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Abstract

The objective of this research is to investigate the performance of fiber optic sensing
schemes that can accurately and reliably monitor the integrity and state of dam-
age in civil and aerospace structures. The work presented in this thesis focuses on
developing the combined electromagnetic and mechanical analysis required to study
the behaviour of fiber optic sensing for two specific applications: (1) locating and
monitoring tension cracks in concrete structures, and (2) detection of delamination
cracks in composite and concrete structures.

Microbend fiber sensors that bridge the faces of tension cracks in concrete are studied
as a possible means of determining the existence and extent of common damage in
concrete structures. Delamination damage characterization by birefringent and in-
terferometric sensors positioned parallel to delamination damage in typical aerospace
composites and concrete structures is also investigated.



The microbend tension crack sensor was found to be able to detect cracks in the 0.01
mm crack opening range which makes them ideal for inspection of concrete struc-
tures. The study of delamination damage sensors showed the ability of these sensors
to detect delamination crack lengths in the 1 mm rang making them suitable for
monitoring delaminations in advanced composite flexural members. The delamina-
tion sensors investigated in this research have also shown potential use for structural
integrity monitoring in reinforced concrete structures with 0.1 meter delamination
lengths being detectable.
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Notation - Electromagnetic analysis

a Radius of optical fiber core.

c Speed of light in vacuum.

B Magnetic flux density vector.

D Electric flux density vector.

E Electric field intensity vector.

Ei Electric field intensity vector component in i direction.

EM Electromagnetic.

H Magnetic field intensity vector.

J Current density vector.

ki Wavenumber in medium i, i = 0 corresponds to vacuum.

NA Numerical aperature.

ni Refractive index of medium i, i = 0 corresponds to vacuum.

P Poynting vector.

r Axial distance from core center.

TE Transverse Electric Waves.

u Eigenvalue of slab waveguide core.

v Normalized (or cut-off) frequency.

w Eigenvalue of slab waveguide cladding.

a Power attenuation loss.

P Propagation constant.

Ei Magnetic permittivity of material i, i = 0 corresponds to vacuum.

A Wavelength.

Ao Magnetic permeability of free space.

0a Magnetic conductivity of material i, i = 0 corresponds to vacuum.

(D Time invariant electric field intensity vector.

Direction invariant electric field intensity.

w Wave frequency.

VT Transverse Laplacian operator = 9 + •.2



Notation - Mechanical analysis

If Fiber free length.

R Fiber radius.

t Fiber jacket thickness.

u Crack opening displacement.

/~ equivalent foundation modulus.

6 Fiber-tip displacement.

0 Fiber-Crack incidence angle.



Notation - Delamination Analysis

a Major ellipse half axis.

b Minor ellipse half axis.

c Crack position coordinate (x-direction).

d Crack position coordinate (y-direction).

E Young's modulus.

f Fiber sensing position (y-coordinate).

FPF First Ply Failure Load.

h Half beam depth.

J Second moment of area of the beam.

k Number of 900 plies in [Om/ ± 45,/90k], laminate.

1 Beam length.

m Number of 0O plies in [Om/ ± 45n/90k], laminate.

n Number of ±45' plies in [Om/ ± 45,/90k], laminate.

Q Total applied tip force.

U Airy stress function.

Uo Airy stress function for uncracked member.

6E Strain difference between cracked and uncracked member.

AE Absolute integral of weakened to unweakened strain difference.

Ei Strain component in the i-direction.

V) Complex analytical stress function.

X Complex analytical stress function.

v Poisson's ratio.

0i stress component in the i-direction.



Chapter 1

Introduction

In the U.S alone, billions of dollars per year are spent on the inspection and repair

of existing structural components. In concrete structures, the high cost of structural

repair is due partly to the cost of manual inspection and the lack of reliable techniques

for detection of damage at an early age. In advanced composites, the non-destructive

evaluation techniques which are used for damage monitoring tend to be expensive and

unreliable. Fiber optic sensors can potentially offer a solution to existing structural

integrity monitoring problems due to their high sensitivity, low weight, immunity

to electromagnetic interference such as lightning, continuous monitoring capabilities,

their ability to detect distributed strains and their relatively cheap price. Another

advantage of fiber optic sensors is the relative ease with which they can be embedded

into curing materials such as reinforced concrete and advanced composites, which

makes them ideal for integrity monitoring in civil and aerospace structures.

Previous work in structural damage sensor assessment has concentrated on exper-

imental determination of sensor reliability under conditions in which the position and

extent of damage is known. In practice, the location and extent of the damage is un-

known and can greatly influence the ability of previously proposed sensing schemes

to detect the damaged zone. This work focuses on theoretical and numerical electro-

mechanical analysis to provide guidlines for the design and placement of fiber optic

sensors. The factors effecting fiber optic system design are (a) crack length (or open-



ing), (b) relative position of the fiber sensor to the crack, (c) orientation of the fiber

relative to the damaged zone, (d) mechanical properties of the fiber and structural

material and (e) optical properties of the fiber.

The sensing of two typical failure modes in civil and aerospace structures are studied

in this work. In particular, the feasibility of using fiber optic sensors to detect (a) ten-

sion cracks in concrete structures, (b) delamination damage in advanced composites

and in reinforced concrete structures.

The first four chapters of this work deal with the evaluation of the combined electro-

magnetic and mechanical behaviour of micro-bend fiber optic sensors used for tension

damage detection. The key parameters required for successful optic sensor design are

identified and their effects on sensor performance are investigated. Chapter 2 explains

the electromagnetic concepts required for the investigation of light wave propagation

through optical waveguides and presents the Beam Propagation Method which allows

the modelling of wave propagation through arbitrary sensor geometry. Chapter 3 fo-

cuses on presenting the mechanics of crack bridging fibers using three-dimensional

finite element analysis and beam on elastic foundation models. Chapter 4 and 5 com-

bines the electromagnetic and mechanical analysis to investigate the effects of various

material and geometric parameters on crack sensor performance. Chapter 6 concludes

the section on tension crack detection by explaining the parameters required for suc-

cessful fiber optic sensor design.

Chapter 7 focuses on the feasibility of using fiber optic strain sensors for delami-

nation detection by monitoring changes in strain caused by delamination, formation

and growth. Effects of various parameters on crack detectability are investigated in

this section. Two case studies are presented to show the applicability of fiber sensors

in delamination detection for advanced aerospace composites and similar debonding

damage in reinforced concrete structures.



The conclusion of the thesis outlines the research undertaken and presents the aims

of future research.



Chapter

Electromagnetic Wave

Propagation

2.1 Optical Wave guide Basics

2.1.1 Basic Electromagnetic Definitions

This section develops some of the basic electromagnetic concepts used further in this

thesis.

An electromagnetic wave traveling in medium i, has speed, ci given by :

A2w
= 27r

The frequency of propagation is related to the wave number k by :

k = -
CO

The refractive index of a material is given by the ratio of light velocities :

CO
ni - --

ci

(2.1)

(2.2)

(2.3)



where co is the velocity of light in vacuum and is given by :

1
2 = (2.4)

The light velocity in a non-magnetic medium is given by :

c = (2.5)i -LO-

Using equations (2.3) to (2.6) it can be shown that :

Eo i (2.6)
ni

Substituting equations (2.3) and (2.5) into equation (2.2) and squaring gives :

k2 = W J (2.7)
ni

2.1.2 Wave Guide Definition

Any optical device which is able to guide electromagnetic energy in the optical fre-

quencies along a well-defined path is known as an optical wave guide.

Essentially any medium consisting of a transparent dielectric material of low opti-

cal loss can serve as a transmission medium for guided optical waves if the refractive

index of the material on the outside of the wave guide is less than the refractive index

on the inside.

2.1.3 Wave Guide Characterization

Commercially available optical wave guides consist of a central core made of glass or

plastic dielectric through which most of the electromagnetic energy is transmitted.

The core is surrounded by a different dielectric material whose refractive index is

slightly (less than 0.5%) lower than that of the core. The little electromagnetic field

which is carried in the cladding decays rapidly to zero with distance from the core.



Figure (2-1) shows the geometric representation of a mono-mode EM wave propa-

gating in a bent step refractive index optic wave guide. Note that electro-magnetic

energy is lost through the cladding in the bend.

In Figure (2-1), the following symbols are used :

ni Refractive index at fiber center.

n2  Refractive index of cladding.

a Diameter of core.

2.2 Analysis of EM Transmission in a Slab Wave

Guide

This section describes the analysis of a straight slab wave guide. Circular fiber trans-

mission is not considered since as shown in section (2.6), circular fiber behaviour is

computationally and mathematically more difficult to model than slab wave guide

behaviour but can be approximately modelled by changing the material characteris-

tic in the slab wave guide analysis. [6]

EM wave guide propagation theory has its roots in Maxwell's equations:

aB OHV x E =--= o (2.8)at at

aD dE
V x H = + J = Ei + aiE (2.9)at at

The magnetic field vector, H, can be eliminated from these two equations by taking

the curl of equation (2.8), to give :

X V x E =/o a (V x H) (2.10)



Expanding the left hand side of equation (2.10) with standard vector calculus tech-

niques and substituting equation (2.9) into the right hand side leads to :

02E OE
V(V * E) - V 2 E = -0Ei 2 - P0o aat2 at (2.11)

In the case of propagation through an homogeneous, isotropic medium with no free

charge, V * E = 0, the wave equation can be rewritten as :

a2E OE
VWE = Ioi-- + 0o tW atd (2.12)

Equation (2.12) is solved by assuming harmonic wave propagation in the z - direction.

Hence every component of the electric and magnetic field is then given by :

5 = E(x, y, z)eiwt (2.13)

Assuming that the medium is

into equation (2.12) gives :

lossless gives oi = 0 and substituting equation (2.7)

(V 2 + k2n )l = 0 (2.14)

In the case of an electric field

Maxwell's Equation reduces to

propagating along one direction, say the z direction,

the Helmholtz equation.

(V 2 + k 2n)(Dz = 0 (2.15)

In general the Helmholtz Equation needs to be solved to find the the electric field

distribution in 3 dimensions in an optical wave guide. The next section deals with

solving the Helmholtz equation.



2.3 Solution of the Helmholtz Equation by the

Beam Propagation Method

A general algebraic solution of the Helmholtz equation is not possible. Various nu-

merical tools including, finite-difference [14], effective-index [7], Rayleigh-Ritz [15] and

hybrid methods have been proposed. Lately the Beam Propagation Method (BPM)

has had increasing success with more than 20 articles being written on the subject in

1994 alone. The BPM was first proposed by Fleck et al. (1976) [4] for the solution

of high energy laser beam propagation but has since been extended to the solution of

propagation of EM waves in any medium with small variations in refractive index.

The traditional BPM relies on two assumptions :

(1) The field propagates along only one direction, the z axis with no backward trav-

eling field.

(2) The field can be considered paraxial, that is the optical rays essentially propagate

along the central axis of the wave guide. This condition is realized when there are no

abrupt changes in wave guide geometry, wave guide indices or wave guide curvature.

Under these conditions, the stationary electric field IP is given by :

I(x, y, z) = /(x, y, z)e- j oknaz, (2.16)

The Helmholtz equation (2.15) can be rewritten as a parabolic equation in q :

ao .VT + k2(n2 - n )= - j n (x, y, z) (2.17)
az 2nak

where VT + 2 and the term _ is ignored due to the Fresnel assumption of

no rapid fluctuations in electric field. The Fresnel assumption is valid when there are

no abrupt changes in fiber geometry.

Since no more power than the input power can be carried in the waveguide, the

boundary condition is :



= 0 as r = x2 +y -400

2.3.1 Formulation of the Beam Propagation Method

Various solution techniques have been proposed to solve equation (2.17) including

Fast - Fourier transform techniques (FFT) [3] and Rayleigh-Ritz methods. [16] Vassallo

[14] proposed a finite difference technique which has the added advantages that it is

potentially faster than the FFT method and can be extended to take into account

the backward propagating field. This section summarizes both the FFT BPM and

Vasallo's finite difference BPM.

2.3.2 The Vassallo Finite Difference Beam Propagation Method

In general the sensing of the backward propagating field is difficult since the electrical

energy associated with this type of propagation is small and in practice extremely

accurate equipment is needed for backward field detection. Vassallo has analysed the

effect of ignoring the backward propagating field and has shown that for paraxial wave

propagation, the effect of neglecting the backward propagating field is negligible and

hence only the forward propagating field is considered here. Ignoring the backward

propagating field means that equation (2.17) can be used directly. Using the standard

Crank-Nicholson finite difference algorithm [10] in the z direction at any point zm =

mAz, equation (2.17) can be rewritten as :

Om+1 -Om mo
Az = jMb m + l  (2.18)

where:
VT+ k2(n 2 -

M = 2 n•k (2.19)
2nlak

Equation (2.19) can be evaluated by a standard central finite difference scheme, and

"+- m +2•m+2 indicates that the average value of the q between succesive dis-2



cretization points. Simplifying equation (2.18) gives :

2 2
(M + 2 ) m +1 = (2 - M)Wm  (2.20)

where 0o is the initial field input into the system.

