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ABSTRACT

Steady state marine diesel engine exhaust emissions are being reviewed by the
Environmental Protection Agency for possible regulation. In anticipation of future regulation, the
United States Navy is developing appropriate emissions models for naval vessels. Actual
emissions data from a U.S. Navy ship is necessary to provide checkpoints for the models. A
procedure for collecting this data from an U.S. Navy ship with medium speed main propulsion
diesels is presented. It is based on similar testing conducted by the U.S. Coast Guard for
measuring patrol boat diesel engine emissions and International Standards Organization
methodology. The primary challenge of the experiment design was to minimize interference with
the engineering plant as the assigned ship was concurrently tasked for other operations. Data
gathered allowed calculation of engine rpm, engine load, exhaust gas flow rate and determination
of pollutant amounts. The tests were conducted at a series of predetermined speeds to reflect an
11-Mode duty cycle developed previously for the LSD 41 Class propulsion diesel engines. The
results add to a growing data base of marine emissions and offer insight into the into the effects of
secondary control factors such as sea conditions, maneuvering and continued reactions in the
stack.

Additional work is included which models an appropriate duty cycle for U.S. Navy high
speed propulsion diesel engines found on the MCM-1 Class Mine Countermeasure Ship. The
results indicate that not only are the duty cycles developed fro commercial ship operations
inadequate for modeling of naval ship operations, but that the naval duty cycles will vary greatly
by mission.
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CHAPTER 1: INTRODUCTION

1.1 Purpose

With the passage of the Clean Air Act as amended in 1990, regulations regarding

limits on the amounts of pollutants discharged as a result of chemical processes were no

longer restricted to stationary sources and motor vehicles. The act required the

Environmental Protection Agency (EPA) to determine the contributions of off-road

moving sources and, if these contributions proved to be significant, regulate these sources

as well. This measure was an attempt to spread the costs of developing and implementing

"clean" technologies over a larger population of industries.

Recent legislative activity and research has been directed towards air pollution

contributions from off-road sources, including marine engines. As a result, regulation of

construction and farm equipment, snowmobiles, lawn mowers, etc. has been enacted. The

regulation of the marine industry, including major ships as well as pleasure craft, has

lagged which can be attributed to the complexities of ship designs and operation.

As interest in the reduction of air pollution from marine exhaust increases, so must

the level of knowledge. Further effort is needed to determine the factors which

differentiate marine engine exhaust from that of other exhaust sources. Additionally, the

unique operation and design of public sector vessels may necessitate testing and control

philosophies different from commercial ships.

This study continues work to develop a Naval marine diesel engine exhaust

emissions model. It consists of two parts: 1) development of a representative duty cycle

and prediction of annual pollutant levels for a U.S. Navy ship propelled by high speed

diesel engines, and 2) reduction of measured data from an U.S. Navy vessel with medium

speed main propulsion diesel engines. The prediction of annual pollutant levels for a

medium speed diesel plant has been previously completed.' The experimental results

based on pollutant data gathered from a medium speed diesel ship operating at sea is

' Markle, Stephen P., Development of Naval Diesel Engine Duty Cycles for Air Exhaust
Emission Environmental Impact Analysis, Massachussets Institute of Technology, 1994.



critically compared to these predictions.

1.2 Current Regulatory Stance

The Clean Air Act (as amended 1990), Section 213, requires the EPA to:

"... Conduct a study of emissions from nonroad engines and nonroad vehicles.., to

determine if such emissions cause, or significantly contribute to, air pollution

which may reasonably be anticipated to endanger public health and welfare."

This study was completed in November of 1991 and led to the regulation of heavy duty

nonroad diesels in June of 1994. The contribution of marine exhaust to ambient air

quality was found to be significant, especially the contribution of nitrogen oxides (NOx).

The EPA estimates that there are 12 million marine engines in the United States.2

This total number includes both spark ignition and diesel engines. Their studies indicate

that 14% of the total non-road source of nitrogen oxides (NOx) can be attributed to

marine diesels. The only greater contributors are land-based diesel engines rated at

greater than fifty horsepower.3 While the marine engine contribution may seem

insignificant in comparison to the land-based emissions, the current legislative atmosphere

requires aggressive regulation of all noticeable sources. Figure 1 refers.

Although it was noted in the EPA study that marine engine contributions for NO.
and particulate matter were significant, these engines were not included in the June

legislation. The reason for this delay lies partly in recognition by the EPA that existing

test procedures for heavy duty off-road engines may be inadequate for ships.'

Additionally, any regulatory scheme proposed by the EPA must first be reviewed for

2 United States Environmental Protection Agency, "Air Pollution from Marine Engines to
be Reduced", Environmental News, 31 October, 1994, p. 1.

3 Environmental Protection Agency Information Sheet, Reducing Pollution from Marine
Engines: Information on the Marine Engine Rulemaking, released October 31, 1994, p.2 .

4 "Control of Air Pollution; Emissions of Oxides of nitrogen and Smoke From New
Nonroad Compression-Ignition Engines at or Above 50 Horsepower", Federal Register, Vol.58,
No. 93, p.288 16 .



conflict with U.S. Coast Guard directives which serve to ensure the safety of ships and

seaways.

Some of the unique aspects of a ship's geometry pose additional difficulties in

drafting regulations. The stack lengths on ships are typically longer than the exhaust lines

on similar land based diesel engines. This additional length may allow continued reactions

in the exhaust gases, possibly leading to the measurement of different pollutant levels at

the exit of the stack than at the exhaust valve on the engine. The length of the stack on

any particular ship is usually set by the internal arrangements and any pertinent criteria

imposed by the ship's mission. This effect may be mitigated by the low residual time the

exhaust gases need to travel the length of the stack and the isothermal nature of the stack

system. In his 1994 thesis, Markle proved that for U.S. Navy medium speed diesels, there

were no significant exhaust gas reactions in the stack.

Figure 1: Breakdown of Nonroad Sources of NO, s

Mrine Dine· Engine
14%

lther Narad
11%

650 hP Lamn•
Nanrmd Engnes

76%

The ship's mission is a primary driver in the design of the hull form. The external

shape of the hull affects the engine through the powering relationship. Hull friction and
residual resistance counter the thrust created through the ship's propulsion system and

' EPA, Reducing Pollution from Marine Engines: Information on the Marine Engine
Rulemaking, p.3.



determine the speed the vessel can attain. The same engine installed in two dissimilar hulls

will be loaded at different engine torques and cylinder pressures in order to drive the two

ships at the same speed. It is this consideration that is prompting most of the discussion

within regulatory bodies regarding the best procedure for emissions testing. No consensus

has been reached.

Based on the results of the emissions survey, and due to judicial action by the

Sierra Club6, the EPA released a proposed marine engine emission legislation in early

1995. Under this plan, marine diesel engines under U.S. jurisdiction would be regulated

in one of two manners as determined by the engine maximum power rating.

Smaller marine diesel engines (less than 50 hP or 37 kW) will be subjected to the

following limits: NOx (9.2 g/kW-hr), HC (1.3 g/kW-hr), CO (11.4 g/kW-hr) and

particulate matter (0.54 g/kW-hr)7 . These smaller engines will be measured for

compliance on the test stand and no further measurement will be required once installed

on the vessel. The testing is to be conducted using ISO 8178, Part 1 procedures and duty

cycles. The proposed standards are to be phased in during engine model years 1998

through 2006.

Engines rated at greater than 50 hP (37 kW) will be incorporated into existing

regulations on land-based non-road engines of similar power ratings'. This ordinance,
issued on 17 June, 1994, limits NOx to 9.2 g/kW-hr and particulate emissions to 0.54

g/kW-hr by 1999. Similar to the smaller engines, maximum pollutant limits will be phased

in by model year.

6 "Control of Air Pollution: Emissions Standards for New Gasoline Spark-Ignition and
Diesel Compression-Ignition Marine Engines; Proposed Rules", Federal Register, Volume 59,
No.216, 40 CFR Parts 89 and 91, November, 1994, p.55932.

7 EPA, Reducing Pollution from Marine Engines: Information on the Marine Engine
Rulemaking, p.3.

8 Ibid, p. 2.



During conversations with EPA personnel9'10, they indicated that the proposed

regulations were drafted to match as closely as possible the predicted international

regulatory schemes. The U.S. regulators wish to avoid implementing an emissions

control scheme which may be at odds with the proposed methods endorsed by

international shipping organizations such as the International Maritime Organization,

Marine Environmental Protection Committee (IMO, MPEC). This approach avoids

penalizing ships calling at U.S. ports by not requiring them to meet different international

and port state environmental standards.

Work on development of these international standards continues. Annex 6 to

MARPOL, the document in which the program will be introduced, was due to be released

in early 1995. The document has been delayed. A copy of the MPEC's proposal indicates

that both regulatory sources will implement an approach to diesel engine exhaust

compliance which requires bench test certification of an engine family. The engine

parameters which designate an engine family have not been conclusively selected by either

organization. Examples are engines which use the same type of fuel, method of air

aspiration, number of cylinders, etc.1 The intent is to group engine's with similar

combustion and operating characteristics that should produce similar levels of pollution,
thereby avoiding testing and certification of every engine model. Once the engine family

has been certified, the EPA would require later testing of engines after a period of normal

operation. In their plan, the targeted engine would be removed from a hull and relocated

to a laboratory for testing. Where engine removal is not possible, the engines may need to

be tested as installed.

The certification procedure referred to above is currently limited to steady state

9 Interview with Ken Zerrefa, Environmental Protection Agency, National Vehicle and
Fuel Emissions Laboratory, Ann Arbor Michigan, conducted via telephone on 10 January, 1995.

10 Interview with Todd Sherwood, Environmental Protection Agency, National Vehicle
and Fuel Emissions Laboratory, Ann Arbor, Michigan, conducted via telephone on 2 February,
1995.

" Federal Register, Vol 59, No. 216, p.55938.



engine operation. While the pollutant emission rate may be higher during transient

operations, these maneuvers only contribute a small amount to total engine operating

time' 1• 3 . Based on this conclusion reached independently by both the EPA and ICOMIA,

duty cycle development should consider only steady state operations. The EPA, in the

marine engine emission proposal, has asked for comments with regard to using a solely

steady-state approach for certification testing of candidate diesel engines in order to

provide a vehicle for dissenters to support their position.

Despite the similarities between the EPA and IMO proposals with regards to

certification and monitoring, the IMO does not intend to adopt a single maximum NOx

emission value for all diesel engines. Figure 2 is a graph of total NOx emissions as a

function of rated engine speed. Rated speed is defined as the speed at which, according to

the engine manufacturer, the rated power occurs. The total emission of NOx must be

within the limits shown in Figure 2 when the engine is fueled with marine diesel oil and is

operating at a relevant, pre-determined test cycle. This approach results in different

emission limits for high and low speed engines and addresses the question of engine

loading through the selection of an appropriate test cycle.

More stringent maximum single point NO, emission limits have been posed by the

State of California. Due to the state's extremely poor ambient air quality, they have been

required by law to address all pollution sources which are found to contribute to air

quality deterioration, even if these sources are not regulated by the Federal government

(refer to Section 209(e)(2)(A) of the amended Clean Air Act). New engine model NO,
emissions will be required to meet a standard of 0.77 to 0.97 g/kW-hr'4 .

As of March, 1995, a State Implementation Plan (SIP) has not been approved for

12 Federal Register, Volume 58, No.93, p. 28820.

"' Morgan, Edward J., "Duty Cycle for Recreational Marine Engines", Society of
Automotive Engineers, Paper no. 901596, 1990, p. 10 .

14 English, R. E. and Swainson, D. J., "The Impact of Engine Emissions Legislation on
Present and Future Royal Navy Ships", Presented at INEC 1994 Cost Effective Maritime
Defense, 31 August - 2 September, 1994, p.3.



California. The California Federal Implementation Plan (CFIP) is a federally drafted plan

which California must adopt until her own SIP is approved. The CFIP has adopted the

CARB's approach to estimating marine emissions and added a fine/penalty system". The

implementation of the CFIP has been blocked due to economic concerns. The state

recently released a SIP, which if approved by federal regulators would supersede the

CFIP. The proposed regulatory scheme of the SIP is similar to the proposed EPA

rulemaking.

Figure 2: Maximum Allowable NO, Emissions for Marine Diesel Engines'6

'5 Markle, pp. 24-25.

16 International Maritime Organization, "Draft Technical Guidelines for NO,
Requirements under the New Annex for Prevention of Air Pollution", October 7, 1994 p.2 .

15
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For additional discussion of the CFIP and CARB studies, refer to Markle, 1994.

Despite the separate plan and emission limits projected for the state of California, it is

predicted that the majority of ships visiting U.S. ports will be regulated under the

IMO/EPA proposal.

1.3 Motivation

An approach to monitoring marine diesel engine emissions based on bench test

results of sample engines prompts two discussions: 1) What is the correct duty cycle for

testing of a marine vessel? Can all marine vessels be represented by the same duty cycle?

and 2) How well does a controlled laboratory test capture the actual emissions of a ship's

engine performing at sea9

A duty cycle is a sequence of engine operating modes each with defined speed,

torque and time weighting factor. A survey of existing diesel engine duty cycles is

presented in Markle, 1994. Emphasis will be placed on only one set of these duty cycles,

those presented by the International Organization for Standardization (ISO) in its 1992

publication, "Reciprocal Internal Combustion (RIC) Engines - Exhaust Emission

Measurement", ISO 8178-4. Thirteen duty cycles for various engine applications are

listed in this document, four of which the EPA is considering for modeling of marine diesel

engine operations'7 . The pertinent test cycles are provided in Table 1. The power figures

are percentage values of the maximum rated power at the engine's rated speed.

ISO Duty Cycle Cl is primarily used to model off-road vehicles and industrial

equipment with medium to high loads. The EPA has suggested this cycle to model marine

auxiliary diesel engine operations. This definition would include all diesel generator sets.

In recognition that Cl may not be the appropriate test cycle to model marine generator

sets, which operate at a constant speed, cycle D2 has also been suggested.

ISO Duty Cycles E2 and E5 can be used to model marine diesel propulsion engines

based on a propeller curve mode of operation as opposed to constant speed operations.

17 Federal Register, Vol. 59, No. 216, p.55940.



Cycle E5 is developed from operational data gathered by Volvo and the Norwegian

government and is appropriate for diesel engines in craft less than 24 meters long. It is

intended to model craft which are not heavy loaded; therefore engines installed in tug

boats and push boats less than 24 meters in length are excluded from using this test cycle.

ISO Duty Cycle E3 is based on propeller curve mode of engine operation (as opposed to

constant speed engine operation) and also represents heavy duty engines for ship

propulsion with no limitations on the length of the ship. The final EPA legislation will

dictate testing to be performed using one of these two cycles, selected on the basis of the

arguments presented in response to the proposed rule-making. Neither may be

appropriate for engine which drive controllable pitch propellers, which operate at low

loads with a constant engine RPM.

The ISO 8178-4 RIC Duty Cycle E3 and E5 are derived from commercial vessel

operation. Large commercial vessels (such as containerships, bulk carriers, etc.) are

designed to sustain high usage rates at a relatively constant speed. They operate near the

hull's maximum speed capability, with transient behavior only when entering and leaving

port. Hence the emphasis in Duty Cycles E3 and E5 on high speed cruising near the rated

power of the engine in the test cycles.

In general, naval ships spend less time at sea and operate with large variations in

ship's speed. In recognition of this fact, a method for determining alternative diesel engine

duty cycles for naval ships was developed and demonstrated for the LSD-41 Class

Amphibious Vessel. The results of this analysis can be found in Markle. Markle used his

duty cycle with appropriate test bench measured diesel engine emission maps to predict a

single point annual pollutant emission amount. Using other common duty cycles and the

same emission maps, a comparison could be accomplished and the appropriateness of

applying commercial ship based duty cycles to naval vessels could be discussed.

1.4 Thesis Outline

The first section of this thesis applies the same methodology to a representative

high speed main propulsion diesel engine in the United States Naval inventory. The



Table 1: Sampling of ISO 8178-4 RIC Duty Cycles"s

Cycle Name Mode Number % Power %Speed Weight Factor

C1 1 0 0 0.15

% Torque 2 50 60 0.10

not % Power 3 75 60 0.10

4 100 60 0.10

5 10 100 0.10

6 50 100 0.15

7 75 100 0.15

8 100 100 0.15

D2 1 10 100 0.10

2 25 100 0.30

3 50 100 0.30

4 75 100 0.25

5 100 100 0.05

E3 1 25 63 0.15

2 50 80 0.15

3 75 91 0.5

4 100 100 0.2

E5 1 0 0 0.3

2 25 83 0.32

3 50 80 0.17

4 75 91 0.13

5 100 100 0.08

" ISO 8178, Part 4, Reciprocating Internal Combustion Engines- Exhaust Emission
Measurement. Part 4: Test Cycles for Different Engine Applications, August, 1992, pp. 12-15.



selected ship class is the MCM-1 Mine Countermeasures Ship. Three of the thirteen ships

in the class were visited and subsequently analyzed. Using data available both from recent

bench testing of the Isotta Fraschini engine and from literature, an estimate of the annual

pollutant emissions from a MCM-1 Class warship was computed. These results were

critically compared to calculated emissions based on the ISO duty cycles.

As alluded to in the previous section, the proper method for estimating the

emission tonnage which can be attributed to marine engines is still under debate. The

bench testing of a representative engine at an appropriate duty cycle has been

recommended by both the IMO and EPA. CARB's regulatory scheme uses emission

estimates based on an assessment of traffic types and densities combined with an emission

factor equating NOx levels to rated engine RPM. Other regulatory bodies employ

different forms of emission factors, many of which are supported by little literature

detailing the origins of the factors.

It is also strongly felt that many emission factors fail to account for common

operating situations, such as mistuned engines, variations in emissions from engines of the

same model, and variation in engine operating hours and maintenance levels. In particular,

has been demonstrated that NOx levels are very sensitive to engine combustion chamber

conditions 9.

The second section of this thesis attempts to provide additional data to a growing

database in order to resolve which emission estimation procedure best models actual levels

measured from ships at sea. The instrumentation and collection of emission data from a

LSD-41 ship operating at sea is discussed. The results are compared to estimates

previously calculated 20 and proposed maximum emission limitations.

19 Lloyd's Register Engineering Services, Marine Exhaust Emissions Research
Programme: Steady State Operation, 1990, p.4 .

20 Markle, 1994.

19



CHAPTER 2: MCM-1 Class Description

2.1 Hull and Propulsion Plant Description

The MCM-I Mine Countermeasures Ship Class was designed to replace the older

AGGRESSIVE and ACME classes of minesweepers (MSOs). The MCM-1 Class is

designed to clear bottom and moored mines in coastal and offshore areas and is both

larger and more capable than its predecessors. The wooden hull, with its glass reinforced

plastic sheathing, is an unique characteristic of the ship. Figure 3 is a port bow view of the

USS SCOUT (MCM-8) at sea. Figure 4 provides the class body plan, which

simultaneously displays two half transverse elevations of the hull about a common vertical

centerline. Principal dimensions are included as Table 2.

Figure 3: USS SCOUT (MCM-8) Port Bow View21

Lf

There are a total of fourteen ships in the MCM-1 Class. The first two hull numbers

have a different propulsion plant, consisting of four Waukesha diesel engines and two

propulsion shafts. These engines were found to be both noisy and maintenance intensive,
and were replaced in the later hulls of the class.

21 Ships and Aircraft of the United States Fleet, U.S. Naval Institute, Annapolis,
Maryland, 1993, p.2 12 .



Figure 4: MCM-1 Class Body Plan2
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Table 2: MCM-1 Class Hull Dimensions

Design Displacement 1312 Itons

Length Overall 224 ft

Length at Design Waterline 212 ft

Extreme Beam 39 ft

Design Draft 12.1 ft

Prismatic Coefficient (CP) 0.575

Maximum Midship Section Coefficient (Cx) 0.842

Wetted Surface Area

Water Plane Area Coefficient (C,) 0.755

The propulsion plant in the remainder of the ship class consists of four

turbocharged Isotta Fraschini diesel engines rated at 600 horsepower with two smaller

"2 MCM Countermeasures Ship (MCM) Preliminary Design Hull Form Development
Report (C), Naval Sea System Command report C-6136-78-31, Februaury, 1979, p. 4 1 (unclas).

'V
I i

I
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(200 horsepower) direct current electric light load propulsion motors (LLPMs). Under

normal steaming conditions, each shaft is driven by either one or two main propulsion

diesel engines through a flexible coupling, a pneumatically operated tube type friction

clutch and a single stage Philadelphia Gear reduction gear. The reduction gear ratio is

given by equation (1).

RPMDMSE
A - - 10.64 (1)

RPMz

For light load conditions (less than eight knots), and at times when the ship wants

to minimize waterborne noise, the reduction gears can be directly coupled to the light load

electric motors. Power for these motors is provided by the ship's magnetic minesweeping

gas turbine generator. Additionally, a 350 horsepower electrohydraulic bow thruster is

installed. Three Isotta Fraschini diesels are also employed as the electrical generator prime

movers. In this use, the engines run at a constant speed and are loaded lightly. Basic

engine parameters are provided in Table 3. Figure 5 is a right, front view of the engine.

