer.

This identifies the head of a linked list of queue entries. Each queue entry represents

an 8-word memory block for which event information is stored. There may be at

most 64 such entries in any linked list since there are at most 64 different blocks

within a virtual page. Each entry contains information on the state of the block (to

be discussed later), a 64-bit invalidation pointer if the home node has requested that

this block be invalidated and returned 1, an address field which is used to identify

which of the 64 blocks this block represents 2, and pointers to the head and tail of

an event list for this block. The event list is a collection of entries which represent

block-status miss events which have been removed from the hardware event queue by

the event handler. Each miss event entry contains all four words which compose a

block status miss, and a next pointer for use in linked lists.

Use of these data structures will be explained when implementation is detailed.

To obviate the need for dynamic memory allocation of these structures, a collection of

software queue entries and miss event entries are statically allocated at compile-time

and initialized into lists of available entries at runtime. Entries are popped from the

lists of free entries when needed, and returned to these lists when no longer used in

the event table. Since the event table is statically-sized at compile time, it also does

not need any dynamic memory allocation.

1 Invalidation pointers are pointers to a yankbuffer structure, described later in this chapter.
2 Although the current implementation uses a full 64 bits, only 6 are necessary since the rest may

be reconstructed from the virtual page number of the containing event table entry.

7.3 Implementation

A memory-coherence protocol needs to handle a variety of common-case memory-

sharing requests, and deal properly with a number of more unusual cases which are a

result of the asynchronous nature of multinode execution. This section first presents a

simplified view of common-case operation of the coherence protocol, introducing how

the different handlers interact and employ the data structures that were presented in

the last section. The motivation for employing a state-machine model of block states

is presented, along with the model. Further sections then explain handling of more

subtle coherence cases.

7.3.1 Simplified Roundtrip Coherence Path

Figure 7-2 is helpful in clarifying the mechanisms introduced in this section.

All nodes initially start execution without sharing any remote data. Threads which

reference off-node data begin the process of remote-block fetching and installation.

The process begins when a thread causes an LTLB Miss, since while a page of virtual

address space may have physical backing on its home node, a remote node will not

have such backing. A thread (called the faulting thread in the rest of this section)

which references off-node memory will cause an LTLB Miss with its memory reference

which will invoke the Physical Memory Manager as described in chapter 4. The PMM

will determine that the virtual address is a remote-address and create a new page-

table entry mapping the virtual page to a new backing page frame take from the

remote backing pool. Block status bits for all blocks within the page will be set to

invalid. When the hardware retries the memory-reference, an LTLB entry will be

found, but block-status bits for the block containing the referenced address will be

invalid. The hardware will therefore generate a Block Status Miss event and add

it to the hardware event queue. The event, similar to the LTLB Miss Event, will

contain a header word, faulting address, source data if the operation was a store, and

a configuration space pointer into thread state for the faulting thread. A 20-bit field

within the header word contains the frame number retrieved from the LTLB at the

none sectinn Mark Home Node

Further Block-Statu
misses to the same
line find the event
queue and add to it
No messages sent.

)MH P1MH

:ence
:tory
:ed
t-status
set

Figure 7-2: End-To-End Communication in Simple-Path Coherence Protocol

time that the block-status miss was generated. See table 7.4 for the event header

format.

Sending a Request

When the event handler pops the block-status miss event from the hardware queue,

it determines the type of the event from the low four bits of the header word. Finding

that it is a block-status miss, the event handler dispatches the event to the _BSMxx

functions which interface assembly-coded portions of the event handler with higher-

level functions written in C. The assembly code then calls _EHhandle_bsm, passing

it all four event words. This function uses the header's encoded physical page frame

number to index into the event table and find an entry. Initially, all entries within

the table will contain invalid mappings (virtual page numbers of -1). Therefore, the

event handler will not find a match between the faulting address' page and the page

in the table entry. At this point, the handler decides that the page information is

stale (it could have been changed between the time that the hardware determined

the mapping from the LTLB and the time that the event handler had removed the

event from the hardware queue) and performs a page table lookup (calls PPM_lookup).

The resulting page is again used to probe into the table and again a match will not

be found. At this point, the handler must deduce that the event table entry is not

current, and creates a mapping, simply by writing the faulting address' virtual page

number into the entry's vpn field.

Having found a valid table entry for the fault, the event handler examines the

backing page's state information, to make sure that the page is not marked for evic-

tion. Since it is not (the table is initialized so), the handler attempts to enqueue the

block-status miss event. Since the page table's queue pointer is null, a new software

queue entry is popped from the list of free entries and added as the head of a new list.

Its address field is set to that of the faulting address with the low 6 bits masked off

(indicating an entire 8-word block). A new miss event entry is also popped, initial-

ized with the event words, and added to the event queue for the block in which the

faulting address resides. The function returns certain flags which enable the caller to

determine what actions to take. The sendmessage flag is set because a new software

queue entry was added, and therefore this was the first reference to this block. The

calling function (the event dispatch handler) then decides to send a message to the

home node of the faulting address, requesting that the remote block be sent back.

A MSG_ccrequest priority 0 message is sent, containing the header word and virtual

address. At this point, the work of the requesting node's event handler is complete.

The node must now wait for an acknowledgement to its request.

All further events targetting the block in the meantime are added to the event

queue for that block so that spurious request messages are not sent. As long as there

are events remaining in the software queue for a particular block, new events are

added but no messages are sent.

Fulfilling Requests

When it receives a MSGccrequest message, the home node's priority 0 message han-

dler removes the message arguments from the message queue, packages them as func-

tion arguments, and calls the ccrequest function of the MCM. ccrequest examines the

event header which was sent in the message and determines whether the request was

for a readonly or an exclusive block based on the opcode of the operation that faulted

on the requesting node. A Id operation results in a call to ccrequestld while a st

or any of the synchronizing Id/st variants result in a ccrequest.st, ccrequest.stsu

or ccrequestildsu being called.

In any case, the home node checks the coherence directory to determine what is

the state the requested block. Assuming that this is the first coherence request to be

serviced, the directory will return the fact that the block is unshared. In this case, the

directory is modified to have the requesting node as a sharer for the block in question.

If this was a store request, the store which was requested to be performed is performed

locally (the opdata passed in the request message is used as the data source of the

store operation). Block-status bits for the block are then changed to INVALID, and

the block is read out and sent as an acknowledgement to the requesting node. In

response to a load request, the block-status bits are changed to READONLY since

the home node's thread can continue reading the block, and the block is read out and

sent to the requesting node.

Installing Remote Data

On the return path, the acknowledgement to the a block request returns to the re-

questing node as a ccreturnLoad or ccreturnStore, depending on the type of shar-

ing which was granted (exclusive or readonly). In either case, the address and header

which return in the acknowledgement are used by the MCM to index into the event

table in the same manner as performed by the event handler. This time, there is

a match between the entry's vpn and the vpn of the requested address (since this

was correctly updated by the event handler prior to the request message being sent)

and the entry's software queue pointer is followed and the queue entry for the appro-

priate block is found. The block contents are read out of the message queue by an

assembly function and written into local memory (a backing page exists since there

is a mapping in the event table from the ppn listed in the header, and the vpn in

the faulting address). Block-status bits for the virtual address of the block are set

properly (READONLY or READWRITE, depending on the type of sharing allowed).

All events stacked up for the requested block are then handled in turn, by performing

the faulted memory operations, this time on memory which has been installed locally.

After all events have been processed, the event entries and software queue entry are

returned to their free pools, and, if no other cache blocks have been requested for

that particular virtual page, the pointer to the software queues in the table entry for

the backing frame is reset to NULL.

7.3.2 Diverging from the Simple Case

This section begins to explore the more interesting cases which must be dealt with by

the MCM. Each section will identify a case not covered in the above simplified example

and ammend the actions taken by affected components. The cases will parallel the

previous section in the order of the components that are introduced - starting with

the event handler.

Out of Backing Pages

In the previous section, the page frame number located by the M-Machine memory

system was assumed to be a valid physical page frame. As mentioned in section 4.5.2,

the ppm will create a mapping of a virtual page number to physical page frame -1

if no backing frames for remote data remain. This information may be returned in

the event header of a block-status miss. It is the policy of the MCM not to

send requests for remote blocks unless physical backing is obtained first.

Therefore, the MCM first performs a PPMlookup to make sure that a mapping hasn't

been created since the block-status miss first occured. If the lookup returns a valid

page, the event handler can perform the probe as before and continue processing.

On the other hand, if an invalid mapping is returned again, the event handler

makes note that cleaning of shared pages must be performed to free up a backing

frame, and adds the entire event to a local software queue, effectively recirculating it

so that it may continue taking a look at the event from time to time and being able

to finally satisfy it when physical backing is obtained. Meanwhile, to prevent user

threads from continuing to cause block-status misses and overfilling the recirculation

queue, all user threads are prevented from issuing instructions (the event handler

turns off their hIssue thread state bits).

In order to find pages suitable for reuse, the event handler may run through the

event table, looking for entries which have no pointers to software queues of events.

Such pages are ripe for eviction since no outstanding requests to their pages remain

and therefore all of the shared blocks within these pages may be evicted (and sent

back to their home nodes if dirty). In order to evict a shared page, the event handler

performs the following actions:

1. Performs 64 putcstat operations, setting block-status bits for each block within
the page to invalid. Putcstat's return value, the previous block-status bits, are
used to check whether each block was dirty. Every dirty block is shipped back
to the home node with a sysPushDirty call, which sends the address and the
8-words of the block to the home node in a MSG_ccreturnDirty message.

2. Calls PPMunmap to remove old virtual-physical mapping for the virtual page
being evicted.

3. Returns the backing page to the backing page chain with a call to
PPM.reclaimremote.

After a virtual page has been evicted and the backing frame is returned for reuse,

the event handler makes a PPMimap call to give physical backing to a new virtual

page, which was missing backing previously. Finally, the entry corresponding to the

newly-acquired backing page is modified to reflect a new virtual page number, and

the process of adding a new software queue entry may continue as before.

If no pages may be evicted right away (each entry in the event table has a valid

software queue pointer, signifying that there is at least one outstanding event per

page waiting for a block to be returned), some pages are chosed for eviction and their

state bits in the event table are set, indicating that no new events are to target these

pages since they must be evicted.

In order to prevent running out of backing page frames, the event handler is

designed to examine the number of page frames remaining after each event is handled.

If the frame count is below a watermark, the handler must perform preemptive page

eviction to free up backing frames. This may be accomplished by keeping a pointer

into the event table which is advanced until a suitable candidate frame (one with

a valid VPN mapping, but no queue pointer) is found. This frame undergoes the

eviction process described in the steps above and may be added to the backing pool.

Backing Page is Marked for Eviction

The case in the previous section presents another problem for the event handler. If

it finds an event table entry for the faulting address and the virtual pages match, the

physical page frame may be locked. If the state bit for that entry is set, the event

handler is prevented from adding the new event to the software queue (although one

optimization is to allow it to add the event if it targets an existing block, so that the

event will be handled with all other events for that block as soon as the home node

returns the necessary data) and must recirculate it. This case becomes analogous to

the event handler not having an appropriate backing page, although in this particular

instance no search for new backing pages is required.

A modification to the priority 1 message handler which deals with returning blocks

must be made as well. When the last software queue entry for a particular virtual

page has been freed and the event table entry's software queue pointer set to NULL,

the message handler must check the status bit of that entry. If the status bit is set,

the page is ready for eviction. Since the P1 message handler is not allowed to send

out messages (this is to avoid deadlock in the machine's network) and message-sends

of dirty blocks may be required when performing a page eviction, the P1MH enqueues

an eviction job with the event handler in the handler's software job queue. Some time

in the future, the event handler will respond to the eviction request and perform the

same type of operations in evicting a page as mentioned in the previous subsection.

Invalidations Required

Moving to the home node of requested data, the case of incompatible block sharing

arises. As mentioned briefly at the beginning of this chapter, when the home node

probes the coherence directory, it may discover that several nodes are sharing a block

which has just been requested as an exclusive copy; or a node other than the requesting

node may have an exclusive copy of the block. In both cases, all of the nodes currently

sharing the block must have their shared copies revoked, before the latest request can

be satisfied.

The home node performs the invalidation with the help of a new data structure -

the yankbuffer. The yankbuffer records information about the request which caused

the invalidation to be performed, and the number of invalidation messages outstand-

ing. A circular buffer of pointers to free yankbuffers is accessed to acquire a new

yankbuffer. This circular buffer is then used to return a yankbuffer for reuse once

the invalidation process has completed. The invalidation protocol begins as follows:

a new yankbuffer is acquired and the four words of request information written into

it. The requesing node number is written as well, so that the MCM knows which

node sent this request. Lastly, the number of nodes which currently share the block

is written into the yankbuffer.

With the yankbuffer initialized, the message handler sets the state of the block in

the coherence directory from shared exclusive or shared readonly, to TRANSITION-

ING, signifying the fact that an invalidation of this block is in progress. The message

handler begins popping nodes from the coherence directory list of sharers for the re-

quested block and sends an MSGccinvalidate message to each. The block address

and yankbuffer address are sent in each message. Once all messages have been sent,

the message handler's immediate task is complete, and it is ready to handle the next

incoming message. Other portions of the MCM will respond to the invalidations and

cause the block to be sent to the requesting node which caused the invalidations.

As acknowledgements to the invalidation messages arrive at the P1 message han-

dler (invoking the ccreturnYank and ccreturnyankFull functions), the yankbuffer

pointer that is sent along is used to decrement the invalidation count within the

buffer. Dirty blocks which are returned in acknowledgements are copied into home

node local memory.

All requests for blocks which come in while the blocks are in the transitioning

state are NACKed back to their senders. This frees the home node from buffering

requests for blocks locally, and instead places the burden of buffering on the network

and requesting nodes, as NACKs are returned to home nodes, buffered, and new

requests sent out.

Once the invalidation count reaches zero, the state of the requested block on the

home node may be returned to the exclusive-copy state since (1) all node which had

previously shared the block have acknowledged that they no longer hold copies, and

(2) no new copies were given out since any new requests are met with a NACK. The

state in the coherence directory remains transitioning, however. The original event

is read out of the yankbuffer and added as a job to the event handler so that the

full block-request code may be executed. The event cannot be handled directly by

the P1MH since a reponse to a block request involves a message-send, which it not

allowed for the P1MH. The state of the block in the coherence directory remains

transitioning, to make the window of vulnerability when another request may come

in an acquire rights to the block ahead of the original request as small as possible.

The yankbuffer is returned to the circular buffer of free yankbuffers.

As the event handler performs the request procedure, it removes the block from

the coherence directory (since no node is sharing the block) and calls the ccrequest

function (normally called by message-dispatch code) directly, passing it the event

information enqueued in its software job queue entry. At this point, the entire invali-

dation procedure is complete and the request which originally caused the invalidations

gets another chance to acquire the block.

Receiving NACKs

In the previous subsection, the home node was shown to be capable of sending NACKs

in response to block requests. This section describes how the requesting node's P1MH

must deal with NACKs. Since the events which caused the request messages to be sent

are still enqueued in software, the MCM does not need to perform another lookup

in the event table when it receives a NACK. Intead, it needs to add a job for the

event handler to resend the NACKed request. The actual NACK message which is

sent by the home node contains the entire contents of the original request message.

This makes it quite a simple task for the P1MH to add a resend request for the

event handler - it passes all of the words of the NACK message to the EH. The event

handler will dequeue the request some time in the future and retransmit the request.

Once again, the reason that the P1MH cannot retransmit the request on its own is to

avoid deadlock in the network - the P1MH is not allowed to send out any messages.

Figure 7-3 summarizes the invalidation protocol.

Performing Block-Invalidation

Another task that the MCM must now perform is invalidating shared blocks in re-

sponse to invalidation requests from the home node. When an invalidation message

arrives, it bears only the virtual address, and does not contain any physical page

frame information as events do. Therefore, the POMH which handles the invalidation

request must perform an explicit PPMlookup to determine the local page frame which

is used for backing the virtual page in question. The putcstat operation is performed

on the virtual address to set block-status bits to invalid and return the previous state

of the block. If the block was dirty, the page frame number is used along with the low

12 bits of the virtual address to determine the offset within the page frame where the

block resides, and to read the block out into an acknowledgement message to be sent

to the home node. In any case, the invalidation is acknowledged with either a simple

ACK or an ACK bearing the contents of a dirty shared block. The invalidate ACK

also contains the yankbuffer pointer which was passed in the invalidate message. As

described above, this yankbuffer pointer is used on the return trip by the home node's

P1MH to decrement the invalidate counter and decide when all nodes which shared

the block have relinquished their copies.

nitse g Node 1 Home Nod g Node 2

OMH P1MH POMH i MMH K E. i POMH P1MH
.id Block Status

coherence
directory
Updated
Block-status
bits sat

WriteoIvalid Block Status

Event Table
Lookup. backing atty
page found. c st
Line copied to
meory. Bock
status bits set
Event entries coheence
satisfied directory

lookup.
Incoe~atible
sharing detected.

Yank buffer

o--Validation
allocaed

invalid&*E
countse
decremsnte
counter renakes

SK pertorms
;5gr ;q"est
S ::::p::t dat:::::::::

Figure 7-3: Block Invalidation in Memory Coherence Protocol

Dealing with Orderless Messages and Asynchrony

The protocol design presented so far seems to handle a variety of special cases, but the

more interesting remain to be covered in this section. Particular problems arise when

guarantees on message-ordering don't exist 3 , and when asynchronous invalidation and

NACK messages must be dealt with.

A requesting node may receive an invalidation message while it is still installing

a newly-acquired block. Should the original ACK message to the block request be

crossed with a later invalidation message, the requesting node may even receive the

invalidation message before the actual data ACK arrives. To handle these cases, the

3At the time of the coherence protocol design, the M-Machine did not guarantee message ordering.
The machine hardware has since been ammended to allow in-order messages to be used.