The energy flow carried by the electromagnetic wave in any direction is calculated by

the Poynting vector :

P=Ex H (2.21)

H is the electromagnetic field vector which can be calculated using equations (2.10)

and (2.14), giving :

H = 1V x E (2.22)
jWItLO

The power carried in the z-direction at position z m is given by evaluating the time

averaged Poynting vector in the z - direction over the cross sectional area of the

waveguide:

Pz = - ¢(x, y, z m )H(x, y, zm)dA (2.23)
2 A

The attenuation (or loss) of signal is given as :

Pin
a = 10 logo10 , (2.24)

where Pin is the input power and Pot is the measured power at the propagation

distance of interest.

2.3.3 The FFT Beam Propagation Method

The FFT BPM is derived for the one-dimensional wave propagation equation in which

case equation (2.17) becomes :

q _ -- + k2(n? - n,)
=2 - j  2(x, z) (2.25)9z 2nlk



Expressing q(x, z) as a Fourier series having a finite number of terms gives :

N/2
(x, z) = E

n=-N/2+1
On(z) exp(jk•,z) (2.26)

where kxn denotes the discrete transverse wavenumbers defined by :

2T"
kxn = n

L
(2.27)

where L is the width of the computational area.

The actual computation of equation (2.26) can be performed using the widely avail-

able Fast-Fourier transform (FFT) algorithm. Substituting (2.26) into (2.25) gives

¢ (j 2k
Oz = 2nok (k + k2(n - n)2 (2.28)

Solving equation (2.28) by assuming :

On(z) = Onle -j lz (2.29)

where / is the propagation constant and is assumed constant over a small distance

in the z-direction (Az).

Substituting (2.29) into (2.28) and solving for P gives:

k2 - k 2 2(nn2n= - _ (2.30)
2nak

Substituting the expression for / into (2.28) and allowing for small step lengths (Az)

in the z-direction gives :

k2 -k2 (n2 - n~
Cn(z + Az) = exp(jAz k 2(n )(n(z)

2nak
(2.31)



(2.31) is usually written in the form :

Az k k(n? - n ) Az k2

n(z + Az) = exp(j "n ) x exp(-jAz 7,
n 

a - ) x exp(j " ),n (2.32)
2 2nzk 2na 2 2nak

Taking the inverse FFT of equation (2.32) recovers the solution ¢ of the Fresnel Equa-

tion (2.17).

Equation (2.32) can be interpreted as the propagation of the electric wave through a

series of equivalent lenses as shown in Figure (2-3).

The first term on the right hand side of (2.32) represents the propagation of the wave

through an homogeneous medium with an effective index of n, and length Az/2. The

second term of equation (2.32) corresponds to a phase shift associated with propaga-

tion through a thin lens and the third term corresponds once again to propagation

through an homogeneous medium of length Az/2.

2.4 Solution of the Helmholtz equation for a Sym-

metric Slab Wave Guide

The objective of this section is to find the first fundamental mode of a straight slab

wave as shown in figure (2-2). In the case of no change of electric field in the z-

direction and y-direction and using equation (2.16), equation (2.15) can be simplified

to :
-a2 + k2(n 2 - n )0 = 0 (2.33)

To allow for guided modes in the core :

In medium 2 we have na > n2 for Ix J> a

In medium 1 we have nl > na for Ix J< a

Equation (2.33) is solved for the first symmetric mode (TEo) in medium 1 by assuming



01 = A, cos(k nl - n2x) + B1 sin(krni - n2x) (2.34)

For the symmetric mode B 1 = 0.

Equation (2.33) is solved for the first symmetric mode (TEo) in medium 2 by assuming

2 = A 2e-k + B-
2ek -x (2.35)

The boundary condition ¢ = 0 when x = 0o gives B2 = 0.

From equation (2.22), the magnetic field in the z-direction is given by :

Hz = 1 (2.36)
3wAo az

Hence the magnetic field in medium 1 is given by :

Hzi = n A sin(k n - nx) (2.37)

and in medium 2 by :

Hz2 = k n - n A 2e-k Vn22 (2.38)
jWILo

On the interface between the different media O, and Hz must be continuous. The

continuity for ,y gives :

cos(kn -n a)
A2 = A- (2.39)

-kn-
2 -n 2 a

The continuity condition for Hz leads to :

1rni - na tan(kan - n) = n - n- (2.40)

Equation (2.40) can be rewritten as :

utan(u) = w (2.41)



where:

u = kn - nia (2.42)

w= kina -2 n2a (2.43)

and

v2 = u2 + w2  (2.44)

It can be shown [13] that for the propagation of a single eigenmode v < i/2 the fiber

has mono-mode propagation.

Solving equation (2.40) for nr gives the full solution to the electromagnetic wave

equation.

2.5 Solution of the BPM for a curved slab wave

guide

Hocker and Burns (1977) [6] showed that a circular fiber optic can be reduced to

a, slab wave guide by using the effective wave guide method. This method replaces

a circular wave guide by a slab wave guide by changing the refractive index of the

cladding material. The advantage of the effective index method is that it reduces the

two-dimensional BPM problem to a one-dimensional problem and hence the number

of computations can be reduced by approximately N operations (where N is the num-

ber of sample points taken in the one-dimensional case). Typical number of step per

BPM analysis is 2500 steps (where the step length Az is taken to be equal to 2 pm

and the propagation length is 5 mm). Danielson (1984) [2] has reported computa-

tional time savings in the order of 100 when the effective index method is used.

Hocker and Burns (1977) [6] also compared the effective-index solution for a two

dimensional square waveguide and found that the difference between the effective-

index solution and a more rigorous three dimensional solution was a maximum of

10 percent for all values of the cut-off frequency (v). Ramaswamy (1974) [11] found



similar accuracies to Hocker and Burns (1977) [6] in experimental studies. A fur-

ther geometric assumption in the effective index method presented here, is that the

power loss in a circular fiber can be approximated by calculating the power loss in

a slab waveguide. The validity of the geometric approximation can be deduced from

the comparison of slab (without the effective index approximation) and circular step-

index guides presented by Love and Winkler (1978) [8] who found that for small radii

of curvatures (which dominate power loss in a generally curved waveguide), the slab

waveguide give approximately the same results (to within 20 percent) of the circular

waveguide. The results presented by Love and Winkler (1978) were also found by

Snyder et al (1975) [12]. Preliminary calculations using the step-index method show

that for small curvatures, the geometric approximation of the rectangular waveguide

to the circular waveguide can give accurate solutions to within 10 percent.

In the case of a slab wave guide, the numerical finite difference evaluation of M in

the left hand side of equation (2.19) is :

+ k2  (2.45
Mo = ax2  (2.45)

2nak

M = p-k 1 + [ k2(n  n ) - 2] p + , +  (2.46)

where m indicates the x position of the finite difference grid, such that x = mAx. In

matrix form M can be rewritten as :

Ax
2  0

1 22 + k2 (n? - n2 ) 1 0AX Ax 2 + z a Ax 2

0 1 2 + ...Ax2  -ra

A0 Ax 2

. . . . . . . .

1
M=I

2nak

0



1 0
Ax2

1 2 2 2(

(2.47)
1

The left hand side is seen to be tridiagonal and efficient sparse matrix methods can

be used to solve the linear system of equations.

In order to satisfy the curvature paraxiality condition, the curved wave guide can

be conformally mapped into an equivalent straight wave guide with refractive index

:[5, 1]
new (1 + old (2.48)

The input electric field at z = 0 is taken to be the first fundamental mode devel-

oped in the previous section so that no attenuation occurs due to mode dispersion

when propagation occurs through a straight fiber. The input electric field is normal-

ized to unity by taking A1 = 1 in equations (2.37) to (2.39).

The BPM analysis for various radii of curvature is performed on a standard mono-

mode lossy fiber in order to check whether existing manufactured optic fibers can be

used in future sensing applications. The optical characteristics of the fiber are :

* Core diameter : 6pm.

* Core refractive index : 1.4613.

* Cladding refractive index : 1.458.

* Light wavelength : 1.3pm.

* Propagation step : Az = 2pm.

* Propagation distance : 5 mm.



* Grid spacing : Ax = 0.5p~m.

* Grid length: 128pm.

The refractive index profile and input electric field is given in Figure (2-4).

In order to check the numerical accuracy the of the BPM, fundamental mode propa-

gation and power attenuation through a straight fiber is studied. Attenuation losses

of -0.009 dB is caused by numerical inaccuracies as a consequence of the finite differ-

ence discritization in the x and z directions.

The effect of electromagnetic field propagation along a curve of constant radius is

shown in Figure (2-5). The downward movement in peak value of the propagated

wave and the carrying of energy in the outer radius cladding shows the typical curva-

ture attenuation of the electric field by energy loss through the cladding. Appendix

A shows an example calculation of the BPM algorithm for a constant radius curve.

Figure (2-6) shows the power attenuation through curves of various radii. Radii

of less than 8 mm show significant power loss while radii greater than 12 mm show

insignificant loss. Total power loss is dependent both on radius of curvature and dis-

tance of propagation along the curve.

Figure (2-7) shows the rate of power loss with distance occurring in the fibers for

various radii of curvature. The large power loss occurring at the beginning of the

curve is due to transition losses. During the transition porition of the propagation,

the input straight slab fundamental mode changes to the curved waveguide funda-

mental mode as shown in Figure (2-5). Transition loss occurs due to the dispersion

of energy within the transition length as the input fundamental mode changes to the

curved fundumental mode.

The constant rate of power loss after initial transition loss is the steady state power



loss. Marcuse (1971) [9] obtained an approximate closed form solution for the steady

state bend loss of constant curvature wave guides given by :

2w3 R +wa

WU2e n
2

k
2

-u
2

a = 4.34 in dB/unit length (2.49)
v2 nik 2 2 ()

The comparison of the theoretical solution and numerical solution is shown in Figure

(2-8).
The relative contribution to total power loss of the steady state propagation and

transition loss in an arbitrarily curved wave guide is dependent on :

* Propagation distance - steady state propagation loss dominant.

* Radius of curvature - both losses dominant.

* Changes in curvature - transition loss dominant.

For small distance propagation along a curvature changing fiber, the transition loss is

dominant. This effect can be studied by calculating the curvature loss in a constant

radius "S" curve. An "S" curve has the characteristics of having two transition losses.

The rate of attenuation with distance in a "S" curve is shown in Figure (2-9). The

large transition losses occur near propagation distances of 0 and 5 mm corresponding

to the position of abrupt curvature change.

The abrupt decrease in attenuation loss at propagation distances of 5 mm (just be-

fore the large transition losses) shown in Figure (2-9) corresponds to break down in

the BPM paraxial assumption. The abrupt change in curvature at this distance re-

quires the propagating fundamental electric field to change abruptly which violates

the paraxial assumption. Since the constant bend radius loss is re-established after

approximately 8 mm, it can be noted that after the break down in paraxial assump-

tions which occur over a short distance (between approximately 5 and 5.5 mm) the

field eventually behaves consistently with the paraxial assumptions. It must be noted

that the BPM results give no indication whether the transition losses after the abrupt



curvature change are accurately calculated. It can be concluded that the break down

in paraxial assumptions lead to small inaccuracies with respect to total power losses

provided that the BPM assumptions are not violated frequently and thus make up

only a small percentage of the total power loss.

2.6 Wave Guides used for Sensing

It is suggested here that fiber optic sensors relying on detection of host material dam-

age by curvature change, should be step-indexed mono-mode cylindrical fibers. This

type of fiber has the advantage of being more sensitive to curvature loss than other

fibers since slight deviations from straight transmission causes electromagnetic loss

into the cladding and the fiber. In sensing applications where the inclusion of the

sensing element causes strength loss in the host material (such as in strain sensing

of composites), the mono-mode fiber has the added advantages of having a smaller

diameter.

The success of the fiber optic sensor is dependent both on the sensitivity of the

sensing and detection device. Though the production cost of fibers are essentially

independent of sensitivity, the cost of detection equipment is strongly dependent on

sensitivity. Expensive detection equipment is capable of detecting losses in the 0.01

dB range while relatively inexpensive detection equipment operates in the 5 dB sens-

ing range. Hence, it is advisable to design the fiber with optimal sensitivity so as

to reduce the detection equipment cost and at the same time avoid excessive power

loss at each crack (otherwise onlt a small number of cracks can be detected with each

fiber).

For desirable fiber sensor design, a theoretical model relating crack opening to the

optimal power loss needs to be developed. This is the focus of the next 3 chapters of

the present thesis.
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Figure 2-1: Geometric propagation of EM waves along a curved optic wave guide.
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Figure 2-2: Physical model of a slab waveguide.
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Figure 2-3: An array of lenses equivalent to the beam propagation expressed in Equa-
tion (2.32).
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Chapter 3

Mechanical Behaviour of an Optic

Fiber Under Bending

3.1 Introduction

Chapter 2 has shown that electric field attenuation in an optic waveguide is strongly

dependent on the axial curvature distribution of the fiber. This section deals with the

numerical modelling of the mechanical behaviour of an optic fiber sensor in a matrix

material.

The mechanical behaviour of reinforcing fibers in cracked matrix material have been

investigated by several authors. The mechanical model proposed by Leung [1] ana-

lyzed the behaviour of a steel fiber embedded in an elastic matrix by assuming that

the continuum interaction of a fiber bearing on the matrix could be modelled as a

beam on an elastic foundation. Stang and Shah [3] proposed a theoretical model

of a fiber subjected to pullout with debonding. Previous models have the problems

of either assuming the fiber to act in plane strain or subject to pure Mode I crack

opening. The model proposed in this section is an extension of Leung [1] beam on

elastic foundation model with the equivalent matrix stiffness being calculated by a

three dimensional finite element analysis. The effect on the equivalent foundation

stiffness of a soft bedding layer such as a fiber jacket is also included in this section.