Table 3: Isotta Fraschini Diesel Engine Parameters

Model Isotta Franchini ID 36 SS6 V-AM

Type Non-Reversing

Cycle Four Cycle, Turbocharged

Rated Load 600 hP

Rated RPM 1800 RPM

Bore and Stroke - inches 6.693" X 6.693"

Number of Cylinders 6

Piston Displacement 235 cubic inches

Engine RPM at Idle (Not Loaded) 795 RPM

Compression Ratio 13.2:1



Figure 5: Isotta Fraschini 36 556 V-AM, Right Front View23
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23 MCM-1 Class Ship's Information Book, Volume II, S9MCM-AC-SIB-020/MCM-3,
Naval Sea Systems Command, Washington D.C., p.4-3.



Two inboard turning, controllable pitch propellers complete the drive train. As in

any mechanical system, the connection of the various components is not accomplished

without friction losses. The mechanical efficiency (rlmEc) indicates the extent of these

losses by comparing the shaft horsepower (SHP) measured at the propeller to the brake

horsepower (BHP) measured at the engine output shaft. Equation (2) computes the

mechanical efficiency of the drive train for the MCM-1 Class.

SEP 1175
'icr B --- 0.979 (2)

BHP 1200

2.2 Ship Powering Curve

A ship's forward motion through the water is retarded by drag, which consists of

frictional and residual drag forces. The amount of frictional drag is primarily determined

by the wetted surface area of the hull. Air drag also is a part of the total frictional drag,

but its contribution is usually quite small for naval combatant vessels. The residual drag

forces consist of all forms of flow drag that are not residual. This includes wave-making

and eddy forming resistance.

The amount of drag which a hull form will experience is determined early in the

design process using numerical processes and model test results. This data is used to

adequately size the propulsion plant so as to enable the hull to meet the desired sustained

speed. After the ship is built, it is taken to sea and tested to determine the actual

performance of the propulsion plant and hull under realistic operating conditions. The

Propulsion Plant Standardization Trial is conducted on one ship of the class, and the class

wide powering curves are constructed from its data.

The Standardization Trial for the MCM-1 Class was conducted on 14 June, 1991

aboard MCM-8, USS SCOUT. Table 4 contains a summary of the results of these trials.

The testing was conducted at design displacement and draft; these conditions will be

assumed throughout the analysis.



Table 4: Standardization Trial Results24

Speed (knots) Shaft RPM Torque (Ibf-ft) Power (hP)

11.8 139.8 42933.3 1143.3

12.7 150.75 500050 1435

13.4 160.8 57500 1760

14.3 175.2 67800 2260

The data in Table 4 suggests the relation between speed and power for the

MCM-1 Class. Curve fitting the speed and shaft power data points provides the powering

curve given in Figure 6.

Figure 6: MCM-1 Class Powering Curve

0 5 10 15

Speed in knots

24 Klitsch, Michael and Liu, Wayne, USS SCOUT (MCM-8) Results of Standardization.
Locked and Trailed Shaft Trials, Carderock Division, Naval Surface Warfare Center,
CARDEROCKDIV-92/008, Bethesda, Maryland, May, 1992, pp.2 6.

25



The curve of Figure 6 represents two operating regimes. At speeds below 9 knots,

which corresponds to a speed/length ratio less than 0.6, frictional resistance dominates.

The power to overcome frictional resistance is a function of the ship's velocity squared and

in this case is governed by equation (3).

At speeds greater than 9 knots, residual resistance dominates and the associated

shaft horsepower per knot is a function of the ship's speed cubed. This relationship is

represented by equation (4).

Power - 4.07 * Speed 2 + 26.5 * Speed (3)

Power - 244.86 * Speed - 40.029 * Speed 2 . 2.449 * Speed 3 (4)

Equations (3) and (4) provide estimates of the required shaft horsepower

necessary for the ship to maintain a certain speed. These equations apply for every ship

of the class but gross errors can be introduced due to ship loading, hull fouling, machinery

degradation or adverse weather conditions.

2.3 Standard Bell Order Table

For most ship classes, the Standardization Trials also provide the class wide

relationship between shaft RPM, propeller pitch angle and ship's speed. The MCM-1

Class vessels, similar to many other naval ship classes with controllable pitch propellers,

maintain a constant shaft RPM at low ship speeds, controlling the developed shaft thrust

by adjusting the pitch on the propeller blades. Above a certain shaft power, the propeller

pitch is held constant and the ship's speed is raised by increasing the shaft, and engine,

RPM. The shaft power at which shaft RPM begins to increase at constant pitch (ramp-up)

can be programmed through electronics, which monitor engine torque and usually include

a feedback loop. An electronically predetermined throttle position corresponds to specific

engine RPM and propeller pitch settings, which can be correlated to ship's speed using the



powering relationships developed from the Standardization Trials. The final result is a

class wide standard bell order table which equates a specified bell order to an approximate

ship's speed by indicating propeller pitch and shaft RPM.

Currently, class wide standard bell orders are not specified for use by the MCM

Class ships. The primary reason lies with the relative newness the ship class. Unlike other

feedback systems for the electronic controls which measure shaft torque directly or engine

air box pressure, the MCM-1 controls receive feedback from secondary signals of

propeller pitch and shaft RPM. The original ramp-up control points for MCM-3 through

MCM-8 were found to cause an unacceptable engine acceleration rate when increasing the

propeller pitch from 80% to 100%. To reduce this acceleration rate and account for

changes in the LLPM motor controllers, the electronics were changed for MCM-9

through MCM-14. Plans are to retrofit the system changes to cover all ships of the class

with Isotta Fraschini engines installed. Future plans also include adjusting the ramp-up

controls feedback signal and relocating the measurement points to more accurate engine

indicators such as the air box pressure or improved shaft torsion meters2s".

The use of feedback signals originating from the propeller pitch and shaft RPM has

also raised concerns of possible engine over-torquing if class standard bell orders are

introduced prematurely26. Since the zero thrust pitch position for each ship of the class's

propellers is not the same value, the engine load corresponding to a predetermined signal

for maximum speed may call for an engine RPM and torque greater than the engine was

designed for. Until improvements to the MCM-1 Class machinery plant control system

are completed, each ship has been directed to conduct their own trials and develop

appropriate bell order tables for their own use.

The bell order tables for three recently built MCM-1 Class ships (USS ARDENT

25 Phone Conversation with Ray Conway, Naval Ship Systems Engineering Station
(NAVSSES), Philadelphia, PA dated 20 March, 1995.

26 Phone Conversation with Gary Carlson, Code 260, Supervisor of Shipbuilding,
Conversion and repair, USN (SUPSHIP) Sturgeon Bay, Sturgeon Bay, WI, on 21 Feb 1995.



MCM-12, USS GLADIATOR MCM-11 and USS WARRIOR MCM-13 ) were obtained

and compared. The table of the USS GLADIATOR was selected as the best

representation of propeller pitch/shaft RPM and ship's speed relationship for MCM-9

through MCM-14. It most closely matched the data points measured on MCM-8, USS

SCOUT, during Standardization Trials. The relationship changes with the number of

engines online. Figures 7 graphically depicts the linear relation between pitch/RPM and

ship's speed when operating in the forward direction.

The different ramp-up points for four verses two engine operations is obvious from

review of the Figure 7. This variation creates a different relationship between ship's speed

and pitch/RPM as the total number of engines online is changed. For two engines online

per shaft, equation (5) gives the ship speed equation for operation in the constant RPM

region where speed is determined by propeller pitch. Equation (6) gives the ship speed as

a function of RPM in the constant pitch region.

Figure 7: Ship Speed Ahead verses Shaft RPM and Pitch Angle
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Equations 5 and 6:

Two Engines Online Per Shaft:

Ship Speed - 11.7 . 4.6 * Speed - 1.28 * Speed 2 (5)

Ship Speed - 13.5 * Speed - 16.28 (6)

Equations (7) and (8) provide the same relations when only one engine is online per shaft.

One Engine Online Per Shaft:

Ship Speed - 11.5 * 3.55 * Speed + 1.38 * Speed 2 (7)

Ship Speed - 15.45 - Speed - 12.35 (8)

The resulting Standard Bell Order Table is included as Table 5 and is used

throughout this thesis when equating engine orders to ship's speed through the water. The

astern direction bells have not been included as this thesis concentrates on steady state

operation, and astern maneuvers are used only in transient operations.

In order to provide better control during tight maneuvering situations, such as

station keeping during mine-hunting operations, a non-standard nomenclature is used for

the bell orders. Only the MCM Class ships with the Isotta Fraschini main propulsion

diesel engines (MPDE) have a control system designed to respond to bell orders ranging

from one to ten. Increments as small as one tenth between these standard bells can be

ordered, although the norm is to adjust only to the closest half bell.



Table 5: Standard Bell Order Table

Bell Order Speed (knots) Engines/Shaft Shaft RPM Propeller Pitch

All Stop 0 1 or 2 79 12

1.0 1.4 1 79 21

1.0 1.85 2 79 29

2.0 3.8 1 79 44

2.0 3.7 2 79 46

3.0 5.1 1 79 61

3.0 5 2 79 65

4.0 7 1 96 74

4.0 7 2 80 110

5.0 8.4 1 117 74

5.0 8.4 2 96 110

6.0 9.8 1 137 74

6.0 9.8 2 112 110

7.0 11 1 158 74

7.0 10.7 2 129 110

8.0 11.5 1 168 74

8.0 12.1 2 146 110

9.0 13.1 2 162 110

10.0 14 2 173 110

2.4 MCM-1 Class Ship Operation

Unlike other ships in the U.S. Navy inventory, the MCM-1 Class vessels assigned

stateside do not deploy regularly. Rather, the crews of these ships are rotated to forward

deployed ships of the class. The primary purpose of the stateside ships are to serve as



replacement vessels and to serve as training platforms for rotating crews. The nature of

mine-hunting requires most training missions to be accomplished close to the shore, in

waters of depths less than 1000 feet. In this role, the majority of the stateside MCM

Class operations are conducted within fifty miles of land, in an operating area referred to

as GOMEX, which stands for the Gulf of Mexico Operating Area. GOMEX is land

bound, snuggly situated with the Texas coastline to the north and west, Mexico to the

South, and the Florida panhandle due east. The operating enviroment in GOMEX is

greatly effected by close land masses.

Even when transiting to other continental U.S. ports for training or liberty, the

short endurance of the ships precludes routing more than one day's travel distance from

land. Based on these established patterns, it is reasonable to assume that all MCM-1 Class

operations occur within 100 nautical miles of land. This proimity to land increases the

possibility that the exhaust emissions of the MCM- Class contribute to the polution

problems of coastal areas.

In the GOMEX operating area, the ship conducts a wide variety of crew training.

This may include engineering plant casualty, damage control, man overboard and ship

handling drills. These evolutions are conducted at a myriad of speeds and engine

alignments. Minehunting training can be either mine sweeping, which is conducted at a

singular slow speed or minehunting, which is conducted at slow speeds or at idle with

many speed changes. Infrequently, the Main Propulsion Diesel Engines (MPDEs) are

disengaged and the shafts are propelled by the LLPMs while conducting slow speed, quiet

mine hunting operations. In contrast, the ship operators prefer to transit at high speed,
which for this ship class approaches twelve to fourteen knots. Despite the relative

newness of the class, these operating patterns appear to be well developed.

The method by which the MCM-1 Class operating profile was established was

based on a similar analysis conducted on the LSD-41 Class Amphibious Ships by Markle

in 1994. A variety of operational logs were gathered, including the ship's Deck Log and

Engineering Log. The Deck Log is a legal document which records all significant events

in the course of a day. Underway, it is also the document used to record the time and



magnitude of all speed and course changes. The speed changes are given in terms of a bell

order, which equates to a predetermined propeller pitch angle, shaft RPM and ordered

speed. A sample Deck Log sheet is provided in Appendix A.

The Engineering Log records all pertinent information regarding plant status and

evolutions in the engineering spaces. The most important entries in this log for analyzing

the ship's operating profile is the starting, clutching, declutching and stopping of MPDEs.

A sample Engineering Log is also provided in Appendix A.

In order to develop an appropriate operating profile for the MCM-1 Class, copies

of these two logs from three of the fourteen ships were collected. The three ships selected

had recently completed similar operations, including GOMEX training operations, transit

to Panama City, Florida for advanced combat systems training, and additional transit to

support crew's liberty. Included in the six months reviewed are unequal portions in which

all engines were out of commission due to repair work. Table 6 presents a summary of

the operating time evaluated.

Table 6 : MCM-1 Class Ship Data Summary (time in hours)

USS ARDENT USS GLADIATOR USS WARRIOR

Hull Number MCM-12 MCM-11 MCM-13

Time Period (1994) 1 May - 31 Oct 1 May - 31 Oct 1 May - 31 Oct

Data Points 4926 6330 3757

Time Covered 211318 221760 161640

Time Secured 191321 187603 139130

Time Running 19997 34157 22510

Time Declutched 623 1830 965

(Cool Down)

Time @ Idle 2974 2155 1022

Time @ Power 16400 30172 20523

Table 6 implies that the MPDEs are operated a low percentage of the total time



analyzed. This is a reflection of the low availability of the MCM-1 Class equipment

(including the Isotta Fraschini Engines) and the modest range of the vessels. Most

GOMEX maneuvers are conducted in a single day, with a return to port at the

conclusion. It is not anticipated that these patterns will change significantly as the class

matures.

The method of forming the operating profile closely follows that used by Markle.

The Engineering Logs and Deck Logs were used to determine the amount of time each

engine was online at specific speed and power combinations. Figure 8 recreates a flow

chart of the logic used in the analysis. The composite operating profile for all three ships

is included in Table 7.

Table 7: MCM-1 Class Composite Operating Profile Time Factors

Ship Speed (knots) One Engine/Shaft Two Engines/Shaft Total

Idle * * 0.114

1 0.002 0.002 0.004

2 0.005 0.008 0.013

3 0.002 0.006 0.008

4 0.01 0.011 0.012

5 0.019 0.012 0.031

6 0.009 0.004 0.013

7 0.034 0.017 0.051

8 0.05 0.01 0.060

9 0.018 0.002 0.020

10 0.053 0.283 0.336

11 0.089 0.075 0.164

12 0.04 0.005 0.045

13 0.094 0.094

14 0.023 0.023



Figure 8: Operating Profile Analysis Flow Chart
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Figure 9 presents the data of Table 7 in an easily viewed format. Review of the

figure implies that the MCM-1 Class ships operate primarily at the higher speed ranges

and at idle. The idle time factor also includes time the engines spent at cool-down and

declutched. Although there was no requirement for a significant warm-up period prior to

clutching in the Isotta Franchini engines, standard operating procedure does include a five

minute cool-down period. The idle time factor was defined to include all intervals in

which the engine was operated declutched for cool-down or drills and intervals in which

the ship was making no headway, but the engines were online. The difference in engine

load for these conditions is insignificant. There is also a significant spike at ten knots, a

preferred speed for transit operations.

Figure 9: MCM-1 Class Composite Operating Profile
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Figure 9 can be contrasted to Figure 1027, which is recreated from

Markle. Figure 10 is the composite operating profile for the LSD-41 Class Amphibious

Vessel. The ships are powered by Colt-Pielstick PC2.5-V16 engines, a medium speed

diesel. The profile for operation of the amphibious ship indicates greater time factors for

the slower speeds of five and ten knots and a spread centering on seventeen knots to

27 Markle, p.83.



represent transit operations. The notable difference in the operating profile between the

two ship classes implies that the ship's mission has a significant impact on the duty cycle

and should be the primary factor on which the duty cycle is based.

Figure 10:
A A

LSD-41 Class Composite Speed Operating Profile
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Figure 11 demonstrates the variation in how each of the MCM-1 Class ships

considered in the analysis were actually operated. The variation at low speeds is minimal,

with significant deviations beginning at a speed of approximately six knots. This variation

reflects the influence of operator preference in developing a class wide operating profile.

The large spike at approximately 7.5 knots for the USS GLADIATOR was created when

the ship was tasked with additional transit operations beyond those assigned to the other

two ships analyzed. This was an isolated event which had little impact on the class wide

operating profile.

Operating logs from one ship were analyzed to predict the SSDG operating profile.

Table 8 provides a summary and Figure 12 presents the data graphically. The operation of

the MCM-1 Class SSDGs is concentrated around the 50 percent load point. This pattern

matches that observed in Markle for the SSDGs aboard the LSD-41 Class Amphibious

Ships. The parallel results for ship classes with radically different missions can be

attributed to U.S. Navy standard operating procedures. Navy ships are required to keep

additional generators online over what is required by the electrical load in the event of a

casualty. If one generator is lost, there must be sufficient capacity remaining to continue

to provide the vessel adequate electrical power for operation. This requirement is

common for all naval ships, and explains the similar SSDG operating profile for both the

MCM- 1 and LSD-41 Classes.



Table 8: SSDG Engine Operating Profile Time Factors

Engine Speed Engine Load Time Factor

(% of Rated) (% of Rated)

1.0 0.0 0.05

1.0 0.25 0.04

1.0 0.30 0.19

1.0 0.35 0.18

1.0 0.40 0.16

1.0 0.45 0.17

1.0 0.50 0.11

1.0 0.55 0.07

1.0 0.60 0.02

1.0 0.65 0.01

Figure 12: MCM-1 Class SSDG Operating Profile
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Chapter 3: MCM-I Class Duty Cycle and Comparison

3.1 MCM-1 Class Duty Cycles

In Chapter Three of his 1994 thesis, Markle describes the development of duty

cycles for generic application to land based diesel powered systems. In all of these

systems, the useful power out of the diesel engine is countered by static and rolling friction

forces. The relationship between these forces, vehicle size (weight) and engine loading

results in a fairly constant percent plant output for a given vehicle speed. This

consistency, despite differences in manufacturers or vehicle size, allows accurate modeling

of most engines' operations using generic duty cycles.

Markle then compares engine horsepower normalized by vehicle weight (or ship

displacement) against weight or displacement in an effort to reveal the wide variability in

ship displacements and power requirements. For naval ships, this variability has two

causes: 1) the engines are sized to provide a "burst speed" capability, and 2) the

underwater hull form of ships with similar displacements can be radically different,

creating varying powering relationships for each hull. A generic duty cycle for marine

vessels would be inadequate for modeling all ships because of this unique resistance

relationship. The class specific duty cycle must be generated based on the time factor,

engine power and speeds of the class wide speed operating profile.

Previously, the operating profile for the MCM-1 Class was developed from a

review of actual ship operating logs. The composite operating profile can be combined

with ship specific propulsion train and powering information as indicated in Figure 13 to

determine the MCM-1 Class duty cycle. The MPDE duty cycle presented in Table 9 was

created using the method charted in Figure 13 and by combining engine speed and power

ranges about the most heavily weighted operating points. As the ship can be operated

with either one or two engines per shaft, the duty cycle contains representations of both

alignments.

The MCM-1 Class duty cycle contains significantly more data points than duty

cycles created to model commercial ship operations which were introduced in Chapter



One. The additional data points are necessary to model the wider variation in operating

speeds experienced by a Naval ship. The MCM-1 Class operating profile displays a bias

toward high speed transit versus slower speed maneuvers. Despite this pattern, sufficient

slow speed operating points must be included in a duty cycle to project an image of all

types of maneuvers.

Figure 13: Naval Ship Duty Cycle Analysis Flow Chart20

20 Markle, p.81.



Table 9: MCM-1 Class MPDE Duty Cycle

Mode Ship Speed Engines/Shaft Engine Speed Engine Power Time

(knots) (% of Rated) (% of Rated) Factor

1 0 0 0.44172 0 0.123

2 3.7 2 0.44712 0.100 0.0129

3 3.8 1 0.44172 0.205 0.0310

4 7 1 0.536 0.328 0.0466

5 7 2 0.44172 0.164 0.0184

6 8.4 1 0.657 0.434 0.0537

7 9.8 1 0.778 0.732 0.0728

8 10.3 2 0.685 0.401 0.305

9 11.3 2 0.772 0.518 0.081

10 11.6 1 0.881 1.00 0.130

11 12.6 2 0.863 0.693 0.101

12 13.9 2 0.935 0.877 0.025

The MCM-1 MPDE Class duty cycle is plotted along with the other duty cycles

introduced in Chapter One as functions of engine RPM and load (Figure 14). The

MCM- 1 Class duty cycle has a greater number of operating points and more closely

matches a representative plot of a propeller curve for controllable pitch propellers.

The duty cycle for the SSDG prime movers is developed in a similar fashion. The

typical underway electrical load is 360 kW, usually split between two generators for safety

through redundancy. The rated electrical load for one generator is 375 kW, which

accounts for losses incurred converting mechanical energy to electrical energy. At anchor,

the load on each generator decreases to approximately 25% of the rated engine power.

The MCM-1 Class SSDG duty cycle is presented in Table 10.