Reau

5

coherence protocol employs a state-machine model for memory blocks. That is, each

block which has an entry in the event table has associated with it a state. This state

helps MCM components decide what to do when messages or events concerning that

block arrive. A block state is represented using five bits which encode the history of

requests and responses targetting that block. These bits are:

1. PX : Pending Read/Write Request

2. PR: Pending Read Request

3. I : Block Needs to be Invalidated

4. AX : ACK to R/W Request Received

5. NX: NACK to R/W Request Received

Initially, a software queue entry for a block gets its state set to PX or PR, de-

pending on whether a readonly or readwrite copy of the block was requested from

the home node. This records the fact that a request for the block has been sent to

the home node and the requesting node is waiting for a NACK or ACK to return. In

some instances, both PX and PR bits will be set - this occurs when first a read-invalid

block-status miss is handled and the event handler sends out a request for a readonly

copy of the block. Later, store to the same block will cause a write-invalid miss which

will require that an exclusive copy of the block be requested. The EH will alter the

state of the block from PR to (PR I PX) to note that two requests have been sent.

Should an invalidate message arrive before the actual data returns, the I state will

be added to the block state. This will allow the MCM to keep track of the fact that

after the request is ACKed or NACKed, an invalidation should be performed. The

MCM cannot invalidate its block immediately after the invalidation message arrives

because the invalidation and reponse to a block request could have gotten crossed,

resulting in a block coming back later which should have been invalidated. If an

invalidate message arrives when the block state is zero (meaning no software queue

entry even exists for the block), it is safe to perform the invalidation immediately

since no request messages for that block have been sent.

bit vector: Pending X,. Pending RO. InvalidateRecieved,
got ACK for X, got NACK for X

PX PR I AX NX

Satisfy all events

i
/ACKl(x)

7-

RI

.\

NJ

F

Transition in response to event

1 Transition in response to
massage

STransiti on resulting in a
message being sent.

Figure 7-4: State Transition Diagram for Requested Blocks

Transitions which are performed when new messages arrive at the requesting node,

or when events occur, can then be defined on these states. A state-transition diagram

which is to be followed for each block is shown in figure 7-4. In this figure, transitions

are triggered by the arrival of messages (NACK(X), ACK(X), NACK(R), ACK(R))

and new events (RI for read to an invalid block, WI for write to an invalid block, WR

for write to a readonly block). This transition diagram clarifies the job of the MCM.

When an invalidate message arrives for a block whose state is PR or PX, for instance,

88

FSati

ACK(r

HACK (r

Satisfy
all evant

al Co
nd REQ

Automatic transition

signal t
resend R

sarisry
all events--7

signal to
INVALIDATE

00o00

s

the invalidate bit is added to the state and the yankbuffer pointer is added to the

software queue entry for that block (hence the need for an invalidate pointer entry in

the event queue data structure). If an ACK for the block is returned, the block will

be installed, all of the events pending to it will be resolved, and then a job enqueued

with the event handler will request that the handler perform an invalidation phase.

The previously-stored yankbuffer pointer will be used when the block is invalidated

and shipped, if necesary, to the home node. If a NACK arrives, a job for the event

handler will be enqueued so that first the block is invalidated, and then a new request

for the block is sent (since the MCM always resends requests if it receives a NACK).

This state-machine model tolerates out-of-order messages and asynchronous in-

validations by imposing a rigid flow of control on the MCM and only allowing actions

to be taken if the block is in a known and consistent state with the action being

performed: for instance invalidated if no more messages are pending for that block.

With the state-machine model in place, the MCM design becomes more com-

plete. When an event entry is enqueued for a particular block, the software queue

entry's state is updated with proper PX and PR bits. An invalidation message han-

dler (the code in ccInvalidate) first checks the state of a block to determine which

state-transition to perform. Similarly, the P1MH checks block state when ACKs and

NACKs arrive, to determine which actions to take. Usually in response to ACKs,

this involves installing the block and then transitioning to a completed state or en-

queuing jobs with the event handler to perform latent invalidations. In response to

NACKs the actions are to enqueue jobs with the event handler, the nature of the jobs

dependent on the block state - either invalidate-and-send-request, or send-request if

no invalidation is required.

Dealing With Concurrency

Since all of the threads which work in concert to provide memory-coherence need

to access the MCM data structures (the event table on the requesting node, and

the coherence directory on the home node) locks are used to enforce serialized access.

The current implementation uses extremely coarse interlocks - a single lock is assigned

to each data structure (sqlock for the event table, and ccdirlock for the coherence

directory). These locks must be acquired before functions which access and/or modify

their associated data structures may be called. It is important to note here that

regardless of lock granularity, the system must be implemented in such a way, that

the event handler and PO message handler may not hold locks which will prevent the

P1MH from making progress at the time that they send out messages. As mentioned

several times before, this is to prevent deadlocks from occuring - the P1MH must

always be able to make progress and service its message queue even if other OS

components such the the MCM running in an event handler slot are blocked, waiting

to send a message into a saturated network.

When blocks are being installed, it is sometimes worthwhile for the P1MH to

unlock the event table each time that it pops a new event from the event table which

targets that block. This allows the event handler which is popping block status

misses from the hardware event queue to add the event to the event table even while

previous events are being popped off. This prevents spurious messages from being

sent for blocks which are already installed locally. However, the system must be able

to handle the case that a spurious message is sent. This may occur if the P1MH

runs through all of the event table entries for a block that it received and then

removes all traces that the block was installed, by deallocating the software queue

entry for that block. Meanwhile, a latent block-status miss to the newly-installed

block may be popped by the event handler, and a new event entry will be created.

Since no software queue entry will have been found, the event handler decides to send

a request message for the block. The home node will notice that the requesting node

had already been listed as a sharer of the block, but will oblige with another copy.

This allows requesting nodes to flush their shared blocks without having to inform

the home node. The only side-effect of this flushing is that unnecessary invalidation

messages may sometimes be sent by the home node.

Normally, installing a duplicate block is not a problem. However, if the original

block was installed as exclusive, it may already be dirty by the time the second (and

stale) home node's copy of the block arrives. This means that the requesting node,

when executing the code in ccreturnStore may not blindly install the block that it

received in the ACK message. Instead, it must check the existing block-status bits

of the block which was previously installed (local block) and determine whether the

block is dirty or not. If the local block is dirty or readwrite, the stale copy is not

installed. If, however, the local block is in the a readonly or invalid state, the block

in the message is installed. In either case, all events pending to the block are satisfied

as before.

Function Type Description

Invalidates the memory block identified by ad-
dress from the local cache and sets block-status

INVALIDATE(int node, void bits to invalid in the LTLB and/or page table.
*address, void Request Proxy Sends an acknowledgement to the home node
*yankbuffer) node, sending along the yankbuffer. If the block

was dirty, sends the dirty block within the ac-
knowledgement.

RESENDSTORE(int header,
void *address, int Request Proxy Sends a ccrequest message to the home node of
opdata, void *faultCP address.

voiEED address , int Request Proxy Sends a ccrequest message to the home node ofvoid *address, int Request Proxy address.
opdata, void *faultCP

Combination of the INVALIDATE and RE-
SENDSTORE/RESENDLOAD cases above.

INVo TORE(.s ..) Request Proxy First invalidates a block and returns it to the
home node. Then sends a request for it.

INV_LOAD(...) Request Proxy Same as above

REQUEST(int header, void Executes the function ccrequest as if a request
*address, int opdata, Home Proxy message for the block identified by address was
void *faultCP) received.

Responds to a local Block-Status Miss event.
Enqueues the event (composed of the 4 argu-
ment words) into the software event table and
returns status flags which tell the calling func-
tion what type of request message (if any) to

EHhandle bsm(int header, send out. Returns 0 on error. A flag of Oxi
void *address, int BSM Handling means no failure was detected. A flag of 0x2
opdata, void *faultCP means that a ccrequest message should be sent

to the home node of address. A flag of 0x4 re-
quests that the thread which caused the event be
prevented from issuing any more instructions. A
flag of 0x8 means that teh event request should
be recirculated and tried again later.

Table 7.1: Event Handler's MCM functions

Function Type Description

Processes a request for the block containing ad-
dress from node node. Dispatches to helper func-
tions ccrequestst and ccrequest-ld depend-

ccrequest (void *address, ing on the type of operation encoded in header.
int header, int opdata, priority 0 May also call ccyankline if a shared block needs
void *faultCP, int node) to be revoked from current sharing nodes. Sends

a response to node, bearing the requested mem-
ory block or a NACK, or has the event handler
do so in proxy at a later time.

Processes an acknowledgement to an invalida-
tion message. The acknowledgement contains

ccreturnyankFull(int priority 1 a dirty block which must be installed locally.
*yanki.buffer) Once installed, the original request which lead

to the invalidation is processed in proxy by the
event handler.

Processes an acknowledgement to an invali-
dation message. Decrements an invalidation

ccreturnYank(int counter for each such acknowledgement re-
*yank-buffer) priority 1 ceived. If the counter reaches zero, the block

is considered unshared again and the request
which lead to the invalidation is processed in
proxy by the event handler.

Table 7.2: Home Node MCM functions

Table 7.3: Requesting Node MCM functions

Description bits
OPACTION 56- 63
issuing thread slot 48 - 55
issuing functional unit 42 - 47
issuing cluster 40 - 41
target register file 36 - 39
target register 32 - 35
target cc 28 - 31
precondition 26- 27
postcondition 24- 25
physical page frame number 4 - 23
event type 0 - 3

Table 7.4: Event Header Format

Function Type Description

Deals with a NACK returned by the home node
in response to a readonly sharing request. Usu-

ccNackRO(void *address, ally, the event handler is asked to resend the
t header, t opdata, priority 1 original request, to the home node, home. The

*faultCP, int node) first four arguments to this function are the ar-
guments which were returned in the NACK, and
used in the repeat request by the event handler.

Same as above, except that the NACK is in re-
ccNackRW(...) priority 1 sponse to an exclusive block request.

Responds to an invalidation request from the
home node, node, of the block identified by ad-

*address, void *bufPtr, priority 0 dress. Takes steps to invalidate the block locally
int node) and, if dirty, to ship it back to the home node.

Installs the block which is returned in response
ccreturnLoad(void to a readonly sharing request from node node.
*address, int header, int priority 1 The 8 words of the block remain in the hardware
node) message queue and are read out by an assembly-

level helper function.

Same as above, except that the block is installed
ccreturnStore (...) priority 1copy.for read/write as an exclusive copy.

Chapter 8

Exposing System Calls to User

Threads

The runtime system managers mentioned in previous chapters need to export certain

system calls to user programs. This is accomplished through the use of jump tables

and load-time program patching - mechanisms described in this chapter.

In order to allow user programs to safely access certain system function entry

points, the programs need to be given entry pointers into runtime system code which

they may then use to perform jmp instructions. The runtime system currently uses

an object file called syscall. o which is linked with every user-level executable. This

file contains stubs for all exported system calls which the program may wish to use.

The stubs are simply functions which load system entry pointers from memory and

jump on them. Entry pointers are loaded from locations in the data segment which

are flagged to the loader as needing to be patched. This simplifies interfacing with the

M-Machine compiler, since the compiler has no notion of which functions are system

functions. Therefore, it expects to be able to place references to external system

functions and have them resolved at link time. Again, this is already accomplished

by having syscall.o contain stubs for all system functions, which means that from

the point of view of the compiler and linker, a user-level executable has all of its

symbols resolved before it is loaded. Figure 8-1 shows an example of a stub written

in M-Machine assembly.

_tFork: :
GET_FRAME
LOADFARLABEL(_tFork_ptr, itempO, DStart) /* load Idptr value */
instr ialu jmp itempO; /* jump to system code */
instr ;
instr ;
CALCRETIP

RETURN /* return to caller */

Figure 8-1: Sample syscall.m stub

Since stubs load system entry pointers from memory and the values of these

entry pointers are known only at load time, the syscall.o object file contains magic

numbers and relocation entries within it which signify that certain locations of its data

segments need to be patched with pointers at load time. These pointers are called

ldptr in the assembly language, and have their own relocation type. The trusted

loader reads the object file, looking for Idptr relocations and replacing the contents

of the data segment where the Idptrs are stored with entry pointers into system code.

The magic numbers stored where the Idptr's are defined are used to determine which

system function entry pointer needs to be stored there. The trusted loader is passed a

table of associations between magic numbers and system entry pointers. This allows

the syscall.o to create a table of Idptr values in its data segment, and use the stubs

to load these values and jump on them. This patching is safe, since the user cannot

trick the loader into giving out privileged information - any entry pointer which can

be given out defines a protected entry point, and only entry pointers which the OS is

willing to give out are passed to the loader. Examples of Idptr usage from syscall.m

are shown in figure 8-2.

The entry pointer table passed to the loader is constructed at boot time, with

values which are taken from system call function stubs, offset from the runtime IP.

These are usually physical addresses. System call function stubs exist for each actual

system function and act as an interface to the system function. Once called, the

stubs perform two tasks. First, they issue an mbar instruction, which insures that

data;
align 0 mod 8;
_tFork_ptr:: Idptr OxOOOOffffaaaaaabO;
_tExit_ptr:: Idptr Ox00OOO0ffffaaaaaaab;

Figure 8-2: Sample syscall.m ldptr usage

_tForkX::
instr memu mbar; -- issue mbar right away to keep registers safe
GET_FRAME
PUSH(DStart) -- save caller's data segment pointer
instr ialu imm __SYSTEM_UDAT_PTR, itemp0; -- offset where system's

-- data pointer is stored
instr ialu leab IP, itemp0, DStart; -- create a pointer

-- to this offset
instr memu Id DStart, DStart; -- load system's data

-- pointer off the IP
FCALL(_SYStFork) -- call the actual runtime

-- system function
SPOP(DStart) -- restore user's data ptr
RETURN -- return to caller

Figure 8-3: Sample runtime stub

any memory operations which the caller performed will complete and overwrite any

registers before the stub continues execution. This prevents a malicious user from

issuing memory operations which may overwrite the register set of structed code as

it begins execution. Secondly, while the IP of the executing system code points into

runtime system space (as opposed to the user-level caller's space), the data segment

pointer still points to the caller's data segment. The system function stub saves away

the existing data segment pointer, and then loads the runtime system data pointer

off its IP. The runtime data segment pointer is stored there at system boot time, for

the express purpose of making it available to system-function callees. A runtime stub

for the tFork system call is shown in figure 8-3.

Chapter 9

Performance Measurements

This chapter presents performance measurements of some runtime system compo-

nents. It should be noted that although cycle-counts are included, these numbers are

the result of executing a runtime system which was compiled with a compiler still

under development and with absolutely no optimizations being performed. The more

interesting numbers to examine are the breakdown of cycle-counts within long-latency

operations to determine where most of the time is being spent.

9.1 The LTLB Miss Handler and Physical Mem-

ory Management

Tables 9.1 and 9.2 list the cycle counts of performing physical memory management

tasks by the LTLB Miss Handler. Note that table lookups are quite fast, but the

time to create a new mapping, which involves acquiring a new page frame from the

free page list, is the largest component of an LTLB Miss.

9.2 Virtual Memory Allocation

The virtual segment manager takes an average of 950 cycles to allocate and return a

virtual segment. A selected run is shown in table 9.3.

Subcomponent Cycles I Notes
Initial LPT lookup 283 Lookup fails
Create new mapping 1398 Creates new virtual-physical mapping
Second Lookup 236 Added entry now found
Find conflicting LTLB Entry 266 For evicting existing LTLB entry
Writing new LTLB Entry 231 Evict old entry and write new one
Other 1423
Total 3837 Total time to handle a miss to an unallocated page

Table 9.1: Cycle count breakdown of LTLB Miss Handling

Function Cycles Notes
PPM_lookup 1281 Lookup a mapping in the page table
PPM_unmap 1789 Remove a mapping from both LTLB and the page table

Table 9.2: Cycle counts for selected PPM functions

9.3 Thread Management

Table 9.4 shows that aside from thread context allocation and initialization, forking

off a thread is quite inexpensive. This suggests that keeping available thread contexts

around after they are destroyed may help improve performance.

9.4 Memory-Coherence

Table 9.9 shows a cycle-breakdown for handling a block-status-miss by the event

handler. Note that while the event table is being updated, the update is not being

directly simulated. It is expected that this time will be quite substantial. Cycle counts

Subcomponent Cycles Notes

Jump to protected subsystem 95 Including an mbar and restoring system data ptr
Allocate new segment 801 Actual buddy list allocation
Return from subsystem 31 Includes restoring user's data ptr
Total 927 Total time to allocate a virtual segment

Table 9.3: Cycle count breakdown of Virtual Memory Allocation

Subcomponent Cycles Notes

Subsystem entry 89
Allocate new thread context 935 See VSM times in previous section
Initialize thread context 7279
Allocate thread stack 1248
Add job to EH job queue 1033 Tells EH to add thread to pending list
Add job to EH job queue 1025 Tells EH to perform scheduling
Return from subsystem' 126
Other 1837

Total 13572 Total time to fork off a thread

Table 9.4: Cycle count breakdown of tFork

Subcomponent Cycles Notes

Pop from pending list 162 Get a new candidate
Install candidate 2725 Includes copying entire register state
Other 348

Total 3235 Total time to install a thread into empty slot

Table 9.5: Cycle count breakdown of tInstall

Subcomponent Cycles Notes
Subsystem entry 104
Signal TCHILD_EXIT 4685 Includes allocating signal entry
Add EH job 788 Add EXIT signal
Other 1316

Total 6893 Total time for a thread to call tExit and block

Table 9.6: Cycle count breakdown of tExit

Subcomponent Cycles Notes
Send spawn message 2018 Includes nonce allocation (1718 cycles)
Perform tSleep on nonce 2800
Return Signal Message Processing 4453 Time to wake from when signal arrives
Total 9217 Does not include time that thread was sleeping

Table 9.7: Cycle count breakdown of sender tSpawn

100

Subcomponent Cycles Notes
Perform local fork 9267
Perform signal on nonce 564 Sends message to spawner's node
Other 326
Total 10157 Doesn't include time that remote caller was sleeping

Table 9.8: Cycle count breakdown of receiving tSpawn request

for handling BSM's which don't require message-sends average about 410. This means

that there is about a 700-cycle premium to sending out a request message, putting a

thread to sleep, and performing other bookkeeping.