3.2 Physical Model of Fiber Matrix Interaction

A crack occurring in a material can propagate under three modes (labelled I, II and

III). The analysis presented herein only considers the in-plane propagation modes

(I and II) caused by tension and shear action in one plane. General out of plane

crack propagation is ignored in the analysis since electromagnetic tools for analysing

generally curved three dimensional waveguides have not yet been developed and it

is unlikely that the paraxial assumption of mode propagation used in the BPM is valid.

Only analysing in-plane crack propagation means that the assumed physical model is

as shown in Figure (3-1). Figure (2.1) shows a generally oriented fiber in the crack

plane, bridging an opening crack. Due to the orientation of the fiber to the crack

face, far field applied tension will cause coupled shear, bending and extension in the

fiber. This work focuses on Mode I (tension) crack propogation, though the work

can readily be extended to Mode II (shear) crack action by varying the prescribed

displacements on the fiber.

Morton and Groves [2] have shown that for a fiber crossing the crack faces, the phys-

ical model shown in Figure (3-1) above can be reduced to the one shown in Figure

(3-2). The assumption in Figure (3-2) is that the fiber is located at such a distance

from the crack tip that the rigid body crack face movements can be considered par-

allel. This assumption allows for the modelling of half the fiber and corresponding

matrix due to symmetry.

Figure (3-2) shows the geometric changes in the fiber undergoing a crack opening, u

has two components given by :

6 = u sin 0 (3.1)

If = (R + t) tan 0 + u cos 0 (3.2)



The dimensions of a standard mono-mode optic fiber typically used for fiber optic

sensing are :

* Fiber radius : R = 62.5 pm.

* Fiber jacket thickness : t = 37.5 pm

3.3 The Finite Element Model

The physical model given in Section (3.2) above can be further simplified by assuming

a fixed far boundary at a distance of 5 fiber diameters from the fiber center which

by Saint Venant's principle should allow for complete stress homogenization mean-

ing that there is no variation in stresses along the far boundary. Figure (3-3) shows

the mathematical model derived from the physical model with the far boundary as-

sumption. The materials in the model are assumed isotropic and linearly elastic with

material constants :

* Glass fiber : Young's Modulus 70 GPa. Poisson Ratio 0.2.

* Plastic jacket : Young's Modulus 3 GPa. Poisson Ratio 0.2.

* Cement Matrix : Young's Modulus 20 GPa. Poisson Ratio 0.2.

The assumptions behind the Finite Element Scheme are :

Separation between fiber and matrix on the tension zone is allowed for by leav-

ing a thin zone free of elements at the fiber-matrix interface. The length of

the separated zone is taken to be one fiber diameter which approximately cor-

responds to the length of the tensile zone. It must be noted that the effect

of various assumed material properties in the separated zone (E varying from

zero for complete fiber-matrix separation to E equal to matrix stiffness for no

seperation) only effects the center line deflection by approximately 5% which is

considered to be adequately accurate for this analysis.



* Loading corresponding to the prescribed deflections are governed by Mode I

and Mode II crack movements.

Eight node linear brick elements with various meshing schemes were used to compare

mesh sensitivity. The mesh shown in Figure (3-4) was chosen since it was found to

optimize both accuracy and computational time. The final finite element model has

the following characteristics.

* Number of elements 2460.

* Number of nodes 2736.

* Radial far boundary at 5 fiber diameters.

* Axial far boundary at 12 fiber diameters.

3.4 Finite Element Results

The effects of varying fiber-matrix incidence angle and crack opening displacement is

presented elsewhere. The results of simulations on a fiber with incidence angle of 30'

with crack opening of 0.2pm is presented in this section in order to clarify some key

features in the finite element model for a typical fiber orientation and crack opening

displacement.

The band plots presented in Figures (3-5 a) and (3-5 b) show the in-plane stress

distributions at a distance of one fiber diameter from the crack face for a fiber with

a soft jacket coating. Figures (3-6 a) and 3-6(b) show the in-plane stress plots for a

fiber with no jacketing material. Comparing Figures (3-5) and (3-6) shows that for

the jacketed fiber, the jacket material carries most of the stresses and only relatively

small stresses are transferred to the matrix. The stresses at the far boundary are

found to be homogeneous thus validating the far boundary assumption.

Figure (3-7) shows that the difference in deflected shape between the glass fiber center



line, the fiber outer radius and jacket-matrix boundary. The relatively small differ-

ence in deflected shape between the fiber center line and fiber outer radius implies

that the fiber center-line remains almost parallel to the outer radius. The relatively

large difference in deflection between the fiber center line and jacket interface implies

that most of the deflection occurs within the jacket and hence most stress transferal

occurs within the jacket region. The difference in deflected shapes of the fiber and

jacket can be seen by comparing the deflections at the crack face and along the line

marked A. The matrix-jacket interface has essentially zero deflection past the crack

face while the glass fiber has deflections past line A. The fiber enters the matrix at

the crack face, thus the deflections of the jacket to the left of the crack face are due to

the free applied fiber deflections, while deflection to the right of the crack face include

the effect to matrix jacket interaction. Figure (3-8) shows the deflected shape of the

fiber with no jacketing material. Notice that there are substantial deflections in the

matrix past the crack faces. Hence it can be concluded that the presence of a jacket

help to reduce the deflections (and the stresses) in the matrix.

Figures (3-5) and (3-7) show that most stress transferal occurs within the jacket.

Figures (3-9) show the in-plane stress distribution at two fiber diameters from the

crack face in a jacketed fiber. Comparing Figures (3-9) and (3-5) it can be seen that

the stresses in the matrix at a distance of two fiber diameters is substantially less than

the stresses at one fiber diameter. Spalling of the matrix is associated with micro-

cracks and defects occurring within the material. Due to the rapid decay of stresses

in the matrix and the associated small stresses transferral from fiber to matrix, it is

unlikely that the matrix will spall or crush and the linear elastic assumption for the

matrix behaviour is valid.

The apparently anamolous phenomena of tensile stresses (ay,) above the debonded

zone in Figure (3-9) are due to the large tensile stresses associated with the end of

the debonded zone. Figure (3-10) shows the relatively large (aY,) stresses at the end

of the debonded zone. Similarly zones of stress concentrations occur in the x-y plane

where the debonded zone ends as shown in Figures (3-5). By filling the debonded



gap with low stiffness material it was found that the magnitude of the stress concen-

trations could be reduced, and the effect of the material had no significant effect on

changing the deflected shape of the fiber center-line.

Figure (3-11) shows the small radius of curvature in the fiber associated with the 0.2

mm crack opening.

3.5 Beam on Elastic Foundation Analysis of Fiber

Behaviour

Leung [1] showed that the action of an embedded fiber in a matrix material subjected

to bending deflection can be modelled as a beam on an elastic foundation provided

that the shear stiffness of the matrix material is much smaller than the in-plane stiff-

ness of the fiber.

The equivalent stiffness of the three dimensional behaviour is studied in the following

way.

Consider an elastic beam on a soft founding material as shown in Figure (3-12).

The response of this beam can be analyzed by solving the following differential equa-

tions :

For Beam 1 :
d4yld4Y = 0 (3.3)
dz1

For Beam 2:
d4 y 2
dzY = 4044 y2 (3.4)

where:

y is the deflection at any point.



z is the distance along the beam.

8 is the relative stiffness term = k/EI.

k is the stiffness of the foundation.

E is the Modulus of Elasticity of the beam.

I is the Moment of Inertia.

The boundary conditions are :

y1= u at z1= 0.

y, = 0 at zl = 0 (Zero Moment Condition).

The kinematic and static equivalence at the beam-matrix connection gives :

Y1 = Y2 at 1 = l

vy' = y  at zl=l

Y1 = Y2 at z =l

Y1 = Y2 at z1 = 1

The zero deflection and slope conditions at the far boundary gives :

Y2 = 0  at Z2 = 00

y =O0 at z2 = 00

(3.11)

(3.12)

Here a prime denotes a differentiation with respect to axial distance z.

The solution of this differential equation is :

For z1 < 1 :

(3.5)

(3.6)

(3.7)

(3.8)

(3.9)

(3.10)



z3/3 - 3zfP(1 2/32 + 21± + 1)
213/3 +612P2+610+3

For Z2 > 0

3e(-z2) [(1• + 1)cos(zil) - l/sin(/zi)] (314)
2133 + 612/2 + 610 + 3

The schematic representation in Figure (3-13) shows that in general the stiffness of

the equivalent foundation can be taken as a monotonically increasing function with

length of fiber embedded in the matrix. This is due to the fact that at the crack face,

the bearing matrix area is negligible.

The generalized differential equation for a straight fiber with arbitrary founding stiff-

ness properties can be expressed by :

d4 y
dz4  4 (z)y (3.15)dz

4

It must be noted that equation (3.15) is still linear even though the relative stiffness

term 0 is any function of z.

In this case the variation in stiffness is assumed linear and the governing equation

becomes:

dz4

dz4 __ 4zy (3.16)

The boundary conditions are the same as in equations (3.5) to (3.12).

The standard method of solution of this type of non-homogeneous differential equa-

tion is by substituting y = Eaizi. The substitution gives the following solution :

4 00 (l)k( 4 0)4kz(5k+i-1) k-1

y = ai E , (5j + i) (3.17)
i=1 k=O j=o

Here the ai's are constants determined by the boundary conditions.

Since the product in equation (3.17) is generally difficult to evaluate, a finite differ-



ence scheme is used to estimate the differential equation (3.16) and is compared to

the analytical solution in equation (3.17).

The finite difference scheme used is the Central Difference Method which gives the

following scheme :

Yn-2 - 4 yn-1 + 6 yn - 4 yn+1 + Yn+2 = _V 4 Zn (3.18)
AZ4

Equation (3.18) leads to a tridiagonal symmetric stiffness matrix, which can be effi-

ciently solved by sparse matrix reduction.

Figure (3-14) shows that there is essentially no difference between the finite difference

and theoretical solutions for the linearly increasing foundation stiffness.

3.6 Calculation of Equivalent Foundation Stiff-

ness

This section deals with the calculation of the foundation stiffness provided by the

jacket and matrix. Considering the jacket and matrix as two equivalent springs in

series, a single parameter for relative stiffness 3 can be used to describe the action of

the fiber. 8 is chosen in such a way so that it best approximates (in a least squares

sense) the fiber response calculated by the finite element method.

In general for a specific glass fiber the relative stiffness parameter / will depend

on the following model properties :

* Matrix elastic modulus.

* Jacket elastic modulus.

* Fiber orientation.



* The jacket thickness to fiber radius ratio which governs the relative stiffness of

the jacket.

For a specific set of model parameters, the finite difference scheme given by equation

(3.18) is solved for a range of 3 values until the best-fit beta is found. This relative

stiffness term is then taken to be the equivalent stiffness of the jacket and matrix.

Figure (3-15) shows the comparison of the fiber center-line deflections for the fiber

in Section (3.2) obtained by the finite element and finite difference results. Figure

(3-15) also shows the effect of various 0 stiffnesses on the obtained deflected shape.

For this case 3 = 7.72 per meter gives the best fit stiffness.
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Figure 3-4: Detail of finite element mesh at the fiber matrix connection.
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Figure 3-5: In-plane, a, and ao, stresses in a jacketed fiber at one fiber diameter from
the crack face.
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Figure 3-6: In-plane, a, and ay, stresses in a fiber without jacket.
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Figure 3-7: Comparison of deflected shape between fiber center-line, outer radius and
jacket matrix interface.
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Figure 3-8: Fiber Deflected shape for the case of jacket free fiber.
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Figure 3-9: In-plane, ax and ay, stresses in a jacketed fiber at two fiber diameters
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Figure 3-10: Stress concentration at the debonded zone
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Figure 3-11: Radius of curvature along fiber center-line.
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Chapter 4

Combined Mechanical and

Electrical Behaviour of an Optic

Fiber Under Bending

4.1 Introduction

Chapter 2 described the Beam Propagation Method (BPM) as a method of solving the

electro-magnetic propagation problem of an arbitrarily curved optic fiber. Chapter 3

presented a method of finding the radii of curvatures in an inclined fiber bridging an

open crack. This chapter presents results of the electro-mechanical behaviour of the

fiber in order to find the electrical power loss associated with crack opening.

4.2 Method of Combined Mechanical and Elec-

trical Analysis

This section presents the analysis method for calculating power attenuation in a fiber

optic embedded in a tension cracked matrix. The basic algorithm for calculating

electric power loss in a fiber optic sensor is :

* Select fiber geometry, material properties and crack opening.



* Calculate the fiber center-line deflection using the three dimensional finite ele-

ment model.

* Find the equivalent foundation properties of the jacket and matrix material

using the beam on an elastic foundation model.

* Using the equivalent foundation properties found in the previous step accurately

calculate the fiber's center-line deflection.

* Calculate the radii of curvatures associated with the fiber deflection.

