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Abstract

This thesis presents new design techniques for source coding of video signals. The main ap-
plication is high-definition television (HDTV), characterized by roughly twice the vertical and
horizontal resolution of current systems; aggressive source coding is required to compress the
large amount of video information into the relatively narrow channels envisioned for the new
service.

Video source coders conventionally use block transforms with small support (typically 8x8
pixels). Such independent blocks result in a simple scheme for switching a predictor from a
motion-compensated block to a purely spatial block; this is necessary to prevent the coder from
wasting capacity in some situations.

Subband coders of the multiresolution or wavelet type, with their more desirable localization
properties, lack of “blocking” artifacts, and better match to motion-compensated prediction
errors, complicate this process of switching predictors, since the blocks now overlap. This
thesis presents a novel predictive coding scheme in which subband coders can combine the
benefits of good representation and flexible adaptive prediction.
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Introduction

Much communication is visual, yet it was only in the early 20th century that it became possible
to record natural scenes that evolved in time. These moving images simulate in the viewer, to
a good approximation, the process of seeing the original scene.

These early systems were, of course, based on motion picture photography. A physical
artifact, namely a reel of transparency film, is required to display the image, and so in the role
of a broadcast medium film requires the entire audience to be physically present. Nevertheless,
film (in its present high quality, highly refined form) is a very popular medium.

Broadcast television was the development that made practical a real-time audience many
orders of magnitude larger than can be seated in a single auditorium. First-generation television
systems represent images electronically with waveforms analogous to the brightness variation
in a scanned version of a scene. Since signal processing was very expensive in the early days
of television, essentially no source coding was used, other than that inherent in the choice
of spatial resolution and frame rate (and to some degree in the schemes used to extend the
systems to color).

These systems typify the analog design style for communications: identify a convenient
physical (often electromagnetic) analog to the object to be communicated, then design the
system around this analog by considering how distortions affect fidelity. Each medium requires
a separate design, and these designs bear no particular relationship to one another.

It is only very recently that a common currency has become practical for nearly all types of
information. In principle, digital techniques may be applied to any analog system by simply
discretizing in time or space sufficiently finely, then quantizing sufficiently accurately. Simple
schemes, though, result in inefficient systems. Ideally, only essential information about the
source should be transmitted; the problem of identifying this information is the source coding
problem for that source.

This process of homogenizing communications to digital representations may seem a step
backward. The aim of transmitting the source with sufficient fidelity is now realized by a
complicated source coding device, to give a nonredundant representation of the source, and a
complicated digital communication system, to transmit the symbols and recover them reliably
from a noisy channel. For many interesting situations, though, this complexity is outweighed by
convenience, efficiency, and robustness. Communication systems can be designed with no con-
sideration as to exactly what type of information will pass through them; that is, communication
systems can be general. A digital representation can provide higher source coding efficiency
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than analog counterparts, simply because more powerful techniques are available. Moreover,
digital communication is robust to channel impairments, and tight theoretical bounds on ca-
pacity relative to these impairments are available in many situations: implementable codes can
approach them closely.

Figure 1.1 sketches the division of labor between source coding and channel coding, together
with a schematic channel with linear distortion and noise. The source coder is generally more
complex than the source decoder, especially for asymmetric broadcasting applications with
many more receivers than transmitters. The opposite is generally true for channel coding: the
channel coder implements simple mapping and filtering operations, while the channel decoder
may require adaptive equalization and Viterbi decoding.

channel

sequence of
symbols

information
source

source |
coder

,,,,,,,,,,,,,,,,,

source |
decoder |

The technology of integrated semiconductor electronics has been steadily exponentiating
since its invention in 1958. This technology is the only practical choice at present for digital
signal processing; it is now possible to implement powerful source coders for video at low
cost. Consequently, second-generation television systems that use efficient source coders have
recently been proposed. Applications range from low-quality interactive television at rates
around 100 kb/s, to medium-quality video at around 1.5 Mb/s, to high-definition television at
around 20 Mb/s. Still higher rates are required when the video must be subjected to subsequent
signal processing unrelated to perceptual “quality”, for example in studio postproduction or
automatic image analysis.