Figure 14: Duty Cycle Engine Speed and Power Points
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Table 10: MCM-1 Class SSDG Duty Cycle

Mode Engine Speed Engine Load Time

(% of Rated) (% of Rated) Factor

1 1.0 0 0.07

2 1.0 0.3 0.21

3 1.0 0.35 0.21

4 1.0 0.4 0.19

5 1.0 0.45 0.20

6 1.0 0.5 0.12
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This duty cycle varies slightly from that derived for the LSD-41 Class Amphibious

Ship, with the MCM-1 Class SSDGs tending to be more lightly loaded. It is also similar

enough to the proposed ISO 8178 D2 duty cycle that this testing procedure could be used

with minor adjustments.
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3.2 MPDE Duty Cycle Comparisons

In order to validate the MCM-1 Class duty cycles, estimates of the composite duty

cycle pollutant levels were compared to estimates developed from the composite operating

profile. As of April 1995, an emissions map for the Isotta Fraschini diesel engine has not

been released to the public. Therefore, an emissions contour plot for a similar sized

engine was used to compare the accuracy of the duty cycles in modeling actual

MCM-1 Class operations. The contour plots were developed from bench testing of a

Pielstick PA4-200-VGA diesel engine. The rated speed of the engine was slightly less

than the Isotta Fraschini (1500 versus 1800 RPM) and the rated power per cylinder was

slightly greater (123 bhp/cylinder versus 100 bhp/cylinder). Copies of the gaseous

emissions contour plots were found in the August, 1992 edition of Motor Ship2" and are

plotted as a function of engine speed and power. The curves are normalized to rated

power and speed and recreated in Appendix B. They are also reproduced as Figures 15 to

17. Equations (9 ) and (10 ) were used in normalizing the speed and engine power.

Power Aro PoePO (9)Power Rawr

RPM Po - RPM M (10

RPM Rod - RPM (0

The MCM-1 Class operating profile power fraction and RPM factor data points

for both one and two engines per shaft alignments are superimposed on each of the three

normalized contour plots. Additionally, the operating points for each duty cycle are also

imposed. These plots are contained in Appendix C. The pollutant values for each plotted

operating point (power fraction and RPM factor) are linearly interpolated, multiplied by

the respective time factor and summed to establish the emission amount in g/bhp-hr for the

class operating profile and each duty cycle.

28 "Designers Anticipate Engine Emission Controls", Motor Ship, August, 1992, p.28.



Figure 15: Pielstick PA4-200-VGA NO, Emission Contour Map (g/kW-hr)
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Figure 16: Pielstick PA4-200-VGA CO Emission Contour Map (g/kW-hr)
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Figure 17: Pielstick PA4-200-VGA Gaseous HC Emission Contour Map (g/kW-hr)

The calculation of the weighted average emission sum is performed using equation

(11)29. The power and time factor for each operating point are determined by the duty

cycle, and the pollutant value is picked off the emission contour maps at each operating

point. These results are summarized in Table 11 and all supporting calculations are

included as Appendix C.

Weighted Average -
E" Pollutant Value i (glhr) .wi

E" BRP? *w i

where n is the number of operating points in the duty cycle and w is the weighted time

factor.

29 ISO 8178, Part 2, Reciprocating Internal Combustion Engines- At site Measurement of
Gaseous and Particulate Exhaust Emissions, October, 1992, p. 13 .
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Table 11: MPDE Duty Cycle Emission Prediction Summary

NOx (g/bhp-hr) CO (g/bhp-hr) HC (g/bhp-hr)

MCM-1 Operating Profile 6.62 3.63 0.46

MCM-1 Duty Cycle 6.56 4.14 0.43

ISO E3 Duty Cycle 8.06 1.68 0.14

ISO E5 Duty Cycle 7.94 2.49 0.14

ICOMIA 36-88 Duty Cycle 7.36 2.96 0.16

CARB 8-Mode Duty Cycle 9.13 1.30 0.14

The values in Table 11 are not emissions estimates for the Isotta Fraschini engine.

The emission contour plots onto which the propeller curve and duty cycles were

superimposed were not developed from Isotta Fraschini tests, but for a similar high speed

diesel engine (Pielstick PA4-200-VGA). As the actual contour plots for the Isotta

Fraschini engine are not available, the Colt-Pielstick engine's emissions are substituted so

that the accuracy of each duty cycle as a model could be determined from comparison to

the cumulative, weighted emissions of the operating profile described in Chapter Two. To

ease the comparison, the predicted emissions from each duty cycle and the operating

profile are plotted simultaneously in Figures 18 through 20.



Figure 18: MPDE NOx Prediction Comparison (g/bhp-hr)
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Figure 19: MPDE CO Prediction Comparison (g/bhp-hr)
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Figure 20: MPDE Gaseous HC Prediction Comparison (g/bhp-hr)
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The emissions from the MCM-1 MPDE Duty Cycle provide the closest

comparison to those predicted from overlaying the MCM-1 Class MPDE operating profile

onto the Pielstick PA4-200-VGA emissions contour maps. The NOx figure is within two

percent, the HC prediction is just over five percent higher and the CO figure has the

greatest error at 15 percent. None of the generic ISO duty cycles could match this

performance in modeling of the actual ship operations.

3.3 SSDG Duty Cycle Comparisons

This same procedure for predicting and comparing the specific emissions of

appropriate duty cycles against the predicted emissions of the engine operating profile was

repeated for the Isotta Fraschini engine used as a generator prime mover. Summary

emissions for the duty cycles appears in Table 12.

Table 12: SSDG Duty Cycle Emission Prediction Summary

NOx (g/bhp-hr) CO (g/bhp-hr) HC (g/bhp-hr)

SSDG Operating Points 9.02 2.52 0.22

SSDG Duty Cycle 8.86 2.64 0.22

ISO C1 8.38 3.04 0.23

ISO D2 9.76 2.33 0.23

Figures 21 through 23 indicate the ISO Cl and D2 Duty Cycles are inappropriate
for modeling of the MCM-1 Class SSDG. The C 1 Duty Cycle has been recommended by
the EPA for use in qualification testing of marine auxiliary diesel engines 30. It is not a
constant speed cycle. The ISO D2 Duty Cycle has also been considered by the EPA for
use in testing engines destined for marine auxiliary uses and it is a constant speed test

cycle. The emission predictions of neither duty cycle adequately matched those of the
operating profile.

The best approximation to the SSDG operating profile (Table 8) is provided by the

30 Fed Reg, Vol. 59, p.55940.



SSDG Duty Cycle (Table 10). The maximum errors compared to the emission

predictions of the MCM-1 Class SSDG operating profile are as follows: NO,, 2%; CO,

5%; and gaseous HC, 1%.

Figure 21: SSDG NO, Prediction Comparison (g/bhp-hr)
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Figure 22: SSDG CO Prediction Comparison (g/bhp-hr)
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Figure 23: SSDG Gaseous HC Prediction Comparison (g/bhp-hr)
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3.4 Duty Cycle Conclusions

The predicted emissions of the MCM-1 Class MPDE operating profile were best

estimated by the MCM-1 MPDE Duty Cycle. While this duty cycle best matched the

operating profile data, the amount of effort necessary to develop the MPDE duty cycle

from review of operating logs was extensive. The LSD-41 results, using the same analysis

method, also found that the generic duty cycles were not accurate enough when modeling

naval ship operations3 1. Based on the both the LSD-41 and MCM-1 Class analyses, it

appears that the additional effort to create a class specific duty cycle is warranted.

A procedure for Naval engine emission certification was proposed in Markle.

Candidate diesel engines would first pass the Navy Endurance Test, demonstrating the

engine's ruggedness and ability to withstand demanding naval applications. Emissions

measured during this 1000 hour test would be monitored for compliance with existing

regulations. Once certified, the engine becomes available for use in a new or existing

naval ship design.

During the ship design process, the candidate engine may be selected. The ship's

resistance can be predicted from aspects of the hull form and a preliminary powering curve

produced. Using the procedure of Figure 13, the resistance data based on the hull form

can be transformed to appropriate engine speed and load data points. The time weighting

of these data points is based on the ship's operating profile, if known, or predicted from

the operating profile of naval ship classes with the same primary mission. The candidate

diesel engine is re-tested using the recently developed duty cycle and emissions are

measured following ISO guidelines. The resulting emissions profile can then be included

in the Program Manager's Environmental Impact Statement and compared to federal and

local regulations to determine compliance.

As of April 1995, two U.S. Navy ship classes which are powered by diesel

engines have been studied and a rough operating profile developed. The LSD-41 Class

Amphibious Ship, powered by medium speed diesel engines, was successfully modeled by

31 Markle, p. 101.



Markle. The MCM-1 Class Mine Countermeasures Ship, with her high speed diesel

engines, was modeled in this report. Both efforts used the same time-intensive procedure

of extracting operating information from ship's logs. The determination of a Naval ship

class's operating profile could be improved through the use of automatic data collection

systems which would tap existing control and reporting electronics. Data gathered in this

fashion would be accurate, non-intrusive and available in a format easy to compile. The

operating profiles could be compared to existing the generic duty cycles required by

regulation to determine if these cycles are adequate for modeling of a naval ship class

performing the same mission. If the generic test cycle is found inadequate (an anticipated

result), the Navy should propose an appropriate test cycle derived from the operating

profile for application to all ship classes with the same mission.



Chapter 4: Experimental Set-Up

4.1 Discussion of Previous Work

Environmental and maritime agencies which are being pressed to regulate marine

diesel exhaust emissions are disadvantaged by a lack of an adequate data base in this area.

The effects of the sea environment, the impact of unique exhaust system features due to

the ship's geometry, and appropriate engine test cycles are still topics for discussion and

further research.

Lloyd's Register Engineering Services, a division of Lloyd's Register of Shipping,

has undertaken an effort to quantify marine pollution contributions in both transient and

steady-state operations through seaborne testing31 . It was their goal to evaluate exhaust

emissions from a broad cross-section of the world fleet in order to provide a realistic

assessment of the nature and magnitude of the marine pollution contributions. The data

base would then be used by regulatory bodies to develop realistic emissions factors and

encourage discussions regarding the best methods of emission reduction and control.

Their steady-state testing was conducted on numerous commercial ships during normal

operations. The hulls were selected to cover a broad range of ship types and included

such vastly different vessels as bulk carriers, ferries, tankers and tugs. Emissions of NOx,

SO2 CO, CO, C 2, 02 and hydrocarbons were collected for five operating conditions covering

a range from idling to full power. No particulate emissions were gathered due to the

expense associated with the collection procedure. In addition to exhaust measurements

from the top of the stack, Lloyd's also collected the ship's heading, speed, shaft load and

local weather conditions. Their method of measuring, while not intrusive with regard to

the ship's mission, required great amounts of space in the area of the stacks since full sized

NDIR (Non Dispersive Infra Red) analyzers were used.

Their trends for CO matched the literature32,33. The CO mass specific values were

31 Lloyd's Register Engineering Services, pg. 1-8.

32 Heywood, p 592.



uniformly low for all engines except at light load conditions. Figure 24 presents the

measured CO in units of Kg/tonne of fuel plotted against engine load reported as

percentage of the maximum continuous rating (MCR). The plots are for numerous types

of ships propelled by diesel engines and are grouped by the range of the engine's maximum

MCR rating. The mean mass specific emissions for 25%, 50% and 85% MCR are

indicated by dots in the graphs.

Figure 24: Lloyd's Register CO Results34
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The mass specific emissions of NOx did not behave in a well defined trend. As can

be seen in Figure 25, there was no discernable pattern of NOx concentration as a function

of load. The most important factors associated with NOx appeared to be the engine design

and engine age, as opposed to mode of operation or engine load 5.

Figure 25: Lloyd's Register NO, Results36
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Shipboard testing of marine diesels continues in the U.S. under the sponsorship of

the U.S. Coast Guard. This is in response to the need to develop a methodology for

accurately determining engine emissions in order to assess the impact of emissions

reduction techniques. Their approach slightly differs from that of Lloyd's Register. The

Coast Guard used a duty cycle based on a survey of PT boat operators and measured the

emissions with more flexible and smaller portable emission analyzers (the small size of the

Coast Guard platforms precluded use of multiple, firmly installed analysis equipment).

The use of the portable analyzers allowed the emissions to be measured at the exit of the

turbocharger vice at the exit of the stack, precluding the need for heated sampling lines.

The Coast Guard program is ongoing. To date, the only published results are

based on the testing of three Coast Guard PT cutters"3 . Their measured NOx volume

concentrations increase with engine load, in agreement with Heywood. Figure 26 shows

their raw NOx test results along with a CARB normalization curve which must be applied

to the raw data. The CARB correction factor adjusts the raw data to provide NO,
concentrations referenced to 15% excess oxygen in the exhaust. This method of

normalization has been found by the U.S. Coast Guard to over estimate exhaust emissions

and will not be used for comparison purposes in this thesis.

The testing of an LSD-41 Class Amphibious Vessel is the first accomplished on a

large, public sector marine vehicle in the United States. It has provided the Coast Guard

an opportunity to validate their procedures with a greater tonnage ship than is available in

their inventory and adds to the growing data base of at-sea engine emissions

measurements.

37 Bentz, Alan P. and Weaver, Elizabeth, Marine Diesel Exhaust Emissions Measured by
Portable Instruments, SAE 941784, Sept, 1994, pg. 1-5.
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Figure 26: Coast Guard PT Cutter NO, Data
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In his 1994 thesis, Markle validated the LSD-41 Class operating profile using the

emission contour maps of the Colt-Pielstick PC4.2B engine. The emission contour plots

for the Colt-Pielstick PC2.5V16 diesel installed on the ships of the class are not publicly

available. Both models of engines, the Colt-Pielstick PC4.2B and PC2.5 are medium

speed, marine engines manufactured by the same company. Table 13 compares the two

engines with regard to a number of features. The PC4.2B is a much larger engine,

approaching the size of many slow speed diesels. The predicted PC4.2B emissions,

determined through use of the LSD-41 Class duty cycle, will be used as a benchmark

when compared to measured emissions from a PC2.5V16 diesel engine operating at sea on

a LSD-41 Class ship. This is the best benchmark available for the PC2.5V16 engine.



Table 13: Comparison of Colt-Pielstick PC4.2B and PC2.5V16 Diesel Engines3'

Parameter PC4.2B PC2.5V

Rated Power per Cylinder 1630 bhP 530 bhP

Rated RPM 400 RPM 520 RPM

Volume Displaced per Cylinder 9654 cubic inches 3527 cubic inches

BMEP (rated) 334 psi 280 psi

Combustion Chamber Volume 894 cubic inches 336 cubic inches

Compression Ratio 11.8:1 11.5:1

Maximum Firing Pressure 2100 psi 1800 psi

Turbocharged? Yes Yes

Intercooled? Yes Yes

Fuel Injected (Advanced) 130 BTDC 120 BTDC

Number of Strokes 4 4

Intake Air Flow Rate (rated) 67500 SCFM 26520 SCFM

Cylinder Head Shape Octagonal Octagonal

Markle used the PC4.2B emission contour plots with generic test cycles and the

test cycle he developed from the LSD-41 Class operating profile to estimate specific

pollutant emissions. Not surprisingly, the developed duty cycle best matched the

emissions calculated from the LSD-41 operating profile. His results are recreated as Table

14. These results will be compared to those measured during seaborne testing in an effort

to provide information to support the adequacy of estimating the PC2.5 engine's emissions

using the PC4.2 contour maps..

"8 Interview with Angelo Mazzenga, Coltec Ind., conducted via telephone on 28 April,
1995.



Table 14: LSD 41 Class Emission Predictions (g/bhp-hr)39

Prediction Method NOX CO HC CO,

Propeller Curve 8.5 1.5 0.6 475

Duty Cycle 8.3 1.5 0.7 483

4.2 Experimental Goals

The goal of the experiment was to determine the NOx and CO specific emissions

for comparison to known trends and proposed regulatory limitations. The testing was

conducted in accordance with ISO 8178 Part 1 and 2 using operating points

corresponding to the duty cycle developed in Markle for the LSD-41 Class Amphibious

Ships.

Summarized, the ISO 8178 procedures specify the measurement and evaluation

methods for gaseous and particulate exhaust emissions for diesel engines. Part 1 of the

document pertains to steady state measurements conducted on a test bed. Part 2 adopts

the procedures introduced in Part 1 for site measurement, including diesels operating on

ships at sea. Its purpose is to provide a map of an engine's emissions characteristics.

The use of the relaxed standards of ISO 8178 Part 2 can only be justified in the

following cases: 1) when test bed measurements are inappropriate because site conditions

cannot be duplicated; 2) when measurement at site is necessary to evaluate actual

pollution; 3) when all parties involved agree to site measurement; and 4) if site

measurements are being used to check the conformity of used or rebuilt engines to new

engine standards. The use of the relaxed ISO 8178 Part 2 procedures for measurement of

the LSD-41 Class emissions described in this report are justified by Case 2 above.

The ISO 8178 does not specify equipment to be used in gathering data or locations

in the machinery plant at which measurements are to be taken, but it does provide

accuracy requirements and guidelines. The accuracy of all measuring instruments should

39 Markle, p.95.



at least meet the maximum tolerance values listed in Table D-1 of Appendix D.

The emissions can be collected in two fashions: the constant volume or the diluted

raw stream method. The raw stream method, which is used in most portable emissions

analyzers, involves drawing a representative sample from the exhaust flow, adding small

amounts of ambient air, and analyzing its contents for volumetric exhaust concentrations.

While specific analysis instrumentation are proscribed in the ISO procedures, other

systems and analyzers are acceptable if it can be proven that they yield equivalent results.

The ISO 8178 also provides guidance regarding the processing of raw data. All

emission analysis methods provide the exhaust concentration as a mole concentration in

units of parts per million (ppm) or volume percentage. These measurements have to be

converted to a mass basis and then modified to a specific emission using the engine power

(units of g/kW-hr or g/bhp-hr). The required data for this calculation are the molecular

density of the pollutant, the volume concentration of the pollutant and the mass flow rate

of the exhaust stream.

ISO 8178 accepts four procedures for determination of the exhaust flow rate:

direct measurement of the exhaust flow, measurement of the air and fuel flows, use of a

full flow dilution system, or a theoretical calculation based on a carbon or oxygen balance.

The equipment necessary to conduct an experiment is primarily driven by the selection of

one of the four methods for determining exhaust flow rate. Due to the inability of the

selected portable emissions analyzer to assess C02 and gaseous hydrocarbon

concentrations, the carbon or oxygen balance approach could not be used. Direct

measurement of the exhaust flow was eliminated due to the high exhaust temperatures

expected and restrictions on intrusions into the existing machinery and piping. A full flow

dilution unit requires large amounts of space and also would have created unnecessary

intrusions. With three of the four methods to measure the exhaust flow eliminated,
equipment to measure the fuel and air flow rates was included in the experimental set-up.

A detailed description of the equipment used in the experiment is provided as

Appendix D. In summary, it consists of five functional groups: 1)in-line flow meters on
the fuel supply and returns for each engine to measure volumetric fuel flow; 2) in-line pitot



tubes in the intake air piping to measure differential pressure and volumetric air flow; 3) a

manometer and thermocouple in the vicinity of the pitot tube to calculate intake air

density; 4) ECOM portable emissions analyzers for each exhaust stack, and 5) an

automated data collection system for recording all of the above signals as well as engine

RPM and shaft torque (based on signals from the ship's machinery control system).

Additional equipment was supplied by the ship in the form of a barometer and

psychrometer on the ship's bridge. This information was used to predict the water content

of the incoming air. Although water flow rate is small when compared to the air and fuel

mass flow rates, completeness required that it be included.

The ISO 8178 also requires the recording of information which is not used in the

emission level calculations, but is important in relating the conditions under which the

engine was tested. These include sea conditions, fuel rack readings, days since last hull

cleaning, etc. This supporting information is included in Appendix D.

4.3 Experimental Constraints

The two primary constraints on the design of the experiment were time and the

ship's operational requirements. Despite early efforts to acquire a dedicated test platform,

the experiment was conducted on a platform of opportunity, the USS ASHLAND

(LSD-48). The available window corresponded with the ship's sea trial scheduled upon

completion of a shipyard repair period and was much earlier than the test team had

anticipated. This required substituting similar, less capable equipment available for direct

shipment for long lead time units. The impact this had on the quality of the results was

small with the exception of one system, the intake air pressure. This issue is discussed in

greater detail in the trip report included as Appendix F.

The most demanding constraint was the need to minimize interference with the

ship's existing systems and the impact of the emissions testing on the events of the sea

trial. The solution to these two problems will be described separately.

Due to limitations in the amount of testing equipment on hand and the number of

test personnel available, a decision was made to test only two of the ship's four MPDEs.



The selected engines were lA and IB, both located in Main Machinery Room #1 and

attached to the starboard shaft.

In order to minimize interference with ship machinery, instrumentation used

during the ship's Acceptance Trials and Fuel Consumption trials was used whenever

possible. The ship was designed and built to support measurement of main engine fuel

consumption and remote monitoring of shaft torque and engine RPM. Flanged spools in

the fuel lines were removed for installation of the turbine fuel flow meters, and the

electronics for the other measurements were tapped directly into the control console in the

main control room. There was a concern that the installed torsionmeter was inadequate

for the accuracy requirements dictated in ISO 8178, so manual recording of the propeller

pitch angle and shaft RPM was added as a secondary approach for computing the engine's

load.