* Calculate the electric power attenuation caused by the changes in curvature

found in the previous step

The fiber curvature cannot be accurately calculated directly from the finite element

model since for accurate BPM calculations, step length increments of approximately

5tim are needed. In the 3D finite element analysis, element sizes less than 0.2 mm

lead both to excessively long solution times and meshing problems associated with

the limited aspect ratio of elements required for computational accuracy. The beam

on an elastic finite difference model is used as a better physical approximation of

the fiber action than a simple spline fit between the node displacements. Each three

dimensional finite element simulation (including pre-processing, solution and post-

processing) requires approximately 10 hours of computer time on a DEC 5000/25

workstation as opposed to 0.5 hours for the finite difference beam model. Due to

the large time saving of the finite difference beam model over the finite element

model, this pilot study only simulates four finite element cases for each particular

geometric or material property change described in this section while other results

are garnered using the finite difference beam on equivalent foundation model. This

section investigates the effect of : (a) crack opening displacement (b) jacket elastic

modulus, (c) fiber inclination angle at crack and (d) optical fiber characteristics, on

electric power attenuation.



4.3 Results of the Combined Electro-Mechanical

Analysis

This section presents the electric power attenuation associated with various fiber

orientations and crack openings. Since the plastic jacket stiffness can be varied de-

pendent on type of plastic used, the effect of jacket stiffness is also analysed.

4.3.1 Electric power Loss for Various Crack Opening Dis-

placements and Fiber Orientations

Electric Power attenuation of fiber angles (0) of 0 to 600 and crack opening displace-

ments of 0.1 to 0.3 mm are investigated in this section. The model's mechanical

characteristics are :

* Glass Fiber Radius = 100pm.

* Plastic Jacket thickness = 50pm.

* Cement Matrix Elastic Modulus = 20 GPa.

* Plastic Jacket Elastic Modulus = 3 GPa.

* Glass Fiber Elastic Modulus = 70 GPa.

* Poisson's ratio of all material = 0.2.

The model's optical characteristics are taken from the mono-mode optic fiber data

provided by the Brown Fiber Optic Laboratory [1] :

* Waveguide width = 6pm.

* Equivalent fiber core refractive index = 1.4613

* Equivalent fiber cladding refractive index = 1.458.

* Wavelength = 1.3pm.



The equivalent foundation stiffness is assumed linearly dependent on jacket stiffness

and fiber orientation. Hence :

0 = a + bO + cEj (4.1)

where a, b and c are constants to be fitted by the FD analysis to the FEM analysis.

The constants a, b and c are assumed independent of each other and 3 is assumed

independent of the crack opening displacements. The constants a, b and c are calcu-

lated as follows :

1. Fix jacket elastic modulus Ej = 3GPa.

2. Fix fiber orientation 8.

3. Carry out the FEM analysis for four different crack openings.

4. Find modulus 0 by FD analysis that provides best fit to the FEM results.

5. Calculate the average foundation modulus 3 for the particular fiber orientation

under the four crack opening displacements.

6. Repeat steps (2) to (5) for various fiber orientations 8.

7. Calculate the correlation coefficient of the fit for various fiber orientations to

check the assumption of crack opening independence.

The comparison of the Finite Element results (FEM) and Finite Difference (FD)

results generated by the above algorithm are presented in Figure (4-1) for various

fiber orientations and crack openings. The FEM results differ from the FD results

due to numerical inaccuracies associated with the FEM and the least square equiva-

lent foundation fit, the match shows some statistical scatter with the average modulus

being used in the FD analysis. The correlation coefficient between the FEM results

and the average modulus FD analysis is 0.99 which is close to 1 and shows that the

assumptions of independence is valid.



Figure (4-1) shows that for all fiber orientations, electric power attenuation increases

as crack opening displacement increases. For fiber orientation angles of less than 45

degrees, power attenuation increases with increasing orientation angles (at the same

crack opening displacement). For fiber angles greater than 45 degrees the power at-

tenuation decreases. In chapter 2 it was noted that total power loss increases with

decreasing radius of curvature. Total power loss also increases with increasing propa-

gation distance along a constant curvature. Optic propagation length monotonically

increases (and hence electric power loss increases) with increasing crack opening dis-

placement.

Equation (3.1) shows that the applied fiber displacement increases with increasing

fiber angle orientation. Radius of curvature increases (and hence electric power loss

decreases) with increasing applied displacement which explains the increasing power

loss at fiber orientations less than 45 degrees. Investigation of equation (3.14) shows

that radius of curvature is dependent both on applied fiber displacement and on

relative stiffness (0) of the founding layer. As fiber orientation angle increases the

effective matrix bearing area of the fiber decreases and hence the stiffness decreases.

Since in Figure (4-1) electric power loss decreases for fiber orientation angles greater

than 45 degrees, the effect of foundation stiffness decrease and free fiber length in-

crease dominates over increase in applied displacement. The increasing fiber free

length is probably a dominant effect since it causes a reduction in fiber curvature

which leads to a reduction in power loss. Hence for a set crack opening displacement,

a fiber orientation around 45 degrees maximizes the electric power loss.

4.3.2 Electric Power Loss for Various Jacket Stiffnesses

This section analyzes the effect of jacket stiffness on electric power loss. The effect of

jacket stiffness is assumed to be independent of fiber orientation in determining the

overall equivalent foundation modulus 3 as shown by equation (4.1). The effect of

jacket stiffness is studied in the following way :



1. Fix crack opening displacement u = 0.2mm.

2. Fix fiber orientation 0.

3. Carry out the FEM analysis for four different jacket moduli.

4. Find modulus P from FD analysis that best fits the FEM results.

5. Calculate the average foundation modulus 0 for the particular fiber orientation

under the four jacket stiffnesses.

6. Repeat steps (2) to (5) for various fiber orientations 0.

7. Calculate the correlation coefficient of the fit for various fiber orientations to

check whether the jacket elastic modulus is independent of fiber orientation

(correlation coefficient equal to 1 shows independence).

Figure (4-2) shows the electric power loss for various jacket stiffnesses and fiber ori-

entations. The correlation coefficient is 0.96 for all jacket stiffnesses showing that the

assumption behind independent behaviour of the jacket material and fiber orientation

is valid. Figure (4-2) shows that as discussed in the previous section the radius of

curvature decreases (and hence electric power loss increases) with increasing stiffness.

Figure (4-2) once again shows the competing effects of decreased bearing area leading

to decreased stiffness and increasing fiber applied displacement leading to increased

optic propagation length. From Figure (4-2) it can be interpreted that a fiber orien-

tated at 45 degree has increasing sensitivity with jacket stiffness. The practical limit

to jacket stiffness is discussed in the next chapter.

The foundation modulus is best fitted in a least square sense by the function :

0 = 13.0925 - 0.17250 + 1.1078Ej (4.2)

where 0 is given in degrees and Ej is in GPa. As expected foundation stiffness

increases with increasing jacket stiffness and decreases with increasing fiber crack-

face orientation.



4.3.3 Electric Power Loss for Various Cut-off Frequencies

This section analyses the effect of the electro-magnetic characteristics of the optic

waveguide on the overall sensitivity of the optic fiber sensor. The electric power loss

for fixed radius of curvature is strongly dependent on :

* wave number, k.

* width of optic core, a.

* refractive index of core, nl.

* Refractive index of cladding, n2.

The above parameters can be combined into a dimensionless number known as the

cut-off frequency introduced as v in equation (2.44). The cut-off frequency has the

advantage that it is independent of na which can only be determined by solving the

non-linear equation (2.40). The slab core eigenvalue (u) and slab cladding eigenvalue

(w) given by equation (2.42) and (2.43) are related by equation (2.44). Combining

equation (2.42) through (2.44) gives:

v= k/ni- na (4.3)

The Marcuse relationship equation (2.49) suggests that for a constant curvature slab

guide, increasing cut-off frequency (for mono-mode waveguides) leads to decreasing

sensitivity. Equation (4.3) shows that decreased cut-off frequency can be achieved

through either reducing the slab width (2a) or the difference in cladding to core

refractive index (ni to n2 ). Figure (4-3) verifies the trend suggested by Marcuse

equation for varying curvatures for fixed crack opening displacement (u = 0.2 mm)

and jacket stiffness (3 GPa). Figure (4-3) shows a reverse in trend between the 450

and 600 fiber for very sensitive (i.e. small cut-off frequency) fibers due to the fact that

increasing light propogation length dominates over reduction in radius of curvature

caused by increasing free length.



The practical implication of reducing the cut-off frequency is discussed in the

following chapter.
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Chapter 5

Discussion of Results and

Recommendations

5.1 Summary of findings

Chapter 4 has concentrated on studying the electro-mechanical behaviour of fiber

optic sensors used for tension crack detection by crack bridging. The main findings

are :

1. Electric power loss increases with increasing crack opening.

2. Electric power loss increases with increasing jacket stiffness.

3. Electric power loss increases with decreasing cut-off frequency.

4. Electric power loss is maximum for fiber-crack incidence angles around 450.

It is desirable to increase electric power loss (within practical limits) since power loss

is directly linked to crack detectability. This section focuses on some of the practical

aspects of changing the above parameters.

5.1.1 Crack Opening

Voss and Wanser [2] have experimentally shown the feasibility of using surface-

mounted crack bridging sensors for detecting cracks with opening displacements in



the millimeter range. For practical structures, this magnitude of crack opening is eas-

ily detectable by visual inspection and exceeds the required opening detectability of

approximately 0.2 mm for concrete structures by an order of magnitude. In general,

the integrity monitoring of concrete structures in critical applications such as power

plants and water retaining structure should allow sensing of cracks in the 0.1 mm

range. For reliable structure integrity monitoring, the sensing scheme should allow

for adequate warning of cracks approaching the critical opening. Adequate warning

for a 0.1 mm critical crack opening, implies that the sensing scheme should be able

to detect cracks less than 0.1 mm in length. Having set the required crack opening

displacement range in accordance with the structural application, the other sensing

parameters need to be modified in order to allow for sufficient sensitivity.

5.1.2 Jacket Stiffness

Investigation of the effect of jacket stiffness has shown increasing sensitivity with

increasing jacket stiffness. Jacketing material is required also to (i) prevent chemical

attack, subsequent embrittlement and final failure of the glass fiber and (2) to protect

the matrix material from spalling due to large stress transferal. Damage of the matrix

by spalling causes a reduction of the equivalent foundation modulus and for power

loss to decrease. Consequently spalling limits the increase of power loss by increasing

jacket stiffness. The effect of a damaging matrix requires non-linear analysis and is

beyond the scope of this work. The randomness of spalling also makes it difficult to

inerpret results quantitatively.

5.1.3 Cut-off Frequency

Low cut-off frequency optic fibers are often called lossy due to the fact that the electric

signal rapidly attenuates due to large radius bends making the fiber unsuitable for

waveguide propagation over long distances. Large radius bends can be introduced in a

sensing system due to fabrication, differential temperature and creep strains. Though

increased sensitivity is achieved through cut-off frequency reduction, careful design



is needed to ensure adequate signal propagation. The commercially available fiber

which have been used throughout the simulations in this work has been tested not to

suffer from excessive power loss due to fabrication, creep and temperature effects.

5.1.4 Fiber Orientation

In the case when the likely orientation of the tension damage is known (such as flexural

cracks in concrete beams), the orientation of the fiber can be controlled so as intersect

the crack at 450. In the case when the orientation of the crack is unknown, it is possible

that intersection may occur at very low incidence angles causing undetectable power

loss. In such cases, a network of sensors is needed in order to ensure crack-fiber

intersection within sensing range. Another advantage of network sensing is that it

allows for accurate location of the crack through a system of triangulation. The

obvious disadvantage of network sensing is that fabrication can be expensive.

5.2 Conclusion

This section has developed a three dimensional electro-mechanical model to study the

effects of sensing parameters on tension crack detection. The major finding is that

commercially manufactured crack-bridging optic fibers can be successfully used to

detect crack openings of practical magnitudes occurring in concrete structures. Four

possible design parameters effecting crack detectabilty have been identified, namely

(a) crack opening displacement, (b) founding material stiffness which is mainly af-

fected by fiber jacket stiffness, (c) optical characteristics of the fiber and (d) fiber

orientation. The manipulation of the sensing parameters can allow a fiber-sensor

designer to select a feasible crack detection layout with differing material and geo-

metrical properties.
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Chapter 6

Application of Fiber Optic

Sensing in Delamination Detection

6.1 Introduction

Recent advances in adaptive materials have focused on the ability of the material

to recognize when it has been damaged. Traditional methods of structural integrity

monitoring through non-destructive evaluation (NDE) techniques such as ultrasound

C-scan [9] and x-ray detection [5] requires considerable time and experience. Fur-

thermore, these techniques tend to be expensive and frequently unreliable [11]. Fiber

optic sensors have several advantages over traditional NDE techniques [16] which

include (a) intrinsic safety, (b) resistance to corrosion which plagues embedded

metallic sensors in highly alkaline environments such as concrete, (c) reduced weight

and size and (d) reliability. Furthermore the final aim of industrial adaptive mate-

rials programs (such as Boeing's smart skin program [16]) is to integrate the sensing

device with the crew interface to advise the crew of the integrity of the structure

and to deduce limitations on aircraft performance by the damage detected. Due to

the above mentioned advantages of fiber optic sensors, they are ideal for real time

monitoring in such applications.