This thesis is concerned primarily with high-rate, high-quality video source coders. One
application, high-definition television, has come to mean video with about one megapixel per
frame and with frame rate equal to or higher than conventional TV. Such systems are easy
enough to design if there is no rate constraint (easy from a signal processing viewpoint, not
from a camera/display/cost one!). The crucial requirement for HDTV in present scenarios is
that HDTV be very efficient, usually by requiring that one HDTV signal use no more capacity
than one channel of conventional TV (despite containing perhaps six times as many original
image samples).

information
sink

channel |
decoder |

Figure 1.1: A generic communication system.
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A video signal (or “image”, “picture”, etc.) can be represented (in continuous space and time)
as a map
f:[0,a]l x[0,b]XxAXT —R

where [0,a] x [0, b] represents space, A is wavelength, T is time, and the value of f is the
brightness of the image at that point in space, wavelength, and time.

Space is taken to be two-dimensional and bounded, since in practice images are produced
from natural three-dimensional scenes by projection onto a bounded surface, such as a piece of
film or a CCD. (In practice, of course, video is also of bounded extent in time, but it is convenient
to ignore this.) A rectangular geometry is the nearly universal choice, although the aspect ratio
b/a is subject to debate: in fact the HDTV proposals seek to widen the conventional choice of
4/3 to 16/9, resulting in a more “panoramic” view. Some film formats are wider yet.

The wavelength space A can be taken as an interval from 390 nm to 780 nm, roughly the
range of human color vision. This implicitly assumes a scalar geometric optics point of view,
since currently practical detectors and displays deal only with intensity.! Holographic video is
more general.

A source coder should, then, take a video signal in this form and produce a sequence of bits
representing it. In practice, however, the coding is done in two steps. The first step, usually
called “discretization” or “analog-to-digital conversion”, produces a high-rate representation,
discrete in space, time, wavelength, and amplitude. The second step, usually much more com-
plex, takes this intermediate digital representation as its source and produces the final coded
result. The reason for this division of labor is that complicated source coder operations are
best implemented with digital signal processing. Still, the choice of discretization is impor-
tant, especially for image and video systems, where the options are more varied than those for
1D signals.

high-rate low-rate
information representation main :  representation

source
source
coder

discretization

analog signal processing,

digital signal processin
data conversion g gnarp g

Figure 1.2: Two-step source coder architecture.

The rate for this initial discretization, or sampling format, is set by quality constraints,
which in turn are set by economic constraints. It determines the maximum quality, and so is
sometimes called the “original” or “source” image, even though it is actually an intermediary.
Ideally, our original image would be something like the entire optical field over some aperture.

'Human vision is also very slightly sensitive to polarization, so for complete fidelity one should perhaps send
four complete images, one for each Stokes parameter. Needless to say, the benefit/cost ratio for this refinement
would be miniscule.
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This would result in an enormous rate, unrealizable with current technology, because it implies
diffraction-limited imaging with temporal response limited only by the optical bandwidth.

More realistic would be an original image designed to exceed every requirement of the hu-
man visual system. This is, of course, sufficient for human viewers, but it may result in uneco-
nomic coders and sensors/displays. If the coded rate has some upper bound, then the original
image should be chosen with the bound in mind; it is no use specifying some extremely good
original image, only to have the source coder throw most of it away. (Actually, this is similar
to what happens in reality in the analog-to-digital conversion step: the optical system/image
sensor filters the scene in space and integrates in time, producing an output much less detailed
than the input.)

What, then, is an appropriate choice for the initial discretization for HDTV? Current CCD,
CRT, and LCD-based image sensors and displays that have reasonable cost for entertainment
television applications give on the order of 1 Mpixel/frame at 60 frames/s. Although this falls
short of transparency for the human viewer in several respects (spatial resolution too low,
frame rate lower than some material requires, flicker with CRT displays at 60Hz, etc.) the
quality is sufficient for many applications. Displays and sensors are an active area of research,
and performance can be expected to increase in the future (HDTV itself likely serving as a
stimulus).

1.1.1 Discretization formats

The collection of sampling points is usually chosen to be a lattice. Lattices are uniform, and
this keeps the discretization simple; in dimension one, of course, all lattices are scales of one
another, so a single parameter (the sampling rate) is a complete specification. Since video
coding deals with a three-dimensional spacetime, there are many more possibilities.

The simplest of these are products of 1D lattices, referred to as progressive sampling or
progressive scanning, a term used to contrast with the interlaced sampling of conventional
television, which uses a quincunx? lattice in the vertical-temporal plane.