Subcomponent Cycles Notes
Assembly prologue 37 Time to call C handler function
Add to event table 174 This is not simulated
Stop thread from issuing (icache miss) 261
Request Message send 126 Read out data and send request message
Other 495
Total 1093 Time to handle a block-status miss

Table 9.9: Cycle count breakdown of handling a BSM

Table 9.10 shows cycle breakdowns for handling a coherence request by the home

node. Note that as above, the coherence directory code is not being simulated and is

expected to be a substantial portion of the total execution time. The total roundtrip

time from block-status-miss to completion of line installation is about 8400 cycles, or

about 1050 cycles per event to that line (the cycles of adding events after the initial

request has been sent overlap the response times).

Subcomponent Cycles Notes
Page-table lookup 1471
Reading and sending cache line 106
Other 1182 Includes coherence directory modification
Total 2759 Time to handle a cc request

Table 9.10: Cycle count breakdown of home node's handling a ccrequest

101

Subcomponent Cycles Notes

Read line from message and install 75
Pop and satisfy 8 events to line 3326 (415 cycles/event)
Other 1116
Total 4517 Time to handle a cc ACK

Table 9.11: Cycle count breakdown of requesting node's handling an ACK

102

Chapter 10

Status and Future Directions

In this chapter, I present a broad overview of the currently-implemented MARS

components and chart a course for what work remains to be done to develop MARS

into a truly robust system.

10.1 Key OS Features and Contributions

The operating system presented in this thesis is quite novel. This is in great part

due to the unique hardware platform to which MARS is tailored. The M-Machine's

support for multiple thread contents, hardware-based capabilities, and configuration-

space access to hardware state has been presented. What sets MARS apart most

strongly from existing operating systems is its reliance on a collection of concurrently-

executing managers to perform OS functions, instead of a single monolithic kernel

or even microkernel. Most systems, regardless of light or heavyweight nature of the

kernel, still require user-level programs to fault into a single-threaded kernel. With up

to four system-level handlers able to execute at the same time, (and several additional

protected subsystems in user slots) MARS is a truly decentralized operating system.

The highest priority thread - the PMM - is still just a single thread performing only

physical page management.

The use of capabilities by the OS can dramatically enhance performance. By turn-

ing thread context pointers used by MARS into Key pointers and giving them away

103

to user-level threads, the OS is able to obviate the use of more levels of indirection

in order to protect threads. At the same time, once the thread context pointer is

passed to a trusted OS component, the conversion of pointer type allows the system

to access thread state very quickly, without requiring a lookup table. Capabilities are

also used by the loader and runtime system to export system calls to user threads.

Again, because no fault is required to enter a trusted subsystem, and because system-

level code may execute in a user-level thread slot, performance of other threads is not

affected.

By coupling a single virtual address space (in itself not a novel idea) with capa-

bilities, MARS is able to provide efficient shared memory for all user and higher-level

system threads. No special provisions are required to map virtual address spaces in-

dependently for each thread. A single virtual address map simplifies page and thread

management. Context switches need only deal with register contents and other lo-

calized thread state.

Finally, the low-level support for coherent memory across the nodes of a multi-

processor makes MARS quite unique. Although operating systems like Mach may

rely on hardware-based coherence, or allow a software coherence layer to be built

independently using add-on memory managers, MARS takes a middle-ground. This

results in memory-coherence more flexible than if built into hardware, at a perfor-

mance cost. Because the coherence system is built on such a low level - within the

message and event handlers - higher-level components are free to execute in such

an environment. For example, the system-level loader can easily distribute a data

segment of a newly-loaded executable over several nodes without requiring explicit

message-passing. Simply storing a large array into virtual memory striped across

several nodes will transparently distribute it. This makes the task of writing not only

user-level programs, but also other system routines much simpler. This is certainly

demonstrated by the ease with which multithreaded shared-memory code may be

written under this OS (as shown by the example programs in appendix E).

104

10.2 Existing Components

The MARS system is composed of a collection of assembly and C source code files

which compiled, assembled, and linked into a single executable. This executable is

loaded into the M-Machine Simulator for testing and development work, and runs

completely in physical memory.

The bootstrap - the boot.m assembly file - is the first to execute. It spawns off

remaining system threads and performs initialization of the four managers presented

in previous chapters. Each of the four system-level handlers contains an assembly-level

portion which sets up arguments by popping events from hardware-mapped registers

and calls on higher level functions written in C. The handlers are the event handler

(event .m). PO and P1 message handlers (both in message_event .m), and LTLB miss

handler (Itlb_event.m). Sthe syscall.m assembly file contains stubs which allow

user-level programs to call on exported system calls. This file is assembled and linked

with user programs and is not linked into the runtime system.

The components written in C are divided on a roughly functional basis.

The physical memory manager is composed of the ltlb_body. c, ppm. c, ipt. c,

and pplist . c files.

The virtual-memory manager is composed of stubs in vmem.m and actual routines

in buddy. c.

The thread manager is divided into tmanager.c, tmanager2.c, and tsignal.c,

with certain stubs written in boot .m.

Cache-coherence code is in cchome. c and ccrequest.c, with stubs in boot.m

to handle message-sends and line-installation.

The cache-coherence data structures are actually compiled into the M-Machine

simulator instead of being part of the runtime system. Both the cache-coherence

directory and the event table are some of the largest components which remain to be

fully implemented within the runtime system. Table 10.1 shows the breakdown of OS

components by source file.

105

File Description

Main system bootstrap. Also includes several assembly stubs for
boot.m

special instructions and message sends.

Event handler H-Thread source code. Marshalls arguments before
event .m

calling code in eh. c

tlb-event.m LTLB Miss Handler H-Thread/PMM source code. Marshalls argu-ltlb event .m
ments before calling code in Itlb-body. c

PO and P1 Message Handler source code. Interfaces to routines in
memory-coherence and thread management functions.

sysloader.m Loads user programs into memory and executes them.

vmem.m Assembly stubs for VMM. Calls VSM functions in buddy. c

buddy. c Virtual Segment Manager source code.

cchome. c Home node end of memory-coherence functions.

cc-request. c Requesting node end of memory-coherence functions.

Event Handler source code - for dealing with the software job queue,eh. c
as well as responding to block-status miss events.

Local Page Table management tasks of the physical memory man-
lpt. c

ager.

ltlb body. c Core LTLB Miss Handler code written in C.

Code to manage free page chains. Written by Andy Shultz from
design by the author.

Physical Page Manager code for dealing with individual
ppm. c map/unmap/reclaim calls. Written by Andy Shultz from design

by the author.

Event Table code for use in memory-coherence. Currently incor-
sq. c porated directly into the M-Machine simulator and not linked into

the runtime executable.

Code for the thread manager dealing mostly with forking, evicting,
and installing threads.

Additional code for the thread manager, dealing mostly with exit-
ing a thread and maintaining parent/child linkages.

tsignal. c Thread manager code dealing with signal/sleep.

Table 10.1: MARS Sources Files

106

10.3 Future Work

Additional debugging and testing still needs to be performed on the runtime system to

iron out bugs, although several test programs which have excercised all aspects of the

runtime system, from memory-management to thread creation and communication

to memory-coherence, have been successfully executed. These programs include the

tfork suites (tfork2.c, tfork3.c, and tfork4.c), the matmul parallel matrix multiply

programs (matmull.c and matmul2.c), and iterative Jacobian relaxation programs

(jacoby.c, jacoby2.c, jacoby3.c, jacoby4.c, jacoby5.c, and jacoby6.c).

10.3.1 Loader

The system's loader is an assembly stub which calls into the M-Machine simulator to

perform actual program-loading. This component should be implemented as a pro-

tected subsystem able to run completely in virtual memory and load other processes

without requiring low-level interaction with the runtime system - aside from the I/O

aspect of accessing an executable's raw contents, calls to vmem_alloc and tFork are

all that are required.

10.3.2 Memory-Coherence

The memory-coherence data structures and code for manipulating them should be

moved out of the simulator and into the runtime system directly. This includes porting

the implementations of the SSqEnqueue, SSQDeqeuue, SSQGetState, SSQSetState,

and other such functions. The work should be relatively simple because the existing

implementation is already written in C. The more involved development work must

deal with the implementation of the backing-page invalidation and eviction strategy

which was presented in the memory-coherence chapter. This will also require that

the event handler call upon the physical page manager to determine the number of

available backing pages. A low watermark will require preemptive evictions of shared

lines to make more pages available should they become necessary. Speed optimizations

to improve average-case performance for directory lookups will require modifying the

107

existing memory-coherence directory code to use a chained hash table instead of a

simple linked-list of memory-block addresses.

10.3.3 Virtual Memory Management

The deallocation of virtual segments and underlying garbage-collection phase needs

to be designed. This involves collecting dirty virtual segments in the dirty buddy

list on each node and then performing a garbage-collection phase at very infrequent

intervals. The actual garbage-collection will involve several phases. First, an initial

round of communication needs to be performed so that all nodes enter into a garbage-

collection phase, and prevent user threads from issuing any operations. In addition,

all event and message queues need to be drained to remove any latent events and

messages which may contain pointers to dirty segments. In a second phase, all local

register files and physical memory needs to be examined to look for references to dirty

segments. Any pointers which are found need to be replaced (perhaps with errval

pointers) or NULL pointers). The system must be careful to avoid physical memory

used by the OS itself. After local cleanup is completed, references to dirty segments

must also be removed from all other nodes on the machine, so the garbage-collector

needs to contact all other nodes and ask them to perform a local cleaning. Upon

completion of the cleaning phase, another round of communication needs to inform

nodes that garbage-collection is complete, and user threads may issue.

10.3.4 UNIX Personality

An entire UNIX system-call layer may be written using the low-level system prim-

itives. This will present a familiar system-level interface for programmers to target

without sacrificing general system performance. Thread and process-creation calls

would be most interesting to implement in terms of MARS calls. Process creation

calls like fork and exec would require little additional work and may be written in

terms of primitives like tFork. The signal and waitpid would perhaps be the most

challenging. The UNIX idea of letting programs install system handlers to dispatch

108

on signal events can be extended in the MARS system to allow dispatch threads

to run, which absolves the runtime system of needing to save away current program

state when handling a signal. Synchronization between the main thread and its signal

handlers will need to be designed, however.

In terms of memory-allocation, it is quite likely that the UNIX sbrk call may be

a NULL call if user threads are given enough virtual address space for code, data,

and stack at the outset. Giving threads very large address spaces does not introduce

a tremendous inefficiency problem since on-demand backing of virtual pages with

physical page frames allows threads to have access to large address spaces without

wasting physical memory.

109

Appendix A

MARS Messages

This appendix chapter lists the messages employed by MARS.

110

Message IP Message Words J Description

Returns the a dirty block named

MSG_ccreturnDirty address wordi ... word8 by address to the home node.
Words 1-8 are the contents of the
block.

Returns a dirty block as a re-
sponse to an invalidation mes-

MSG_ccreturnyankFull yankbuf wordi ... word8 sage. The block is named by the
address stored at the home node
in the yankbuf. Words 1-8 are the
contents of the block.

Acknowledges an invalidation re-
quest with the information that a
shared line is no longer at the re-
questing node. The yankbufsent
in the original invalidation mes-
sage is returned to the home.

Sends an invalidation for a
block identified by address to a
node which shares that block.

MSGccinvalidate address yankbuf The yankbuf pointer to a local
yankbuffer structure is passed as
well. This pointer is returned in
the ACK to the invalidation.

Sends a NACK message to a re-
questing node in response to a

MSG_ccNackRO address header data fcp request for a readonly copy of a
line. The contents of the request
message are bounced back to the
sender.

Similar to above, except message
MSG_ccNackRW address header data fcp is in response to a request for an

exclusive copy of a line.

Sends a readonly copy of a block
from a home node to a requesting
node. The block starts at address

MSGccreturnLoad address header wordl ... word8 n
and consists of the 8 data words.
The header sent in the original re-
quest is returned as well.

MSG_ccreturnStore address header wordi ... word8 Same as above, only an exclusive
line is returned.

Table A.1: Memory Coherence Messages

111

Table A.2: Thread Management Messages

112

Message IP Message Words Description

Sends a message to invoke the
SYStWake function on the home

MSGtWake tc signaldata node of the context tc. The
thread identified by tc is to be
wakened with the signaldata.

Invokes a SYStSleep function on
the home node if signalword,

MSG_tSleep signalword tc datamask adding a sleeper entry for thread
context tc with a mask of
datamask.

Invokes a SYStSignal function at
MSG._tsignal signal_word signal_data the home node of signalword.

Spawns a thread executing the
function at ip with up to nargsMSG_tspawn nargs dp ip argl ... arg5 number of arguments. The
number of arguments. The
thread's data pointer is dp.

Appendix B

MARS Header Files

This chapter contains the header files used by the assembly routines and C functions

in the M-Machine runtime system.

113

ul
U')

HOIrq
In

Cl

tWNH

>H

U i-'p C

ZE~c
u uL

'JU u jC

LOIN

cm-m
In Ln I U

co m c

C) G)m

V c) c'

. .C

-0 - C, a,

M 0 - -- -00E U 0. 0- - 0

:o.OU OF-C: u c E- o r ·-

U U. '". 0.2 >

too oa 000 00

E- - Uto V, X>-C' C<u'000LnD - - - - -o J ~
10 ~ c~

a, L) ~o c

LJF)
0)

C4

('1

,-:r

co

co.,ý - :. - - C

Ln
0 L

I uU

ul

11 E

Ln
cp c~

ur

clcl

0

C E
0 0

0 u ; u O u.

U U U -3 C0' -. 0 010.
0 -0 - -

ay~ -00 -3zO~ ~ 011 0 0..o1- 0LO)9 -0- 0 - 0

mammamma xxxxxxxxxx uuuuuuuuuuu UVUL)~~ r~~Ya;rur u~ 0) -- 3 0.0.

c : c a cr-r-c cc c c a F 0og000 - 00 --0i V 0)a 0000006 0 00 z 3 0 01 0 Oa 4 04 00w0w0 .-V 00 13 V l0ý
0. 2; U 2 .0 o2' 2* 222. 2 O.0..0.E'E'E. UUUUUUUUUL'Uu 0..0aNno~0.O!p wo.0- ouuu 0.0'- a;0.00..00.00..0 OZZZZE~rT5~ V UUUUUUC.UUVUL '-.IUCLUV aUU 000a~oP,~ ooOOOO OO u~ocua a;OOOOOOco~oo 000 000 000 000 0 0000

-C=- a;- ~ o---.--.C a;CC C rr ~ C CC C C

0'acUa0'000c aEaUa;0'I000000 aWaWaaUaIaUwaaY wa aUaWov .I'Zala)a;0
vvv'1~0 mvvv V'0VVVVVVVVm v VVm vv'0 'U'0m'o V~o'0 -'00000

-"'- U----~ ~pOO r~P CCC

0 m C, V, ,

0.0C.) '2O2 00 000.0.L)nL
01 ~ ~ ~ ~ ~ ~ ~ ~ r w'0 ;V0000 '01 '0a a; cl0t000000000000000

- --- --- -s
0' 0 0 0 0' 0 0 ' ' 0' 0 0

W00000000
OW-W200000
Cý000 "-00

0000 0 00-M

n LI: 0VLA . 0.x
a;0'400000'A

e-TTI

t-- < r

V t;bt E~

4.

V c

a-= .i'V--

>0 10
a;. 0ala;==
-0' 012.>

00 000

000'

0000.

0 0 '00<TTI-- 7 -5 -
E- 4 C
-3>0~>-1.300

0;-3>00

0' 0 0' ' 0

'0.0 '0.

1"

00 V 0.

a-

a 0;~

0' 0 ' 0
V0'''

e4

-n 0> 0m0M

at ' , 0' V0 c

0'0'0'0'0-

cl

o Lý
u -- 0.

< <u u 0c
1 7 T T zU

,/,,

r
G

zz c
E3 r,

~~r ~w
ccP~a~r

C·~~
Ifr~ c: U
j3C L. (L1
CC lil~1L'7

3 =CG`
--C?

Ln

0L

•N4

(N

Lnm

r

-Hl

2 C 22 F- m- F- Ln

Z z.o

°°
0•

In

-HCo7(n

:J

rDl

Xxxx x x::

C .:2·~W~nL .
.j CL t 1 2 Z C-1CD xt sc=

(A > >0UZZL1

z z z z z3
2 E 2 2 2 H

z z z z z z

L- wLi : w

W -1 ý4

_j E-~-

z z za: Ll w

x x x xx xN
ý 0 00 0 ý 0 C

o'

Ln
criI-q

U,.o

rO:JON

c-

-H -

E- C- l- -' 1
L· VI I - - '

C E- C) C
It " "10-ý !

x xo

V1,1
a, V

U -Z-

ci --

-r 0,~-~ - C).

-c E- -- -- --t7 V 0-a Ez c LQ 3 0 0 ', 2 > >a i

× oI

g- 0
:: • =

Ln

0)

N(1
LI)

z,0

-- <U~ U
CCC C U-..

-C- L ~- C) - . -
U, UCC 2-

-- 2

Q, 0-". 2 W Co uio ·,u a a)c

.>, Wc C).>

> 0-I0E0- --CVC

0. • .-.. C) o - C)))E C &

UUM M)U 00M
E" c D • c u.- >,0 c C" Wo 0EEE 20)2 2 2> a U a

Ir:•: a ~ ". • • • •

,. ,0 0 ,0 E cl. U U U 0--- - --i -- ------

C00-C.. ;-..
>LmC) I 0.')0) 0.