In composite structures, damage frequently occurs in a direction perpendicular to



the load application. In advanced composite structures, this type of damage man-

ifests itself as delaminations between individual ply laminates during relatively low

energy impacts such as dropped tools or in-flight collision with birds [13]. For manu-

facturing purposes and for minimizing the structural weakening of the composite, the

through-thickness weaving of the fiber optic sensor is avoided. In reinforced concrete,

structures delamination damage can occur below concrete deck overlays or reinforce-

ment planes due to the chemical attack of the reinforcement.

Previous work in fiber optic delamination sensing [10] has focused on embedding

etched optical fibers with known stress sensitivity into composite laminates. The

method relies on power loss detection after fiber breakage occurs due to increased

stresses at the delaminated zone. The disadvantages of this method is that it gives

no indication of the position and size of the delaminated zone and the large number

of fibers needed for this detection scheme structurally weakens the composite. Re-

cent work in fiber optic delamination sensing [2] has researched the use of embedded

fiber optic strain sensors to determine the changes in vibration signature caused by

delamination. Problems with this method are that expensive computer software is

needed to process the vibration signal and actual dynamic loading requires sophisti-

cated equipment and experienced operators.

This research focuses on the feasibility of using fiber optic strain sensors positioned

parallel to the occurring damage for delamination detection by monitoring changes

in strain caused by delamination growth. Attention is given to (1) presenting the

theoretical elasticity mechanics required to determine the strain field for particular

flexural delamination problems, (2) identification of the critical geometric damage

detection parameters, and (3) presenting the sensing characterstics of common fiber

optic sensors. Theoretical and numerical solution methods are used to map the effect

of damage on the global strain field. The strain maps are subsequently used to locate

the position of the fiber sensor for reliable damage detection by maximizing the cumu-

lative strain effect of the crack. Two case studies are presented in order to establish



the feasibility of using the proposed detection scheme in real world aerospace and

civil applications by comparing the strain pertubation caused by delamination to the

strain sensitivity of current fiber optic sensors.

6.2 Mechanics of delaminated flexural members

6.2.1 Introduction

This section develops the elastic mechanics required to solve flexural delamination

problems so that the strains associated with delamination can be calculated. The

delamination strains are needed for studying the applicability of various fiber optic

sensing schemes and the calculation of fiber damage sensing fidelity. The study of the

mechanical behaviour of a delaminated cantilever beam is investigated since (a) can-

tilever beams frequently occur in structural components such as wings and propellor

blades in aerospace applications and overhang beams in concrete structures, (b) the

elastic mechanics has closed form solutions, and (c) the results can be applied to any

linear distribution of moment which occur under point load flexural members and

by superposition to any load distribution. Knowing the mechanical behaviour of a

delaminated cantilever beam allows for the solution of more complicated delaminated

flexural problems.

6.2.2 Fundamental Equations in Complex Potential Plane

Elasticity Theory

This section derives the fundamental isotropic elasticity equations required to solve a

cantilever rigidly supported at one end and loaded with a transverse shear load (Q)

as shown in Fig. (6-1) using the complex potential method developed by Muskhel-

ishvili [12] and Savin [14]. The theory and results in this chapter can be extended

to include any boundary conditions and any number of point loads which satisfy the

beam bending model by superposition.

The basic idea behind the Muskhelishvili method is to solve the unweakened (beam



without damage) elasticity problem and to superpose a solution of the elasticity prob-

lem which matches the stress boundary conditions at the hole without effecting the

boundary conditions of the unweakened beam. In general, this type of solution is only

possible if the effect of the hole is localized or effectively if the plate's dimensions are

infinite. For practical elasticity solutions this means that the smallest dimensions

of the plate must be much greater than the dimensions of the hole (Muskhelishvili

[12] recommends a minumum of 5 to 1 plate to hole dimension). By the uniqueness

theorem of elasticity (see for example Timoshenko [17]) any assumed solution that

satisfies the elasticity equations and boundary conditions gives the unique solution

to the problem.

For plane elasticity problems (plane stress or strain), it can be shown [17] that the

elasticity equations need to satisfy the Airy stress function given by :

04U 2 4U 04U
+x--2 + = 0 (6.1)1x4 19X2192 2 y4

The in-plane stresses can be recovered from :

02U 02U 02U
ay 2  = 72 ' y = (6.2)

Natural (stress) boundary conditions can be expressed as :

UF= (acos(n, x) + Trcos(n, y))ds;

Ox = ](avcos(n,y) + ycos(n, x))ds; (6.3)

where s represents the boundary line and n represents the normal to the boundary

surface.

Muskhelishvili has shown that for two-dimensional elasticity problems, the solution



to the Airy equation (6.1) can be expressed as :

U(x, y) = R[2z(z) + X(z)] (6.4)

where R is the real part of the square brackets and 4 (z) and X (z) are conjugate

functions of the complex variable z = x + iy and Z = x - iy. The solution of the

elasticity problem is then equivalent to finding the analytical functions / (z) and X

(z) that satisfy the boundary conditions which are expressed in complex harmonic

form as :
au .au

+ z = O(z) + zO'(z) + O(z) = fl + if2 (6.5)

Once the functions V (z) and X (z) have been determined, the Kolosov-Muskhelishvili

formulae give the stress components as :

ax + = 2[¢'(z) + V'(z)]

ay - ax + 2iT,, = 2[120"(z) + ¢'(z)] (6.6)

where a prime denotes differentiation with respect to the complex variable z and

dz

The individual stress components are then determined by equating real and imag-

inary parts of equation (6.6).

For the solution of elastic plate problems weakened with a hole, it is convenient

to transform the elastic region onto the inside of a unit circle by means of a mapping

function z = w(s). For elliptical holes this transformation is given by :

S= W(() = R(- + m() (6.7)

where
a-b a+b

m = ; R = (6.8)
a+b' 2



and a and b are the major and minor ellipse axis lengths respectively.

In polar coordinates (J = pe('i)) equation (6.7) and its conjugate are:

-io
Z = w(() = R( + mpeio)

(6.9)
io

- = w() = R(- + mpe--o)
P

Substituting w(ý) into equation (6.5), gives the natural boundary conditions on the

unit circle in polar coordinates as :

(U) + V(U) +• • '() (aU) = fh + if2w'(a)
(6.10)

where ( = a at the outer radius of the unit circle.

Muskhelishvili [12] has shown that the boundary conditions given in equation (6.5)

can be rewritten as :

(U) '() du
w (a) a - (

fi + if 2 da (6.11)
27ri

1 w (1) 0'(a) da 1 r
2) i +• (a) , -w 2,(ai

fi - if2d
a -

(6.12)

where - is the closed contour boundary of the unit circle.

Substituting w(() into equation (6.6), the polar stresses are given by [14]:

O-p + o0

up - U0 (6.13)

= 2 [D () + D(()];
2(2

= [W(0)'(0) + W'()]Tp2 W,)

(0) + I27xi



where
VA(O) 01(W). (6.14)

6.2.3 Derivation of Complex Potentials for the Problem of

the Cantilever Beam with Elliptical Hole

This section uses the formulae from the previous section (6.2.2) to derive the stress

distribution in a cantilever beam with an elliptical hole as shown in Fig (6-1). Savin

[14] has derived the stress functions for an elastic isotropic cantilever beam with an

elliptical hole positioned at the mid-height of the beam (d = 0). This analysis extends

Savin's work to allow for the elastic solution of an elliptic hole at any height (d) above

the beam center-line.

The stress function for the unweakened beam is given by :

(1 - c)(y 3 + 3dy2) _ Xy3 - 3dxy 2 + 3xy(h 2 - d2) (615)
Uo (x, y) = Q6; (6.15)

6J

where

Uo is the unweakened (basic) stress state.

Q is the total applied shear force.

J is the second moment of area of the beam.

1,c,d,h are the beam dimensions as shown in Fig. (6-1).

Using equation (6.2) the stress components are :

rX = [(-c)(y + d) - x(y + d)]

a - 0

7~- - [(y + d)2 - h 2] (6.16)

Combining equations (6.6) and (6.2) for the basic stress state, we obtain :

AU0 = 2U+ = 4n[T/'(z)] (6.17)
O9X 2 dy2



where the subscript o denotes the basic (unweakened) stress state. Setting [0i'(z)] =

P(x, y) + iQ(x, y) we obtain :

02Uo D2U
.+ y = 4P(x, y)

The2 function Q() can be calculated using the Cauch-Reiman equations2

The function Q(x,y) can be calculated using the Cauchy-Reiman equations :

_ Q(x, y)
ay '

aP(x, y)
dy

_ Q(x, y)
x

The function X'o(z) = Oo(z) can then be determined using equation (6.4) and writing

Xo(z) = R(x, y) + iS(x, y) as:

1R(x, y) = Uo(x, y) - -[,o(z) + zo(z)]
2

(6.20)

Subsequently S(x, y) is determined from the analogous expressions to equations (6.19).

For the stress function (6.15) :

dy2 = - c)(y + d) - x(y + d))

Solving equation (6.19) gives 4Q(x, y) = - (2x(1 - c) - 2 + y2 + 2dy)

and constant terms which do not effect the stress components are neglected. Conse-

quently :

',(xy)=
f) --

Combining terms in z = x + iy and integrating we get :

o() = .(-3iz2(1 - C) - 3dZ2 + iz 3 + 6d(l - c)z)24J

(6.22)

(6.23)

(6.18)

OP(x, y)
Ox

(6.19)

02Uo
dx2 (6.21)

(1- c)(y + d) - x(y + d))- (6x( - c)+3(y2 - X2) + 6dy))]24



Using equation (6.20) and solving the Cauchy-Reiman equations (6.19) for S gives :

Xo(z) = 48J (-12iz2 (h 2  2) - 12d(1 - c)z 2 + 2iz3 (1 - c) + 6dz3 - iz 4) (6.24)

Hence

0o(z) = (-12iz(h2 - d2 ) - 12d(l - c)z + 3iz 2(1 - c) + 9dz 2 - 2iz3) (6.25)
24J

Applying the principal of superposition and noting that the hole boundary is traction

free gives :

fol + ifo 2 + f wl + ifw 2 = 0 (6.26)

where the subscript o denotes the basic (unweakened) stress state on the hole contour

and the subscript w denotes the applied tractions required for zero stress on the hole

boundary.

Substituting the expressions Vo) and 00 into equation (6.5) gives :

fwl + ifw2 = [3iz 2(1 c) + 3dz 2 
- iz 3 - 6zd(l - c) - 6izZ(1 - c) +

24J

+6z-d + 3iz- 2 - 12if(h2 - d 2) + 12Md(l - c) + 3iz 2(I - c) -

-9d- 2 - 2if 3] (6.27)

fwl - ifw2 =- [3i&2(1 - c) - 3d- 2 - i-3 + 125d(1 - c) - 6iz-(1 - c) +
24J

-6zi-d + 3izz2 - 12iz(h 2 - d2) - 12zd(l - c) + 3iz2 (1 - c) -

+9dz 2 - 2iz3 ] (6.28)

Substituting the conformal mapping equation (6.7) into equations (6.27) and (6.28)

and applying the right hand side of equations (6.11) and (6.12) together with the



Cauchy Residue Theorem (see for example [7]) yields :

ri fl + ifw2 a
2mr'f a - ( d QR (12 ýd(l - c) - 9ý 2dR + 3iR 2( - 12iý(h 2 - d2) - 2iý3R 2

24J

+3m2 2dR - 12m~d(l - c) + 6mý 2dR + 3iR 2m 2 ý +

3im 2 2R(l - c) - im3 3R 2 - 6imr2R(l - c) +

3im3a3R2 + 3iC2 R(l - c) - 6iCR 2m);

fw£ - ifw 2 da
a-2-ri

(6.29)

= QR (12d(l - c) - 3 2dR - iý3R 2 + 9m 2 (2dR - 12m~d(l - c) -
24J

6mý2dR - 6iR2 m2, + 3im2 2R(1 - c) - 2im3 3 R 2 -

6im( 2R(l - c) + 3i 2R(1 - c) + 3iR 2m + 3i

(3R2m2 + 3iR 2m3 • - 12imý(h 2 - d2))

It can be shown [14] that in equation (6.11) the second integral is zero for elliptic

holes, and :
OW 1 fi•+if2d

(6.30)

(6.31)

Hence

= [BR3 ~3 (m3 - 3m + 2) + 3AR 2 2 (m - 1)2 +
24
d

+24 [3BR2 2(3 - 2m - m 2 ) + 12AýR(1 - m)]
24

3BR3 (2m - 1 - m 2 ) - 24ERý]

(6.32)

A= Q(1 - c)
J

E - Q(h 2 - d2)
E =

Evaluating the second integral on the left hand side of equation (6.12) gives

1 I w(a) P, (a)da
27rif , w'(a) a -(

- [ (3 B R 2( m 3  3m + 2) + 6AR 2ý(m - 1)2
2- 1 24

d
+3BR3 (2im - 1 - m 2 ) - 24ER) + (6BR2((3 - 2m

24
+12AR(1 - m))]

Here

(6.33)

- m2)

(6.34)

Q.B
J'



Rearranging equation (6.12) gives :

+3 A- m3 i
Ou,(W) = - 2  (3 B R 3 2( 3 - 3m + 2) + 6AR2(m - 1)2

m( - 1 24

+3BR3 (2m - 1 - m 2 ) - 24ER) + d(6BR2((3 - 2m - m 2)
24

+12AR(1 - m))] - i [BR3ý3(1 + 2m 3 - 3m 2)
24

+3AR 2 ý2 (m - 1)2 + 3BR3 ((2m 2 - m 3 - m) - 24ERmi]

d4[12ARý(1 - m) + 3BR 2 2(1 + 2m - 3m 2)] (6.35)
24

The stress function for the basic and unweakened beam need to be added to give the

total stress state. This gives :

d 1 1
24 (

d 2 1-( BR ( + m) 2 +6AR( + mi))+ C (6.36)

o + w = ¢ Z (2BR3(1 +,m<) 3 + 3AR2(1 +,mr) 2 - 24ER(1 +m))

24(9BR2( +  ) 2 + 12AR( + mý)) + ~, (6.37)24
Constraining the crack to lie on the beam center-line (d equal to zero in the above

equations), the same stress functions as derived by Savin [14] are recovered except for

a negative sign in the numerator of the first term of 0, which Savin has as m 2 + 1.