An existing manometer connection on the exhaust piping just aft of the

turbocharger exit was used as the entry point for the portable emissions analyzer probe. A

valve was screwed into the NPT fitting to secure the probe in place during operations and

block the escape of emissions into the space whenever the probe was required to be

removed. After consulting with test engineers at Coltec, Inc., it was determined that the

maximum exhaust temperature at this station would be 800' Fahrenheit, a temperature

sufficiently low to preclude damage to the portable analyzer probe but adequate for ISO
8178 test requirements. The location of the fitting was sufficiently remote to preclude any

interference with the crew's normal operation of the engines.

The need to measure the mass air flow presented a more difficult problem. The
large dimensions of the intake air piping impeded installation of a hood section containing

a flow turbine, which is the preferred approach of the Coast Guard R&D Center. A pitot
tube was selected for installation in the vertical run of the intake piping located in the
uptake room. Figure 27 is a sketch of this piping, indicating the lengths of pipe run
available. To ensure fully developed turbulent air flow in the pipe, the straight distance
below and above the installation point had to be a minimum of 1.5 times the diameter of
the pipe. The intake piping was a non-standard size, consisting of rolled 0.12 inch thick



stainless steel pipe with a diameter of approximately 38 inches. The lower run, below the

intake silencer, was selected as the best site for installation of the pitot tube.

Figure 27: Sketch of Intake Air Piping in Uptake Room
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Because of the inclusion of the filters and intake silencers in the combustion air

intake piping, the density of the air in the vicinity of the pitot tube was also required to be

measured in order for the mass flow rate of the intake air to be computed. An additional

boss fitting was added to support a manometer and thermocouple probe.

The position of the uptake room, in which the vertical run of pipe sketched in

Figure 27 was located, is above and aft of Main Machinery Room #1. Access to this

space is denied during engine operation since the exhaust piping also is routed through the

space. This additional constraint, inaccessibility to the equipment during engine operation,

prompted the team to record all of these signals remotely.



All details regarding the equipment installed are included as Appendix D.

The test procedures for the USS ASHLAND trials are detailed in the Shipboard

Main Propulsion Diesel Emission Test Aboard U.S. Navy LSD-41 Class Amphibious

Ships Test Plan, Appendix E. The test was planned to be conducted in calm, deep water.

"Deep water" is a term which is a function of the vessel's maximum cross-sectional area or

maximum speed. The minimum water depth for negligible wave making and residual

resistance can be calculated using equation (12) or (13)40,41:

Depth (ft) - (Maimum Speed (ft/sec))2  (12)
0.10 * gravity

or

Depth (f) - 3 * Cross Sectional Area (ft2) (13)

The result with the greatest depth is used. The minimum depth for testing is 236.4 feet or

approximately 34 fathoms. The supporting calculations are included in Appendix E. The

weather conditions are considered calm if the significant wave height is less than 2 feet and

the wind speed is less than 15 knots.

Numerous test blocks including multiple speed changes were designated. Separate

blocks were designed for each shaft configuration, one or two engines per shaft. The

speeds were based on the duty cycle developed by Markle and are listed in Table 14.

Each block consist of five to seven runs, each run at a specified operating point.

The order of the speed changes in each block were randomized to minimize the effect of

non-measurable external factors on the results. Tables 15 and 16 list the blocks for each

shaft configuration.

Blocks I through 3 were scheduled to be conducted during the midwatch (hours

40 Conversation with Douglas Griggs, Naval Surface Warfare Center, Carderock Division,
initiated on 15 February, 1995.

41 Principles of Naval Architecture Volume II, Society of Naval Architects and Marine
Engineers, 1988, pp.42-50.



between midnight and 0600) on 15 February, 1995. The need to control the ship's speed

and heading precluded simultaneous testing with any of the ASHLAND's other sea trial

requirements. It was felt that the midwatch would offer the longest, uninterrupted stretch

of time which could be made available for the experiment without negatively impacting the

length of the sea trial period. Blocks 4 through 6, with two engines per shaft, were

scheduled for the same time period on 16 February, 1995.

Table 15: List of Operating Points (Converted to Speeds)

Mode Ship Speed Engines Propeller Shaft Time

(knots) per Shaft Pitch % RPM Factor

1 0 0 0 64 0.083

2 5 1 52 64 0.064

3 5 2 52 64 0.128

4 10 1 100 66 0.077

5 10 2 100 66 0.141

6 15 1 100 102 0.051

7 15 2 100 102 0.109

8 17 1 100 116 0.040

9 17 2 100 116 0.16

10 20 2 100 138 0.093

11 24 2 100 165 0.054



Table 16: Run Sequence (Single Engine Per Shaft)

Block # Run Name Ship Speed Propeller Shaft RPM

(knots) Pitch %

1 1-1-X 10 100 66

1-2-X 17 100 116

1-3-X 15 100 102

1-4-X 5 52 64

1-5-X IDLE 0 64

2 2-1-X 15 100 102

2-2-X 10 100 66

2-3-X IDLE 0 64

2-4-X 5 52 64

2-5-X 17 100 116

3 3-1-X IDLE 0 64

3-2-X 5 52 64

3-3-X 15 100 102

3-4-X 10 100 66

3-5-X 17 100 116



Table 17: Run Sequence (Two Engines Per Shaft)

Block # Run Name Ship Speed Propeller Shaft RPM

(knots) Pitch %

4 4-1-X IDLE 0 64

4-2-X 15 100 102

4-3-X 17 100 116

4-4-X 10 100 66

4-5-X 20 100 138

4-6-X 24 100 165

4-7-X 5 52 64

5 5-1-X 100 165

5-2-X 20 100 138

5-3-X 10 100 66

5-4-X 5 52 64

5-5-X 15 100 102

5-6-X IDLE 0 64

5-7-X 17 100 116

6 6-1-X 15 100 102

6-2-X 5 52 64

6-3-X IDLE 0 64

6-4-X 20 100 138

6-5-X 10 100 66

6-6-X 17 100 116

6-7-X 24 100 165

Note: X represents MPDE lA or IB.



All test runs within a block follow the same pattern for each operating point

defined by an engine torque and engine speed. The run cycle begins with acceleration or

deceleration from the previous speed to the test speed required for the current run. Once

the engine was nearly stabilized (as determined by a constant exhaust temperature reading

from the exhaust monitoring equipment), exhaust readings were taken every minute for a

minimum of five minutes. During this interval, the ship maintained steady course and

speed and limited rudder angles to less than ten degrees. At the end of the data collection,

the ship was signalled to proceed to the next speed in the sequence.

The machinery plant control system allows the propeller pitch and shaft RPM to be

controlled locally in Main Control or remotely in the pilot house. During normal

operation, the control would be resident on the bridge and the throttleman would

constantly adjust the throttle position in an attempt to maintain speed as reported by the

"dummy log" (a constantly updated electronic means of predicting the ship's speed over

ground). During the experiment, throttle control was passed to Main Control and

constant pitch percentage and shaft RPM were maintained. It was deemed more

important to match the duty cycle operating points than the corresponding ship's speed.

At completion of the experiment, at least fifteen NO, and CO measurements for

each operating point were collected. These readings were accompanied by the associated

air flow, fuel flow and engine load data necessary to convert the raw emissions data to a

useable form.



Chapter 5: Analysis and Results

5.1 Analysis Approach

The air intake vacuum in the vicinity of the pitot tube installation was not available

for the analysis (see Appendix F). A sensitivity calculation was performed using the most

conservative estimate for the pressure drop in the air intake piping, based on known alarm

set points and the engine manufacturer's predictions. It was determined that the largest

error which could be introduced in the calculation of the dry intake air density was less

than one percent. Based on this conclusion, the ambient air pressure was used as the total

static pressure in determination of the dry air density.

Volumetric air flow rate data was not available for MPDE lB. While the MPDE

IA pitot tube assembly performed satisfactorily, data was only available for three

operating points (Appendix F refers). These differential pressures were converted to

volumetric air flow rates using equation (14 ).

Qa (SC1WM) - 128.8 * K , D 2 .I P P (14)
\ (T * 460) . Ss

where D is the diameter of the intake pipe in inches,

P is the static line pressure in psia,

T is the temperature in Fahrenheit,

Ss is the specific gravity at 600 F

and K is a manufacturer defined flow coefficient which is a function of the

pitot tube diameter. K= 0.757 for this application.

Volumetric air flow rates for two additional data points, idle and full load, were

contributed by COLTEC, Inc, the diesel engine manufacturer. Using these five points, a

best fit curve was drawn establishing a relationship between engine brake horsepower and

volumetric air flow rate in units of Standard Cubic Feet per Minute (SCFM). This curve is

included as Figure 28.



Figure 28: Volumetric Air Flow Rate versus Engine Load

Validation of the measured engine parameter data was accomplished by comparing

the measured volumetric fuel flow rate and engine brake horsepower results obtained

during the LSD-41 Class Standardization Trials. The deviations were minor and

confidence in the measured data is high. Best fit curves were drawn through all of the fuel

flow rate data and a relationship between volumetric fuel flow rate (in units of gallons per

minute) and engine load was established (Figure G-2). Supporting calculations and plots

are included in Appendix G.

Determination of the water content of the intake air was based on measured

ambient and local (in the vicinity of the pitot tube) air conditions and the fact that the

partial pressure of the water vapor should remain constant at both conditions (same water

density in the same one cubic foot volume). The relative humidity was measured on the

bridge, along with the atmospheric pressure. The water vapor partial pressure was

calculated using equation (15 ):
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where p is the partial pressure of the water vapor and p, is the saturation pressure which is

a function of the ambient temperature.

At the pitot tube site, the dry bulb temperature was measured by the adjacent

thermocouple assembly. The local pressure was determined by adding to the bridge

barometer atmospheric pressure an additional pressure term based on the height from the

pitot tube to the bridge wing. The dry air partial pressure at the pitot tube was computed

from equation (16):

P -P P (16)

where P denotes the total pressure and PDA is the partial pressure of the dry air.

With the total pressure and the partial pressure of the water vapor available, the

absolute humidity value can be calculated from the following equation (17 ):

18 .01*p.01 (17)
28 .967 .(P-p)

where w denotes absolute humidity in units of lb. water vapor per lb. dry air,

18.01 is the molecular weight of water vapor and 28.967 is the molecular weight of dry

air. The dry air density can be found using the Ideal Gas Law, equation (18 ):

(P-p )M (18)

R;T

where R. is the universal gas constant, T is the air temperature and M is the

molecular mass of the medium, air. The dry air density is combined with the volumetric

air flow rate to find the intake air mass flow rate in units of kg/hr.

The absolute humidity is used to determine the mass flow rate of the water vapor

entrained in the intake air using equation (19). While this amount is significantly less than

either the fuel or air flow rate, it was included in the calculation for completeness.

mo - Q ar * eo * P &y air (19)



The computation of the exhaust mass flow rate was carried out as outlined in

Figure 29. While a rigorous statistical analysis could not be conducted due to the small

number of sample data available, an attempt to check the sensitivity of the exhaust flow

rate calculation to variations in the input data was undertaken. One standard deviation

from the expected value was used to bound estimates for inputs values of the raw fuel

flow, engine RPM, intake air temperature, and shaft torque data. The exhaust flow rate

calculated with these inputs varied little from the flow rates calculated from the raw data

averages (refer to Appendix G). Fluctuations in the raw data measurements, within one

standard deviation, were shown to be insignificant.

Figure 29 : Specific Emissions Analysis Flowpath
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To compete calculation of the specific emissions, the dry CO, NO and NO2 molar

concentrations had to converted to "wet" concentrations by including the effects of

entrained water using Equation (20 ).

x, - (1 - Xo 0 ) x (20)

where x represents a mole fraction of pollutant "i". The mole fraction of water was

obtained using equation (21 ), taken from Heywood. This equation is valid when all

species used in the calculation have been measured with the same background moisture (in
this case-dry).

X CO, * X CO
xm o - 0.5 * y X (21)

(xcol(K x co0)) . I

where x represents the molar concentration of the gas, y is the H/C ratio of the fuel,
(value of 1.8 fro Appendix G) and K is an empirical constant determined from exhaust gas
composition data. Typical values range from 3.8 to 3.542, and 3.5 was chosen for this

calculation. Supporting calculations are included as Appendix G.

The ECOM Portable Emission Analyzers were equipped to measure oxygen, CO,

NO and NO2 concentrations only. As the molar concentration of the carbon dioxide

(CO2) was not measured, it had to be estimated. A carbon balance approach was

considered inappropriate as the gaseous hydrocarbon concentrations also were not

measured and the contribution of the fuel carbon particles to the soot could not be

determined. An empirically based equation which provides the volume percentage of

carbon dioxide as a function of the oxygen content was used and is presented as equation

(22).

C0 2% - CO 2 %/o (1 ) (22)21%

42 Heywood, p.150.



where the maximum CO2 percentage is that which is created at stoichiometric conditions.

The specific emissions are computed using equation (23).

Pollutant (ppm ) . m (kg/hr) u
Spec•i Emission (glbhp -hr) - (23)

Engine bhp

where the term u has units of grams of pollutant gas/kg of air and is defined by equation

(24):

4.615 .10 -5 (Mol IM 3 ) . Molecular Weight (glMol ).- (24)
P, (Kg /M 3)

The NOx specific emission was determined two different ways and compared. In

the first, the molecular weight used in the calculation represented a weighted average of

the combination of NO and NO2. From the literature, it was estimated that the NO2 would

comprise ten percent of the total. The calculation was repeated, computing the specific

emissions for each individually and then summing the results. Either method offers

possibilities for introduction of errors, yet each provided results within 5 percent of each

other. The first method, using a weighted average molecular weight, was selected for

presentation of the data.

5.2 Discussion of Results

Once the measured data was reduced and combined into useable measurements,
additional calculations were performed to determine how the measurements compared to

expected trends found in the literature. One of the first plots created was engine load vs

equivalence ratio, Figure 30. This plot is important for demonstrating the adequacy of the

fuel and air measurements upon which the specific emissions are based. The anticipated

result is that the equivalence ratio has the greatest value at maximum Brake Mean

Effective Pressure (BMEP). The BMEP is a reflection of an engine's ability to do work

normalized by the engine size. The work per cycle is divided by the cylinder volume
displaced per cycle as shown in equation (25):



Tbr * *R
~E~ii ~ V

V

(25)

where Tb,, represents the engine torque, Vd is the displacement of all engine cylinders

and n, is the number of crank revolutions for each power stroke per cylinder. This

number is 2 for a four-stroke cycle engine, such as the PC2.5V16. Increased work output

for a given displaced volume (larger BMEP) requires a greater energy input. The fuel

content of the cylinder's contents must increase and the equivalence ratio increases.

Figure 30: Equivalence Ratio versus Engine Load

0.65

0.55

0.45
a0

0.35

0.25

/·-l'"~~'~'~"""`"

I I I I I I I I I I I

3000 4000 5OOO 6000

ENGINE BHP

% ConAdenesa iu I1

IV

. Ii , . i
L

• | o ·,

0 1000 2000 7000 8000



The maximum BMEP for the LSD-41 Class MPDE is 280 psi at approximately

5000 brake horsepower (BHP). The curve of Figure 30 is a best fit through all of the data

points, and it gradually rises to a peak near the 5000 BHP point. The measured air flow,

fuel flow and engine load data are considered to accurate reflections of operating

conditions during the trials.

The raw emissions data was collected in volumetric concentration units of parts

per million (ppm). Figure 31 is a plot of the measured pollutant concentrations as a

function of the engine load, characterized by the engine BMEP.

Figure 31: NO, (ppm) versus Engine BMEP
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[NO ] K(T) [02] [N2  (26)
dt

where bracketed terms denote volume concentration of each species and K(T) is the

equilibrium constant for chemical equilibrium and is a function of temperature. Based on

this relationship (equation 26), NOx ppm values are expected to increase as combustion

temperature increases, which corresponds with increasing BMEP. Figure 31 does not

appear to match this description.

Two curves are plotted in Figure 31. The curve which peaks at approximately a

BMEP value of 125 psi is a best fit curve for all of the data collected. The second curve

(dotted line), is a plot of the data with select points removed. The points deleted are those

corresponding to the peak of the first curve (solid line) and represent the data gained

through ship testing at a speed often knots with only one engine aligned per shaft.

Although it appears suspicious to delete all data from one operating point (single engine

per shaft alignment at ten knots), it is possible that all of these operating points contain

transient data, which will be much greater than the steady state NOx values. In all three

blocks of runs during the experiment, the speed of ten knots was reached by decelerating

from speeds of fifteen or seventeen knots. The higher speeds are close to maximum

BMEP, and it is possible that insufficient time was allowed for the engine to completely

settle at the slower speed before data was collected.

The second curve, the dotted one, also contains revised BMEP values for the data

corresponding to a ship speed of seventeen knots with a single engine per shaft. Review

of the measured torque for these data points revealed that the values were approximately

five percent lower than the torques determined during Standardization Trials. The

measured torque values were adjusted to reflect the predicted BMEP values at this

operating point, which is the point of maximum BMEP. Based on the BMEP revisions for

this operating point, and the high values of BMEP calculated for the 24 knot operating

point, the accuracy of the installed torsion meters must be questioned.

The shape of the dotted curve does not slope gently to a maximum value



corresponding with the greatest BMEP. This would indicate that a phenomenon other

than combustion temperature is influencing the rate of NO, production. The most

acceptable explanation is that the air/fuel ratio is contributing to the rate of production,

resulting in a fairly steady rate over a range of high BMEP values. It is also plausible

that measurement variations between the two engines for the same operating point and

variations between the data measured over separate nights is influencing the shape of the

curves in Figure 31. The lower NO. figures at the high BMEP values correspond with

testing of two engines at a ship's speed of 24 knots, and could be attributed to sea

conditions or testing procedure. This theme is further developed in Appendix G. As the

NO, ppm values do not peak at the maximum BMEP value, the results in Figure 31

should be validated before any action is initiated in response.

A diesel must run "lean", with more air than necessary for stoichiometric

combustion; therefore, CO as a product of combustion is far less a concern in diesel

engines than in spark-ignition engines. It was anticipated that levels of CO volume

concentration data gathered would be significantly less than the NO. concentration. The

maximum value of Figure 32 is less than one-half the minimum NO. ppm value displayed

in Figure 31.

A large source of the marine diesel emissions data available was collected by

Lloyd's Register and some of the results were introduced in Chapter 4 as Figures 24 and

25. The curves are plotted for four ranges of maximum engine Maximum Continuous

Rating (MCR). Emissions normalized to fuel burned are plotted against the engine load as

a percentage of the MCR. The NO, data measured during the USS ASHLAND testing is

presented in this format in Figure 33. The abscissa of the plot is the engine load

normalized as the Power Fraction verses the percentage of MCR.

Two curves are also plotted in Figure 33. Once again, the solid curve, which peaks at a

Power Fraction of 0.15, represents all of the measured NO. data normalized by the

amount of fuel burned. The second curve (dotted line), which has no significant peak, is a

plot of the data with the same selected values deleted in an attempt to smooth the curve.

The points deleted are those corresponding to the peak of the first curve (solid line) and



represent the data gained through ship testing at a speed often knots with only one

engine aligned per shaft.

Figure 32: CO (ppm) versus Engine BMEP

The second curve, without the peak, does resemble the gentle sloping curves if the

Lloyd's Register graph for engines with a MCR value greater than 4000 kW (Figure 34).

No noticeable trend can be discerned from the curves. At this point, the conclusions from

the Lloyd's Register testing bear repeating. NOx formation is particularly sensitive to the

engine combustion chamber conditions, which is influenced by many factors including

engine design, condition deterioration and age, and operating profile43. Additionally, as all

of this testing was conducted at sea, it is possible that sea conditions are influencing the

data. The sea conditions would include the effects of wave loading on the hull,

maneuvering and the impact of different stack designs. Figure 33 should be accepted as

43 Lloyd's Register, pp.5,12.
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Figure 33: NO, (g/Kg fuel) versus Engine Load
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Figure 35: CO (g/Kg fuel) versus Engine Load
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an additional data point in attempting to understand the influences these conditions have

on the NOx emission profile.

Similarly, Figure 35 is a plot of the measured mass specific emissions of CO as a

function of engine load. The high values at low load conditions is apparent in the Lloyd's

Register results as well, Figure 36. As the air flow rate on a turbocharged diesel is greatly

affected by the engine speed, the air at the idle position may be insufficient for complete

mixing with the fuel and create conditions in which the engine bums "rich", less air than

necessary for stoichiometric combustion. The data was also normalized as a specific

emission, g/bhp-hr. This is the unit of measurement in which the EPA rulemaking limits

have been set. The proposed limits for marine engines rated at greater than 50 hP (37

kW) are 9.2 g/kW-hr (6.86 g/bhp-hr)" for NOx. No maximum limit for CO has been

proposed as this pollutant emission level tends to be insignificant in the larger diesel

engines. As explained in Chapter One, diesel engines slotted for use in marine vessels will

be required to demonstrate that their test bench emissions are below the NOx limit when

computed as a weighted average using an appropriate duty cycle.