Em 0 0

QC)0

0 'C) W0 0 -

C- r- 0

C3

0 C,
C 0 -

a 0

grr
r- E .. •.. 3

1 C9U~

3

L ~ 4 a

LI0 :3

u a)
eu

u cn

U" ch 7 C
V 'o

0 -0

E

00
COO

Cý0c o

C; -0 mLm LO

m u

C)

Q,0) D0 C 10

-i En- .-

-a.- a~i L*-0 a) 2V)VI

0 - 1c0a > v ~·

0 a (n, 7 -V000-00) 0

-3 01 m z0.0 Z03 C u - -0 0 0 L c 0
> L,> , - > > >

°°

o),

°° S

0' ._
•l "

o

>

01

E >xiu x

7

C, In v

O
a'
3
a

c.
3u,
i~CI

30
30
·C--]

r
~;

c0
~Z4
;C
3L;

"'r c
->-·

I:
4

=L~n3
3C.

>-'e
Cs
S-Ci
Zw-~

dcl~
=cc~
--- n
1·~r
vu~

333
?2)3
ZZO

x

r)x
>i

z,

L)

L! U

4)
N

NN
L~V:

,,
Uu

U,
o·=U

-j--
CrT:C

jg

Ln1C)C
C)

jC U)C - m·
(1)(D n

Ln c >

CL1

Ln)

Ln

u -Z

0 >y

C~ EL

Ll:

CL,

.t-

c~o

"0"30~t

cC 0

V) U) V j E nC: u E F~mL

0 z C~CI)

;1

ul·oor

w.

m-o ¢
o t l 1 "

r oo

x

x u
x CIx 0 0
c mC
0 uV

u w C)
cOO

c c 0 u ý
xxxxxxI

cI 0 Z
Ln~ ·OtDI X10)cl m ýl

> > >~ i

u 1

0 uuoo-

U L)

>) ro
U u u U L

u un

Ln
a)

clq

0 7

E- l u

D mt, m C
44 C

>

>

Appendix C

MARS Assembly Code

This chapter contains the assembly routines for the M-Machine runtime system.

114

.

C! 0 Cý 9 C,

'-4-

LnL

o c
m 1C4~

ItI

c C:

E >

~Iu uFu a

0 0 V 0
OI oIt, > 7

0 0.0 00-O

(0 0>0((0

r
0 ~h
0· ·-=

r~re
PlrOB~1~
mEULin,
~aarcu
2-4`0-3
aOOO
c~ua--

mmmme
·O·Op~~
-·
uuuuu
cccce

~~~

(0

(0

(0

(0

0kr((

000
(00

(J0(

0 1(

(00101-
lI-k--r

(0O(
00n(

<00.

E

o o oM o a

o o o ~o oo• v i u u .r10 .1 m m z

v 0 m u 0 m r
-0 ýj ') m m'0
It 0 Ln 'AS-Ln t

1 3 C3 - 1-·t

0

0<

0.0 0

0 C, wI CE
000003

-000002 '

I4a

9 Lom

0. 0.

Lc

-'0
0 I
-m >0
o 0 (0>

30

334)

u m

0.n

U -

040
'00
00

or

eo,

ol00

V)9
00

21 O
-

30

0 0 Q,O.•

u t430(000 .0
00.-

0 m

m V

E 0
r0 '0a)

00V1
0 ~

04) C)

0 00a0 Cc,E,2:

^ 4 (>

0 00

cn . 0.cc r()

0 W w>100.0

.0D(0 L.

,j L 000 m .0c 3 >1

0 0030& 00

0 a L
0) (D m W
0 3: w 0

:, m :

aol al l
m a~
E~ u~

~C z (10 E c
0~ IW

o.

0>C a)

*0 0(

0>C: m 0

ac~
0

00. -

000~o

o3(J 00

(00 0 nye

Ln,

0
0

(0 I-.

oo C-

(J

I ml
M -o M

I(1) (
.00000C

00000U

r r
c r
1 r
c
c rr:
r
cccccia

3

c1

u•

.0
m
t•

0y

--•.

u••. 
•

L)

zg

.cce
r r
c r
r r

r r
L ·
C I

1
C ·
C
C C
* *
r m
c O
cUC
rLIC
rOr
Cor
c m

I
CI)·

or
rXI
· mi

* w
O

c

r
C
r
rmL
cmr
c r



4 120

a o OV

0 V 0.

u 0102

V .00
0) 0 m

0 0.
0.12

u 02

02

.0 -
> v0%0_

00 4.w0 u
, u3

00

ovv.-.ov

I2 m 0 a 0 0
>~~~ C20

0 0u8
"o009

a:

Aiv a 40 A
>LIth

-033

u00

0

>L

:ý0

-0

-4:2

00

00
0

220
-v

>LI

0
011
-0

2:2:2:2: o

.0,

c
0

1E

0

0-4

2:0x0 0

41- 0.

0.0' 1 .

... .

1320 0 0i2:

5 5 r-,-
.21(2 

m

0..1. I IL

.1

.2 0000w12.
LI .00 00 (12

0 - 0I CD -2Q
""60:10000a:

D-1001 2.0.0 0 LI0

.o.c. 

C 2

22:22:22:22:2

0 a 0

w 2L0 0

14
0n

.2A -0

000 0

go to21-

(12 11-
IJ A J I0

be a

110 00202W

1 11

02<
.0 co..

410 &)

0 00

z3 :

t1 '

0 0.

00A.

C;

>21

0.

L)2

Z 4J

tA

d 02

0.

12 ,02022:2(12

002

0 c2

-v 0

to 02

0 12

3 -3.
-3.23022

u

u I
C;

00

0

u x

0
0

12

0n

Li Ai
m:Q:2:m

0.2

>0

>0 2

0 v-
my-0
.0
11.01

00

.u u
2 -I

go

w WI.2

U .3 2A.
m2.m-m



-020 2)22 02 11, 0 1.2020

Ca- c, 2..-0 022 C) 'a 2
Ca oa- -a 020 cc 0

'A) L) 2.2 2)V 0 l ) l

2) C) 2 2) 0 r_ c ) 2 0 20 c 0.c
0- -a - o -a 0-a 20-a 2W

lull

* 2 0 :

"Ia

* ~ Im 2) 0 0 022

uIC

E. 02: L)2 -o

2.2 0-0 --- 0 0-0

:D -a Da- E a-

0 2) r0 2) r0 C

00 
L.

a- 0020 m)2
-020 202)22)220E

u 9- - E -

-d -

0.

a

o a02j I :;ý

022 .

cn

can

ji0

E-

m02

ID

C:

....

L2L

01

>
'o 00

020 0022ý
M M m 0 L

2:4:2:2W2W

aaaaa

u u u

20 0

u02 ,022 .222

.2:

.). 2•.2..2..

-o 2

122

22 2



0.0~ W- 0

02. 02 0. 02.2e
a)00V 0 a0200

S20 j22 020
v02 v 02 V0

0 0 002)

UVV 020fau

3

L4

W2

.0 0 M

0i 0n I

m 02 0; r l

00 v) 0 o 02 m C;0
'o Ln 00 02.o E;D.-

0-0 o I 00200 0202 2020

.0 -0 0. - 0-2.. -

02000 w 0-0 10 0 0 -w-&

a00..00 m.0 M 0m m0m0m.m0m0m.m

02.. (20) 000205002.S0

3

02-20- - -

~0 2 0. .

<--02-0-0X-

000 000 =0

0. L 0-000-0 0.

P 020m00I025m

-a.00 r r- C -0m 0.

E- .' C 2 a, o ox

w. 0 02 I 02 C o2 <2 -(0202 C

C2 - -~ -~ -~ S '

a00 20 3 ~ -

W.2...0000 W L4 W 14 W

0002 0000 0 00 000

30 w 0

0..'

>, 00.0

0 n
" 0> 0 'd

X 113

00 14

11 0,0 00
0,. S.

00 IV 0vO

0 U0V0
C 0.-.

U u 'o L0 w 02

3

100

u

co-0 .

00

C. Cw

0

0

c c&
00

0 m
02

00c

r- 02

-. 0

r u

50.5 ;

0000

m

E 0

0 L

020

0 10

0>.

0 a.2

0.-

Ln0

10ru

X mCA02 02

c

># 0

14 .

000ý 0 a

9: r

eo
0 I'l

0.

a.-a

020

02>0.

000

F-Q

W W L

I 0;

020
u0-

00

a,

0 .4

4j2

0.2 3-0C



- E

0- o 0 a C -CL
0 0- 0--3. a

M0--a)- 00 0 -2 CcQ

0 ui V) 000

0.03 020 00
00M0 U)00000 U

0. to

a- (D '

0-WW

0

, -.. .... .. o

C oooof

• oo0a00C 20-C-C0C3 00000o

02L

mC m w0

u

Cna,0 00004
x oo

m m m

o.

o <

0 0a

m m 0mm0 .C 2(n c~o:3 :3 :1::

E 22E

a

20

41C.

CO

,,

c:ý

0 IV

**-..3M 0

00

C:0U
2 a

2 0

0B 2.

z .

) a

CO

•

' au

0 11

0..•

W o )

2. 0L

20

230

oo

- -a

ý20 2

04>

01c >oC C

2 U

1. 04 L

cl1 m00

1< j0

. . . .0x x xX c,0 0

0

0

C) I

to

oZ

C)>

CDo

rn



CD 0 000

2oo0 0 0

E.2..02 00 00

S 0 .. 0m3

2 o 0 n 00w 0

02 ,, 02 ~ ,,_,2.222 .~.>. o~0 x0 r : 0o2

, • I", o •

- . . . 0 > •J ' v2 X
020220(0

n-) 02.2

- CD C )
0 0 0O

E.. 0 .0 02 0

o0 C
-v 02u

0 0. 02o0.2<2>

00

r
z  

a L 1,' ra.2.

l mooo

.0 "0 j

000

>030.

22

022<00

I) -<220-000

-0000.

o j w
0D000020

00-002a

0 C.

o ao

E

I 0

100

U)-m

-00a
U0202

2r.-

(.02,<

2-.

20 00..

0* " 0 02

(02 a)

z02 020020oo
S c 0 u

E o o cc
2m 00

E 0 m2o

X- 0 z.o

0
0

S-0 u -

u0 u0

>2.2 >2.2

n02 0

00 2 0

00 00

>2.2 >0

0 0 02 w
U0 0

lo- 0-

002 14

c r C c000

-0C>000.0000-
00000

0 0 0

aoo 4



da.

00

(0 0
14

00:

I 2(2j & A -
rat;u 00m

0.n

2a~

ol I *0 11.

10

VIa

L, >1-1
-j )A.>

J.3
2n

4S4.

002

2 2 V) 0

a, L

a22
W 0b L .W ý

in -c
4.120

00c2

12012 a or, '

12 01

c"

a r•

a a.

a za
L, 3 l

00 (i 2 C6

012m 4 0

.20

fa0

20 a

2 00
.02 121

La.
in012 

0-

w0I

000:

0nU 0 6 0
.12.51 .0.2

13.0

0 1500
0 . U'2 0

0-2 V0.2

0 00
AS -1 2

C J -ýJ A

0 0. 0.

-0-00; 20..

2222 L A

00

22

lpo

910-w

0 (12

2212

0.0L

ca 121 m 0 0'a..2

.... JJJ::JIJ A
m 0F0.m tn

w w-



V ULC)

0 Ul 01 00a0t00.

V 10,.L C;000. 0C;U 0

- - - - - - - ) .0.I.
-. 000 . L.0 .2

V c > c c c c c0 0 U.c
02 0 000000 r=- S.

>....1110202 202a, .. ..20. ..
020.JULI.) L 02000Ve
V 0.> C0 00 000 020a I

L. U W W-- - - . w0w02 La L
AJ AJ L W Ai 02 " " a

0 m m wV' mV m 0 m2
M M M20-.I.IOC L C

a u

1.)4. ) '-0
00 CD Tm m m Im -l t

0 1 Car. c m 0. 0k. 0

00 -------- - Au- 0 cl

x w E- .to
000 0. mu 0.020

4. -D a C 00000 00 C C 02c.cJ.a- c
06 - C - - ... 0L. 02

V 122220000

0)100 0.0

1o 0.0. Q L.0

a. 002.0 00.002

L o

4 0z m

u2 0.0 ILLI IUL

0

0.0

020.

0.
0.LI
0202

CC

0000

U 02

L. 02L0

0.10 r

0% u

:3002z

0-CU..)

02Ua

02 U

0.0

0-0i A
0.0

L) (n-3 U tn-
0.2 LI 0. 0. , .

toalI 0 Da .m .

> e4'au02 0:g

Ai0 ww A-f

go M .0202 0 C

.$ It ) 1 3 1.)I

.. U00 0 .
tr:., 30, z 0

91 w0 00.0 
E.200W 004 2.0 m 
C

U 
0.a..>0 0 !0 0 02 0.

LU u LIE 9 U U U

0.00W.01400. L. L4 W L4
43CCO O 0200

in al~ 0>L

c L 2I0L 2L. U I..

tA m V.0;00; 02 0

0 0 0 C 0ý

F-0E0 -r*

c c c 0 C

tn0. o

.02

E -. L
L. .0
, 0002i
o) 0.m1m 1

000001 C ý

00000i I

>0; 002,0.C;

a V~V
00 00 0
00000m=

CA at 1

-0220220

L4 W . w

00c 00020



020

L4 A

33333333-C

000000030@0% C; O

2/ / / / /22/2/02/28ý i uli j i l0 L.vv0000005@2a% 0-
C I I @I, '

a211a2.a11E1 a 2.g 2a

CC CCCCC A C)OAj C6/

06,
- ..-

V F@

o 240

0 '0.

c c 
-

E- n 0
a. .

L. L Cl .
2< @2 @2@2 &2 @2 .

,u 0 0 . (

0 lo to 0

W . ) .) 0-1
,a .@2uo

fn 202

L)-U 0.-W

C......0 00 00c C6

0 M'13.0
24 0)00la na0000 0 0 00 0m 2.Li

a 0 4 w w w w w . w w " 20 L. . 0r
A.2i a 4 v a 4 0 I o C - 01.2

2/2/2/ 4J 'i 2.22. 12221 u 11
2-.-CC C C CCr

33.>)>4.5 0. L)"2 A)/ l

D cc r r_ C c c a2- c a < 4

-C-a 

3 

-

U 

0.3

-. 3

IV L4 @
0.2 c

2jý20 .2/

22 0C@2

0 0

a E

011 22.0.

- c c .a
00.-.C U4

0 I00l0) :1 .

0 02 2/0 0
2---E I

m 3 0.2li Aj -
>0.)>) mC 0 C

2/ 2 / / 2 2 / @

0 0

I3 .

u 2 23 2 C.. ,D .42

000 0 0 0 a

• .2 .212.212 0122.

-40>) >>IC

uu00 M&)2/2/a/2/2&2/2/2/El) 000 ofU0

4; 0 0.2/.l

In100

U EV U
xV= X 12-/4/
V @Lk0c.0C

-Owmmmm=u
x3..

,20 0 4 42. .0
0 r00000 .. u

U U211 2 2
W A0 0 >200

0 E28 O r=2/2/can .t

ap --- 0

'41W w

L n 22-C -C2

0 AC

0 0

~0

f-C.@
W...
0.@E- o2

u u

0.

C0 2.
0.2.

vi U .

al~ @ @ 2@

93 1 C2

M2 2
2.. 0

w 22

V_:

> >->



C4

>4 0

c c 0 (
0 CD- C

"4:4'

00 q) cci

o L4 w Wi 0W2

L4 a 4 ai c
.0 42 6 Q4;

V r U 0 j U U r) E
o 44) 4;. E C, =2 4; 4;. cu

C) w;2) 00 .

4n 0. im.ma) 04a Q)U0n& 0 m a) . 0 0 4; 4;. 04;) 40
o w .w.2 w YnxL.0 rz w; w.. V 02. w 4

c u..4 r- CC u040 . 4 CC a4 C C Z;

U~~~~~ LIIL 0 0I .LL ; LLLC~c LIE u - .. ) I .. 0 XL

c~ .c u u ) 0. ). 0.
o).0 (. 0> 2 0 0 >12 0 . >> . 0 2 0 4 ;

m0 0 4) 000 ILI2...0 -m m U0m 0 Cw 0.m
'440)..). .24 14; 4; WX..4.40 W) W4.44 W4.0 0 w;

En < 40 UU W 4 U4.42. 4)4U .- U40w4w.w-w.-wUwUw w w4w-wow

42)4; 400 -4 0 0 4 --- '-U -. 44- --

a) "I04C> En 0 4- 0 0 0 0 0 4 0 00 0 -

.20~~ D) 0...0.- - -
0) a"0 C 4.0 Co4

0< 00 V4;,< 0 .~~~~~~u 4)2..2.0 I 02.. . 04 2..2..2.. 222 .. 440.0 2 022. ;
4 a ) En UU a) UU U CL cUU U U 4I U U 2 U U )

00 Q) 4) U 1

C)o ) >) >4

Q) C4o m4;.. A

'40. 0> .-. 0

4) '4 420 U w24a)4U. W ~ U O 0 C4 - v: W-L
0D -; OUU rd C. C 00a)0

>) 0a42 ) .0 w0 a >o >-U
0 In 4u a,4 00 04 r) 4 2. :, '4! . o

0C 40 42) m.C 04 4 - o0 0 U

w0 a0 4 1 )) 0 0 V4 c 4) co0 c c.0l o I

0) .0D )c o CU a) ~ 0o V T')-
4)4)c 0 >Q 4) 4 00 0 0 0024 0.> 0 aU2): 0~

0 ~ ~ ~ ~ ~ ~ ~ ~ --- a) w ) 0 .. C 0 C .0 0 4C ) U U U0 4 0

0c 204 . 4.0 I- 4 00 ILI0 c) ) ",I 004)2-). 4;. < 00 .0-.1
2)0 r4 0> 0 U; 04 004 > 1 0> >0-

--4; .-.4 .0 44 z ; 0 = 4) 0 00 .0 o)0 00 0 0O (D 0: o0 220 0I 0.0 42. 10m c0 0 0 £00 .00 0 o 0.0

0l L0 E- .0 S0 E- E- 00 -- E0 42- ) 4.. 424.
V 0 0 .4-)4-- 0 0 4-4 0) oo4-. m CS r 0.zVc.L u

O~ ~ a. 24 20 :D4- G) 4)0 4) 40. 4) 4 0. 0o4
01zm z T m0 00.0 zV Zm (n 4) ol. 000 m0 4 0 w, :~ 0 c E

0 04-. 0 0)0 c) c24 £22 c 0 0)00 00c CC . 0
.4. .0.- 04-4 --~ .-. -~ - - 0 L))-4.- -2.0; 04- 42) )-

4).0' 00L0o00 .0)0 42- 04 : 044
0 440 0. 0 4 00 i0.. -0 o. o 0..

o. 0 40 0 - >)0 2 0 4 ~ .0 4)



(D-a

(-4

UQ

(-4 -~0. In

oi to m

X 0 ) 0 .)0 -x

co - x

E- C,0 0 0 m
'ao U-. o00 ,0)

00 0. O .

C) 0 0)CO

< C 00C0

E- 0

_C600 00

o) 00 0

000 ~ ~ ~ ~ ~~a0000 0 "0'O0' ~WW~000'000 '

0a0000000 0000000000000000 00 000000 -

~0000000 )0)ooo0)0000 )))))00000000000)c ca0 0)0 0



0 0

0 0 a)

a? 0. 0 00 ý

u .0000._,, u j :

-0 . -00M~ m) m

'0~.. 0.. ..M0 0 m

• rre., V 0.. •V 0

o ojC0._ 0 0. 0 0 0 m U a.) .

"-° -FO • -oC0 0E 0.0.o w'0M 2 000..-10Q)0 0 0.M0

S - -.C. 0 .. .0. - 0
3 0. 01 :1 U 000 0d

=.I- 0 0 0 -" = rmraF0- c00 0 0 00 -0 F- 0 0 - r
w I T r ... 0 P- 0.4> C ) a

-l 0.w u m0 w 0 00 w00 m0 0

00j0 .0 000 =l 0-00 m0 :3 0 . : 3: 30 1= Ir L

0000 x n0 0 0 I 00 :I m 0 000
C, 0 .4 0-.~.0 1 0

L,0CL 0 0 000 0. 0 0 00lili1
m000 m 0LmA0 0 m m 0 0.0 000 0 m- OL

0- 00. .- - )- 00 00

0~~~~ C.)- ooo v .- 0

0 0 a

0~~ 00..0.0. '0 0..
0. 

0oon

m0 0 00 . 0 0

0.-C)0 

0. -

0 ~ ~~ ox T L CoC

000 0 OO .- 0

0. 0.

u. f f U)a a

04
V. 0 0 ( 

0 
0 C a0

0 

7

U.



u o

O23 4a-00*. C0aP a'
.0 O

0-

r
L~LI4LI L~L~L~L~lr
Ili)UUWULIUULI
m(OVIVIYLIIC~S~'nB
CL~C~~CCCCC

U a

ii

C- 0 C r

i).

28
UE
V

it

a - - -

fit

00-- -r 0 0

r- w2cg
r00000

,.., -
k.mmm mm

i 41

E0.o·I

.
u0

CL D
i:

" a,c :

23C;

i'

C1
Y)

o

.(-E rU

..

u,
-C

oo

2

o 0o CA I•A- oS• •,•°o

0 2 -v 2

o
·o
o
~

3
i

L(
3
C

i
L·

O
U:

X

ii)

~ ·- LI
^U

U~o,
'=

P)LI1--e
U

aa'=r.
N~L)

-' ii
i'

CL·lr
ilJ
L?^

'33
3
-]

L'~·X1-·
"=i' cr

•L

fi
L·'

L

L1
U
0

3

E

4LILILI
UU-IU
Vi'l~lllO
3303

o

c

o

cC)

2..

• • .

^
.c

--

SUu
• ..

E7
• . .

c o ,

303=
Z55•

C
r·



ýl
c
E

00

0 Q)

a -o o

V7 m 10c:rm
0 C C O
u 0 0 c c
u uI·O

> >~-
C. CP 0 0 E0 E r=Z:

Q) 0)

En En

CLu

EJ

c z z~

uoE

~EiI

OU0ILL

m 0o ao

E

L
I

C: C:·J

m m ) 5

> > -47,5

L-

5 m

EE ',•

n •o ,"c'> > •10 0

El0 c mLj Iv,
-El

o o cI
> > E-

a
·-
F-
L:
c
a
E

I

4444
L~L)ULI
V)(OV)L?
TCCC

C
[;'
C

r,
-r

i I-lrL~L~

0

"I E

.c:o M-- ..r

" •g77

.i . •

o

Eý "2

IU j n

a
U

W
C

C

4444
(: L: L? C
==CC

i'
VI 3

o om
u ii Lr

CLI

i

~CI~0
u 44aa

mmUE
X UUIO

=Ct-~
; ·- --· ~ ~n
i~s

~LIIJ>>II~C
m3 3 C~ E

EeEc~

CL~-~~LI
o~E-·-·c~~
L)iJ~

i·..~.
= · i Li i I 4 i 4

mvrmucm~-o
==~;C

~··---·-r-
:~

a

b
c:
a
E

(CCfiL?
CC=t



0 J)

0)30oVC C cc

a 00

cl~
0

U 'I

CO,
u 0 w

TZ LC

ccc'-

wEEI:ccV

> .. . . .> . .

0)0

0 ;03 a C)
mo u

¢

',:

v

C E.• CE..1 1

LI N~u m C c aU V) W LI V) C

u

0 4-. WU 0 0 0 o -E
>, E EI X C

0 0 C NE .
uu~ L~~i? -

EEa) -0

.C3

C: a0 aýj aa .0)I

> -c >> >
E v 0

uC)) 11 M 1

c la 0 - -.5 EI Cl E, o -- -

a) C-a m)O'-
C 00.0- 0)0)0)0)00)u u u u~~

~~U uOC~~~~<a z E E~r

>)

4' 0; Q,·AJ E
&CC

rj m m
Ij1

04k

j m ol

Q) _c: -o
> > >
o
E e

o - - -
> ý w w.j j " c

i2i .....3U019a a)0 0)0 -E

03

-1 -cc -M>>

0•) • ........

oc a

E c c T - cQ coM0'0)0)0 00o , - 0-• • ..Crr: L ", 0 0 0 0 7 70

S u u u I-

... 7.

C) 

U

E 0 -r_ E U -.

0 r l C, r u 0)M E (1 0) E 0

=1:3 '_ 3 :30
E E

(n 'n MOM ovlý. 0 mommoC: ~ O E

u u

r u

L)U
00
mm
uwy)
uuLI
00~

3
(nYln)
CCVI

UU
~~LI
4ri~P)
OUDi

OIVlmVI ~O1I'IIY1S
CCCC ~CCC~

'O
121

V)

,• o

•..i

u u'

......!

-I I-0 0

0o
o



0

000- a
"c

01 V)- >-- >--.

'a E 00 C00000.. . .. . .

0

c

I-S 0 C> ww wCi0 C 0 0 00000100 >0 0 0a~ m m m-

00 0<0w0w w

mE 0 0

> >.-

> >

,.a

0i 0 E-- l5 2 5 5 •53 23 E
>,

v

£0000

0 ; v T 0

0000t4S> > >EEEE

z z n.. 5 55 3

I

0

0

a 0 
•

Lo

(I

0

>0.>

( 0 0Lo0' - -05001 >..00.. 00.

OF

I0 '-

0 E

> _ _ .

u• I

tr
u :

o),•
;•--

L".-

E E

o1

U-

CY•



LA U LA LAO

. .-L -L --

0 0 0 .0

CD 0 0~ L. 0l
03.33.0 r:3.333

U -U-3U .- U .

c,:

0

0303----.

•3 . 333 .-•-

IL00) D CA 0' C)
VO , 33

-a. 0 0~ s

E3 333= 3

CA CL CA CA
0i M

I -3 A

- A- - - - -r- A-

OLA UL- 3 LA - LA-

00 0

033. 0333 L)3. a03.1.3
m VU).3 Mf LA. W.U. - U.
03030 03030 =cc3 0303

V 0

00 -

00 3
22- ~ .

a,00
U3 333 n --
.30.000.
UA.. c 3.3

0. Id-- 0

>000 30

E3- 000c--

0. u 7 m

I J A.)

a tat .C -5E0 E-0 u n

V 0 0
CAA 33 .-

10 0

Cc)

00

0.-

3 0.30,.3

-LAr- LA -LA r

. . -. 0,

00 0 0 0

2:

0

j A03

<0

U, m•

%A W.

0300

L: A

LAu,0

330.3t' 0>

m W

0.3

:3 .m V

0 . 0. 0
33-0-3 r-

.3 0 0 JZ
M-3 U U U

000030303
0Aca--ca-

00

.3 0 3•3--

A 3.333 3

.. ll

ili

I



U 'U 'U
U2' U 0 02'

2 0.20.m0
w L4 " E

m 2't 0' m0
U" E " E alic cc

0 2 2200 0

0-.-' CC,)
0

U 'U L)C;U -
U2'U2'00

.20.0.0

>00000

V. 0 a, 0 m

u .2 .2 u

S 2' 2' 2'

2022E22.

L•l V)

zog C,

- -. 2 m2 02

10'22 02 2-

Uý C

_E E

-u 'U

U CU CU

u -U U
0.20.20.u2o

m02 0.00o

U 00L) 0
2'5 -'wE -

T"2

ý2 i: C2
ý tn .M

• L. ) L)• .

ul u u

m M

Ul OD 0)

X m
.2

E E:

Z: Z: c c



2.

9

0. )

Er 2i

2

0

00222.20

a u 000..)0

>..2 .0.2.0C)V

AC)- 20 1

"2 ~ 1 1). 0

0) W L.U2 C 01C4 w
S0 00

0 Ai0 Ai 0a2.&). 22 0.40. L0
Nf 22.2 22 22

2)2.220. Il2

0.20202).22..2.

- -0.ri

2.22 2).)>..2 .
224 WV 202.2

2,--02A~t

2)2))02)2)2))2)2
2----233

22222222222

0a C

V) w 0 0C)to, 0 w-40
.0 0.- 2)0 . 0 -.

0 a0 ý 0 . .20 .00 . . .20
r 00 . 0 0 2 0.

0 .).0) 2) .2..2

0 W
2-2

-- - c2

>. 20 ) 2 2 2

0)))) ). 2.

z E 22<2 2..)

w 2)2)2m2)0

0 0 ._00

2. 0

U 0 L)

0 -~02 C0.2 01

2. 2 . w

m CN 0 r4

Ai 0. 0

2V, 0 220.m.a

L) Z: t2 2 2 2

W L42-W - -W

t" 00)

> > 4>
E0 E0 0

U U U.2

U U2)2)

U0 .2 U2 .U

0 .0 .0;
'.00 m0 V0

0. 0202

.2) 01 2M0
u E C)E

2u-m--m
2)2 22u

c---

0 0m 01

w W w) .

C.) 0 00 CM)0

le020 2

A N N> 2

U00 00~

00

0. 23c E-0
0-60

C) l 1).)
fA M

----------------



U)
0)
1-4

C,

CN,o.,A, ..
c,-

W- a a ,*r -
m ... .. .. .. .. . 0 0

- 0 ýC 0 0>z:

04 .L." R ,. ...... ... I,.-.,.•= -.) 0 cG w ... • " a•; a. - M
.. .. .. .. .. .. .. .. .. 0 0 0 ..2..u-F, z-•+ v..v, .... ...w._-A° , 0wL E w .0.0 a, a, o aL1 0 00n

L:2 a) T a) E :3*~

.rUUio'0 jC')a,-, ,-..En,17c c E
a-x 0 7ýC'0* j ) ' '; ' Z0I-Ir

-4 ~ ~ ~ ~ ~ ~ ~ ~ ~ z u ... IIL U..Caa 2I~i-.a ~Iin
-3 tr I io.a ~ u u th r t 00n 0>..



02040 -040

jC9 E 
C1

C- C

u0 u

Z00-i.E-

> >~

0 En0c

c

C,

E E



2

0i 0E- E

3,>.>
>2>2
22

I0

F -2. .2.. .0 0 0: 2

Sr,

...I m 1

E E

2

0<

UUUU

I I I I

0<

. 0 I;

z zI

°l I I

<-< M 0<V,

E- 0 2.- E- 02.0

m .12 m- -

u u u u

0

0"

LO .-

u u

0 ,0 C 0

.02.

co m cm

E-. - E

¢i

C>;

Er.•

rq

00 0

Lo

•0 U'

: >
,,--

u

2 5

uý .-

.. 0 .w
S> > > >>>-1 0 0o0oL C

E E= E 2

o -

2o f

0U c



2. Z~j E
>. 0

lu

_ u C-)

0

>0 -

o 0
_ D0

F-

00 00 0 30, -

-- - 2200 0

a)0 i .1 00

000; ..
: C

V M

w .. C)o-o o 0 0

0 0 . 0 ( 0 m 0 0.- .

0-0 0 0 . 'o0 0c.. ýl ,E x- . ..

0 m0m000mw0-.-. .-.. -.. -. - . -£

0(0000000 ,• , 0. 00(0(0 ,

0 0 0

>" >"a > l

0.0.0. 0 .

M0 0. (0.. (0lXV u 1U
00 0 D 00 cc

U-00 " CL 0
000 0000 000

0000c 2 c c0 0 .

' I u 2

a c x

.0i

D. 0 02
a,- . .

0..-(

00-

c.:.000

.t , .

L.

c z

c u

v 0

V) L

11 M

x

c,



V

.. r v , v r j 0

22 '22.-.o

> ow > 0- >

0ý 0x.0 002

0 2 =2

----- 2

2222P2o 2>C 3

U>)

2

0:,

F-

2uE

m Qo 0 0

o 3

- )2 a 2E-m

2 .-

20

2.1

0..- -- m

22 0 222.. -- €

2.3 00

r , , , .U U U U

22232

o o

C.5 t.
2 0 2.0 EE

- Eo 2

m 0o

0.-
.oj

7 L-

G) V,

V

c5 z

L" Lo

0 0

0> 0 >



a 0•

0 cl- C-

55

Ho

272

C)

hi

0

u m 00

0 0 m
a. x x x U, C:

a 0 0 c
0 11 M 0 rl



C.U

lo

66

E- -

Va

J u

I u u

- U

.. t •

C: V

0

2-1

S..



> 0

E E: E EE

3----

Z 7E

o

x x



Uo

C ,

: =

* >

xl

Ul

<0-

0 0

V)to oV.c (n n 000 0 0<0 0
n n0 P- 0-0a

IiL a.
z5 5 2 2 2 8 8

.c

C Vo

.2 * 0 U, mO220 * *
a) ; C

t¢3n

a)

"z U

Sc :o- o e

Z --

¢c

n >>> > > > >

-- . -. . - .._

a 0• -

0 € . . .u

•-•=•Z4

0) 0 00U

F- 0> 0
Oo ult 0. a o lC 0 2,

000 0. 0 )1

2000 C)0
2000>>. ý 0 0 nM

o 0 i
00000 .uo 0 0 0



* U In

* 0 02--- 2)

* u a' Mag

- m -200 CI.1

* ~ ~ *-. x2 - 0
0 0>5 5 0 2 2

0 0.22>>>
*m - C) 2n 00 ~ -- ~ ~ - -Mt

* u cc 2 c 2U, o0 0.

W *- --- c-ccc 00cc-
= 4 U.- Cýr w o43

* 0 ).

L0

a, Lnt LU1]

L 0 '2 0 c
E...

- C U 52

U22 2)- 0-) j

>.- S 2)) 2

1O-. 02

>-0>

0 2

u r

u

S 02.

'0 m2 U UU-

C 4l.3 ILUL.

Uu 3

tr. 2 2

x 0.00.

* 2i

U o

U 0

U 2* 2 -

Su

:3 X0- U

--> > : .

0 <L

-2 2nr.3 mV

X2u U 2 .

0 C.U

- -m 4.

EAu2 ccc

3 :
3 :

<C U

Zo

a c

Ln

W,

zCDUeo

,H . ..enH

to

2 -

E2

U 0

- 2, -

'C

T

-ul



o 2 -02.

V_ O 0 ..n4 m u

2 Ic-

a-co x

•m

* vi t m m

7

E
. . .

I

2 Cav35

z z

Fifcc s &-.: " -
EE

o 1 Z

~2

0

0 z

V z

LI

VZ7,

c

rJJ

0 cm

olM

..

"ý c

..Ll

X. ,z

o

Z.•
C_,;·1

E 0m L•

EC

z <



<

rp. < o ol:_, iL)aCL
C. - wLof

'No-a,

LO< I

- ý C
Z> ,' - '

0

m 31o

,!=.0

o C, •

z - 0 0t
-j c c
m , E h

In

01Ec.lu-'I,H

CD -E 5(a, :a, :
a,

C)

>_

>•

c ;

E E

0 In

u



0

°.-

an. am a a amm a a a mmammm Mac.000000000000 00000000000000000000

~~~~-------- - - - -00 0 0 0 0 0 0 0 0 0 0 0 0

. w "L. i. ýt W" W" W •" l "
W W

0 n11.M w 0 Mw (00 M w 0 (0 0 M0 u 0 (0 0 Mg o ('. 0 M M (0(
M0 00 0 0 0 0 00 0 0 0 0 0 0 0 0 0

00 < 0 02 S 0 0 0 0 0 00 0 (0 (0 0

0.>. 000 1 15011 Zl011 I000.