Since this factor is only dependent on the shape of the hole (it is the w(a)\w'(a)

term in equation (6.12)), this term is independent of the boundary conditions of the

problem. An investigation of other elliptic hole problems solved by Savin [14] has

shown that the geometric transformation factor mý 2 - 1 term in O, is consistent with

these solutions. (See for example the stress functions derived for the elliptic hole

under pure tension).



6.2.4 Derivation of Stresses and Strains

Stresses are derived from the complex stress functions from equations (6.13). Since

the equations require finding the real and imaginary part of very complicated func-

tions, this is best done numerically for any value of ( = re(i"). Cartesian stresses are

determined from the polar stresses by standard coordinate rotations (see for example

Timoshenko [17]. The cartesian coordinates (x,y) for any value of ( are calculated by

equating the real and imaginary parts of equations (6.9).

The strains are determined in accordance with the assumed constitutive behaviour.

In plane stress this is given by the standard:

Ex 1 -v 0 a,
1 -V 1 0 (6.38)

%y 0 0 2(1 + v) Txy

6.3 Validation of Theoretical Results

6.3.1 Introduction

This section validates the derived theoretical solution by comparing stresses for two

numerical example problems. The first example problem confirms Savin's previously

derived solution for the stresses at the hole edge. The second example problem uses

a, numerical boundary element method to verify the stresses away from the hole edge.

The two example problems validate (a) the derived stress functions (V4 and 0), (b)

the calculation of the polar stresses from the stress functions, and (c) the rotation

of polar stresses into cartesian coordinates.

6.3.2 Example Problem 1 Description

This section compares the derived theoretical solutions for the tangential stress on

the hole face with the example presented by Savin [14]. The beam geometry is given

in Fig. (6-1) with :



4l

* I = 10h;

* b= --4'

1 =3:1;

* d = 0;

For these dimensions, the tangential stress on the hole face is [14] :

= Qh 2  [0.5 sin 40 - 7.5 sin 30 + 7.25 sin 20 + 15 sin 0] (6.39)
J(5 - 4 cos 20)

The normalized stress 'IJ from equation (6.39) is compared with the derived solution

in Fig. (6-2) for polar angle 0 = 0 to 3600 . The correlation between the two solutions

is exact (to within computer round off error). The up and po stress components are

zero as expected in the derived solution.

Fig. (6-2) shows that the tangential stress on the hole edge is anti-symmetric with

positive stresses indicating tension and negative stresses indicating compression. The

anti-symmetric stresses are caused by the anti-symmetric loading at the beam center-

line applied by direct longitudinal stresses and shear.

6.3.3 Example Problem 2 Description

The problem of section (6.3.2) does not fall within the infinite medium assumption,

due to the fact that the smallest beam dimension (h) to largest hole dimension (a)

has a ratio of 3 : 4 and does not fall into the 5 : 1 ratio required by the assumption

in Savin's method. In order to verify the stresses away from the hole with the BEM

method, a new problem with dimensions approaching an infinite domain is set up

and solved by the BEM and derived solution method. The beam geometry is given

in Fig. (6-1) with :



Sc = ½1;2 2

1 I = 5h;

Sb= h64'

Sd= 0;

This problem should fall well within the Savin infinite beam assumption since the

ratio of minimum beam (h) to maximum hole (a) dimensions is 1:21.

6.3.4 Description of the BEM Model

The BEM uses a point collocation method to solve the weak form of the elastic dif-

ferential equations. (For a full explanation of the BEM see, for example, Brebbia

[3]). For stress concentration problems, the BEM has shown advantages over other

numerical solutions (such as Finite Element and Finite Difference Methods) due to

computational time saving both in pre-processing (meshing) and analysis [3]).

Fig. (6-3) shows the boundary element model. Three node quadratic interpolation

elements are used on the boundary. The applied end loading is parabolic so that the

end shear conditions in the beam are matched. The end conditions are not in exact

accordance with the elasticity solutions since horizontal movement is prevented by

rollers as opposed to the elasticity solution which only has prescribed displacements

at the center point of the fixed end. To prevent singular stiffness matrices due to

rigid body motion, the center node is pinned.

The convergence of the BEM method was studied by doubling the number of ele-

ments and checking stress differences at specific locations. The discretization chosen

was such that successive doubling of elements only lead to a 2 % increase in accuracy.

The comparison of stresses derived from the BEM to the proposed solution method

for several horizontal locations are shown in Figures (6-4) to (6-6 ).



Figures (6-4) to (6-6 ), shows that the BEM solution begins to diverge from the

derived solution near the fixed end (x = 0) of the beam due to the fact that the stress

reflections off the boundary become dominant.

Both solutions show that the effect of the hole is localized and that the stress field

approaches the "basic" beam stresses away from the hole. It must be noted that in

some cases (especially the a, component) the small difference in the BEM results and

theoretical results near the crack are due both to numerical inaccuracies in the BEM

and by the difference in the position of stress sampling points.

This section has validated the derived analytical solution. The derived solution has

proven to be accurate when the maximum hole dimension is significantly smaller than

the the minimum beam dimension so that the "infinite" domain assumption holds.

6.3.5 Influence of a Horizontal Crack on the Global Strain

Field in a Cantilever Beam

This section investigates the influence of a crack (or slit) on the global strain field.

A horizontal crack or slit can be modelled by setting the vertical axis (b) of the el-

liptical hole to zero. For numerical modelling, the minor axis (b) cannot be set to

zero since computational overflow occurs when trying to calculate the infinite stresses

associated with the crack tip. In nature, perfect cracks are difficult to find since

the infinite stresses cause blunting of the crack tip. Modelling of zero crack width

also has the complication of interpenetration occurring in the compressive zone. In-

terpenetration cannot be handled by conventional classical elasticity nor is it likely

to have significant effect on the global stress field and therefore strains away from

the crack are not significantly effected. To avoid the numerical and interpenetration

problems, the minor axis is set to 5 percent of the major axis. The 5 percent minor

to major axis ratio is chosen since stresses at locations of three crack widths away

from crack are effected by less than 2 % by any further decrease in the hole width



which is within the numerical accuracy of the BEM. Further decrease in hole width

leads to increased solution time with no overall increase in numerical accuracy. This

work does not deal with the possible frictional contact of the crack face after crack

closure that can change the global stress field depending on degree of crack closure

and frictional stress transfer.

6.4 Crack Detection by Fiber Optic Sensors

Recent advances in birefringence analysis [4] has proven the potential of integrated

optic fiber sensing in detecting strain changes. Previous work [10] in fiber optic sens-

ing has relied on the breaking of the optic fiber for actual crack detection. This

method of crack detection only allows for point-wise crack detection since the fiber

would have to pass close to a crack for the stresses to be sufficiently high to cause fiber

rupture. Since in general applications, the position of a crack is not known a priori,

the point-wise crack detection method could only be successful by introducing a large

number of sensors into the sensing domain which in turn made the structure weaker

and expensive to manufacture. Integrated sensing techniques measure the total strain

associated with crack presence and fidelity of the sensing system is dependent on the

changes in global strain fields integrated along the length of the fiber.

The success of a damage detection technique is characterized by its reliability in

detecting both the extent and position of the damage. In all damage detection tech-

niques, the reliability of the system is also influenced by the position of detector. In

two-dimensional damage detection problems, the four parameters that can be varied

are :

* Longitudinal position of the crack (c).

* Vertical Position of the crack (d).



* Crack Length (2a).

* Sensor position (f).

With increasing crack length, the size of the K (stress singularity) dominant zone

increases causing a larger strain influence zone. An increasing strain influence zone

in turn leads to better detection reliability. Since the effect of crack length is known

to give increased reliability, the effect of crack position on sensor system reliability is

investigated independently of crack length.

6.4.1 Interferometric Optic Sensors

Interferometric optic sensors rely on axial fiber strain to cause a change in the fiber

length and a subsequent interference of the input light field due to the increased

light traveling time. This integrated technique is unlikely to work in delamination

detection since the axial strains caused by the presence of a delamination crack is anti-

symmetric as seen in Figure (6-4). Antisymmetric axial strain causes the increase in

fiber length due to tensile strains to be offset by the decrease in fiber length due to

compressive strains and thus the overall length in the fiber remains unchanged. No

change in overall fiber length means that no interference takes place since the light

travelling time remains constant.

6.4.2 Bragg Grating Sensors

Bragg grating sensors allow for point wise longitudinal strain sensing by monitoring

the time taken for backscattered light to move through an etched grating along a

small portion (approximately 5 mm) of the fiber length. The advantage of this type

of sensor over traditional point sensors is that several Bragg grating can be etched

onto each fiber. It must be noted that this type of fiber sensor system although being

more reliable than traditional point sensors, is less reliable than integrated sensors

(such as birefringent sensors) since the position of the gratings relative to the occuring

damage greatly effects sensor system reliability.



6.4.3 Birefringent Optic Sensors

Optical birefringence refers to a light polarization phenomena and subsequent electric

power loss due to the rotation of the fiber's optical axis along the fiber length. Figure

(6-7 a) shows a general state of stress along any fiber cross-section in the y-z plane.

The initial (unstrained) polarization axes are marked by labels y and z. The strained

polarization axes are marked y' and z'. The degree of birefringence and subsequent

power loss depends on the degree of rotation between strained and unstrained axes.

By rotation into the principal axes, any state of stress (or strain) can be decomposed

into purely dilatational strains (marked with a subscript I) as shown in Figure (6-7 b)

and distortional strains (marked with a subscript D) as shown in Figure (6-7 c). The

dilatational component of strain causes a pure volume change with no change in shape

since the unstrained polarization axes remain the same through pure dilatational

strains. Distortional strains causes a change in shape as shown by rotation of the

polarization axes from y to y' and z to z' in Figure (6-7 c). Hence rotation of the

fiber axis and subsequent power loss can only be caused by a shape change of the

fiber cross-section as caused by distortional strains while dilatational strains cause no

birefringent behaviour.

Previous work on photoelastic sensing [15] has analyzed the sensitivity of generally

strained fiber optic sensors. In a general anisotropic photoelastic material, the phase

difference between any two eigenmodes (A¢) and hence fiber sensitivity is given by :

AO = f[i6e dx] (6.40)

where :

f is a scalar photoelastic operator.

We define the sensitivity to be 6E which is the strain difference between the un-

strained and strained case, and e is the generalized three dimensional strain tensor.

In the case of damage detection, 6 E refers to the difference between the basic (or

un-weakened) solid body and the damaged solid body. Note that for birefringent



fiber, 6E is always positive since shifting of the optical axis in any symmetric direc-

tion has equal effect on the power loss.

The aim of this section is to determine the effect of crack and sensor position on

the sensitivity components in equation (6.40).

6.4.4 Integral Strain Field Mapping

In order to maximize each sensitivity component of equation (6.40), the line-integral

strain deviation (along the optical fiber) between weakened (cracked) and the basic

(uncracked) stress state is studied for various crack and sensor position. Fig. (6-8)

to (6-10) show the various sensitivity band plots for a typical fiber position (f = 0.1

h). The sensitivity maps are generated by the following method :

1. Fix sensor position at a vertical height f.

2. Fix crack position (c and d).

3. Calculate the basic stresses (Co) for the un-weakened beam using equation (6.16)

along line f.

4. Calculate the basic strain field (Eo) from the basic stresses using equation (6.38).

5. Calculate the weakened beam stresses using the method developed in section

(6.2) at the strain sensor position f.

6. Calculate the weakened beam strains using equation (6.38).

7. Find the difference between the basic and un-weakened strain states 6e.

8. Calculate the sensitivity (ft 6E dx) for each strain component Ex, Ey Exy at

position f.

9. Change crack position and repeat step (3) to (8).

10. Change strain sensing position and repeat steps (2) to (9).



Here it is assumed that the damage can occur at any position within the beam. Since

the problem is symmetric (with respect to absolute strains) about the beam center-

line (which is assumed to be the neutral axis in this case), one half of the beam is

studied with symmetric distribution of fiber sensors about the beam center-line being

understood. The typical case that is studied is for the following beam configuration :

= 20 : 3;

* = 1 : 60;

6.4.5 Interpretations of the Integral Strain Field Maps

The band plots for typical strain sensing positions Fig. (6-8) to (6-10) show that for

any fixed strain sensing position, the longitudinal position of the crack (c) has little

effect on the overall strain sensing capability of the sensor. Restated this means that

for a fixed loading condition, the strain sensor is incapable of detecting the horizontal

position of the damage. This in turn means that the two crack position parameters

(c and d) are only weakly coupled. Due to the assumptions of the infinite beam, The

maximum sensitivity occurs when the crack is at the sensor position (d = 0.1 h in

Fig. (6-8) to (6-10)) and decreases with vertical distance from the fiber position.