An emissions contour map for the PC2.5V16 engine was not available.

Therefore, determination of a cumulative pollutant level based on the time factors of the

duty cycle and the measured emissions of the corresponding operating points could not be

accomplished. This precluded direct comparison of the experiment's results with both the

EPA cumulative limit and the cumulative estimate calculated by Markle for the PC4.2B

engine. The NOx data collected has been plotted in units of g/bhp-hr in Figure 37 to

provide a qualitative assessment of this engine's performance as compared to the EPA
limit.

Comparison of individual operating point NO, values to the EPA limit indicates
that the LSD-41 MPDE will have difficulty meeting the new requirements. While it is

understood that the new regulations will not be retroactive, this comparison does imply

that the U.S. Navy needs to consider what effects the legislation will have on the current

44 EPA, Reducing Pollution from Marine En,ines: Information on the Marine Engine Rule
Making, p.3.



Navy engine certification process should public vessels be required to comply. The Navy

may find it necessary to redirect its policy of selecting candidate engines solely on the

basis of efficiency, maintainability and response performance.

Table 18 allows comparison of the CO and NOX emissions at each duty cycle

operating point for the Pielstick PC4.2B and PC2.5V engines. Despite the similarity of

engine design, the difference in engine size has a large impact on the specific emissions.

The PC4.2B emission contour map data points are smaller than the corresponding

measured PC2.5 data points The much greater NO, values at low engine loads for the

PC2.5V16 are a result of a low g/hr emission value being divided by an even smaller bhp

value. These large values will be insignificant in determination of the cumulative weighted

average pollutant level.

Figure 37: NO, Specific Emissions versus Engine Load
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A complete PC2.5V16 engine emission contour plot should be developed to

support comparison of ISO and naval duty cycles. The significant differences between

measured values of the PC2.5 and estimated values from the PC4.2B emissions, especially

at light load conditions, suggests that the emission contour maps for the two engines may

be sufficiently different as to affect the outcome of the duty cycle analysis. Although the

author still anticipates that the naval duty cycle will still best model the ship class

operating profile, this result should be validated with the correct emission contour map

Table 18: Specific Emissions Comparison for Pielstick PC4.2B and PC2.5V Engines

Model Mode

PC4.245  PC2.5

Ship Power RPM NOx CO Power RPM NOx CO

Speed Factor Factor g/bhp-hr g/bhp-hr Factor Factor g/bhp-hr g/bhp-hr

IDLE 0 0 0.31 2 0.02 0 23.8 6.1

5* 0.065 0 6 1.2 0.06 0 19.9 2.1

10* 0.158 0.018 8.9 1.04 0.12 0 24.1 1.25

15* 0.468 0.372 13.4 2.1 0.41 0.36 14.3 1.1

17* 0.704 0.511 11.1 1.7 0.597 0.48 14.2 0.84

5 0.032 0 3.1 1.6 ** ** **

10 0.078 0.018 6.5 1.2 0.07 0 17.4 1.4

15 0.234 0.372 11.9 1 0.265 0.39 15.4 0.90

17 0.352 0.511 12.6 2 ** ** ** **

20 0.612 0.728 10.8 1.5 ** ** ** **

24 1.0 1.0 8 0.82 0.90 1.015 12.43 0.96

* Single Engine per Shaft Alignment. ** Data not available.

45 Markle, p. 157.



Chapter 6: Conclusions and Recommendations

The purpose of this thesis was two-fold: 1) to develop an operating profile for the

high speed diesel engines on a naval combatant, and 2) to validate the U.S. Coast Guard

Research and Development Center's procedure for measuring marine emissions at sea

using a portable emissions analyzer. Both of these themes contribute to a larger one,

increasing knowledge of the unique aspects of marine diesel emissions.

Chapters Two and Three concentrated on the development of an appropriate test

cycle for the Isotta Fraschini engines installed on the MCM-1 Class Mine Hunters. The

resulting duty cycle was as different from that developed by Markle for the LSD-41 Class

Amphibious Ships as are the vessels themselves. This observation serves to emphasize the

point that not only are duty cycles developed from commercial ship operations

inappropriate for modeling naval vessel operations, but that separate duty cycles may be

necessary for naval ships with differing missions.

Future EPA and international regulations will require engines to prequalify for

emission levels by demonstrating performance on a test bed using a predetermined test

cycle. This author recommends that the U.S. Navy continue to develop mission specific

duty cycles for use in its own diesel engine certification program. The appropriate number

of missions which need to be modeled have not yet been determined. On the basis of this

thesis and Markle's work, a minimum of two can be identified: the amphibious mission

and the mine warfare mission. One can anticipate two others, the auxiliary ship mission

and the auxiliary small craft mission.

The method for determining the duty cycles for each recognized mission should

parallel the efforts of Chapters Two and Three, although the data collection efforts should

be automated. There are numerous initiatives being discussed in Naval Sea System

Command regarding instrumentation of a few LSD-41 Class ships as a result of similar

recommendations offered by Markle. This effort should be extended to include all naval

ship classes, including those propelled by gas turbine engines. Regulation of gas turbine

engines has not been proposed, but as increased numbers of marine vessels are being



designed with gas turbines, it is foreseeable that regulation will follow.

Awareness of a naval ship class duty cycle derived from its operating profile will

also prove invaluable when trade-offs must be considered in an effort to reduce engine

emissions. A revised operating profile can be mapped on a test bench emission contour

plot and the results can be quantitatively compared. A quantitative assessment of the

contributions of the operating profile to the engine's emissions is invaluable.

As emission contour plots for neither the Pielstick PC2.5 or Isotta Fraschini

engines were available, validation of the naval duty cycle for the LSD-41 and MCM- 1

Classes were completed using emission data for similar diesel engines. Chapters Four and

Five document the measurement of MPDE emissions from a LSD-41 Class ship operating

at sea. The NOx results of the experiment indicate that the actual emissions contour plot

of the PC2.5V16 engine may be different from that of the engine used to compare the

naval and generic duty cycles (the PC4.2B engine). It is recommended that emission

contour plots be developed for both the Pielstick PC2.5 and Isotta Fraschini engines and

the duty cycle comparisons be repeated. The author does not predict that the results of

the analysis will be affected: naval duty cycles model naval ship operations much closer

than a duty cycle developed for commercial vessels.

The measurement of exhaust emissions from a LSD-41 Class vessel was conducted

at sea under rushed conditions and under the leadership of a naval officer inexperienced in

shipboard test instrumentation. Despite numerous setbacks, some very important data

was gathered and a procedure for instrumenting and testing this ship class was

demonstrated.

The specific emission data gathered indicate that the emissions performance of the

engine is inadequate to satisfy potential EPA limits. This should not be surprising as the

PC2.5 engine was designed in the 1970's and early 1980's when the design emphasis was

on reducing fuel consumption.

The author also discovered that the data base of marine emission measurements is

incomplete and that some of the included NOx data does not appear to fit known diesel

emission trends. This occurrence cannot be easily explained and warrants further at-sea



testing to investigate the aspects of the marine environment which may contribute.

Further testing of naval ships at sea may be deemed unnecessary by naval officials

in light of the direction that EPA regulations are taking. If funding is provided to support

at-sea testing in an attempt to build an usable data base, the author recommends that diesel

emissions testing be incorporated into the ship's schedule to allow uninterrupted testing.

The instrumentation plan of this thesis was designed to minimize intrusion into ship's

systems and interference with normal machinery operation. It could easily be incorporated

into sea trial testing, providing emissions data for every ship of the class. A quick ship

check onboard a MCM-1 Class ship also indicated that the instrumenting could be

accomplished in a similar fashion on that class as well.

Deletion of the air flow rate measurement would further reduce the complexity of

the instrumentation. A carbon or oxygen balance method for determining the exhaust

mass flow rate would be appropriate if the portable emissions analyzer was configured to

provide CO2 and combustible concentrations. Removal of the pitot tube, thermocouples

and vacuum transducers can be equated to adding the portable emissions analyzer to the

instrumentation required to conduct a fuel consumption trial. Pairing of these two tests

would lengthen the total time the tested platform must remain at sea, but would eliminate

costs associated with conducting two separate tests. The end result is a more complete

data base to use for validation of emission models and to incorporate into ship and engine

performance trade-off studies.

These trade-off studies would be best accomplished using the mission specific duty
cycle and test bench derived emission contour maps. The use of generic duty cycles based

on commercial ship operations for modeling of naval ship operations may lead to over-
estimation of the pollution contributions of naval diesel engines.
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Appendix A: Sample Logs

This appendix contains blank sample ship log sheets representative of those

reviewed to develop the MCM-1 Class operating profile described in Chapter 2.

Figure A-i: Ship Deck Log Sheet
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Figure A-2: Engineering Log Sheet
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Appendix B: Log Review Summaries

This appendix provides a summary of the log data reduction used to develop the MCM-1

Class MPDE Duty Cycle. The results for each ship are presented along with the composite

results for the class. The data of Table 6 is also provided.

Table B-1: MCM-1 Class Ship Data Summary

USS ARDENT USS GLADIATOR USS WARRIOR

Hull Number MCM-12 MCM-11 MCM-13

Time Period (1994) 1 May - 31 Oct 1 May - 31 Oct 1 May - 31 Oct

Data Points 4926 6330 3757

Time Covered 211318 221760 161640

Time Secured 191321 187603 139130

Time Running 19997 34157 22510

Time Declutched 623 1830 965

(Cool Down)

Time @ Idle 2974 2155 1022

Time @ Power 16400 30172 20523

The Isotta Fraschini engine does not require a warm-up period prior to being clutched to

the shaft unless the engine lubricating oil temperature falls below 120 degrees Fahrenheit.

Standard operating procedures for all three engineering plants required the oil to be recirculated

well before anticipated use. As a result, the engines rarely required a warm-up period. Any time

an engine spent warming prior to use was combined with the time the engine spent declutched for

cooling prior to stopping or to facilitate testing and training.

The above data points are for steady state operations only. Data points during

maneuvering were discarded. Maneuvering was defined, for the purposes of this analysis, as

more than one command in a one minute time frame or any split shaft operations lasting less than

five minutes. A test was conducted to investigate the sensitivity of the operating profile to this

definition.



Figure B-1 is a plot of the time factors for the USS ARDENT (MCM-12) steady state

operating profile using the above description verses the time factors for a steady state operating

profile based on a definition of maneuvering which was more rigorous. In the more rigorous

analysis (dubbed ARDENTx), any maneuvers of less than five minutes duration were eliminated.

Comparison of the results indicate that frequent, short speed changes had little effect on the

steady state operating profile.

Also removed from the steady-state operating profile was time in which the LLPMs were

online in place of the MPDEs. The majority of these cases occurred during minehunting

operations, in which the speed and course changes were rapid. This is consistent with the final

operating profile results which indicated that the MPDEs were primarily used for high speed

transit.

The next four sections contain a summary spreadsheet of the time spent at each operating

point for each MPDE of each ship. The final section is the composite data for all three ships

studied. The following notes are attached to facilitate reading of the data:

- The MCM-1 Class has four MPDE, numbers 1A and IB on the starboard shaft, and

numbers 2A and 2B on the port shaft.

- The time values are given in minutes.

- "n" indicates normalized values. RPM and power are normalized to the engine rated

values (1800 RPM and 600 bhp) and time values are normalized to the total running time for a

particular engine.
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Appendix C: MPDE and SSDG Emission Prediction Data

Included in this appendix are the plots upon which the duty cycle emissions estimations

were based. The emission contour plots upon which each duty cycle data point were

superimposed in for the Colt-Pielstick PA4-200-VGA high speed diesel engine. This data was

found in the August 1992 issue of The Motor Ship and was normalized using the Power Fraction

and RPM Fraction introduced in equations (9) and (10) of Chapter 3.

Table C-1 is the emission prediction spreadsheet based on linear interpolation of the

emission contour maps of Figures C-1 through C-11.
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Figure C-1: MCM-1 Operating Profile (One Engine Per Shaft)
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Figure C-2: MCM-1 Operating Profile (Two Engines per Shaft)
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Figure C-3: MCM-1 MPDE Duty Cycle
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Figure C-4: ISO 8178 Duty Cycle E-5
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Figure C-5: ISO 8178 Duty Cycle E3
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Figure C-6: CARB 8-Mode Duty Cycle
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Figure C-7: ICOMIA Heavy-Duty Diesel Duty Cycle
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Figure C-8: MCM-1 SSDG Operating Points
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Figure C-9: ISO 8178 Duty Cycle D2
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Figure C-10: ISO 8178 Duty Cycle C-1
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Figure C-11: MCM-1 SSDG Duty Cycle
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Appendix D: Experimental Instrumentation

Included in this appendix are the ISO 8178 accuracy requirements (Table D-1),

schematics of the instrumentation set-up in both the uptake room and Main Machinery

Room #1 (Figures D-l and D-2, description of the instrumentation features (D-4 through

D-16 ) and calibration data (D-17 through D-24).

Table D-1: ISO 8178 Accuracy Requirements

Item Permissible Deviation Calibration Interval

Engine Speed 2% Max Value 3 months

Torque 5% Max Value 3 months

Power 5% Max Value

Fuel Consumption 4 % Max Value 6 months

Air Consumption 5% Max Value 6 months

Coolant Temperature 20 Kelvin of Reading 3 months

Lubricant Temperature 20 Kelvin of Reading 3 months

Exhaust Gas Pressure 5% of Reading 3 months

Combustion Air Inlet 20 Kelvin of reading 3 months

Temperature

Exhaust Gas Temperature 150 Kelvin of Reading 3 months

Atmospheric Pressure 0.5% of Reading 3 months

Intake Fuel Humidity 3% Absolute 1 month

Fuel Temperature 20 Kelvin of Reading 3 months

Exhaust Gas Flow 5% Max Value 6 months
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Figure D-1: Machinery Room #1 Instrumentation Layout
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Figure D-2: Uptake Space Instrpumentation Layout
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Instrumentation Description

1) Volumetric Fuel Flow Rate:

The fuel flow meters were supplied by the Naval Sea Systems Engineering Station

(NAVSSES), Philadelphia. The four meters were all model number HO1X1-6-50-B-1M-

FI SS, turbine flow meters manufactured by Hoffer, Inc. Two meters were installed per

engine, one in the supply piping and one in the engine return fuel piping. The installation

sites were selected to correspond with the sites used during the ship's Acceptance Trials.

Preselected horizontal runs had been designed to include short, easily removable sections

of piping to support fuel measurements. The existence of these flanged spool pieces were

adequate for the development of fully turbulent flow patterns, a requirement of the

turbine flow meters. The use of this approach greatly eased fuel flow meter installation

time and effort.

The flow meters used during the experiment were of the bearing ball type, as

opposed to a positive displacement type meter which was used during the ship's

Acceptance Trials. Ball bearing type meters are easier to install and less bulky to

transport. Review of Figure G-l indicates that the measured fuel flow rates using the ball

bearing turbine meter were equivalent to the measurement taken with the positive

displacement meter. The small deviations can be attributed to small changes in the

viscosity of fuel oil, fluctuations which the positive displacement meters can ignore but

should be corrected for when using ball bearing flow meters.

The advertised accuracy of these meters is 2% of maximum measurable value.

2) Volumetric Intake Air Flow Rate

The volumetric intake air flow rate was measured by installing a pitot tube into

each engine intake piping. The differential pressure across the tube was measured by a

separate transducer also located in the uptake room. The transducer transmitted an

electrical signal ranging from 4 to 20 milli-amps, and correlating in a linear fashion to the

differential pressure. As the automated data collection system (located in Main Control)

could only receive a 0 to 5 Volt signal, a 250 Ohm resister was installed in series with the
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signal from the pressure transducer.

The requirements for using a pitot tube when measuring flow rate is that the flow

must have a fully developed turbulent flow pattern. This ensures that the boundary layer

effects due to the walls of the pipe have the smallest possible impact on the measurement.

Because of the inaccessibility of the uptake piping, an averaging pitot tube was selected.

To avoid resonant vibration, the ACCUTUBE model number 33T double mounted pitot

tube was installed. due to the short lead-time on the order, a non-standard 38 inch length

pitot tube could not be procured. The 36 inch model was substituted and a small loss in

accuracy (up to three percent) was accepted. The fit of the tube into the intake piping is

demonstrated in Figure D-3.

Figure D-3: ACCUTUBE Installation
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The technical requirements for the associated pressure transducers was determined

from an estimate of maximum expected volumetric air flow rate (provided by Coltec,

Inc.), anticipated air temperature and static pressure and the details of the transducer.

Equation D-1 was used to determine the maximum differential pressure which the

transducer would need to measure. With a volumetric flow rate of 26,000 SCFM at the

high end operating point, the pressure transducer was required to cover a range from zero

to 1.4 inches of water. An adjustable range differential pressure transducer could not be

located within the time constraints of the experiment. Therefore, an Omega Model

PX154-003DI was ordered, with a range of zero to 3 inches of water This transducer has

a linear relationship between amperage and pressure, and the result was that the pitot tube

readings only spanned half of the range. The inherent accuracy of the transducer was 1%

of the full scale value; it is not anticipated that the mismatching of the pressure ranges

would cause the system to greatly exceed the accuracy requirements listed in Table D-1.

Q2 . S, * (T+460)AP (inchwater) - (D-1)
K2  , D4  P * 16.59

where AP denotes the pitot tube differential pressure (units of inches of water column)

Q denotes volumetric air flow rate (units of SCFM)

Ss denotes the medium specific gravity at 600 F

T denotes the medium temperature (units of o F)

D denotes inner diameter of the piping

P denotes the medium pressure (units of psia)

and K is a flow coefficinet specific for each model. K=0.757 for this experiment.

3) Intake Air Pressure

The inclusion of a large filter assembly and an intake air silencer in the air piping

upstream of the pitot tube location will cause restriction to the flow of air through the

piping. These restrictions will cause a pressure loss from the ambient air pressure. Based

on conversations with the manufacturers, the Naval Sea Systems Diesel Engine Technical
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Code, and from review of Avondale Shipyard intake air test results', the maximum

pressure loss which could be anticipated on an intake system with clean air filters is four

inches of water, vacuum. Despite the small value of the deviation from ambient pressure

conditions, a vacuum sensor was added to the instrumentation for completeness. The

purpose of the pressure transducer was to allow calculation of the air density based on the

measured air pressure and temperature in the vicinity of the pitot tube.

A 3/8 inch NPT fitting was installed in the intake piping and a 25 foot length of

vacuum tubing was attached to one end of a tee fitting. The other end of the tubing was

attached to the vacuum port of a current output type pressure transducer. The Omega

Model PX141 pressure transducer has a range of zero to 1 psi. The half-bridge resistor

circuitry creates a linear relation between voltage and vacuum. The zero to five volt signal

was then routed to a meter which acted as both power supply for the manometer and

amplifier for the signal. The meter box was an Omega model DP25-S Strain Gage Panel

Meter.

It should be noted that all signals originating in the uptake space required

amplification due to the length of the cable run from the mouth of the uptake space (where

the meters and power supplies were staged) through a drainpipe to the space below and

along the rear bulkhead of Machinery Room #1 into Main Control. This routing could not

be avoided due to the inaccessibility of the uptake space during engine operation.

4) Intake Air Temperature

The same fitting which supported the vacuum tubing for the intake air pressure

vacuum measurement also acted as the foundation for a thermocouple installation. It was

anticipated that the restrictions to the air flow through the 38 inch diameter pipe would

cause the temperature of the intake air to rise very little over the ambient conditions. A

Chromega-Constantan alloy, ungrounded thermocouple was selected based on predicted

temperature ranges from freezing to less than one hundred degrees Fahrenheit. An Omega

1 Diesel Engines Combaustion Air and Exhaust System Test, LSD-49 Test Procedure
5B259C401, Avondale Shipyard, April, 1994, pp.2-24 .
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Model GEQIN-18U-18 thermocouple was paired with an Omega MCJ Miniature Cold

Junction Compensator to provide a milli-voltage signal linearly related to the measured

temperature. The eighteen inch long thermocouple probe had sufficient length to extend

into the piping and gather a representative sample from the flow.

The voltage signal out of the ice-point compensator required amplification. David

Taylor Research Center (DTRC) provided two Ectron Model amplifiers (Numbers 4892

and 4893) with gains of 1000. The signal reaching the automated data collection system

was of the correct voltage, ranging from zero to 5 Volts.

5) Engine RPM and Shaft Torque

The installed machinery electronic control system provides visual indications of

important machinery control readings to a remote panel in Main Control. The signals

which feed these indicators range from zero to 5 Volts and are related to the system

monitored by well known, linear relationships. Two of these system were the shaft

torsionmeter and the engine RPM indicator. The control signals for these two systems

were tapped at the remote console in Main Control and copied directly into the automated

data recording system. The connections were made via isolation amplifiers to preclude

interference with the control system should power from the automated data collection

system be lost.