LnH

0%

0 E44
"-0 • •

Eooi

.r. 0.0.. a.0.> C.0.0.0a0m
00 0 00000000000000000 000 20 00E 00E00000000000

. 0 0 0 0 0 0 0.. . . . 0 0 0 0

0

0

3

(0

- - - - - - -
322222 22S 2

C

zz z --- - -

th@} S S,

.cC

• J oC, cC r

I CC

CCC... CC
2

.CC2
C.. CC 2

I- a
2 CCC...
CC 2 CC' C2

CC

C.--

c C-1
c .C)-

z..)

.- 0

C cC C C

rO

,;.-

1`

•. >

E- I m jV -
w o a c c ~o< 33

LoaLJ.

< < <-00<" <
00.. -U

::d2u 5 :: d t u

Bil EH-.i

"Z

'"0333.:

bigg(n cg•u m

C:

T r • ••:

-. &.30 -
Qd m E 0

-C V

.. a ac

<000.2

U----

.. :x xx xx xx x x

" . "..
:CL

0•

m -) l

LA
- C

0 cr, 1,-
T I

>A = - >0-'-

L- -C- - - - 1- - -* E'E' i -
0000 qo
>00 -0
00 0-C C

2CA.-'---02

fLALLLALA LA

LALAL Uit) OL

LA L)

U *- I CJ

- 0 0, C...PCz 3 0 0), C40
C) x Lr- -AS.0 - --

0 0- 0 0 > -
--00mc I0 0 m-c u 0

E El l i -.0l if U
000 ---.- -- -- -ALA -C.---3

---- 6.CC.2: ~ ~ A 0 0mm *- -. : AC

.A0 IJ 0.2> A-j 6.002>

-cC A CAr C: -0 a c c O .-

0.0--l - 000.0.0.-

- 00.0C 0.-A 000.02 0-l

U L) Q,

- --a >-U 3 0 .1 .3 U

LC-0--0-or-w A-
>~3A - m0>C>C-A>-> -
12:0 .30-C U1 0---- .6.10 --- C.C .1

10- U . C3

-30. - - -------

- 000.0CC 0 L- 2 0.C0ý i 10 -. 3 ill00.0>00 0> 02.ieACOOCCA0. 300 fu

o00000000 ont tt

CA'.CA'i CAC'CC CA0'0C"

cocco 000 00il

06 06u . LAw u 4-

0. , LI, Cl- 0'
2 ~ ~ cc 3 .0 .

iv -3 "1 g C

2 o >0 w0 w0 w>w
000.0Ad00o 2o.

2 -c L.
0.- 5C

C~ j3-.

00 C 0.0

j C 0 0 j ' I
-

Up 0.

'La1

00CC
LALALAuA

22222

r0-.0. 2.

- . E0E00.

.3 0.0

nCo
00 .3

0.ACCAOoCA

,2

co

u

os

o F-

o

So E z

ac >

310 u -

*0 1. 1

0 m0
0 *.1 00 00!

0'- .01 a:11. 0

'a 'L0 :3 0 0 00 . 0 .- 0

0 0 - -c c-'0 0.0-.-o

m. c

000 - 001. 00,001 "0 C ,' . E0 . - 0 .0.Z.0 0. 110 00 000 0 - 000
0 " 0 000 v D a - 0C-" -m 0 0 00 0: 0-- 00

'.0.0-0.-.... -. 10. .,0. 0.

, - -0 .,0 00000• Ci 00--0 <0,0- 11.0 0 0.0..-.. ..•.- . .. - • . 1 . ,m c 10 -. 01 - m-" 0.. I 0 1E- C-11 . 0.1 E00 00 >0 00 .C0. 00 E0 C 0) e00 Q--0.1w.:

. ., , • .'.-- - .10 000. 0 0 10.-
0- 0.1.3.. 0.- 11... O .0 I 1 0 0

0 lu1.0 .1
V 0 a c 01- > 01 .' ZO l

C010 0 m0 110 c C

u u-<. 0- 0.31000-1E.10
00 0. LI. 0

U000001UUU (; .1 0 0 -0 0 0 0 0.v

0.0. 00 00 . 1= . Z 0 00 - 0 00 V 00 (:)a

000 Z)<C - ::) - 1.-- >

z

<1 zU w1

00M

0111

z0 u
0~ 00 00

0)

010

0) C)' .01

0E 1 (110

0- .1 -0 a) 0 r-

Z.710

0 En Ln

m0- ooO 0

0.00000 000' 00

0000000 M Cý

.;7_.

.. 0
.r=,++j _

.00,Ic o

0., 0 .,
00,

0- 0 0 0C; 0r 0

0 0 V)0 00 _
ur'

0 0

T• ,+

a)

a) -

" C:

0

oo ,

" t, n + I .

u

E

0

>

cl, Ln

0
u c

3
0

.7) >

C:

:7

C. v cl.
Lrl 0

lu
T. Ll Ll LO

CL :I :I >,

C) 0 a) Q)ca

u

c

Q)

E0u

0

C)

E

0
U T
z

C4
cr u1 10

C:

T M 'J

Cý Cý C;0 0 C)
0 0 CDx x x x

CL C-0 (n Lrý ----V) Ln

0
0 0

:4 V. T
E
W W C.Ln aOrp, mv, n O.MMMV
C: c

tT.

cr,

Ll

bi

1.)

0

0) C)
>

M X

c E z

<

>
C, LLI C",

C-

c m
>Q) j

Z

>00

a CLC
* 00

W Ll

c c

0,

o O2

i . >

00 0

oI 1
-. 1.0(2

mE

o
E Z)

0- ..

C o E

4-4

%r)04'1

EO>1
w•

E a

C

u0
0

C; z

0
0

V C -

0

u w0 00 0 u
a m u

*0 CO

000

CL
,0

CY)

u u u
oZ7 .023

C))

C)

C))')I '

CO "3> C)

C-') *m U)

SE

Q))C

V- C0 U -- 0 0 t

V QIIC) .2 C) 1C). C

0 0 0 '-1 0 0 2 1 0 1O
f 0, . I 0, 00)mV L

SoSfnf- r0 a

E a
C

,, zL

0

C)-

F

E
C

x i

--- 0 z 0

U • -

--~~ ~ 0,• • • I

0• - 0 n V.

0

0 o j ,

c

,En

•.u g.

L:

a .- rc o C: -:

m 00

a,c 5 S5

z zE2. a: C: E r

- - - E.ZC .. 2.-
.- ... - - - - - -,

O) Ci 2 :a

• . "

ErE

u o

.,

0 C)

a)

o IC

,'-a:

0 C

* 0"a

z.. u

S u

.2

-- E

.1 ,.

na:. .oa: C

LD a

7-.

00

tn

0

m V"

o > -

V C:3 •

0 -L'

0

L)g

-i Z.- z

E2 -

2') C- - E -.
-E C! . CL

* k

EL

N

2)

T '

J.ccra

E-U

o I

2) 2)3 2.2 2 2 2C , o ,Z 2) U U U L.

Dc > >m=C 'l EEVCU

- -. z -Z Z- - - -

* :

:0 1"
z

u

0J

ol

In o

L,

-C 0

C:ELO "

C- C

-E -

o)I 2)'
0

x

R

m
I
L

z :

L) L)

Cl

Cý L

c-

Appendix D

MARS C Code

This chapter contains the C source files for the M-Machine runtime system.

115

0)",

at Can - -.N N

U) Q) >.

-Y C v

o C:

U '- .-'S• -.2 1">-0)-o r o oa...

, ,L < 'a -,~......oano.. .. ° o

Znnn o a n a .

L;

C 0"-0. -0)

0 1

^ 0o" .jý

a- x--l

,CL (n a

.. . "

o<

< <

....01

E o C)• •

.==•_0 o 0 m o

o o
- C)Co)

1: .,) (I:3 c:

0 0 T.

u <). 0 .2
'0 0) 0)C^ -3< <r o >1 v• .

r 3 C, ID,

14 i Q 0

A,A
CD

V

0 L

Q)
A- +

m) z .. ,

3t a) 0 A CL4iSC 7 ' 3

004- a,' C -.
0., D - 2)C) C) C f r)C -C)

3

ELI o-2 W ev.o 00 C)..
c))) o CC) 0 00om,, oo• o oog . . .D, >.

0I

0

C. C.

0
Z•' '7°.

0

C ao

-o V A)

CC

M, 0C C

av ' A OD

..

- ao : oza) 0 C 0 -C , C: L4)C
'-C 4U

-: -T a)

A C

V) L AC x .

C C 1..0
A A '

C)0 a)..

0 0.

a t 0cC a

cL

a a)a

C> A C'- .a

a) a). >.C:
o , 3,- 0.

iiC

C ,

A 11

CC C.-'
CC. CC

C a)

'C- o
~C a)C

u C

OCU)^ Q;

A IXa

LmL) C.C

Ca C -'
oa''

C--

o
,c

:5
C:

x E

2. S,-

tOa)

0 N

-10 Q)

i
Sc•

L"

o

•J

C)CQ S -7

i, C• • C

m0 C Co
C)C.C.CU C C

0CL Cl (I a

o

-o•0-C

C- CL

o Io

0C 0 C ~ 0~~

>.

C CCC- 0 CCv- CC- C -- -- CcU c cCCCl CCCCCC

000 C

u.u:. C -.-

Li0

¢'u

a)o

4) 0

-CC

C>

o m,

C: mC ->

u C0

.CCC 'CCC >.

'C ooCC

C

0 "1

C0 0uO0 z 0
Lo

0wcu

C c
a)-

o

-Y 0 0 CCX
mC CC Cm

C1 00 w
.z u .

mC

0 00

o o~

cc o 4 r

,L:o v"

o c

T 0,

". 2

'O

a o
V)
a)
:3

m

01x

uc

U

0"

EE
> >

u

Ea .

A:.c:

5.

73a r.

u, >

z a

E- c c
C C 0

C) Cl CC-
• o u U M

uC- C - C2
u a) E 0 ,CC)

L. C)

0

Z
0 0) 0

U) 3:

0 m

C)

c;

u W >

C) -C C C-. 0-V)

o
c ,'

u U .

1 0

n. u F

E 0 - 3 CC.CC CL

O 'C CC C.C IC a C
0 . ,

UC >CCwCC'C

'-Z l C'-

E 0

Co

C1) C) C

c

u

'2 "C C) C

>.C '

u

u -C
c

U

ýQ V)
C, z I<

cal u u0 ýj
3

0 '0 - ZY,

z C,

c

C)

0C

0C~C

C.)

0

v u
0a) C,- , C ..

c

C)

0

o.c

c

0 .

- <

'C)C

u

u

a C

C)C7 C)

m CLD, EJ z

a) a

0

0C:

u m

cc

C;

C)·

A

u
u

E0

L)

.Z 0

0
u

En 0)
0

v 0 u

Q :3
o

0 0

0 v Tý

c

u co 0 U,

u

0

ýr_ 0

0 z

z z z

a) - -x

' C) 0 0C) .C o0 'C 0

c u .0- 0

r., 000 0. 0 0a, -) U, j 0 C Q)

>-. , . o
o G)

a; U)

0- I 0C u

o -'0 U ,• 0 D .• ._ xmo m CL - ýL

C a)

L) 0
-" 0- - m

OC) 0

C)) 01

V) 0 0. 0

C) 0 - 0- C 0

E

E ,

c :

c 4

CD

a) C)

wmC,o
u

'o

uEn

u

0 m

Q,•

C) V >'.

-)Cw00
w X i' 3

0 Ul

3 C

0 u z•

c CD x

U ^

C:

r. 0 .•

2
c•

0. 0E 3
C;1

0 u u

0, 0 .0 ,

>1 Ll

u -

>I >o u .

)CC 10 C)
C > o>>

.> x

V, 0

0M0

a z

o w o

ou w uuoz

w - 1

0) L7 0) 0-.
'A L) mO

m D Wmc-- mCCI)

z

u

z -

C I I I I

0

C 0-E

0 =iS

0 uS . =O•U"o , a) .u

,a D In E0 :

S
o0

'Z>

a; 0
f c

u C,

o

>on0

c 0,

0 V

CLJ
u

ri=

w C

.0 m

:7-u C

aa

> >

,C

u m

>o >

00

-00 C4

v 0 04

m 00

C)

-::i

Z"Eg
71

c -3m .

CO 0,

-0 (10 1;

0 W - -

-0,-V I

- o0"CC

0 C: 1: C:C

'D

7

Z 0

0 z C

T

E-

x:

-M I

3 .) 'C .. .cl a
C) a3 33 at,
V,ý Q CK d tn -

m

- C:"3

>

C r - 0

C,

Z)) 333

u u

a 0

Q) o : a):

F- M C)

•., ru EnM M.n

u m) (n U .V a"V

• "ao -. .2 o0 z

AC: Cu -' M C
CC) = m Li IV aCM
:I) C C .tm CC 3wc 0a)

C. M U en w .C C -' IXVM LO
3t3C 0-3 t3 3

>t.3CC~~~ CC>3C3t3 C

a C)E -

o C•' Cr a• C
3-Ct C. a -3m. CC C' CC)

CC)Zmt.3C)C,- >- • .. 3C)C>g-•.3 . -N.-
C.CCm.3 .C~f ".C.CC).3.

0-
0o

uo

0 >1

C,M, clV

7; -, . .7 - -C

r)

0

L)

• U

0

a) 0

>. >

o > Q)
V1
C;

oc

V) 0

a,.a

c •o

a a, _ , a , m ,

co :1~

'0 0 V U a)I

W Cl 0 -j

30 z
00

2o "

a~..- C

> IcQ; -

0S Tc Zr a, U a

r-5 U
- a, 3a 0E o

0o0oýa

>

Un

ae,C

U0uS

v a ,

00~
a '

o:a

o4

o

w- CL)

0U a

_--3 a

U <a,

a0 0

-- m

. 0rl

o5o
' n V)z 0

a , a

C CC.

o

0.• rd

X -

a, Ca,. I

Ca,. O-claoc,

"38u

x I

oý Za, a) u I.

CCo
oG,

--- u

•o o

Lo•'

v l

o>

Q):

0>

M.

"u

U.

0 ,

v x

u

C-

o •S0

m ý

E ° ,
o : -M

a .• c

w 0Y

'1-, 0..• I,a -C).ot)C

C3C),

- --7c

u- L/ a, I-.~g
IV

C-. 3:

-x : 3 a

3

IJuo

E.-

0.ov
,0 o-

0. •01 -

a 0

-'t

.0C)

t4 0

Q, m F7
ac (V

3

ru

C) CL

2C 0C)CCo v

m

6

a.
3

u0
• u

Cl

C;

cr l. .m -

3-
CC)

C' aC) C)'C I

-30

X33a
o) L

33

3

'-'33)0 0

C)
0

.C

t2

C

c

1%•, c •

r m
1,0 0 •

ýc ,-

C: V "

n3

:1

L) uSc V

D+ 0

.. 0 - .

o -c o)

7' Z

> ,. >

30Eu 0

ol

20 a0.o

10c

u
I

.0o.

o

m u

C CA

Q) o m

c 0

C v-A.A
2 4 cu m•, •t

03

2 D3 I

3A m ..

c oc 0

C) 0

m V

3-V3 0V
A. ACC

A

Cl

A

-- 2

-3CA 'C

A AC-c _
:l 0

3

A
Eo

30

= V u

S .e

CA .(. 1A--j• d z

,,,•
L':. u- I

0- c

0

.-.. 2.x 0 j0• Q)

Co D ~
0 x, c ;

3

7

c

0 E

• 5 :

0 Tn z .z

.c

7, 0

C) - = .lc I

m

0
r,

L

7.

::

u =I

x x x

E

- .

0' C, -1 L m

c 00 0- Of-M--~a- a)
a) C>~-))

u

CI

T .0

(r C) ' .

0 0 00

7 3

Lo

o

0 m a
0 0

000 a 0)7

0.0 a0 03
Oa V) Q)

> -00.0 000

m o m =>0 00- 0 C

m:o o "-o u 0 I> 00 3- E

L: 3--a0

V 0

.2:

0

0

u

E-
0ou :_

>

a) 0,0XC.

0 E-
> A

0 Ed

a) z c

0.

x o

o

>

" o7

0

-

I-0 U
0• 0 m. C5

o V 0 0

a)-

(0

0 U X

c 0

0 5V

E0

w u

o•::U l_

0

0
^ a

•u.

C

v

>

c Z

0

C:

.C 0

0 ,2

.0

> ,

L)
E

.2N

0 -~ 0

V C2

> Wo CC)C

L:C a) n,-

0-r C.

C4
Uu

U -j

wCC 20"

C) m~ E U

L) c)- U i

2.))C)C > C)

V,) I z C 0

0t)

0)

C-4

--4

'CD

v ; w w a

3Z 3lfl.

a) I

Q)a) a C

- -- . Ie-a
C) I .-)-

c-~ a-)

< >I
,.z z_1

I

Zo z Z

E 00

C c -j

0

V I I

.• 0
°

V-. o0c)

0 .1 1 C-C- I> > >• >,

m
C"

u C .