At any position in the beam the crack is being subjected to predominantly Mode

II (shear) and since the shear stress is constant along horizontal sections of the beam,

the effect on the global strain field in the beam is basically the same. Along any

vertical section (y), the shear strain field varies parabolically and hence the effect of

changing vertical crack position (d) should be detectable.

The sensitivity of the fiber is dependent on both crack and fiber position. Since

the crack can occur at any position along the beam but the position of the fiber is

controllable, it is the objective of the designer to ensure that the chosen sensor po-

sition gives the most reliable sensing ability for any crack position. For a particular

crack position, the fiber sensitivity is given by the strain deviation integral along the



sensor. Allowing the crack to occur at any position in the beam, the total reliability of

the sensor system is given by summing the contribution of each individual sensitivities

over the entire area of the beam.

Hence reliability (AE) is given by the area integral of the sensitivity integral(f1 6E

dx):

A•E = [ Edx] dA (6.41)

Figure (6-11) shows the unit normalized area integral (IAEI) of the strain maps for

various sensing position and strain components. All reliability components (zEDl)

show increasing values with distance from the beam center-line. It must be noted

that increasing shear strain contribution is due to the the infinite boundary condition

assumption since near the top free face both the weakened and basic stress states

should approach zero and hence there should be zero sensitivity at this fiber position.

The effect of boundary conditions are studied in the next section. The theoretical

solution cannot be considered accurate for fiber sensing positions f/h > 0.8 since the

assumption of infinite boundary conditions is violated as discussed in section 6.2.

6.4.6 Effects of Finite Boundary Conditions

The previous section has shown that the two position coordinates of the crack are

essentially independent. This in turn means that further studies can be performed

by varying the height of the crack alone (at a fixed longitudinal crack position c).

This section studies the effect on strain sensing reliability of varying the length and

y position (d) of the crack by the BEM.

Effects of finite beam depth

The theoretical solution derived in section 6.2 is only valid when the length of the

crack is 10 times smaller than the distance of the crack from the horizontal boundary

(h-d) [12]. The BEM does not restrict the position of the crack and this section studies

the effect of finite beam depth by comparing the sensor reliability as calculated by

the theoretical and BEM methods as the position of the crack approaches the beams



upper surface. The beam dimensions are as previously used and with the crack at

midspan (c = 1/2). A comparison of the normalized reliability by the theoretical

and BEM methods are presented in Figures (6-12) to (6-14). The BEM results are

consistent with the theoretical results for the normal strain components (Ac. and

Acy). As expected, the BEM shear strain components (Acy) approaches zero as

the fiber position approaches the free surface (f = h). The BEM results also show

increasing fiber sensitivity with distance away from the beam center-line the normal

strain components (AE. and Ac,) when f/h < 0.8. The BEM results show a decrease

in sensitivity in normal strain components for fiber positions greater than f/h = 0.8

and hence with respect to normal strain components the maximum sensitivity is when

the fiber is placed at 80 % of the beam height. The effects of finite beam width are

shown in Figures (6-12) and (6-13) for f/h > 0.8 since the BEM solutions show a

decrease in sensor system sensitivity while the theoretical solutions continue to show

an increase.

Effects of crack length

For the same beam dimensions as previously used and with the crack at the beam

midpoint (c = 1/2 and d = 0), the BEM is used to study the effects of increasing

crack length on fiber reliability. The fiber is placed at f = 0.8 h which from the

previous analysis is the most reliable position for normal strain component sensing

(see section 6.4.6) . Figure (6-15) shows that as proposed in section (6.4), sensing

reliability increases with increasing crack length.

6.5 Case Studies

This section deals with two possible applications of fiber optic sensors in civil and

aerospace applications by studying the feasibility of their application in concrete

and composite structures. Existing point sensors (interferometric and Bragg) rely

on detecting longitudinal (e,) strains. Existing integrated sensors rely on detecting

transverse (ey) strains by polarization. Calero et al. [4] have shown that the sensitivity



of birefringent fiber sensors is dependent on :

* Sensitivity of optical equipment.

* Optical properties of the fiber.

* Stiffness of the plastic fiber jacket which effects the transmissibility of strains

to the glass core.

Kersey et al. [6] have shown that the sensitivity of point sensors can be as high as

1LE while integrated sensors require transverse strains greater than 5,e (un-jacketed)

and greater than 400pE with soft jacket (Calero et al. [4]) acting over a length of 152

mm. In advanced plastic matrix composites, the fiber can be stripped of its jacket,

and transverse strain sensitivity of 5ME acting over a sensing length of 152 mm can

be realized. Calero et al.'s [4] finding indicate integral sensing capabilities of :

* Un-jacketed fiber with 5pE acting over 152mm = 760pemm.

* Jacketed fiber with 400p acting over 152mm = 60800pemm.

In concrete structures, the jacket is needed to protect the glass from chemical embrit-

tlement and failure.

This section studies the feasibility of using both the point and integrated sensing

schemes for the two applications mentioned above.

6.5.1 Case Study 1. Delamination Detection in [0,m/± 4 5n/90k]s

Advanced Composite Laminates.

General advanced composite laminates used in the aerospace industry can be or-

thotropic. In order to use the elastic isotropic sensing detection theory developed

above, strictly only quasi-isotropic laminates can be considered. However, in this

analysis we release the strictly isotropic assumption and consider quasi-isotropic and

nearly quasi-isotropic laminates. Section (6.4.6) has shown that normal-strain sensor



reliability increases with increasing distance away from the beam center-line. Since

all strain-sensing reliability calculations in previous sections are normalized by the

load to elastic modulus ratio (Q/E), greater sensitivity is achieved by increasing the

applied load (Q) and decreasing the elastic modulus (E) of the material. During

damage inspection, the goal is to maximize the applied load in order to increase the

strain (and hence detection ability) in the fiber but to prevent any damage to the

aircraft component during inspection. In this analysis, the applied load (Q) is set to

40 % of first ply failure (FPF) which is less than the load that causes first damage to

the laminate by a factor of 2.5 (typical for civil structures) during aircraft inspection.

E is set for the particular composite stacking sequence and material properties. The

position of the fiber is chosen to be at 80 % of the beam height since from Figures

(6-1.2 and 6-13) this is the most reliable sensing position. The crack is placed on the

center-line (d = 0) since this is the furthest location from the given fiber position

hence giving the minimum sensitivity and thus tests the possibility of crack detection

to the extreme.

Beam Elastic Modulus and Applied Load

The typical composite that is studied in this section is the T300/5208 [0m/±45,/90k]s

quasi-isotropic laminate. The composite ply is assumed to have the following prop-

erties (taken from Tsai [18]):

* Longitudinal elastic ply modulus (E1 ) = 181 GPa.

* Transverse elastic ply modulus (Et) = 10.3 GPa.

* In-plane shear modulus (Glt) = 7.2 GPa.

* In plane Poison ratio (it) = 0.28.

* Out of plane elastic modulus (Ez) = 10.30 GPa.



* Out of plane Poisson ratio (v1z) = 0.28;

* Ply thickness (t) = 0.125 mm.

* Maximum longitudinal tensile ply strength (X) = 1500 MPa.

* Maximum transverse tensile ply strength (Y) = 60 MPa.

* Maximum shear strength (S) = 68 MPa.

The laminate is assumed to have m + 2n + k = 100 with m > 20. The schematic

layout and coordinate system used in further analysis are presented in Figure (6-16).

The stresses in any ply (k = 2 to n-1) are given by the Lekhnitskii solution [8] for the

bending of a cantilever subject to tip load Q :

_(k)_ 6P k-i
ry = (SC(bI

i=1

k-1

-S2(E (bi
i=1

a(k) - 6Ehk)Q x
S hS (5 - 2Sly)

a (k) = 0

-b)E(k)+ (y2 - b •_)E k))

- bi_~)E$k) + (y - bk-_)El)))

The engineering flexural elastic modulus for each ply E(k) is calculated using standard

tensor transformations where for ply (k) with fiber orientation (o(k))

E(k) QllC4 + 2(Q12 + Q66)s 2C2 + Q22s 4

ESQI=1 - V-E/E, '
vltEt

Q12 1 - vtEt/El '

Et
Q22 =

1-2

Q66 = Glt

s = sin 0 (k)

(6.45)

c = cos 0(k)

(6.42)

(6.43)

(6.44)



also :

n

S1 = =(b - bk-1)E ak)
k=1

n

52 = (b - b _l)E k)
k=1

n

S3 = E(b3 - b )E (k)
k=1

S = 4S13, - 3S~ (6.46)

The engineering elastic modulus (Ef/) is given by :

S
E = (2h)2  (6.47)S1(2h)2

Tsai [18] has found that for long beams (with span-to-depth ratios greater than five),

the interlaminar shear stresses did not effect the overall FPF load of the composite

which occurred at the outer laminate fiber. Constraining the span to equal 5 times

the thickness of the laminate, the FPF load can be calculated using the maximum

stress criterion :

X
Q"PF = 2  (6.48)

QFPF- XC2

PF = aos 2

S
F (c2 - s2)

QFPF = min[QFPF QYFPF I QxFYPF] (6.49)

The stress (ai) is calculated using a unit load in each ply and is then rotated into

the individual ply coordinate system. The maximum ply stress for each of the stress

components is then used to calculate the first ply failure load Q'PF for each ply. The

applied load Q is set to 40 % of QFPF which is the minimum of the ply failure load

components Q'FPF. Figure (6-17) shows the variation of Q for various numbers of

m and n, as expected the applied load Q increases for increasing numbers of m and

increases with increasing n (for a fixed m). Figure (6-18) shows the variation of elastic
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modulus Ey for various numbers of m and n, as expected the engineering laminate

modulus E increases for increasing numbers of m and increases with increasing n (for

a fixed m). Figure (6-19) shows the variation of the Q/E ratio for various m in the

[Om/ + 45fn/90k]s composite. It must be noted that since the failure mechanism is

dominated by the transverse tension in the 450 layers, the Q/E ratio is the same for

all n and is hence only dependent on m. In order to study the worst case, the smallest

Q/E ratio (m = 20) laminates are studied.

The BEM method is used to study the effect of crack length on strain deviation for

the [m/n/k], = [20/30/50], laminate(engineering elastic modulus is Ee = 111.2GPa,

Q = 10kN and orthotropy ratio E11/E 22 = 0.6). It must be noted that though this

laminate is probably too soft for real-world engineering application, it is presented

here as giving the worse case results with respect to crack detection. The effect of

increasing crack length on absolute normal strain difference (basic to weakened) is

plotted for various crack lengths in Figures (6-20) and (6-21) for the crack at the

center of the beam (c = 62.5 mm and d = 0) and the fiber at f = 0.8 h = 10 mm.

Interpretation of Results

The strain deviation shown in Figure (6-20) indicates that crack lengths of the order

of 0.25 mm can be detected by existing axial point sensing techniques with maximum

axial strain deviation being 20pc for ex which is within the lpE sensing range given by

Kersey [6]. For transverse strain sensing, cracks equal and greater than 0.25 mm are

needed in order that the sensitivity (f, 6r falls within the sensitivity range of 76pecm

sensing range of the Calero [4] sensing fiber. The accurate strain readings possible by

point-wise sensors indicate that smaller damage zones can be detected, though these

reading cannot be assumed to be reliable since they fall into the range of strains that

can be caused by secondary mechanical effects such as creep and thermal strains. For

example, though point axial sensors can detect strain of the magnitude of 116 [6], a

temperature differences of 0.50C can cause axial strains of the order of 5pE for the

[020/ ± 4515/9050o] composite studied above which indicates that parasitic thermal
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strains can effect the interpretation of the results for small delamination lengths.

As previously stated the proposed sensing technique can only detect the y-axis loca-

tion of the damage with both other geometric parameters (x-axis position and damage

length) being essentially independent. A possible way to overcome this problem is

the introduction of a moving load along the x-axis of the beam. As the moving load

passes the crack position, the shear stresses at the crack position falls to zero and

the crack becomes essentially unloaded. Figure (6-22) shows the influence line for

the integral strain deviation when the fiber is at 0.8 h above the neutral axis and the

crack is at the center of the beam (d = 0, and c = 1/2). Figure (6-22) is normalized by

the Calero unjacketed polarized fiber sensor sensitivity of 5pte over a 152 mm sensing

range, so that sensitivity greater than 1 indicates a detectable crack.

As expected the strain deviation is zero before the load passes the crack (line A)

and is unchanged when the load passes the crack (line B). The exact center of the

crack is marked by a peak in the influence line which is 10 % above the load-at-tip

position. The peak in the strain integral (Ac) influence diagram ( Figure (6-22)) is

attributed to the interference of the crack with the stresses under the point load. Fig-

ure (6-23) shows the characteristic stress intensity under the point load for the basic

(uncracked) beam. The influence of the crack on the point load stress distribution

can be shown by plotting the stress difference between basic and weakened beams

as shown in Figure (6-24). The relatively large effect of the crack on the point load

stress distribution near the point load causes the peak in the strain integral influence

diagram.