DTRC expressed some concern that the ship's installed torsionmeters may lack

sufficient accuracy for the purposes of the experiment. The torsionmeters had been

groomed by the manufacturer during the ship's repair availability, and he verified that the

meters were performing well within the 5% accuracy requirements. Manual collection of

the shaft RPM and propeller pitch angle were collected as a secondary measurement.

These can be correlated to engine power through relationships developed from

Standardization Trials data.

6) Exhaust Emissions Concentration

The ECOM Portable Emissions Analyzer was selected to determine the exhaust
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gas composition. The assembly consists of a probe mounted in a pistol grip, a gas cooler,

various electrochemical cells, and a standard computer interface. The probe is installed

directly into the exhaust stream, at a sufficient depth into the flow to ensure that a

representative sample is drawn. Since the probe can only gather data at its tip, it is

important that the exhaust gas be well mixed at the point of collection. The probe was

inserted into the exhaust piping approximately two feet aft of the turbocharger exit, using

a manometer connection fitting installed for a previous set of trials. At this location aft of

the turbocharger, it is reasonable to assume that the exhaust remains well mixed.

A small globe valve was screwed into the manometer fitting to support the ECOM

probe and provide a means of isolating the exhaust gases in the event the probe was to be

removed. This valve fit well on Engine IB but could not be used with Engine 1A due to

piping interferences which impeded insertion of the probe. The length of the probe

inserted into MPDE 1A was adjusted to match that of MPDE IB, but little could be done

to halt exhaust blow-by while the ECOM probe was installed in MPDE IA.

Two models of the ECOM Portable Analyzer were used. The older model, the

ECOM KL, was used on MPDE lB. The ECOM S+, on loan from the manufacturer, was

applied to MPDE lA. Both of the sensors measured the same exhaust constituents, using

the same electrochemical processes. The primary differences between the two units were

the computer interfaces, the user interface, and the method for drying the exhaust sample

gas.

Both ECOM units were set to measure CO, NO, NO2, 02, exhaust temperature and

room temperature. The exhaust gas was drawn into the unit via the probe and a short run

of tubing. For this experiment, the distance between the probe and the analysis unit could

be kept to less than five feet. Due to the high exhaust temperatures and short run of

tubing, condensation in the sample line was not anticipated and a heated sample line was

unnecessary.

The internal working of the ECOM analyzer is standard. A small fraction of the

engine exhaust is drawn off into the sample line. It is passed through the gas cooler which

condenses and separates any entrained water vapor. The dry sample is then routed to two
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different types of sensors, the oxygen sensor and the toxic sensors. The oxygen sensor

can be compared to a metal-air battery. The metal in the sensor is oxidized by the oxygen

of the exhaust stream. The maximum signal is created for ambient air (21% oxygen

content); the signal decreases with lower oxygen concentrations.

The toxic sensors consist of the CO, NO and NO, sensors, which can selectively

react chemically with a particular gas component in a predictable manner. These sensors

have both a measurement reaction (oxidation) and counter reaction (usually reduction).

The reference electrode maintains constant conditions in the cell. An auxiliary electrode is

included to compensate for large cross-sensibilities.

The ECOM units are calibrated by adjusting the electrical signal to a known

chemical composition. Small canisters holding the calibration gases for the ECOMs were

transported aboard. The calibration gases can be considered inert due to the low

concentrations at which calibration is performed (1000 ppm CO, 1010 ppm NOx and 550

ppm NO2).

In addition to the exhaust composition, the ECOM unit also provides ambient air

and exhaust gas temperature readings. The exhaust temperature was monitored between

speed changes in an attempt to gauge when the engine had reached steady state operating

conditions.

The ECOM Portable Analyzers have been approved by the EPA as adequate for

determination of exhaust gas constituents based on demonstrations conducted by the

manufacturer. While not a NDIR (Non Dispersive Infra Red) type analyzer required by

ISO 8178, it can be considered equivalent.

7) Ambient Air Pressure, Temperature and Relative Humidity

A hand-held dry bulb temperature/relative humidity meter was procured prior to

testing, but it was received too late to calibrate it against national standards approved

instrumentation. It was held as a back-up system, while a psychrometer permanently

installed on the ship's bridge was utilized during the experiment. The psychrometer

provided both the bridge level temperature and relative humidity, which was converted to
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provided both the bridge level temperature and relative humidity, which was converted to partial
water vapor pressure using the approach described in Section 4-4.

The bridge level pressure was gathered from the ship's installed barometer. These
readings were adjusted to the approximate height of the pitot assembly above the ship's baseline,
and the adjusted dry air pressure calculated.

These readings were taken hourly along with sea and wind direction and strength.

Figures D-4 through D-11 are photographs taken with a 35mm camera and speed 200 film. Each
component of the installation is displayed, and an attempt to demonstrate the tightness of many of
the working spaces in the area of the installation is undertaken.

Figure D-4: Distant View of Fuel Flow Meter (MPDE 1A Supply)
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Figure D-5: Close View of Fuel Flow Meters (MPDE 1A Supply and lB Return)
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Figure D-6: Uptake Space Entry (From Inside Space)

Figure D-7: Mounting Board with Pressure Transducers, Meters and Power
Supplies
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Figure D-8: Near and Distance Views of Pitot Tube (MPDE 1B Intake)
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Figure D-9: Thermocouple and Pressure Transducer Tubing (MPDE 1A Intake)

Figure D-10: Automated Data Collection Station (Main Control)
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Figure D-11: Valve and ECOM Probe Being Positioned (MPDE lB Exhaust Piping)
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Calibration Information

All instrumentation was shipped with calibration data. This was verified

independently for the pitot tube pressure transducer, the thermocouple and ice point

compensators and the ECTRON amplifiers. The calibration data for the fuel flow meters

was provided by NAVSSES, Philadelphia.

Figure D-12 is the calibration curves for for the Omega Model PX154-003DI

pressure transducers (used in conjunction with the pitot tubes to measure intake air

volumetric flow rates). Figures D-13 ia a sketch of the calibration set-up . Table D-2

provides the calibration slopes and intercepts.

Figure D-12 : Pressure Transducer Calibration Curve
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Table D-2: Pressure Transducer Calibration Information

Pressure Transducer Slope Zero Intercept

1A 35.8 0.849

1B 36.2 0.953

The pressure transducer calibration was repeated for the 1B unit with the leads

swapped so that the high pressure signal was introduced to the low pressure port. The

unit repsond with a negative slope for a few pressures, but then steadied out to a constant

value despite the increasing pressure signal. It is believed that the low pressure port was

designed to handle only a limited range of pressure, and that this range was exceeded

during the LSD-48 testing. The differential air intake pressure across MPDE IB's pitot

tube could be salvaged.

The Calibration Curve for the ECTRON amplifiers is provided as Figure D-14.

The thermocouple and ice point compensators calibration plots are included as Figure D-

15 . Figures D-16 through D-17 are the calibration curves for the fuel flowmeters. The

nonlinearity of the K-factor at low frequencies did not effect the experiment's data.

Figure D-14 : ECTRON Amplifier Calibration Curves
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1B ECTRON Amplifier

Figure D-15 : Thermocouple Calibration Curves
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1B Thermocouple Assembly

Temperature (Calcium)

Table D-3: Calibration Constants for Thermocouples and Amplifiers

The calibration of the ECOM Portable Analyzers was conducted at the U.S. Coast

Guard Research and Development Center prior to departing for sea trials. Additional

gases were brought to repeat the calibration prior to testing. The amount of calibration

gas brought was found to be inadequate, therefore the calibration of the instruments was

checked upon return to the R&D Center. The results are summarized in Table C-4. They

indicate that some of the sensors had drifted out of calibration. The point in the

experiment at which the drift occurred cannot be determined.
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IA Thermocouple 0.0597 -1.67

1B Thermocouple 0.0607 -1.7

1A Amplifier 1000 16.1

lB Amplifier 1000 -158
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Table D- 4: ECOM Analyzer Calibration Data

Pollutant Calibration Gas ECOM KL ECOM S+

Concentration (ppm) Concentration (ppm) Concentration (ppm)

CO 1000 980 1007

NO 1010 1036 1026

NO2  550 505 326

The impact of the calibrations on the usefulness of the data has been discussed in

Chapter 5.
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Figure D-16 : Engine 1A Supply and Return Fuel Flow Meter Calibration Plot
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Figure D-17: Engine 1B Supply and Return Fuel Flow Meter Calibration Plot
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Appendix E: Test Plan

Attached is the Test Plan which served as guidance throughout the experiment. At
conclusion of the test plan are the calculations for the minimum water depths to preclude
shallow water effects and increased drag.
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TEST PLAN FOR

SHIPBOARD MAIN PROPULSION DIESEL EMISSION TEST
ABOARD U.S. NAVY LSD-41 CLASS AMPHIBIOUS SHIPS

Prepared by

LT A.M. Mayeaux, USN
Ocean Engineering Department

Massachusetts Institute of Technology
Cambridge Massachusetts

February 1995
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SECTION 1 - General Information

1.1 Proposed Tests

This protocol describes testing to be conducted on an U.S. Navy LSD-41 Class
amphibious ship, the USS ASHLAND (LSD-48), in order to determine the exhaust
emissions from a pair of main propulsion diesel engines. The experiment will cover only
steady state operations; no transients will be tested. The operating points at which the test
will be conducted have been predetermined from an analysis of six months worth of
operational data from four sister ships in the class. Various engine characteristics will be
measured to support calculations. These include fuel consumption, inlet air flow rate,
shaft RPM (SRPM) and shaft torque. The constituents of the exhaust will be measured
for each operating point.

This test plan is comparable to one used for measuring exhaust emission aboard
U.S. Coast Guard cutters in 1993. MAR, Inc. wrote the protocol for the experiments and
analyzed the results (See Reference (a)). The Coast Guard procedure was based on ISO
8178 requirements. Likewise, the procedures of ISO 8178 will be incorporated in this test
plan wherever practical.

1.2 Test Objectives

The primary objective of these tests is to validate an engine emissions model
developed previously at MIT. If the model is successfully validated, it will be possible to
accurately predict cumulative engine emissions without requiring outfitting of the exhaust
system with monitoring equipment. The testing will provide a single emission value for
each pollutant of interest as a weighted average of the measured mean value at each
operating point for the engine. The model also yields a cumulative average value for each
pollutant of interest which can be compared to the experimental results. Validation of the
model will provide the U.S. Navy flexibility in determining how best to meet Clean Air
Act emission standards while maintaining operational effectiveness.

The model is based on research completed by LT Steve Markle, USN in 1994
while assigned as a graduate student at MIT. His analysis (Reference (b)) provides the
weighted operating points that will be used during testing of the ship's engines. The single
emission values for pollutants of interest derived from this testing can be compared to
theoretical values based on various other duty cycles to support discussion of the validity
of using ISO derived duty cycles for emission testing of U.S. Navy ships.

1.3 References

a. Goodwin, Michael J., Experimental Design on Marine Exhaust Emissions,
Prepared by MAR, Inc., Rockville, Maryland, for U.S. Department of
Transportation, U.S. Coast Guard Research and Development Center, October
1994.
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b. Markle, Stephen P., Development of Naval Diesel Engine Duty Cycles for Air
Exhaust Emission Environmental Impact Analysis, Massachusetts Institute of
Technology Thesis Submittal, Cambridge, MA, May 1994.

c. ISO/DP 8178-1 RIC Engines - Exhaust Emission Measurements; Part 1: Test
Bed Measurement of Gaseous and Particulate Exhaust Emissions from RIC
Engines.

d. ISO/DP 8178-2 RIC Engines - Exhaust Emission Measurements; Part 2: At Site
Measurement of Gaseous and Particulate Exhaust Emissions from RIC Engines -
Special Requirements for using ISO 8178-1 at site.

1.4 Location, Time and Duration of Tests

Location - Aboard LSD-48 USS ASHLAND, Norfolk VA

Time - 14 through 16 FEB 1995

Duration - Testing will be conducted in conjunction with scheduled sea trials following a
Phased Maintenance Availability. All instrumentation will be installed during the two
days prior to the trials. All testing will be accomplished in designated time slots during the
three day trial period.

1.5 Test Preparations

Crew Training - No additional crew training is required.

Prior Tests Required - Simultaneous recording of emissions from two main propulsion
engines requires the use of two portable emission collection and analysis systems (the
ECOM-RD portable emission analyzer will be used). Testing to compare the accuracy of
the two different ECOM instruments which will be used was attempted at the Coast Guard
R&D Center. This testing did not provide conclusive results, but the instruments were
judged to be sufficiently similar. The arrangement of the exhaust probe and sampling line
will be validated during calibration to ensure adequate flow of exhaust gases to the
analysis unit. The physical arrangement and response of the air flow meter (a pitot tube)
must be verified.

Facilities and Resources Required - Receipt of shipped equipment and transportation to
the ship will be arranged through SUPSHIP PORTSMOUTH and Metro Marine, Inc.

Personnel Required - As most measuring devices will be connected to a data gathering
computer program, only three Coast Guard R&D Center test personnel will be required to
collect emissions data and tend the test equipment. Both DTRC and NAVSSES will
provide one technician to support pertinent equipment.
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Test Equipment, Applied Instrumentation and Data Recording Equipment - The test
equipment required is discussed in Section 1.6 of this report. Equipment accuracy
requirements are specified in Reference (d) Section 7.3 unless otherwise stated.

1.6 Methods of Measurements

The measurement methods proposed below must be shown to demonstrate the
accuracy requirements imposed by References (c) and (d).

The following measurements will be used in the calculations:

Shaft RPM - The installed shaft tachometer will be used. This data shall be recorded
continuously during each test cycle via a signal from the local operating console. All shaft
RPM must remain within 2 percent of the nominal shaft RPM chosen for the operating
point. Engine speed is proportional to shaft speed for mechanically coupled engines.

Shaft Torque - The installed shaft torsionmeter and a continuous recording signal will be
used. The accuracy of these torsionmeters has been questioned and the measurements
may need to be verified. This may be accomplished based on Standardization Trial results
and measured shaft RPM and propeller pitch angles. In order to provide this redundant
torque data, all three signals, (shaft torque, shaft RPM and propeller pitch) will be copied
from the operation console.

Fuel Consumption - The exhaust flow rate cannot be accurately measured. Therefore,
exact measurements (within 3%) of the fuel used in the engine are required. Turbine flow
meters, manufactured and calibrated by NAVSESS, will be installed in both engine supply
and return lines. These meters can be electronically connected to data processing
equipment to provide a continuous reading.

Air Pressure at the Intake - A hand-held barometer, supplied by Coast Guard R&D, will
be used to measure the air pressure in the intake filter room. This is a periodic reading
recorded at least hourly but not required to be repeated with every operating point.

Air Temperature at Intake - A thermometer, supplied by the ship, will be hung without
obstruction in the air filter room. This also is a periodic reading that should be taken when
the air pressure at the intake is measured.

Absolute Air Humidity at Intake - A psychrometer (or equivalent) shall be provided and
operated by qualified Coast Guard R&D personnel to measure the humidity in the intake
filter room. This measurement should be taken in conjunction with recording of the filter
room air pressure and temperature. All three of these measurements will be used to
compute the dry air mass and exhaust mass flow rate.
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Fuel Oil Sample - A sample of the fuel used during the test has been drawn. A sufficient
representative sample, approximately one liter, was submitted for constituent and fuel
properties analysis. Samples will be drawn whenever a significant variation in the type or
quality of fuel is anticipated.

Exhaust Gases - The methods for measuring exhaust gases are discussed in Reference (c).
The ECOM-RD Portable Emissions Analyzer (both the KI and the S+ models) will be
used. The sampling probe will be installed into the exhaust piping just downstream of the
turbocharger. Exhaust gas concentrations of CO, NO, NO2, SO2 , 02 will be measured
with the engine at a steady condition. The Excess Air reading, CO 2 level and total NOx
are then calculated.

Exhaust Temperature - Exhaust temperature will be measured using the installed
thermocouple on the exhaust gas analyzer.

Inlet Air Volumetric Flow Rate - A pitot tube will be installed in an appropriate straight
run of inlet air piping to support measurement of the inlet air volumetric flow rate. This
reading, in conjunction with the fuel flow rate and calculated air density, determines the
exhaust mass flow rate.

Inlet Air Pressure - An installed manometer will be used to determine the vacuum at the
point where the volumetric flow is measured. This reading is used to calculate the dry air
density and absolute humidity of the inlet air.

Inlet Air Temperature - An installed thermocouple will be used to determine the
temperature of the inlet air at the same point where the volumetric flow is measured. This
reading is used to determine the inlet air mass flow rate.

The following measurements will be used to verify the testing conditions:

Coolant Inlet Temperature - The temperature of the primary engine coolant entering the
engine will be recorded from the installed temperature gages. The cooling water
temperature should not vary widely once the engine is properly warmed up. Data from
the Engineering Department operating logs may be copied to show hourly changes
occurring during the day's testing. These comments also apply to the engine coolant
outlet temperature.

Coolant Outlet Temperature - The temperature of the primary engine coolant leaving the
engine will be recorded from the installed temperature gage.

Lubricating Oil Inlet Temperature - The inlet temperature of the lubricating oil to the
engine will be measured using installed temperature gages. The oil temperature should not
vary widely once the engine is properly warmed up. Data from the Engineering
Department operating logs may be copied to show hourly changes occurring during the
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day's testing. These comments also apply to the lubricating oil outlet temperature.

Lubricating Oil Outlet Temperature - The outlet temperature of the lubricating oil to the
engine will be measured using installed temperature gages.

Draft Readings Fore and Aft - Draft reading will be calculated by the ship's DCA at the
beginning and end of each day of testing.

Relative Wind Speed and Direction - The ship's bridge watch will record data from the
installed anemometer at least hourly during testing.

Significant Wave Height and Direction - An experienced crew member will record visual
observations periodically during testing. Significant changes in the sea condition must be
recorded and the ship maneuvered as possible to minimize the sea effects.

Water Depth - An average depth in the test area may be recorded if all testing is
performed in deep water (defined in Section 2.1). The depths of the proposed operating
area are sufficiently deep to preclude hourly fathometer readings.

The following measurements will be included with the results of the testing. These
variables will be important for further analysis of the data.

Reduction Gear Make, Model and Serial Number - Record from reduction gear
nameplate.

Engine Make, Model and Serial Number - Record from each engine nameplate.

Engine Injector Size and Timing - Data to be provided by ship's force.

Fuel Rack Position - Fuel Rack Position can be read from the installed engine scale.
Shipboard personnel will be asked to provide baseline data and Coast Guard R&D
personnel will record these readings during the last three minutes of steady state interval.

Propeller Type (Number of Blades, Diameter, Pitch, Developed Area Ratio) - This
information is obtained from ship's force or the appropriate planning yard.

Date of Last Drydocking or Hull Cleaning - The date of the last hull cleaning will be
provided by ship's force.

Lubricating Oil Specifications or Sample - The type of lubricating oil used will be
ascertained from ship's force. Notes shall be taken on the time since the last oil change. If
there is an uncertainty regarding the type or quality of lubricating oil, it must be submitted
for NOAP (Navy Oil Analysis Program) sampling..
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1.7 Hardware Configuration

The following configuration change to the machinery plant is required: A five
square inch stainless steel plate with a NPT fitting must be welded into the air intake
piping to support measurements of the inlet volumetric flow rate. A total of two fittings
will be installed, one for each engine in Machinery Room Number One. Additionally, a
one half inch NPT fitting per uptake must be installed in the vicinity of the previously
described fitting to support a manometer/thermocouple.

1.8 Data Sheets

As a result of concurrent testing with DTRC, an automatic data collection system
will be available. Appropriate data sheets will be provided to record all data which is not
automatically collected. These are included as Attachment "A". (not included)

1.9 Pre-Operational Checklists

The following items should be checked before leaving for the operating area:

- Essential shipboard equipment is operational.
- Pertinent shipboard gages are calibrated.
- Drafts fore and aft are recorded.
- Depth at proposed operating area is satisfactory.
- Sea conditions in operating area are acceptable
- All test instrumentation is installed and is operational.
- Sufficient recording media are on board.
- Tests personnel are trained and know their jobs.
- Ship's crew has been briefed on the test to be performed.

1.10 Concurrent testing

The incorporation of the diesel emissions testing into the ship's Sea Trial agenda
must be carefully thought through. The full schedule of the trial may offer few windows
for testing team to conduct their analysis in the manner originally planned. Co-ordination
and compromises in completing the test agenda is mandatory..

1.11 Approvals, Authorities and Responsibilities

During testing, the ship will be operated by its normal crew. Test instrumentation
will be installed by Coast Guard R&D Center personnel with some assistance from the
crew. Data recording is the responsibility of the R&D Center and DTRC test personnel.
They may request assistance from ship's force for individual items of data as discussed in
Section 1.6 of this report.