U, u

0)

0) o1 -

> VV
1,- 0 a) > 0) -

> c I 0
0)) V
-c 0) m - 0- 0 0

-a) a) CL -.. .- oI
c0)0 . - 0 0 0 0 0 0

05 a)-

v 0 ' a)" w tr>)7 > 0

U Mt)) EC-0 m. -0 >) 0 0E- C <0- .
m1 o -, -0 1) a) I-.<

00 0) 0) 0
EO M <-a-) > 0 -- 0 V -. -) CLW

F - 2- -. 00 Q)).-' u C-u L
>> v 0) 0 20 >-00 - >

>2 > 0> V1 0 -: O) ".C:-'0-- : - -. :). U - - -0 j .. l4) . -.0 <)>

20 a) >)) 0) 0)0 a o'o -aa 07rj -
C) 0 'C0 .2u VI> II)-' :7 0> 0) 2 >J 0 2Q H0 C U L V C

D) -V C: _V a)c "V=C
0 0 0 -10 u a) a0 - 1 0 0 0) >.0 W0 0) "a 100 I

C>0, C- 0)00 >I)0 'a 1> c 01 0a) > 0i -- - .0 0 Z0) v

0 0 I >0.) 0 > 0'- a) .> 0.n. .0-- *'- > m)>
00 c:>- -0 . 0 >

*0 > cr0ý

.- 4 0

0 a) z u

0)0 00

E0 00

V.0 20a V '
cl a,0) 0) a V

1. 0)00--) -, 1

V .12 .2 00 01 v "

0f 0o. z 00V.-c

c a

"r_

o>

c, r

o0

. a,>1. --- da)> ~ u) (I C) I 0 a)

>)CC.) a U
C2u c).2l)~a f'a

a),

L) >

o 0,

M .A

: Il o x. u u •o" U C-
1-0~ -2 2..

I,) >u - -

u 0 •

C)

) .-) . a)

a) >a I- -
a)ua~) a

L) n~)aa* U) a

- -

C

.a)

0--.a

,2.." C->r~

>• V

-L

0u w

(n

1<
o a

,>o
0 • (E

0 Ll

0-

3O

-

> >

1.

L:• I :o

C)

C,

Lo

0.1 '-o0

0~~~ 00 000 -

00 00)~

00~ 0~U C)0' 0

0 -0

Z Z; X -Q
100 0 1.-. 0 1 0' 0

000000.~0 00v .000

*~~ 0-.0

0 01 c0: 0 .

0 C:. 0

- 00- o01 0

-3 In r 0.01.0.01

- Z: -. 1> c: :->0

C:
u a

E :1

V c

o E E..

919 2

)0 01

Lfl 0.
00 0
00 .0
H 10

coO 01

H -j

co U
H

E-o

u

0 -.

0,3

a)00

E 2 0 0

10 C. 0-. a:

a))

ci
z I

OC

CU

C> 0

- -ow>

CLU CL0

r-

xx

C)

F-'

C)

0000 u . 00-

1,- A E- C.)

C)2U) C)C)I

E-

CC C C)

0 C) -VC
a 0 T 0z

-O>C C7

C) LF

IF--. CC)- C)-
CC..Ca)C 0 "CCC"CCC.

0)

v ^u

cF- -.
0o

IN

c

E

>

<

>

C

0) C)C:0U

0?

kC

)CC C

C.

Cal-

11 A

r

0

E 0

C,

Lj

a) c

Q cn

>> >
Z. C->

> -2T a)tý 7 ----
z

:7 n Z n
I., A

zE T
Q

71 7ý

ALA A -

22 --- -,

0.C 2 CX- C
x

F -

C.

^ C

L42)

C 2)

+

A C

En C)AC)-V.- - " •A
vg • v V =

24 2'

o)- E- 2
t2)2 C

AA C

A: 'Ac

a- -- :U -• -

i

z Z

a) 0

E 0

A A
A 2-

mx:

V El

V I

0 E w

c

C
o

a,: "0

v v

LO

0

-0 U E >

>

.. -- ii'm. C

.0 CCCC... C- .- C

.•. . . . 5-5. . .g -CC C

0 U

C0C 0

c 0

F-r C'

m -

=g=•Q) a

0 o

.Q C). .

. 0.

-03

L))

- u U

u

E, V

0 V

" - z

zU Utt' '1 -

x

V)
0

0 A

Z. -

Zo 7C
X IC: 1

A U >

w u r

u

0C

3''a

c

E
v v

v

x

V

L: >

Cý
C-

A A

I

A 1

>

a.) C)

C)F-))- C

0C

C)]

'-4

CN C

C)]

0H

0

C)

0

-o

c

M

0

0

u

21

>.

a')

F-

3'-'
^l

C,

A

A
A

A
A

v
v
m v

v

0 -u0

u

C-1 r- C) u
-IOU z

0) 0)

0, 0

0>0

F

0 3

zU

tooC) U) a)
V) zC)VC0

0

30 0oa , o0

"1 a

0

C:r

U)-E

C)

C) C)

> to?
2f

W 3

-3>

w0-

-W Aoamll-

uiI

C'>

5

---- 3

ini

XI
x -s

A Q

(Ir

0

U ,·

3->A

in

0
0~
0

o

A

:I C

- -

o • C

C

aC
'CC

LI a

M C, D)CC÷C

CCC

o o o

>

o.'

3 .3 t, • .
CC.

r _0

3--

W
<

N

< <

0) V)u 0) m . - m
cm Ln V C-1 'o Cý -3a,

C Oý 23

0 co -E ECL 0 0 0a, Cý Cý
CL A 0
C: C)

u CL .V
cl

m C- 0 CL
a) Ln

CL

cl 14
Cý

IJ
c IDI(nZ- :3 A: C) C: LlLl -3 a) -Y (A

a) c r3 -3V 0 0 w 0 EC c 0 0 a)j ý: 30 C,

Lr

clý r)

rl) 0
Ln E

:3
z

0 0)
c m

ul 0
a 0
> 0

E

> r) o
C;
E

ELu C: 7 z

7
C.

0!5

F
0 x

0 -d
C,

A A
C) c c
-C cc ý:

2 '3
ZD

< 7 >

'n

E u
0

c
•.0 •C, -. N

-- s
o 4 '"

S 0 .

>.
- Za, C 0 I

:55 i

a, C.

C. C.

'CE E--
10. 0.0

00. 0.0..-.

8 o2-, , o

v o >

> C)i

i Zc. a C- .
u * - E-o - 0u a,, wTa, C ", .-aa.,,

E LL .a
a,. aa,,aa,. a

-- u

a2 2

C, a,
0 ,0

....,

u

u u

c

> VM Z.--~ ~~~~- 7 z. 9..
-

- *
- ..

(N

Lf 3

Lfl

'-44

~~cl

(-3

M a,

0

r.'0

0 Da 0 0- - 0

z~~ ,za cx0
Of- 00 A00ý

, a) V0 0 ~ 0 ~ V a) 0 a, a) C
a) m->0 m~A . A m~ In 0 0ýC

Vw 0- - - - - - z aW~a A0 Z. ~ A, 00m 0 0
Ci ca~ , ,a Q)a2a7, 0aV),En (n u C , c -1 11.11a

0 00 0- 0 CC Z 0w0F-0j" ' I U0 -c,,--aO aj,,C , aa~~~ Ca: '0A w < 0. Q;0 ata

000 V'a ce jl 2e lE-a 0 0
00 0.0 Va a00 a;0 a)a))a) a) 3a

'0 50a 0 a'- -Z caa a) . 0 0 0 0 0

Wf. 0- -.- 01 IV Of'0a)

r, 0 6 2)Ol L/I 0o l a))a),)V t

m C:
Q, a

E- E- E-v .9- a

u u um T ICO CO M

0.0

a) C) C

a; 0 0--

3 C z2 V-.m uxu

a)o

(n

clO C.

C) CUU

V, > x

co A AU A X

CCC: C---Zo

0 w U)C.C U

04,

j

0) 0- V IC

c0EC 7

UC C-) U0.. Z;
C M .

.. .• "v Z!

o0

Ao c

a,•

0 .UV aC~

o3 cl

T)CV
Z E- _U>

UU 0 Ov a U

a0 0 CI
,>"> u

-CL

z3

0>

M c)

0

IV 0

ev

>
mx r I AAc) a) 4) v -j _uj c I

v cl Q, (11
li -j lo -j - u
oc R

u u u>

V. V
V.

ci

uIV
u

r
0

C

Q) IV :3 V

A

u 0
c

Z,

00r

0-

o -0
0 C-

7 0

0

0 ; 0 C. ,0

-2 0

71 r)o

0

..2

r"-

A AI'
I 3.

C, > m C

VV Amc cw r

oc o 0.333~

m~ A-A. AA:

a- A:

A: A

'AA

a 0A
x xA

Z" I A..'

V-A C A

V - --- a 0

u ,' -..

u z A, 11 •

M W A A

°c~ w u
ýc .

0.

LA 0' C)CA:A:
ZA A :I I

,.A

..

A aa

3 In a .
In-.. ::)

w o r ,.

A X :

I-• x x x

C:r x m t j

>C)I A-A-A.

,a ' C Cy

A

A

>

.0

u'

o:

-S •

>o•
0 .

) -

0

>
A V

>
U

U

X X

E ..

A .o
C, (1) =

>- 7 >o0- a

Z

"ý C3,

0

zi f. ý2 I

": :b-

A U-

..

0U 0^ ZL
o:C: 1

v, 0

C-

a'

C"

C'

a'
a

a
"a

U

C

~

c 0

> x
c U '0 Z > A C
2 6 -t : Z) A

(V 0 m
c >
:3 0

u Cý
0 'C

L) A > >, C .2 1

> >

c z

c 0

W c

C: c

a x
-:i C, M 0

0 0 1 m c
>

7 :1 m u c
u u c A

-j -j li v 00 0 -w v cZ: E "i
7U 'OZ Aý 7 u
v c __

- 0000 AC

ulu* C 0' I- I IC W0)0 AAA. .). Ii w -0

o , 0 WAo3l C....2 0 u = z

CA - -. -CU 00

0- og S _2OCC .o A• .. ° . .-

.. 0 ' A C A - . ,AAt2A 0AA .

.. 0.0.0000 ... I.. .'>.2_ _ " 3.

ro• ~ ~ ~ ~ ~ ~ ~ ~ 4 Q,' a). v' c' 0) w ':' • '::Z• L .)L , 0OUL • 0 o• a= =--.0000. A A A A 'A ACC

0 I

o~~~ *- CC A cC .C U C 0~C2 W
n.A) CL [4 AA C C.-0 A T u - 7

C) .2.-A) ~ a)CUC I a.2 r-2 C A-C -
0- -- A20 C x L)A 'A .

00CC CW CD' A 00. C u2C 0 WC 20-
co AA AA -a.C)- WAA C 0. C 0

u 0) .2 C VC WA V A U Co 0020E

.2WC X. A x C) v..0. C~a a,-0- .c- C wA W2 U2 Q

0C C CC 1-- 0.0 AA A C A2.. AI I 2XAA.ACCCA

0) CA- CI) U' *U UU U* . . .0 0 ' AU C -! 03.2 A 0C-
U) E-.)00 uu C ,)--- - ~ .C.--. v (D AC A .u CO -.- a)IC)

CA CA A AC C C2C
Z.:.-..C

AAA O= AX OAAw CC CCC 0

CAw w0TaC L a a 10m 0 w 'vmZ0 ý

000 0.. 0- CC 0 'u
C3u U-(-- -m3

AC-. - .. C A C

0..2O CC ..-
C>0 C AA

0 -A. -U .. 2 - AX - - .3 02. Z.CC)

E > .ACA . - - A2 C 0 3 0 > A A O A A C

AC * CA a)A= --: -0 :0C C C:C A A Z O2- U

M *0

4.))W .

C)) 0 a

0 V C) 0 c

(L) mC)- C)

02 * C) c 2 C)) z a)0

C:) 0) C)
C) 0. u)S) A UC

'C) x) > C)) cx a)I , c 0
AC L)11Q)C) .2 . . C) w

77 o C.. XC) v) .2 ..- a ou m. V, m a0)C

C)- itZ>u0 cl) 2 0.. c-C V C

U Ll~C a0>. CA)IU',Vc2c.C)0C)2'(n .r. a;C U M
0V a) Q)) :3 C)' '- j =1 =C) >CC~~ Q, 0-

- 0 0)) '> x2- 0))C C) -n 0> 0)>) > U>

'C..) VP EnC,)'> .2 00 C)Ccu) V D>) C) >0 '>W) T
C) V0> C) C)> >) 0> (D m2 r En- C) .) m 0InM.l r.)> C)2))CC L, .22. (n0. -C w.) .22).CC0))) 1u> a) CLC)0 'a) C: C).) . . .D r0)) 11)C (na C) c 2 .C C) .'0.a) C

u) u Dc) u) 12)C)w).() OCCCC UC .2 U2 u)X 2)C C . .2 U2> U)v
C) .2' C0 > CCC =) >-CCC C)> C) >2 0)CCCC) .') > C0 0 IC) 0)0)C. 0) 0.))) 0 C Zo .2x L))0)C. m E-)C 0LI))> "fC)))):I u)C W) W2) W>) CCL m C) w) 0 LI L. 1 Q)> C

w) C)L -QC.) " C)L2C.. a)> 00- a) C) -V.) C) v)22 . CLCL) 00 CL a)C)~ 0WC>> - rd)- 00 0 a,2.) ~ c)- O).0 .-
C, . ..) C) u2. .22. 12 u))) . . . C .

0.0.>)).).~ ~~~~ ~ ~ ~~ 0) C):3C... CCCC 2)2)))))) 022 C>.)CCC ,. ... CCCC
C) .0))> .>..-. .2.2).2 '>C> C)~C).2>-..2. C).. c))> ..-).- 0 2> -- C ~ " ' C) > ' > -- .E.0) r, U) C) .) 2C

Cl)

cr.) C). >

x) C)'>> L 0 1) Q) Lv 0 ~0C>)

. > .)a)CC>

'A..> 3V.' 0 .2 > 0 0 > > -- > > .

-r 0 .0 z

a x

f Cf 0
C, ý13 v v

CO

0U

u)' 7)

A) '.) ' z: A

a)A.2

WAa- C:

<A 0

LO

* E C-'- 1)

m .'J0- '-

Ar-

,3
3l

A V

A V
CD0

C.' c c
> u
c
0u

oa)a0

> AA uA

CO =0
- '- ->

0 ..

-z 0 C-

c- aC i

:7 -c

= v-

rd cla)) a)

I- A A A A

o a a u u u u
E AE 3:3:3D

x x. x: x: x

0

Zi Ci ii 7

m oAX

I . A

v v

x x
x 0 C,

X
0 A A

A A A
A

V)
01

a,C:

v v
v v

m X X
x 0 C)
0

v
V Q

0 A A
A A A

0
L)

v vv v
x 0 0C) v

V

X
0 A A

6 A A
A i

_ _
I

A A

x

c v

0 0U L.

Z ýj

CCC)

C ,

c U j

0U I

7) r

11 c z

c c 7

Iq V

u ýz

x

0 z

0 Lý

^

U UV

C)0 C,

oooox x

o o 0××ý:C- cl -C
u C)C)

m

i
u
r.

-e

(j-
i ::
i· · C

I
3 3ir

Pi;
U x

0
c

i: C
L·3Uc·
L~C5
V.

-· V
L'

0
u
--

ii~l
I~ULI

UU

I,

I

53
c

1·
c· -x

U
a-·
w

Cm X3
= ~ri 0 ~~
· rr

·C3 (Zr:
L1 IJfi\UC C:~

jr>r i. i·
a i -- r -r

TL~~:--L`
5"

a oEf)rI
W- L:L`

iJOIVl~r
O -- · C

L.~ECL'
O ii 3 --

U3UC=
L1 UJ C1

LL
i L~ac-- -In

5' -~--·· -C
C·
3 Cmii--_ 25

C
I' 0 irmm-114
· U~OINLI1)I1LI

c~>x-r
U3WOr5

0
O~ O~ClaS~~~ O
·~~~ - -C)?~[)~C'
~O -- omc--u·l~
n; ;;3~--1~C

~ LI i · _r i 3
ui " ro--------u c
u=--~~~~-U-~; 3

~~IIOY~X;X~U X
T-~O--·S-OIC

3 C' I h;) i' 1-- i· J i·
ac~~ c-e

~o· mU arus-·-. L~U
UILI~IY~~O

ug C
II i·-I· U

CU~
gL
~ 3'-
C1~

UU

0 11

o m

'o) - - "
X: '

-1

=I
Z

'O
=CI
OU
~rJ
LO~
C13

ELi
E--(
OU
um

u

ii
jl
03

i II

i·
C; e

L'a

=V

i~a)c7

Cc;
01

~i~Uu
'O

4't~~i~m
a~~L1
i~alLlrZ
-- 0~5
r7ji'
=~ iia3
IO-LJCJCI
C--·UT·C
L·(~:3
~ LtLIL)II
u·il~Cc

u i0
-cD)
0 =U
ev 0 :10 l

<

i
C

S

r
L'

ii

1
r-l

r;
::

_- o c
C,

-I
::

L(
C

J
o

II

O
CO
n

u
j

~I
ii

O

L'

r

-

c- ;I

c

;.i
:I U~

m
UC:

ii
" 2~
n c~ c. > 3 ii i'

r:--c·r "i7
L'--·- -·II;I--r
~5^··_ j,

S=i
O ~3 2

- >~:=-mr:
* :13 LIZ-

'I >

I>

.~I I i.

~--r~

ii
-
Di- L~
C~ i
"` ;·

v. c:

f~

v c~

1·c; iJ
u i: r-
o --- 3

3
~L) e

--
o ·- ~J -~ it 0
L1 CU

C)CIO'- J~
0=I·~^ VC
T) -~ ~·1 J
3~3 U > Y
C'CU03
C3i~·i~>·- O

LI JULI I_)-
'3--0 - -' "

s-=30~3
CI;~-;IC~i 3U>
i~rr =- 1 101
i' I: i I CU O~

r.l 3 r.· ii -i U U
I~- n

·-~ 3
3

5
s--i. Llr=

;--I

ii

i·

'3-
i

rjil
XC

i'

C,
=C?
ii
U~
3C~
i·C

i"
UCi; i,

C:C

--
C 3,

I

L: ~

s

ii
C:

i'
C
1 I ulJ

L` C; C
U L'

r:
c-

Z

T

.i
C

tC

L
r.

ri
r,

- m

rcO

C'

V (A

c-oa

0 "1:

c a

mamm0a

C m

a a aa
0

>a a

3 - a

ou E"

V u

co V.