The 2D hexagonal lattice, for example, is more isotropic than the square lattice—a source
coder using it may be less likely to produce orientation-sensitive artifacts. (A nonuniform
sampling can give even less anisotropy: a “blue noise” pattern [40] would almost completely
remove orientation sensitivity, at the considerable cost of randomly-varying filters.)

The choice of sampling has a significant impact on source coder design. The most impor-
tant decision is whether to couple or decouple spatial and temporal sampling; the choice is
also complicated by historical factors (NTSC/PAL/SECAM and the more recent Japanese and
European systems are interlaced) and the economics and technological maturity of cameras
and displays. From a signal processing viewpoint, it seems clear that progressive sampling is
the preferred approach. Source coder operations such as motion estimation and filtering are
more natural and efficient with a progressive format; moreover, a progressive source coding
format places no restrictions on camera and display format in any case, since simple prepro-
cessing can, for example, upsample an interlaced camera signal for coding. AT&T makes these

2Literally, “five-twelfths”, describing a Roman coin with five spots arranged on the vertices and center of a
rectangle.



1.1 Architectures for video source coding 13

quincunx hexagonal
lattice lattice

(D2) (A2)

22 Iattice

DC
Voronoi
call
("baseband")

Figure 1.3: Some sampling lattices and their spectra.

and other arguments in a recent paper [7].

Given progressive sampling, a specific spatial resolution, and “square pixels”, that is, equal
sampling rates horizontally and vertically, the remaining parameter is the temporal sampling
rate or frame rate. This can depend somewhat on the application: motion pictures get by with
24 frames/s, since movement is kept low, but high-dynamics material like sports programming
can require 60 frames/s or even higher. (Actually most NTSC implementations use 59.94 Hz,
the unfortunate result of an obscure audio backward-compatibility issue for color [1].)

As a baseline assumption, the coders used for this thesis assume a rate of 60 frames/s.
Material that would not require a rate this high is therefore oversampled, but the temporal
part of the source coder can remove some of this redundancy. Note that frame rate should be
decoupled from display issues like flicker. There is a clear division of labor between source
coding and a given display technology’s ability to render signals well. Film systems, for exam-
ple, have long used double- and triple-shuttering to reduce flicker, and CRTs at 60 Hz are also
not entirely satisfactory, especially when bright and in the visual periphery.

Frame rate should ideally be chosen on fundmental grounds of motion quality, rather than
dictated by displays. It is valuable to have several frame rates from which to choose; the one-
size-fits-all approach of NTSC requires a difficult conversion when sources use non-NTSC rates.
Frame rates for HDTV is more a system issue than a signal processing issue.

Discretizing in wavelength would seem simply a matter of specifying a collection of bands
covering the visible spectrum. Fortunately, high-resolution spectra are unnecessary—analysis
of the human visual system [34] has shown that three suitably chosen spectral bands can
represent nearly all color sensations, and that diminishing returns set in rapidly for more than
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three channels.? Amplitude quantization is usually uniform, for simplicity in data conversion,
to an accuracy of 8 or 10 bits per channel.

Finally, the rate of this initial discretization is just the product of all the resolutions. For
example, the rate of a 720x1280 pixel format at 60 frames/s, three channels at 8 bits/channel,
is 720-1280-60-3 -8 = 1.33 Gb/s. This rate is low enough to be suitable for studio or closed-
circuit links, and even some networks, but it is much too high for the terrestrial broadcast or
satellite channels.

1.1.2 Source coding techniques

For realistic video, there is some degree of redundancy across all of the temporal, spatial, and
color dimensions mentioned above, as well as variations in the amplitude-accuracy needed for
good fidelity. This redundancy can be statistical, which is the ordinary redundancy associated
with correlated samples, or perceptual, in the sense that the human visual system is insensitive
to certain distortions and so the corresponding information can be omitted.

Source coders can be broadly divided into two classes: waveform coders and model-based
or parametric coders. The distinction between these types is more a matter of convention
than strict definition, but generally waveform coders tend to confine their nonlinearities to
quantizers: they consist of a linear system followed by a (usually adaptive) quantizer and
entropy coder. Model-based coders have stronger nonlinearities—they assume the input is an
instance of a model with certain parameters, which are then estimated by some means.