156



SECTION 2 Testing Procedure

2.1 Test Description

These test are planned as steady state tests in calm, deep water. While testing
conditions may require deviation from ideal test conditions in order to expedite the testing,
every effort should be made to remain close to ideal conditions. "Deep water" is a term
which is a function of the vessel's maximum cross-sectional area or maximum speed. The
minimum water depth for negligible wave making and residual resistance can be calculated
using the following equation:

Depth (ft) (Mafmum Speed (ft/sec))2

0.10 * g

or

Depth (fi) . 3 * Cross Sectional Area (ft 2)

The result with the greatest depth is used. This value is 179.0 feet or approximately 26
fathoms. The depth of the operating area to be transitted during Sea Trials will be verified
prior to leaving port. The calculations are included as Attachment "B".

The tests should be conducted with a minimum of wind and wave action. The
conditions may be considered "calm" if the significant wave height is less than 0.6 meters
(2 feet) and the wind speed is less than 15 knots. Whenever possible, the test should be
run with the seas on the ship's beam, especially in high wave conditions. All runs must be
made in the same relative direction in the wind and waves. It is recognized that the ship
may be limited in it's ability to order the required headings due to limitations in operating
space.

Tests shall be conducted at five speeds with one engine per shaft and at seven
speeds with two engines per shaft. The speeds have already been selected and are based
on a duty cycle developed from an analysis of similar ships' operational logs. Each speed
is weighted to reflect the percent of time it is estimated that the vessel operates at or near
the operating point. These weights will be used to determine the single number estimate
of the LSD-41 main propulsion diesel engine emissions. Table E-1 contains a summary of
this data as presented in Reference (b).

Five or seven test runs, one at each operating point and dependent on plant
configuration, constitutes a block of runs. For example: one block of runs when
configured for one engine per shaft would contain data from five speeds (Idle, 5 knots, 10
knots 15 knots and 17 knots). Data will be collected by repeating each block of runs four
times in order to obtain a better estimate of the average amount of emissions at each
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operating point. The order of the speed changes (runs) within each block will be random.
Requiring each block to possess a different run order will help to ensure that non-
measurable external factors will have no effect on the results.

The mean emission rate for each engine and each pollutant of interest will be
determined by averaging the four emission readings gathered for each operating point.
The confidence interval on the mean values will also be estimated from the data. The
mean emission values for each engine will be summed to find the total plant emission
figure for each combination of pollutant and operating point. Finally, the weighting
factors will be multiplied by the individual operating point emission level and the results
summed over all twelve (five for single engine per shaft tests and seven for two engines
per shaft tests) operating points to determine a single, cumulative emission level for each
pollutant.

Table E-1: List of Operating Points* (Converted to Speeds)

Mode Ship Speed Engines Propeller Shaft Time
(knots) per Shaft Pitch % RPM Factor

1 0 0 0 64 0.083

2 5 1 52 64 0.064

3 5 2 52 64 0.128

4 10 1 100 66 0.077

5 10 2 100 66 0.141

6 15 1 100 102 0.051

7 15 2 100 102 0.109

8 17** 1 100 116 0.040

9 17 2 100 116 0.16

10 20 2 100 138 0.093

11 24 2 100 165 0.054

* An operating point is a specific engine power and speed rating.
** May be incorporated with Mode 6 if ship indicates that in their opinion seventeen
knots on two engines only is excessive.

In anticipation of proposed EPA legislation, one additional emission measurement
will be taken on each engine at the end of each block of runs. The engine will be
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operating at rated power and speed for these measurements.

2.2 Test Procedure

This section discusses the procedures for an individual test run. All test runs
within a block are identical except for the engine speed and torque associated with each
operating point.

The run cycle begins with acceleration or deceleration from the previous speed to
the test speed required for the current run. Once the engine is nearly stabilized (as
determined by a constant efficiency reading from the exhaust monitoring equipment), five
exhaust readings are taken. During this interval, the ship should maintain steady course
and speed and limit rudder angles to less than ten degrees. At the end of the data
collection, the ship will proceed on to the next speed in the sequence.

Data recording for torque, RPM and air volumetric flow will begin at the start of
each run cycle and continues to the end. Breaks in the testing may be made between runs
to change recording media as necessary. Key points in the sequence of runs must be
indicated. These include changes in speed, the start of the steady state run and the data
collection interval. Periodic measurements will be taken as discussed in Section 2.4. The
start and stop times for each speed run will be recorded as well as the time of each speed
change. A convenient run number is assigned to each run for later reference.

2.3 Test Schedule

Table E-2 provides twenty random orders for test runs for the single plant per
shaft configuration. This is out of a total of 120 possible combinations. Table E-3
provides a similar sampling for the two engines per shaft configuration. To use either
table, four column numbers should be chosen blindly and the run orders for the chosen
columns used for the testing. The numbers in Table E-2 designate operating points from
the lowest (1) to the highest (5). Table E-3 designates two additional operating points (6)
and (7).

Table E-2: Random Run Orders for Single Engine Configuration

1 2 3 4 5 6 7 8 9 1 1 1 1 1 1 1 1 1 1 2
0 1 2 3 4 5 6 7 8 9 0

2 2 4 3 1 3 5 4 2 3 1 1 3 5 5 4 1 1 1 3
4 5 3 5 4 2 4 5 3 5 2 2 4 3 2 3 4 2 2 5
3 4 2 4 2 5 3 1 1 1 4 4 2 4 3 1 5 5 3 4
1 1 5 2 5 4 2 3 5 4 5 3 1 2 1 2 3 4 4 1
5 3 1 1 3 1 1 2 4 2 3 5 5 1 4 5 2 3 5 2
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Table E-3: Random Run Orders for Dual Engine Configurations

1 2 3 4 5 6 7 8 9 1 1 1 1 1 1 1 1 1 1 2
0 1 2 3 4 5 6 7 8 9 0

2 3 1 1 1 2 6 2 6 7 1 7 7 4 2 3 5 2 7 4
5 4 7 4 6 5 7 6 7 6 2 6 2 3 1 1 2 4 2 2
3 7 3 5 4 6 5 4 1 1 3 3 6 2 3 7 3 3 3 1
6 5 4 3 3 1 2 5 5 5 7 2 5 7 7 4 4 6 6 6
1 2 5 6 2 4 4 1 4 3 6 4 1 1 5 6 7 5 4 3
4 1 2 7 7 3 1 7 3 4 5 1 4 5 6 5 6 1 1 5
7 6 6 2 5 7 3 3 2 2 4 5 3 6 4 2 1 7 5 7

All runs in a block must be completed before proceeding to runs in the next block.
This ensures that a maximum of useable data is available should the testing end early.

All runs testing the same engine and configuration should be made on the same day
in as nearly identical conditions as possible. Each run is estimated to take twenty to
twenty-five minutes (due to time for the engine to steady after speed changes). For the
single engine per shaft configuration, all fifteen runs can be completed in approximately six
hours. For the dual engine per shaft configuration, all twenty-one runs should take ten
hours to complete.

Attachment "C" details the order in which each block of runs will be completed.
(not included)

2.4 Data to be Recorded

Continuous data collected:
- Shaft RPM
- Shaft torque
- Fuel consumption
- Air volumetric flow rate
- Exhaust gas elements
- Exhaust gas temperature
- Inlet Air Vacuum
- Inlet Air Temperature

Collected by ship's force:
- Relative wind speed and direction
- Water depth (if necessary)
- Significant wave height and direction
- Draft fore and aft
- Coolant and lubricating oil inlet and outlet temperatures
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Other required periodic measurements:

- Pressure of intake air at filter room
- Temperature of intake air at filter room
- Absolute humidity reading at inlet filter room
- Engine rack positions

2.5 Data Analysis

During the tests, measurements are made of the exhaust gas components in the
exhaust. In order to calculate the total amount of emissions, the exhaust mass flow must
be determined. The density of the intake air at the volumetric flow meter will be
calculated to provide the inlet air mass flow rate. The fuel mass flow rate will be
computed from the fuel meter data and measured fuel density. These flow rates combine
globally to provide the exhaust mass flow rate according to the Law of Mass
Conservation. The method detailed in Appendix A. 1 of Reference (c) shall be used as a
secondary method. This is a carbon balance method based on the flow rate of fuel, the
components in the fuel, and the measured exhaust concentrations. This analysis must be
conducted on each engine for each test run. The resulting emissions in grams/hour are
computed from the emissions concentrations (ppm) and the exhaust mass flow rate
(kg/hr). The emissions in units of grams/hr are used in all following calculations.

One or more plots will be prepared comparing the relationship between shaft RPM
and shaft torque (Nm) and emission rates of CO, NO, NO2 , SO2 , 02 and hydrocarbons.
These plots will show the mean value of each dependent variable and the 95 percent
confidence interval for each mean value.

The test procedure should eliminate any wide variations in the data. If wide
variations are noted, the inconsistent data points should be investigated further. If it is
unlikely that the data points have come from the same population as the other data (in a
statistical sense), the outlying data should be eliminated from the analysis.

The single emission number for each pollutant is calculated using the following
formula:

Emissiton Number -E (Weighting Factor *E Mean Value )

T.he results in units of gram/hr for each pollutant can then easily be compared to
theoretical cumulative levels developed from the LSD-41 Class duty cycle model, the ISO
derived duty cycles and the regulated limits.
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Appendix F: Trial Report

This Appendix is comprised of three sections: 1) the Trip report, which discusses

deviations from the Test Plan (162-166), 2) sample raw data files (167-169) and 3)

required supporting documentation of the testing (170-180).
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Trip Report in Support a LSD-41 Class Amphibious Ship

Main Propulsion Diesel Exhaust Emission Testing

General Information: The test platform was the USS ASHLAND (LSD-41), located in

Norfolk, Virginia. The testing was held in conjunction with previously scheduled sea

trials to close a private contract repair availability. The dates were 14 to 16 February,

1995. The testing team consisted of representatives from the U.S. Coast Guard Research

and Development Center, the NUSW, Carderock (David Taylor Research Center) Ship

Testing Division, the Naval Sea Systems Engineering Station, Philadelphia Test

instrumentation Division, and the Naval Engineering Graduate Office at the Massachussets

Institute of Technology.

Ship Visits: The first ship check was conducted in October, 1994 on a sister ship, the

USS GUNSTON HALL (LSD-44). Instrumentation was selected on the basis of

information gathered during this visit. A second ship check was conducted 31 January-01

February, 1995 aboard the USS ASHLAND. The fit-up of some of the instrumentation

was verified during this visit and the test procedure was introduced to ship personnel.

Installation: The installation was accomplished in two steps. The pitot tube support

fixtures were installed in both 1A and 1B MPDE Air Intake piping by NORSHIPCO, the

private contractor already performing repair work on the ship under contract with

Supervisor of Shipbuilding, Portsmouth (SUPSHIP Portsmouth). The contractor also

installed the fitting to support the pressure tubing and thermocouple.

All other instrumentation was installed by the test team upon arrival on 12 Feb,
1995. Significant delays were encountered. Equipment which had been shipped previous

to the team's arrival could not be located initially. This resulted in a half day lost effort.

Additionally, the ship had not completed all main engine testing prior to the team's arrival.

The installation work in the uptakes could only be accomplished on the back-shift, which

proved to be very inefficient.
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The result was an incomplete installation of the intake air vacuum testing system.

The interface between the pressure transducer and meter/amplifier was never corrected

and this reading was abandoned. The delays also precluded testing the engines inport

prior to the scheduled departure from the pier. This testing was not accomplished due to

lack of experience on the part of the team leader (who failed to insist on it) and a lack of

energy in the test team in general. Once underway, and unable to secure the engines and

enter the uptake space (due to gas-free concerns), it was discovered that the pitot tube

pressure transducer for IB MPDE was responding erratically. It was suspected that the

vacuum tubes leading from the tube to the differential pressure transducer were switched,

and this was verified upon returning to port. As the IB pitot tube presure transducer was

found to be inoperable when connected in the reverse direction.

The signal from the two thermocouple assemblies were radically different during

calibration. The thermocouples, with ice-point compensators, were checked using an ice

bath and the voltages were satisfactory. Predicting the error lay in the amplifiers, the

predicted settings were recorded to be later compared to test bench readings in the

laboratory.

The calibration of only one of the ECOM instruments could be verified. The

portable calibration gas cylinders held a smaller volume of gas than anticipated and the

ECOM S+ was not verified. The team attempted to use the ECOM KL, the calibrated

portable emissions analyzer, to the maximum extent possible.

Despite the rushed set-up, all instrumentation with the exceptions mentioned above

performed superbly.

Testing: The ship had generously scheduled eighteen hours of a fifty hour sea trial to

support the emissions testing. The first six hours were slotted for Blocks #1 through #3

(See Appendix E: Test Plan). MPDE IA suffered a casualty to the lubricating oil filter

canisters during the afternoon hours of 14 February; MPDE IB became the primary test

engine for the single engine per shaft testing despite concerns regarding the volumetric

airflow measurement on this engine.

164



Blocks #1 through #3 were conducted as planned. The results were difficult to

compare during collection, but it was noted upon review the next morning that the shaft

torques were not kept equal during testing. The impact this would have on the results

were unknown, but two additional single engine per shaft alignment runs were planned.

These were to be conducted at 15 and 17 knots with particular attention paid to equalizing

the load on both shafts.

Some excessive cooling of the exhaust sample lines from the probe to the portable

analyzer was experienced. It was attributed to the draping of the sample tubing over

ventilation ducts, which were forcing air cooling than the ambient space temperature of

approximately 850 Fahrenheit into the machinery room. The sampling lines were isolated

to the greatest extent possible and a decision to employ heated sample lines for all further

testing was reached.

The sea conditions were perfect for the first night of testing. The winds were

relatively low and sea state one was reported. The temperature was slightly above

freezing and the relative humidity was moderate. All runs were conducted on

Blocks #4 through #6 required a plant alignment with two engines per shaft. This

testing could not be accomplished until repairs were completed on MPDE lA.

Unfortunately, as soon as the damaged lube oil filter was replaced, a leak developed on the

exhaust piping aft of the turbocharger. When this second equipment failure was finished,
only two hours of the originally twelve hours of scheduled testing could be accomplished.

A revised test schedule was created and is introduced as Table F-1. The priorities for the

reduced test period were to recheck the 15 and 17 knot single engine per shaft readings

(while MPDE 1A was being prepared for starting), and three spaced data points when

both engines were online. As the ship was preparing for a graded full power trial upon

completion of our testing, 24 knots was incorporated into the test plan and data was

gathered throughout the run at 90% full power.
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Table F-1: Revised Test Blocks of Runs

Block Name/Run # Ship Speed (knots) Propeller Pitch % Shaft RPM

4-1-B-17* 17 100 116

4-2-B-15" 15 100 102

6-l-X-10 10 100 66

6-2-X-24 24 100 138

6-3-X-24 24 100 138

6-4-X-15 15 100 102

* denotes single engine per shaft testing with MPDE lB online

NOTE: X could indicate either engine 1A or lB.

A break was taken between Run # 6-2-X and 6-3-X during the full power run to

switch the ECOM units and provide comparison data between the readings from the two

machines. The data collected from the ECOM KL when positioned in MPDE lA was

collected under the run name of 6-X-A-24.

The weather conditions were much rougher on the early morning of 16 February.

The sea state ranged between three and four with high winds pushing on the bow. It was

raining, with ambient air temperatures approximately ten degrees warmer than the

previous night. The ship maneuvered extensive prior to the full power run in an attempt

to create a clear, straight track for the trial. While no maneuvering was undertaken during

data collection, it was difficult to predict the impact the seas would have on the propeller

and engine loadings. Overall, the conditions for testing were inadequate using the

requirements of the Test Plan (Appendix E).

The fifteen knot data was gathered after completion of the full power trial. At this

point the ship was heading into the harbor and shallower water. This shortened the

amount of data which could be collected at this operating point.

Disassembly: Nothing significant to report.
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BLOCK1X.XLS

Data From Block #1 (Emissions Using ECOM KL)

RUN 1-1-B-10
Time 02 CO NOx N02 Stack Temp Room Temp

0:58:06 133 85 1499 76 519 75
0:59:06 134 85 1482 77 521 74
1:00:06 134 85 1469 74 522 74
1:01:06 134 85 1466 75 525 75
1:02:06 135 85 1474 75 528 74
1:03:06 135 85 1459 74 529 74
1:04:06 135 85 1437 74 530 74
1:05:06 135 85 1459 75 533 75

Tot/Ave 8 134.375 85 1468.125 75 525.875 74.375
Std Dev 0 18.20861 1.069045

RUN 1-2-B-17
Time 02 CO NOx N02 Stack Temp Room Temp

1:16:06 131 90 1446 67 692 76
1:17:06 131 90 1441 66 692 75
1:1 8:06 131 85 1456 68 694 75
1:19:06 132 85 1437 67 694 76
1:20:06 132 85 1439 67 694 75
1:21:06 132 80 1439 68 696 76
1:22:06 132 80 1429 67 696 75
1:23:06 132 80 1452 67 697 75
1:24:06 132 75 1426 67 698 75
1:25:06 132 80 1430 66 696 75

Tot/Ave 1 10 131.7 83 1439.5 67 694.9 75.3
Std Dev 4.830459 9.78945 0.666667

RUN 1-3-B-15
Time 02 CO NOx N02 Stack Temp Room Temp

1:32:06 130 110 1470 67 721 75
1:32:06 130 110 1443 67 721 75
1:34:06 129 110 1462 66 720 75
1:35:06 130 115 1476 67 722 76
1:36:06 130 110 1451 67 720 76
1:37:06 130 110 1453 66 721 76
1:38:06 130 110 1453 67 722 76

Tot/Ave 7 129.8571 95 1458.286 66.71429 721 75.57143
Std dev 1.889822 11.60049 0.48795

RUN 1-4-B-5
S Time 02 CO NOx NO2 Stack Temp Room Temp

1:53:06 167 70 628 53 436 76
1:54:06 167 70 631 53 431 76
1:55:06 167 70 643 55 428 76
1:56:06 167 70 638 55 425 76
1:57:06 167 70 633 55 421 76
1:58:06 167 70 633 56 418 75
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BLOCKIX.XLS

1:59:06 166 70 630 56 4151 75
Tot/Ave 7 166.8571 70 633.7143 54.71429 424.8571 75.71429
Std Dev 0 5.154748 1.253566

Data From Block #1 (Emissions Using ECOM KL) Page 2

RUN 1-5-B-0
Time 02 CO NOx N02 Stack Temp Room Temp

2:09:06 180 100 362 62 345 75
2:10:06 180 100 359 62 343 76
2:11:06 180 95 365 62 340 75
2:12:06 180 95 356 62 337 76
2:13:06 180 95 358 63 335 75
2:14:06 180 95 363 63 333 75
2:15:06 180 95 361 63 331 75
2:16:06 180 95 360 64 329 75
2:17:06 180 100 361 64 327 75

Tot/Ave 9 180 96.66667 360.5556 55.66667 335.5556 75.22222
Std Dev 2.31455 2.878492 0.744024
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REMARK First Sample taken at: 2/15/95 1:01:48
REMARK Last sample was taken at: 2/15/95 1:07:32
REMARK
REMARK The following is a summary of the last segment of collected data
REMARK
REMARK Channel Maximum Minimum Average StDev
REMARK 1A Mn Eng RPM 6 5 5 0.12
REMARK 1B Mn Eng RPM 218 216 217 0.65
REMARK Stbd Torque 77 75 76 0.29
REMARK Port Torque 109 108 109 0.25
REMARK 1A Main Eng in 57 18 50 11.83
REMARK 1A Main Eng out 19 3 7 3.1
REMARK 1B Main Eng in 8 7 8 0.09
REMARK 1B Main Eng out 7 6 6 0.2
REMARK 1A Inlet Temp 255 84 104 19.67
REMARK 1B Inlet Temp 16 -11 2 6.51
REMARK 1A Delta P 1 0 0 0.01
REMARK 1B Delta P 0 0 0 0.01
REMARK 1A P Total 0 0 0 0.11
REMARK 1B P Total 0 0 0 0.02
REMARK 1A Fuel Used 54 5 43 12.39
REMARK 1B Fuel Used 2 1 1 0.23
REMARK



Supporting Information:

Included are log sheets from the bridge and engineering spaces which were used

during testing Thr bridge logs (F- through F- ) document the sea and weather conditions

hourly during testing. The engineering space logs (F- through F- ) record important

engine support system conditions. The engineering rack position logs (F- through F- )

report the manual readings of each cylinder fuel rack position for each run.

The following data was gathered from engineering personnel:

Engine Model and Serial Numbers:

lA: Model: Fairbanks Morse PC2.5V400

Serial Number: 939745RR1

IB: Model: Fairbanks Morse PC2.5V400

Serial Number: 939745RL1

Reduction Gear Model and Serial Numbers:

Model: Philadelphia Gear Corporation 4-10M9X

Serial Number: 139518

Ratio: input 1200, output 99

Draft:

14 Feb:

Fore: 18'9" Aft: 19'9" Midship: 19'4" Displacement: 15750 1tons

15 Feb:

Fore: 19'6" Aft: 18'9" Midship: 19'1.5" Displacement: 15500 Itons

16 Feb:

Fore: 19'6" Aft: 19'0" Midship: 19'3" Displacement: 15500 Itons

Days Since Last Hull Cleaning: 12 September, 1994

Injector Timing: 120 BTDC

Injector Size: Nozzle Tip= 55 mm
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Fuel Constintuents: A fuel sample was submitted to Saybolt Labs. Table F-1 lists

the results.