1 0u
1:

1•

0-3°- 0

aC-30

> 3

:3 >

C) cm

rn
72-

lcý) 0 1

u r)

a o -

o) o

0- a) 1-2<ma

<, f, C< -

Su u u uu

0 0 0 C;u u u

T rj T,

a) C .j

'o r C) 1, 11 U

A A A A Ll I

z Z: C:

0 C-2

- <

C, 0. z o < ..

U

z 11 7

u V. L

C: 0 F

j

c o c

Zý 1 0
z ýo C-

A 0)

u 7 0
u

>/

v u 7:3 _l: m u

v 0 7 r)

-i

> m -j

z 0

i3 :3

X 2

o ..
z~L
^ • •

;•o Z

C: x

C - CL

m> Mrc

-- u u L13 0 0)0
CL a)L

7: =

Cý0ngE-

C .

77z
ioo

•.E 0
M 1

0 0

Lu

C,
C

ii

vr/
C

ate
o=

oi~
LIO
ii
Im
C-
c~a

oci
o-
i~m
mo
3LI
ii

3Y

mO
YLI
r~3r
ii?
D'LrC-i~TL)L'

mCI
jgu
-ICL'
4UC
ii
(rir L·

c·
II i, Y CI

U

a

r
c
61
O
C:
Iii
i
U
C

i

i.
7
V

i.
liO

C:

C,
0 CD m '
-j Ij 0

-0 -j
C, V 0

·n

ir

3
C
3

L·

ii
3

·J
--·
f

r
j

CJ
L~X
om
rZ
3n

EL·
VIU
3

i)
~

S'C:
3=

r,
U

ii

U

i'

I[IL~q
Ciu
LI r
TCi
i' r

UL
1/1
-~05
U

i~ C
CI~ C
C C
ICC
u'O^
u~o

i'
>X:!
m--s

ir-
UEL

m- c~
m r
arj
u ;:
CO' ~ =Ci
--· >i'

(1XS'
ilCOj ~

Y :: _ L~ CI
a :~ C'=

'C] X -:: Li
CO~i O
1 C~--;c
UL'~~--UC

N

3rr5
I: r

'1~ ; c7 5:
= ::

3 - . - -~ 0 r.
0; r>:: ii i'

> o >

u V 7i

il

U I -j 0

0 1

i?
i'
3

c3

o ii
i -·D
C=-
L)-l?I
I"C1LIL(
UC~L~
L'3
~53~

'311
i~ O II
'j,

-53
j

Si-rW
07

ii
;LI<

~C·S
5: v, II

uc~o
~;~Y

~1 i~ 3
33
r r o

i)
050

~~c
-·x~
C-h

U
J

C;C)

C.

C) E-.C) A.
C) 0 - --)

30 C)EC

0)C .0 'aIC

3 C) A-A)

C) .-. A In 0Am

A)- AUA- C
V C)C CC)-u

:3 Q) c .
w) 1 C,

A) C) A

>CA

0 cl

C 1) C) 0)-

-C A,.C C)

C- -C il

10 T I
c u c

aC) OC).eC A A-. C)(
A fiU- I IT A->

Cm--

VA

z

a

CIA0

C •• -

V, L

-r

v)
0

Co

> > • • c

C) C C-_ C

vi v

li c U ll u

>)~.. ~ C

0)C-

o C)C C)A--CC) A

)A) A.CC A

V) A I UC
0)C

x :i:
>
C, 0

X Lý ijw u

z u

u c::
0 V

11 00 -

V
v u

u 0 Q -

> >

i- C:

IN

CH

U)
U

L L' C c CC

-- •)y mU:,<

UU

t

ci

u

IC

7 0

., C,

c C-
0)

CL

m c

0) r a) C C
w 'a 0 0C

T3 0 "o
W 0w

5 C0 C)
C: r- E- ·
LIC V) U . U) '3=5

V -j u C. C, I ~ u

C' I---- , 3 a o C: C U. llC

.n C, I n A Q) (
ra ýo a) v 0 .0 ? ? Ic! r, v 0. ýC) C , zr i

C" C' X ~ LY it C
I L) :3 11 i =dll fi :t a)"

u orz,3 m· u =3
0 nr II i ~ · rl

> .V I- -;· 1 3Ui 0 N O i- ~ p C.

U) > XI m · 7~I · ~(~ * : C L~i n:i
(31n ·- r ~ V -· LC ~ · ?Oa m

G) Y ~ C r'15 ~ O ~ C~

0 'o IV C) Z~U i
ulr ~ 0 a n~v 0 v 7~c x

3 > > U' U

p iL r. z

C a) 0

0, a).0 -. XVa

- -'a -3- A

La)cr, C)

0) -a u w-O11 u 1 0~ 0 0 l

-a) -0 E Q) C a,) E- C -' Q -a) Ln0 C) w - 0a

a 0 a aa) 0 x -G7 i

0 a) >a : u41 > um) rdV 0C
a-) a0* W)0GW0 -Q)-)W

Q) Wa.f'a- a- a., u) a) 00)

a) 0)0 0a1 :1'~a) 0 D10a) ~ I 0),

X
4
i)
C
a,

·-
o
ii

m
r >

i
vl C.

ii
i) ii

II C)O:
II ~rC

r r
U
VI

a
·h33
Ol~u
C>~
~C)C L:

i' i 4 r:
"11: r

II: II~ -
m ii ~
r

L·C)
-~-O-- i
~ufien
=-- - u
~ w

I =

I

Z E:

z

u u - L

w - E-
Q) >

m U~

I n 0 1

ca 0-cr T.Ld >1 l> c -

0 0ro

r0 0

a0c 10, 1C, r C

Ln3 '

u

m 0

Q) EL

co oao

cl> E

Q) cL~
Q)r~

o z
0 E "

00;

0 C)'

Lnn
z c, :

L1
:i
i'
O a

i' U rl
v c
CC'~ ~C:

3 O r ~ a
i: LI·
rl CCT·~in

h
~e~C1

roao c
i' 3 -r 3 i

C; OL)
L.t C~LI=

3 O= a'
"'U~'

IJjlr 'CI
X ncraa
0--~~~Lla~4
Il~ltLICLIO
c--c- -·~
cuDuO~_
u irU
oc cu

E:x ii·vl
-J 131'>
Cm;31;OU
~lu~Eu
Or c

r
a

C` =
i'
Z

~L1C
~TC
~;C?
O;I
0[j·r:
0"

'03
i~i~L-
C:
45;

ao-

L1T.)

L'~C
0-
~ L' C_

X~r

J:

3

LI_

L·C

3

a

C I~
3

~~

X
VIC·;
=)L~
011

C--=
gu-
L)X
Oo~
a~a
m-->

ro=
L)U
ih
Oh

3
01·

O-C·
c 3 r: 3

"
1·-
uc
r
ur;
Oil
i'CC
-j--Li
0-r

L

ZC 0 C a)

u 10 CO a) CO . 1

u CL 3..-. L, C aAC.-...

-) C) Q c) mC -3

0 .0 .u (I V _c

a CC N

o~ ~ 0 >~~ uC-0 - C C

C - .. C 3 '-C r-C -.

- l C-. O u Cl a 0 C u
o~~~ 0 v C' 0'Z O C.) X O C CC

3' C5 v cOO CC 0. ClF. IV0 CC '
U) c U: 'C' EC mE'lC

I. :CC w C 0 v0c >

cC C.C U)u'. r - 0
C C -l cC 0C LL 0 r U0 C) 10

C:C 1 CC '1 C E 0) V V
0 m. '-' Lo- 0CC .. C.' > c- zOO (A
CC E 'C C.C C 3 ,w CvmCmC.

0) C- EC 0 C C -.. C C a

CC. M'-. 00 WG. CCC C
0. Q) C fCC .CC3E

in. oC Vo C.
C -'C' >C V0' C) E0m (

C E fCC ;11 l >12 WU)>

0'o a). C - CC) Ca)) a0 a 0 r :I C

:C WI 0 1 - C1 AC C)a3
Q) -C a, CC CV C C

L, C CID-.CC.C . ' C C

Cl > C--C-)' C

C C C CC - -Cxa C.
-lC CC C C 0*0.3.. CC C.C C C . C

C' C' C - .~~~~~0*- C '. >-C .0 .C C

CC C ' U ~ ~ V 0CC 'C-- -C

0 M C' a) C3

cCn

0 C
-0

c

Appendix E

Sample User Programs

This chapter contains the source code for two user-level programs which make calls

on MARS primitives. Matmull.c is a parallel-matrix-multiply program. Jacoby6.c is

a version of an iterative jacobian-matrix relaxation.

116

0 '-4 C'4

.4 4. x -H
0 0 0 0 -H w

-A 44--44 44

r-4

oý -4 " - -C

14 40 C 0 X '0r

CCC 044Ca4wC 44 a-
r4 a-C CJ4.) 4a. C-W

- '0 .0 4) . 4)4

40 Z(0-- 40 C

r. 9a 01-1U) CI C C
o 4 i Z44.4 4

X~f~P~ >1 - - w

))~-4,q
4

C', 'I)S~ ~ aNfc4-

0 ~ ~ . D0 40) 10 ,4 4201
r) ý,o 4

0 U' o .2 -4ý r

I Lit

o
00

0

C -

00
44'0'

- 40
0--

(20u

>)..>

- :42
0 0 0

0 0

.41 .1

Cal2

0 004 0441 '0

0
.-H

4.-)0142Ca

u

-0
-4 0 -r• .

X + -,f

OX - (40-

041 4-0ox4C - 0.Ca -40 N 0
U) - *-.4

0 C:
4 --H

410- -11 00=

-+0- -C--I

00.
) 4244

a)4 0 01 l

0
I-

Q)

+

NE--- N va •

..C E-V -p

S 0-

-H VJ $-4
CL0r_ -

0

+ +

U) x Lo X

*-4 -4a

4.4 4 -)

0 0

0
-4

042

ý4

.0

4•4
4J

C) 04 .4 c'n

*00 .-4 ('4 :(':

x x x x
CC) -4 .-4 -,4 H4

W 4J4 4.4 A..

14

0

.4-)4.1.4J4.)

0ý 4 240

* aC C ca Ca4 4-4. 42 .4 .4-4 -

CCA)
4k 4

-1ý0 -.4 0

E-

NZ W

20 u

C-

F.)0)0)a

0)

' +

a) vL
"

14 C0-.-

EN E,

U44
Ca) WV• .

" -,. -4- -4 .-4 -,- -4 I4 1

.- 4

+ + + +

• ,-4 .,4 -, - 4 0I +-"" I-+--
-H - H -HO0+:

• Z-~ l 1 20 0 0 -000ý4. + ý4.41.4I.44. ý44

Si 0 A.) S1 1 S1 S1 S1 0

II II

n II

InO

M0-0 -0

AU)
.0- r-4 E-• -- 40 U
0 (1 w 00

-H L0) Ep .,p.0 .- I-
' U) _4 I
4Si>, 0f) > ,
V.

a0)0) U) 1 a))
::1 0 440 r 00C:
r-4 r-4 a) -rH -H) -H -H -H-

00 '0444- ,4 U) n 4-4 44'
0 : 0 r0 4-4 aD W - 0() a)0

-H- H -H '0i '0 Q)'0' 0 01)
*I- :*I- ** *W *1 *-

co -400 -nk

q) - LA LA L
(0) LA m) LAL

U) 0j - A- - A-

1-0)

44 0

-H 0

a)

In

k)oLA0)r-0)c-

40 L NP 1- LA N) v a) LAm

oo co ko (v m LA mN 0) ") N'

LA LA D oo () LA m L m ") -N

ON LA) LA 00 %0 () LAz mn 'rr

i- A- a- A- 0) LAý r: A-

I)LA 0) A- ý 1) a; 0)LAA-(Cý

co LA LA A- a- LA 0) -nD0m

x

04 H A- A- LA LA LALAM
Si 0m LA LA A- LA LA a% 0) 0m LA
to 4-4

- - - - - - -- - -H -

4-))

x

, 4.

'0

-4

4-)

+

.,..J

+ 4-)0-- ,--i

z 0
H 04

0 u r-
44 (4

.-.-4
'0

-- +

33 ý
oi a
000+C 0
ý4 ý4 +

+

e-,-

Si 0
) 0I- +

0 -

:.:4.)

I1)

+

0 0

4. 4
to~
a5a

n-H
-0

0

Q-44

a)4-1

,--- U)-H-

+ +

.. -,-. I

O- 3o - 0 0
+ '-4 r-4 41 44 +

1- 4-1 .4J

0 0

C•IIa
U)I

a)

+++

-4 -H1 -41 -H

000

$3In

In0
0

U)

ý4 X
U)a)Ox0) -H-

-H 0

0)0

Qo o
04Jý4 (
,1) -H .I

t3)4 ao

4J• .4 -,--40

v -,I X04x)'40

':It (d J-Ja) a

-.. 0.

30ay) -H) 0o04-)
a)In 0

ý4- .
U)0)-

44

a

4-I
0)

0)0)
U)'0

a)

0

.,4

0

0Q0

0

Si

O --4 4a)

0Q)-
.2-

0
4-4

In

0)aJ

0
u

00

4 -1-

-,0'40 Si t

0 0

5 -H
'0 0

0
0 4

u) 4
O)

U)

a)Z

00(4-4
4.4

0-0).43

b, -4 .

C" 00 -,

InS-

4-)

30)0

.,U 0)4-)o(0 0) -

0 a)*

4)-1

0j 0,.

x
-i

&(a)

x
-,4

0
a)C40

dU --3.
0M 4

4

U) 1-4

4-4 1-4
-HI a)

0

+

0 0,-4 .,-
+4

45Il
5oo

++

-H C

00

Si SiC
0

°+
0

0

.--0

0)

U'04
4a4)

+

v 0 U+ -

-,4 44II-t ,

00.-4

0

a)

·-

• 4- +

• H o

0

.4
a)

0 -4 (--3 M 0 1-4 (-I .44 m - LA 4.0 4.- o 0m

1,4-

,4-1

0
raa)
44

En

0.,a)4-1)Ea)a)

4-4

-H '

0
J.0

Cý C Cý ý 141ý rl a)~-4..--.--4 .- 44.-4-4C4C-m m.-4 D
a)

- 0

-00 ' -0' -' -' -' -' -' -' -'- -H
a~a~~a) ~a~aa~a~~a~aaQa
a)0aa) aa~a~~a~aa~a~~a) --

.04 04 01..........

-,4 14- 144-4 4 1,4 14 14- -1-,-4 14 -4,--4 --1-4 a)

a) ID Q)a0) a)aa))aQ)a a)4) a)Q) -H 4

In0.. .00000... . 4-40

000 000000 a)
.0000 .W 0000..... 44-

l 0
-40_

r-4~-.

"- ý4 4 .

0 r.0a -) --1 r-

(L4 0 0a
4434. a) 0

0 0:
0r 03 .04
Za) U0 04-

U) 41 -H
(aa)0 -4

40 .0 r
1,4 4- -4

0 44 r.1 -

44 0) 43 U

0

44

OZ

0 0)0 0)0

414
'0

a) -4 -4r-44.4-i

H4 0000

a) 4--4J4J44J--

I I I " I ' I " I " I • I " I ' I • "

a) 4 1,44
.v X .0

r-i ~ ~ ~ ~ ~ r z- ,-, ,- - - ,• -- a,• .-0~-(-4~~L 4.1,41 0 -H434 ~ ~ ~ a 44 a) 44 4
000 00 00 44*-4"

4J -HO-HA)

-H-H-HH-H-H--H-H- - 1. W.

000 00 00 4.4 I-H
4J ~ ~ ~ ~ ~ ~ . 444 J4J4 J4J4 Ja

a~a~aa~a~~a~a~~a) 0-H-a I.• a •aa •a Ia.a 0-44a)-
"-44 D~4 -H 0a0)00)00)00))0)) 4L4~ g

(-4x

,. 4
4.J

aH

144

a-)

o)m044

1440

0) (a

044

144

(0 00

E/ H It

0 0ý

1,4

0

.,-!"o000

0

Bibliography

[1] Nicholas P. Carter, Stephen W. Keckler, and William J. Dally. Hardware support

for fast capability-based addressing. In Proceedings of the Sixth International

Conference on Architectural Support for Programming Languages and Operating

Systems (ASPLOS VI), pages 319-327. Association for Computing Machinery

Press, October 1994.

[2] Jeffrey S. Chase, Henry M. Levy, Miche Baker-Harvey, and Edward D. Lazowska.

How to use a 64-bit virtual address space. Technical Report 92-03-12, University

of Washington, 1992.

[3] Thomas H. Cormen, Charles E. Leiserson, and Ronald L. Rivest. Introduction to

Algorithms. MIT Press, Cambridge, Massachusetts, 1993.

[4] William J. Dally, Stephen W. Keckler, Nick Carter, Andrew Chang, Marco Fillo,

and Whay S. Lee. M-Machine architecture vl.0. Concurrent VLSI Architecture

Memo 58, Massachusetts Institute of Technology, Artificial Intelligence Labora-

tory, January 1994.

[5] William J. Dally, Stephen W. Keckler, Nick Carter, Andrew Chang, Marco Fillo,

and Whay S. Lee. The MAP instruction set reference manual v1.3. Concurrent

VLSI Architecture Memo 59, Massachusetts Institute of Technology, Artificial

Intelligence Laboratory, February 1995.

[6] Abraham Silblerschatz, James L. Peterson, , and Peter B. Galvin. Operating

System Concepts. Addison-Wesley, Reading, Massachusetts, third edition, 1992.

117

[7] Andrew S. Tannenbaum. Modern Operating Systems. Prentice Hall, Englewood

Cliffs, NJ, 1992.

118