Figure (6-25) shows the effect of increasing crack height (d) from the center-line on

sensor reliability. As expected the constant post-peak behaviour (line B) increases

with increasing crack height (d) due to the decreasing distance (f-d) between the sen-

sor and crack. The relative increase in peak to post peak strain integral (AC) from 10

% (d = 0) to 300 % (d = 0.6 h) is attributed to the increasing influence of the crack

on the point-load stress distribution as the distance between the point load and crack
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decreases. Previously the post-peak strain integral (line B) was used to locate the

vertical position (d) of the crack. The increasing peak in the strain integral influence

diagram has the added advantage that it not only locates the center of the crack but

also gives an independent indication of the height (d) of the crack.

Figure (6-26) shows the effect of increasing crack length on the strain integral influ-

ence diagram. As expected from previous results the post peak strain integral (lines

marked B) increases with increasing crack length. The length of zero strain inte-

gral (pre-peak line strain integral marked A) to post-peak strain integral (lines B)

increases with increasing crack length giving a rough indication of the crack length.

Figure (6-26) shows that crack length can be deduced by considering both the post-

peak sensor strain integral and the distance between post and pre-peak reliability.

Comparing the peak to post peak sensitivity, Figure (6-26) shows that the peak in

the influence line diagram should be detectable by the Calero sensor for crack lengths

(2a) of 4 mm, since the difference in peak to post-peak sensitivity is greater than 1,

where values greater than 1 indicates sensitivity within the sensing range.

The proposed loading scheme can also be effectively used to detect the presence

of multiple cracks. Since it has been shown that reliability of the sensor is solely

dependant on shear stress, linear superposition can be used to detect the presence

of non interfering cracks. Figure (6-27) shows the sensitivity influence line for the

composite cantilever beam with two cracks at x = 31.25 mm (cl = 1/4) and x =

93.75 mm (c2 = 31/4). Both cracks are on the beam center-line (d = 0 mm) and the

half crack length (a) is 1 mm. For point load positions near the tip of the beam (as

x approaches 1 = 125 mm), the sensitivity is twice the sensitivity calculated in the

single crack case (see figure (6-22)). As the point load passes the influence zone of the

first crack, the influence line becomes the same as in the single crack case of figure

(6-22). The position of crack centers can again be determined by the peaks in the

influence line diagram.
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6.5.2 Implications

Traditional non-destructive evaluation techniques such as x-ray and CATSCAN de-

tection require expensive, sophisticated equipment which is only capable of detecting

damage over a small area. Previously used fiber-optic sensor techniques are only able

to detect the presence of damage but are incapable of quantifying position, extent or

number of damaged zones. This section has shown that one relatively simple moving

load test can be used to both detect the presence of delamination damage and to quan-

tify all needed sensing parameters which include (1) crack position, (2) length, and

(3) number of cracks. Reinforced concrete structures are often subjected to moving

point load tests which are applied by driving heavy trucks over the tested structural

member. For aerospace structures, a simple loading test can be devised as shown in

Figure (6-28), which consists of moving a wheel with the required test load by means

of an over-head crane. Interpretation of the moving point load test is relatively sim-

ple with a single continuous measurement of light power intensity (for birefringent

sensors) or interference (for interferometric point sensors) giving all required sensing

parameters. Furthermore, the nature of fiber optic sensors allows for detection over

a large area which overcomes the problems of traditional non-destructive evaluation

techniques.

6.5.3 Case Study 2. Delamination study in Reinforced Con-

crete Beams

This section checks the feasibility of using fiber optic sensors for detection of debond-

ing damage along the reinforcement or between concrete overlays in typical reinforced

concrete beams. Since debonding damage occurs primarily at the steel reinforcement

(or at overlays), practical positioning of the optic fiber sensor would be near the

position of the damage for greatest reliability. Figure (6-29) shows the typical rein-

forced concrete cross-section to be investigated. The tip load is constrained to give a

maximum deflection of 1/200 where the length of the beam 1 is taken to be 4 meters.

Using the ACI [1] Code we find the maximum allowable tip load = 18 kN. Under
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these conditions, the equivalent elastic constants are :

* Longitudinal elastic modulus E1 = 13GPa

* Transverse elastic modulus E2 = 24GPa

* Poisson ratio = 0.3

Figure (6-30) shows the schematic representation of the concrete beam layout. The

crack position is on the center-line at midspan (c = 2 m). The fiber sensor is placed

at f = 0.152 m with the delamination occurring at d = 0.162 m which is assumed

to be the position of the top steel. Figures (6-31) and (6-32) show the sensitivity

components for various crack lengths. For transverse polarized sensing, stiff jacket

fiber sensors can be used to detect delamination lengths of 0.2 meters (total sensi-

tivty equal to 1300pe mm which is greater than the required 720pe mm for the Calero

un-jacketed sensor [4])). The sensitivity lies outside the sensing range of current soft

jacket sensing polarized fibers for practical delamination lengths which requires sen-

sitivities of 60800pe mm. Longitudinal point sensors (such as Bragg grating sensors)

can be used to reliably detect delamination lengths of 0.2 meters. The moving load

test can be used to detect crack lengths in a similar way as described in section

(6.5.1). Since concrete structures typically occur with simply-supported spans, the

sensitivity influence diagram is calculated for a simply-supported span. Figure (6-33)

shows the influence diagram for a simply-supported span with fiber at f = 0.8 h and

the crack at midspan and d = 0.152 m. With the same concrete layout, the simply

supported beam length is increased to 12 meters (which is a typical free length for

reinforced concrete members) with the load being unchanged. As expected from the

previous work, the influence diagram closely resembles the influence diagram for the

shear stress of the midpoint of a simply supported beam except for the peak occur-

ring when the load crosses the center of the crack which is once again attributed

to point-load stress distribution interference. Note that the normalizing parameter

in Figure (6-33) is for the Calero un-jacketed fiber sensor which implies that a stiff

jacket sensor needs to be used for birefringent sensing. The peak value of 2.5 exceeds
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the pre-peak value of 1.5 by 1 which indicates that the peak (and hence approximate

crack position) in the influence diagram should be easily destinguishable from the

pre-peak value with the Calero stiff-jacket sensor.

This section has shown that fiber-optic sensors can be effectively used to find all

the sensing parameters required to characterize reinforcement debonding damage in

concrete structures. A simple moving load test can be used to determine (a) the

horizontal location, (b) the severity (length) and (c) the vertical location of the

debonded region. As shown in section (6.5.1), the method can be simply extended to

include the detection of multiple debonded regions by the use of superposition.
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Figure 6-16: Schematic layout of laminated cantilever beam.
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by Calero sensor of 5pe over 152 mm.
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Figure 6-27:
positions at
lengths a
mm.

Influence lines for normalized sensitivity (6~y) for two cracks. Crack
cl = 31.25mm and c2 = 93.75mm. Crack depths at d = Omm. Crack
1mm. Normalizing sensitivity given by Calero sensor of 5aE] over 152

- Attached to
rhead

Figure 6-28: Schematic representation of a moving load test for an aircraft component.
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Figure 6-29: Reinforced concrete cross section.
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Figure 6-30: Reinforced concrete beam and sensor layout.
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Figure 6-31: Effect of crack length (a) on the strain difference (6•=) for delaminated
concrete beam. Crack position at c = 2 m and d = 0.165 m . Fiber position at f =
0.8 h = 0.152 m.
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Figure 6-32: Effect of crack length (a) on the strain difference (6E,) for delaminated
concrete beam. Crack position at c = 2 m and d = 0.165 m . Fiber position at f =
0.8 h = 0.152 m.
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Figure 6-33: Influence lines for normalized sensitivity (6ey) for a simply supported
beam. Crack position at c = 2m. Crack depths at d = 0.165 m. Fiber position at f
= 0.8 h = 0.152 m. Normalizing sensitivity given by Calero sensor of 5pE[ over 152
mm.
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Chapter 7

Conclusion

The work presented in this thesis has concentrated on characterizing the behaviour

of fiber optic sensors used for integrity and damage monitoring in civil and aerospace

applications. Numerical and theoretical techniques have been implemented for the

analysis of combined mechanical and electromagnetic behaviour of fiber optic sensors.

For tensions cracks which typically occur in concrete structures, a microbend sensor

which bridges the crack faces was shown to be capable of determining the extent of

Clarnage by monitoring sensor power loss caused by increasing crack opening displace-

ments. The sensing capability of a microbend fiber optic sensing system was found

to be dependent on (a) crack opening displacement, (b) optical characteristics of

the fiber, (c) fiber jacket stiffness, and (d) fiber inclination angle at the crack face.

The microbend sensor was found to be able to detect cracks in the 0.01 mm range

which makes them ideal for the inspection of civil engineering structures which have

strict crack opening restrictions for leak protection (e.g. in dams and hazardous waste

containment structures) and durability (e.g. in bridges).

Birefringent and interferometric sensors were studied for the detection of delami-

nation damage in advanced aerospace composites, and the similar debonding damage

typical of reinforced concrete structures. The success of a delamination damage de-

tection scheme has been found to depend on (a) position of the delaminated zone,

(b) position of the sensor, (c) optical sensitivity of the fiber, (d) length of delami-
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nated zone, (e) applied test load and (f) elastic modulus of the structure. A simple

moving point load test has been proposed that can detect the position and extent

of the damage as well as the number of damaged zones. For advanced aerospace

composites, delamination lengths less than 1 mm can be detected which makes the

proposed sensor system suitable for the monitoring of delamination damage in flex-

ural aerospace components such as helicopter rotor blades and wings. In reinforced

concrete structures, debonding damage lengths in the 0.1 meter range can be detected

by the proposed delamination sensors allowing for the monitoring of damage which

often plagues typical reinforced concrete structures(e.g. bridges, heavy vehicle sup-

port beams such as in parking garages and highways).

Future research in microbend sensors should concentrate on (1) verification of the

theoretical results with experiments, (2) extension of the electromagnetic analysis to

include general three dimensional optical behaviour and multi-mode behaviour, (3)

extension of mechanical analysis to account for possible plastic behaviour of the jacket

material and spalling of the concrete matrix, and (4) development of techniques for

the effective coupling of the fiber sensor to a real world concrete structure.

Future research in delamination detecting optical fiber sensors should concentrate

on (a) verification of theoretical results through experimentation, (b) extension

of the mechanical analysis to include the non-linear behaviour of crack closure and

quantification of crack closure on damage detectability, (c) extension of the physical

model to include the effects of realistic three-dimensional delamination zones and (d)

accounting for material anisotropy.
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Appendix A

BPM Example Problem

The objective of this section is to explain the FFT BPM by means of an example

problem. The problem consists of calculating the power loss associated with prop-

agation along a curved step index mono-mode slab waveguide. The geometry and

optical properties are as follows :

* Refractive index of waveguide core nl = 1.4613

* Refractive index of waveguide cladding nl = 1.458

* Light wavelength A = 1.3,pm.

* Slab width 2a = 6/pm.

* Radius of curvature R = 5mm.

* Wavenumber ko = 2 = 4.83/pm.

Calculation of the input straight fiber fundamental mode.

This section calculates the input electric field into a straight waveguide for the

monomode fiber.
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1. Check if fiber is monomode by calculating v <= '2

v = ka ni - n, = 1.42 < 2

Hence fiber is monomode

2. Calculate the base refractive index na by solving the non-linear equation

n - n2 tan(kan - n2) = n - n2

giving na = 1.460

3. Unit normalize the input electric field € by setting A1 = 1 so that

= cos(k n - nia)

for I x < a

4. Calculate A 2 from

cos(k nT- naa)
A 2 = A 1

e a k n 22 a

giving A 2 = 1.9

5. Total input field is given by

1 = cos(k n? - nx)

for x I< a

2 = A2e-k n2-n 2

for I x 1> a

Figure (A-1) shows the distribution of the input electric field.
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BPM

This section outlines the steps in calculating the electric power distribution for a

constant curvature waveguide by means of the BPM.

1. Transform refractive index by using

new = 1d X
n"i n ( + )

the old and transformed refractive index is shown in figure (A-2).

2. Discretize the propagation length into discrete steps. Here Az = 2/m.

3. Discretize the slab width (computational window) into a power of 2 number of

interval points (n) for efficient FFT computation. Here n = 128.

4. FFT the input signal to find n,. The discrete fourier transform of the input

signal is given in figure (A-3). Note that there is no imaginary component since

the input electric field is symmetric and thus even.

5. Propagate the fourier transformed electric signal through an homogenous medium

with an effective index na and over a length Az/2, giving On

Az k2
On(z + Az/2) = exp(j Xn ) x n(Z)

2 2nak

6. Phase shift the propagating wave through a thin lens giving 0+

0f-(z + Az/2) = exp(_jAzk a ) x n (z + Az/2)
2na

7. Inverse FFT the propagating wave to find the electric power q+(z + Az/2).

8. Absorb the electric field at the computational window edge in order to prevent

aliasing problems. For a full discussion of this procedure see for example Baets

and Lagasse [1].
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9. Repeat steps (5) to (8) until the required propagation distance has been reached.

For the case of a 3 mm propagation length and radius of curvature 5 mm, the

output electric field is shown in figure (A-4).
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Figure A-i: Input fundamental mode for a straight slab waveguide.
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Figure A-2: Input and transformed waveguide index.
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Figure A-3: FFT components of the input electric field.
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Figure A-4: Ouput electric field after propagation of 3 mm in a 5 mm radius of
curvature fiber.
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