Table F-2: Results of Fuel Analysis

Constituent or Property

Sulfur

Carbon

Hydrogen

Water & Sediment

Nitogen

Oxygen

Ash

Specific Gravity

0.38% by weight

86.09% by weight

12.97% by weight

0.025% by volume

0.06% by weight

0.02% by weight

0.00 1% by weight

0.84

The stoichiometric air to fuel ratio was calculated from the values of Table F-1 and a

procedure outlined in Wilcox and Babcock's text, Steam, 37' Edition. The hydrogen to

carbon ratio is 1.8 and the stoichiometric air to fuel ratio is 14.38.
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Engineering Room Log (hourly readings) Engine 1B

SW Injection Coolant Lube Oil Lube Oil
Time Temp Outlet Temp Inlet Temp Outlet Temp

(Fah) (Fah) (Fah) (Fah)

1:06 74 168 120 130

1:43 65 168 16 132

2:36 65 170 114 124

3:55 68 170 112 128

5:15 68 170 114 128

2/16/95

4:48 64 180 118 120

6:02 52 170 137 112
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Engineering Room Log : Rack Readings

Run # 1-1-B-10 Run # 1-2-B-17 Run #1-3-B-15 Run # 1-4-B-5 Run # 1-5-B-0
Eng 1B-1l 13 30 24 9 7
Eng 1B-2 12 30 23 9 7
Eng 1B-3 14 31 24 10 7
Eng 1 B-4 12 29 23 8 8
Eng 1 B-5 13 30 24 10 7
Eng 1B-6 13 30 23 10 8
Eng 1B-7 11 28 22 7 6
Eng 18-8 1 12j 281 23 8 7
Eng 18B-9 13 31 25 11 9
Eng 1B-10 16 31 25 10 9
Eng 1B-11 14 29 23 10 7
Eng 1B-12 13 29 23 8 7
Eng 18-13 13 29 23 10 8
Eng 1 B-1412 29 23 9 7
Eng 1B- 9 26 19 5 3
Eng 1B-16 12 29 23 8 7
METER 121 27 22 7 5



Engineering Room Log : Rack Readings

Run # 2-1-B-15 Run # 2-2-B-10 Run # 2-3-B-0 Run # 2-4-B-5 Run # 2-5-B-17
Eng 1B-1 23 12 8 10 29
Eng 1B-2 23 13 8 10 29
Eng 1B-3 24 13 8 11 30
Eng 1B-4 22 12 6 10 29
Eng 1B-5 23 13 7 11 30
Eng 1B-6 23 13 8 11 30
Eng 1 B-7 22 12 6 9 28
Eng 1B-8 23 12 7 10 29
Eng 1 B-9 24 141 9 12 31
Eng 1B-10 24 14 9 12 32
Eng 1B-11 24 13 7 10 30
Eng 1B-12 22 12 6 9 30
Eng 1B-13 23 12 7 10 30
Eng 1B-14! 22 12 6 9 29
Eng 1B-15 19 9 4 10 30
Eng 1 B-16 22 12 7 10 29
METER i 22 11 61 8 28

176



Engineering Room Log : Rack Readings

Run # 3-1-B-0
7
7
8
6
7
8
6
7
8
8
7
6
7

Eng 1B-14 6
Eng 1B-15 8
Eng 1B-16 7
METER 5

Run # 3-2-B-5
9
9

10
9

10
9
8
9

10
11
9
9
9
9

10
9
8

Eng 1B-1
Eng 1 B-2
Eng 1B-3
Eng 1B-4
Eng 1 B-5
Eng 1B-6
Eng 1B-7
Eng 1B-8
Eng 1B-9
Eng 1B-10
Eng 1B-11
Eng 1B-12
Eng 1B-13

Run # 3-3-B-15
24
23
24
23
23
24
22
23
24
24
23
23
23
23
24
24
22

Run # 3-4-B-10
12
13
13
11
13
13
11
12
14
14
13
12
13
12
13
12
12

Run # 3-5-B-17
29
30
30
29
30
30
28
29
31
32
30
30
30
29
30
29
28
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Engineering Room Log : Rack Readings

Run # 4-1-B-17 Run # 4-2-B-15

Eng 1B-1 33 27

Eng 1B-2 33 28

Eng 18-3 33 28

Eng 1 B-4 32 23

Eng 1 B-5 33 28

Eng 1B-6 34 28

Eng 1B-7 32 26

Eng 1 B-8 33 26

Eng 1B-9 35 31

Eng 1B-10 36 29

Eng 1B-11 32 30

Eng 1B-12 32 26

Eng 1B-13 32 28

Eng 1B-14 33 26

Eng 1B-15 33 27

Eng 1B-16 33 26
METER 32 27

Run # 6-1-B-10

10

10

10l

10

10

11

8

9

12

12

11

9

10

9

10

9
9

Run # 6-2-B-24

33

33

33

33

34

35

32

33

34

36

34

33

34

33

35

34
33
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Engineering Room Log : Rack Readings

Run # 6-1-A-10 Run # 6-2-A-24
Eng iA-1 9 33
Eng 1A-2 10 33
Eng 1A-3 11 34
Eng 1A-4 11 33
Eng 1A-5 10 34
Eng 1A-6 11 34
Eng 1A-7 8 32
Eng 1A-8 11 33
Eng 1A-9 10 33
Eng 1A-10 12 34
Eng 1A-11 10 33
Eng 1A-12 10 33
Eng 1A-13 11 33
Eng 1A-14 10 33
Eng 1A-15 10 32
Eng 1A-16 10 34
METER 8 33
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Appendix G: LSD-48 Emissions Measurement Results

Samples of the raw data collected during the emissions testing of the USS

ASHLAND on 15 and 16 February, 1995, was introduced in Appendix F. The

manipulation of this data in order to present it in a meaningfiul form is documented in this

appendix. Spreadsheets of results are followed by documentation listing the applied

equations. Data sheets (G-2 through G-12) are included for:

1) calculation of the ambient and local (in vicinity of pitot tube located in uptake

piping) temperature, humidity and pressure conditions.

2) computation of exhaust mass flow rate

3) computation of mass specific and power specific emission levels

4) sensitivity checks of the exhaust mass flow rate to small variations in the input

data

Additionally, additional plots are included to support discussion of the variations in the

measured emissions data and the effect of these variations on the results presented in

Chapter 5.
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Partial Pressure and Absolute Humidity Calculations:

The barometric pressure was measured on the bridge on an hourly basis. The

pressure deviation due to the height difference between the bridge and location of the pitot

tube in the air intake piping of the uptake room was accounted for using equation (G-1):

P6 Pdg * Par * g * h (G-1)

where the density of the air as a function of the bridge temperature was used and the

height "h" was 60 feet.

The relative humidity and bridge dry bulb temperature was measured directly on

the bridgewing. The saturation pressure was determined selected from a table1 as a

function of air temperature. The partial pressure, absolute humidity and dry air density

were then computed using equations (16) through 18).

1 Wark, Kenneth, Thermodynamics, Fourth Edition, McGraw-Hill Publishers, 1983,
p. 799 .
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Intake Air Temperature Calculations:

As discussed in Appendix F, the calibration of the ECTRON amplifiers used to

amplify the thermocouple assemblies was not known. The calibration curves introduced in

Appendix F were applied and the temperature of the intake air was found. This

temperature matched the machinery space temperature, an anticipated result.

The incorrect slope and zero were removed and the correct calibration constants

were introduced using the same equation.

Temperature (miliVolt - Zero) (G-2)
slope
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Exhaust Mass Flow Rate Calculation:.

The engine RPM, shaft torque and fuel consumption were data input from trial

measurements. The engine power is computed from equation (G-3):

BHP -
RPM Torque (Ibf-ft)

5252 * Number of Engines Online
(G-3)

Figure G-1 plots the calculated engine load against data measured during the

Standardization Trial. The correlation between the data sets is high.

Figure G-1: Engine BHP Correlation

A best fit curve was plotted through available fuel and air volumetric flow rate

data to allow calculation of these values as a function of the engine BHP. The equation

and curve for the volumetric air flow is included as Figure 28 in Chapter 5. Figure G-2

depicts the volumetric fuel flow rate and the curve follows equation (G-4):

Fuel Flow Rate (GPM) -3.48E-8 * BHP 2 + 5.75E-4 *BHIP * 0.323 (G-4)
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Figure G-2: Volumetric Fuel Flow Rate verses Engine Load

Fuel Consumption Comparison Plot

Equations (19) through (22) of Chapter 5 were used for calculation of all other

terms.

The calculation of the specific emissions, G-9 and G-10, were computed using

equation (23) and (24).
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Table G-4: Calculation of Specific Emissions

Ship Speed Power mexhaust H20 CO dry CO wet CO wet
Engine # Run # knots bhp kglhr mol conc mol conc mol conc ppm

18 1-5-B 01 178.7617 9169.827 0.019862 0.000117 0.000114 114.3498
1 B 2-3-B 0 181.2893 9194.936 0.022178 0.000126 0.000123 123.0426
1B 3-1-B 0 180.1093 9183.261 0.017894 0.000135 0.000133 132.5843
Ave 180.0534 9182.675 0.019978 0.000126

1 B 1-4-B 5 438.0376 11457.67 0.028517 0.00009 8.74E-05 87.43344
1 B 2-4-B 5 538.5759 12303.35 0.032668 8.86E-05 8.57E-05 85.67661
1B 3-2-B 5 475.318 11774.37 0.028429 9.57E-05 9.3E-05 92.99298
Ave 483.9772 11845.13 0.029871 9.14E-05

1B 1-1-B 10 1026.153 16165.91 0.049967 0.000105 9.98E-05 99.75345
1B 2-2-B 10 972.1448 15755.81 0.046896 7.56E-05 7.21E-05 72.07851
1 B 3-4-B 10 1007.456 16023.96 0.040691 0.000075 7.19E-05 71.94815
Ave 1001.918 15981.89 0.045851 8.52E-05

1B 1-3-B 15 3346.881 32584.8 0.052946 0.000115 0.000109 108.9112
1B 2-1-B 15 3285.78 32118.63 0.053528 0.000126 0.000119 119.0977
1B 3-3-B 15 3356.758 32664.22 0.048409 0.00012 0.000114 114.1909
1B 4-2-B 15 4024.694 36955.75 0.052054 0.000143 0.000135 135.0823
Ave 3503.528 33580.85 0.051734 0.000126

1B 1-2-B 17 4869.435 46742.96 0.051731 0.000103 9.77E-05 97.67167
1B 2-5-8 17 4888.718 46962.75 0.05053 8.25E-05 7.83E-05 78.33126
1 B 3-5-B 17 4920.643 47330.72 0.046769 8.39E-05 8E-05 79.9655
1B 4-1-B 17 5577.271 53859.2 0.052199 0.000111 0.000106 105.6121
Ave 5064.017 48723.91 0.050307 9.52E-05

1A 6-1-X 10 611.1438 12915.01 0.034281 8.57E-05 8.28E-05 82.77567
18 6-1-X 10 617.4127 12891.43 0.031425 6.43E-05 6.23E-05 62.26554

1A 6-2-X 24 7489.517 93083.97 0.049441 8.03E-05 7.63E-05 76.30876
1B 6-2-X 24 7577.978 93254.02 0.050104 4.58E-05 4.35E-05 43.53687

1A 6-3-X 24 7616.475 96317.98 0.050016 0.000084 7.98E-05 79.79866
18 6-3-X 24 7705.918 96470.1 0.04959 0.000075 7.13E-05 71.28074

1A 6-X-24 24 7681.901 98088.22 0.0491331 0.000103 9.77E-05 97.67967

1A -6-4-X 15 2171.266 24625.67 0.053078 9.33E-05 8.84E-05 88.37909
1B 6-4-X 15 2266.645 24750.99 0.050703 0.000095 9.02E-05 90.1832

Ship Speed Power mexhaust H20 CO dry CO wet CO wet
Engine # Run # knots bhp kg/hr mol conc mol conc mol conc pp
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u(CO) CO NO NO2 NOX NOx wet NOx wet u(NOx) NOx
gCOIKG exhaust glhp-hr mol conc mol conc mol conc mol conc ppm g/hp-hr

0.000966141 5.66712 0.000336 0.000101 0.000436 0.000428 427.5656 0.00109 23.91437
0.000966141 6.029375 0.000381 0.000109 0.00049 0.000479 479.2961 0.00109 26.50634
0.000966141 6.531205 0.000278 0.000107 0.000385 0.000378 377.7868 0.00109 21.00279

6.0759 0.000331 0.000106 0.000437 23.80783

0.000966141 2.209545 0.000609 9.97E-05 0.000708 0.000688 688.2216 0.00109 19.62829
0.000966141 1.890946 0.000744 0.000108 0.000851 0.000824 823.5479 0.00109 20.51326
0.000966141 2.225584 0.000629 0.000112 0.000742 0.00072 720.4882 0.00109 19.46031

2.108692 0.000661 0.000106 0.000767 19.86729

0.000966141 1.518296 0.001443 0.00012 0.001563 0.001485 1485.02 0.00109 25.50879
0.000966141 1.128641 0.001345 0.000119 0.001464 0.001395 1395.106 0.00109 24.65395
0.000966141 1.105614 0.001216 0.000112 0.001328 0.001274 1273.981 0.00109 22.09408

1.25085 0.001334 0.000117 0.001452 24.08561

0.000966141 1.024443 0.001433 0.000112 0.001545 0.001463 1463.199 0.00109 15.53272
0.000966141 1.124766 0.001345 0.000119 0.001464 0.001385 1385.398 0.00109 14.76599
0.000966141 1.073555 0.00133 0.000101 0.001431 0.001362 1361.726 0.00109 14.44813
0.000966141 1.198363 0.001231 9.21E-05 0.001323 0.001254 1254.488 0.00109 12.55988

1.105282 0.001335 0.000106 0.001441 14.32668

0.000966141 0.90583 0.001415 0.000112 0.001527 0.001448 1447.532 0.00109 15.15079
0.000966141 0.726999 0.001358 0.00011 0.001469 0.001394 1394.451 0.00109 14.606
0.000966141 0.743129 0.001281 0.000106 0.001387 0.001322 1322.343 0.00109 13.86867
0.000966141 0.985354 0.001218 9.13E-05 0.001309 0.001241 1240.53 0.00109 13.06215

0.840328' 0.001318 0.000105 0.001423 14.1719

0.000966141 1.69003 0.00072 0.000104 0.000825 0.000796 796.3041 0.0 0 109 18.34847
0.000966141 1.25607 0.000658 8.69E-05 0.000745 0.000721 721.4501 0.00109 16.42484

0.000966141 0.916296 0.000781 5.57E-05 0.000837 0.000796 795.5123 0.00109 10.78046
0.000966141 0.517621 0.001027 7.83E-05 0.001105 0.00105 1049.583 0.00109 14.08317

0.000966141 0.974966 0.000782 6.03E-05 0.000842 0.0008 800.1715 0.00109 11.03331
0.000966141 0.862146 0.001014 0.000075 0.001089 0.001035 1035.31 0.00109 14.13215

0.000966141 1.205016 0.000893 0.000022 0.000915 0.00087 869.7836 0.00109 12.10957

0.000966141 0.968423 0.001164 8.37E-05 0.001247 0.001181 1181.131 0.00109 14.60638
0.000966141 0.951426 0.001337 9.65E-05 0.001433 0.00136 1360.342 0.00109 16.19671

u(CO) CO NO NO2 NOX NOx wet NOx wet u(NOx) NOx
gCO/KG exhaust g/h hr mol conc mol conc mol conc mol conc ppm g/hp-hr



Table G-5: Comparison of Exhaust Flow Rates Due to Variations in the Input Data

Original Original High End High End Low End Low End
1A 1B 1A 1B 1A% 1B% 1A 1B 1A% 1B%
mexhaust Imexhaust mxhaust mexhaust Difference Difference mxhaust mexhaust Difference Difference
kg/hr kg/hr kg/hr kg/hr kg/hr kg/hr

9169.827 9167.861 0.021443 9174.195 -0.047637
9194.936 9191.456 0.037848 9198.419 -0.037878
9183.261 9180.366 0.031521 9186.157 -0.031542
9182.675 9179.894 0.030278 9186.257 -0.039014

11457.67 11453.16 0.03933 11462.18 -0.039361
12303.35 12300.77 0.020999 12310.59 -0.058832
11774.37 11770.24 0.035095 11778.51 -0.03512
11845.13 11841.39 0.03158 11850.42 -0.044697

16165.91 16160.29 0.034718 16171.52 -0.034742
15755.81 15749.4 0.040644 15762.22 -0.040678
16023.96 16018.27 0.035466 16029.64 -0.035492
15981.89 15975.99 0.036915 15987.79 -0.036943

32584.8 32574.25 0.032371 32595.35 -0.032392
32118.63 32104.11 0.045206 32133.16 -0.045249
32664.22 32649.56 0.044884 32678.9 -0.044925
36955.75 36942.96 0.034609 36968.55 -0.034634
33580.85 33567.72 0.039099 33593.99 -0.039131

46742.961 46724.94 0.038544 46760.99 -0.038574
46962.75! 46944.2 0.039493 46981.31 -0.039525
47330.72 47312.52 0.038441 47348.92 -0.038471

53859.2 53839.821 0.035995 53878.6 -0.036022
48723.91 48705.37 0.038043 48742.46 -0.038073

12915.01 12891.43 12891.93 12887.33 0.178689 0.031802 12938.17 12895.53 -0.179345 -0.031823

93083.97 93254.021 93004.95 93223.9 0.084888 0.032294 93163.12 93284.15 -0.085037 -0.032315

96317.98i 96470.1 96219.47 96446.15 0.102275 0.024829 96416.7 96494.07 -0.102491 -0.024842

98088.22! 98069.73 - 0.018849 98106.71 -0.018856

24625.67 24750.99 24615.32 24741.63 0.04201 0.037786 24636.03 24760.35 -0.042068 -0.037821

Original High End High End Low End Low End
1B 1A 1B 1A% 1B% 1A 1B 1A% 18%

mexhaust mxhaust mexhaust Difference Difference mxhaust mexhaust Difference Difference
kg/hr kg/hr kg/hr II kg/hr khr
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A

Variations in Emissions Measurements:

The emissions data was collected over two periods. The first was a six hour

stretch in which the only one engine was powering the starboard shaft. The second

combination included a combination of both plant alignments. Figures G-3 and G-4 plot

the measured NOX concentrations in such a way as to differentiate data collected in

dissimilar manners.

Figure G-3: NO, (ppm) Differentiated by Plant Alignment
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Figure G-4: NO, (ppm) Differentiated by Day of Testing
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Two of the data points for data gathered on 16 February are for a single engine per

shaft alignment. These points correspond to a power fraction of 0.45 (ship's speed of 15

knots) and 0.65 (ship's speed of 17 knots). The 15 February data points grouped

immediately above and to the left of the aforementioned points also correspond to ship's

speed of 15 and 17 knots, respectively. Significantly lower NOX concentration values

were recorded on the second day of testing. Some of the deviation can be attributed to

vastly different weather conditions (sea state one on 15 Feb and sea state three on 16

Feb), but drift in the calibration of the portable emission analyzers is considered the

primary cause. As the rate of drift is unknown, the calibration data measured after

shipment of the analyzer back to Groton, Connecticut should not be used in an attempt to

equalize the data.

There was also a significant difference between the emission values measured by
each model of portable analyzer. The ECOM KL, an older model, was used primarily on
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MPDE IB; the ECOM S+ was attached to MPDE lA. The extent of these differences

can be viewed in Figure G-5.

G-5: NO, (ppm) Differentiated by Engine
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At one point during the ship's full power trial at 24 knots, the ECOM KL was

transferred to MPDE 1A. The Nox measurement for this engine did not increase to the

level that was being measured for MPDE IB, indicating that the difference in the emission

concentration levels could not be attributed to the portable analyzers.

The engine had both recently been adjusted by the engine manufacturer, but little

operating time had been logged since. This is especially true for MPDE 1A which

suffered two equipment casualties during the three day test period, placing the engine out

of commission for most of the sea trial. As NOx emissions are sensitive to engine

combustion conditions, one could expect small differences between the emissions

concentrations for two engines of the same model. This still would not account for the

variations seen in Figure G-5.
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There is also a possibility that the probes were extended a different length into the

exhaust pipe. Although a well mixed exhaust stream was anticipated earlier, which would

have minimized concerns regarding exact probe placement in the exhaust pipe, this

prediction was never verified at trials. The probe should have been slowly transversed

across the diameter of the exhaust pipe in attempt to verify whether the temperature

profile was constant throughout most of the middle diameter. If the flow could not be

modeled as well mixed, the emissions concentrations may have been sensitive to the

placement of the probe in the exhaust stream. This could account for the NO, level

variations both over the two nights of testing and the two engines.
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