Presently, for video, there are few general models that seem to be useful for source cod-
ing, especially if very high quality is a requirement. The high-level quantities most useful as
image-parameters might be edges and textures; the corresponding segmentation and estima-
tion problems are difficult and computationally expensive, and can in any case yield an image
with a cartoon-like quality, since a model with limited scope will not perfectly represent any
given image.

If the available rate is large, then, waveform coding is more suitable, being simpler and more
robust. General approaches include predicitive coding, transform/subband coding, and vector
quantization (VQ) [25, 21].

Transform/subband coders operate by applying a linear map designed to send the most
important parts of the signal into only a few coefficients, i.e., to “represent” the signal so that
it is suitable for quantization. The two formulations are equivalent; the transform language
is used when the filters have support smaller than or equal to the decimation ratio, and the
subband language is used when the filters are larger, that is, when they “overlap” with the
subsampling.

VQ operating directly on image samples has been less successful for low-rate coding, for a
given complexity, because it is more difficult to constrain—a vector quantizer must be “taught”
(by configuring its codebooks) about perceptual notions like spatial frequency, whereas a sub-
band coder can deal with them directly. (Of course, transform/subband coding schemes may

3The normal human visual system has three types of color receptors (a fourth, rhodopsin, is active at low light

levels), yet because of their overlapping responses it is not quite possible to perfectly represent them with a three-
channel additive color system.
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use VQ ideas internally, for example to quantize vectors of subband coefficients.)

HDTV source coders, then, are converging to a motion-compensated transform/subband
coding architecture. There are many possibilities within this broad class, and good designs will
use a set of techniques that fit together well and are friendly to the human visual system.

1.2 Scope of thesis

This thesis will focus on the interaction between spatial and temporal processing for video
source coding, in particular for spatial representations of the subband, multiresolution, and
wavelet variety. These issues will be examined in the context of a complete implementation,
from which images and statistics will be taken.

Chapter 2 discusses various motion-compensation schemes to exploit temporal redundancy;
Chapter 3 discusses spatial redundancy and representations to reduce it, including overviews
of block transforms (such as the DCT) and subband transforms (such as the lapped orthogonal
transform, pyramidal filterbanks, and especially wavelet representations). These spatial and
temporal techniques are combined in Chapter 4, together with a flexible means of adaptive
prediction when the spatial analysis is by subbands. Chapter 5 discusses system performance,
distortion and artifacts, and other aspects of a complete system such as entropy coding, rate
control, acquisition, and error concealment; in particular a comparison is made among the
proposed new techniques and the blocked DCT. Chapter 6 presents some conclusions and
directions for future research.



Temporal processing

Realistic video is highly correlated in time. A typical scene contains a collection of objects that
behave over short timescales roughly as rigid bodies, keeping their shape and surface structure.
These objects either themselves move with respect to some background, or else appear to move
because of changing camera geometry.

The impact of this is that each frame usually contains little new information, since it is
largely predictable from previous frames. Source coders can exploit this situation in a number
of ways. Conceptually, the simplest approaches regard video as a three-dimensional signal and
apply 3D versions of conventional subband/transform coding ideas [35] (see Figure 2.1). (DPCM
and hybrid schemes fall into this category, with suitable trivial filters.)

> — 777*}

H1 (21’5’23)

Figure 2.1: 3D subband coding

This turns out to be less productive than one might at first think. In most situations, the
temporal prefilter that is applied before the scene is sampled is insufficient to remove all tem-
poral aliasing; actually such aliasing is preferable to the smearing that would otherwise take
place. The result is that fixed 3D filterbanks do not give a very sparse representation.

Why is temporal aliasing permitted? In the real world, temporal lowpass filtering is nonex-
istent. If the eye accurately tracks a moving object, its image on the retina will be similar to the
stationary image. Sampled systems should maintain this situation as far as possible—objects
should not drastically lose detail if they happen to move quickly, even at the cost of some

16
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“strobing”.

One response to this situation would be to oversample in time, so that the video is almost
never aliased. The frame rate would need to be high enough to render most motions to the
order of 1 pixel/frame. This would greatly complicate cameras and displays, and source coders
would need to deal with a high input rate, making them more costly. Also, such a system would
have difficulty in coding existing aliased imagery, such as from film or conventional TV (unless
such signals were upsampled with motion-compensated interpolation, which would have its
own problems).

Interestingly enough, this is exactly the opposite of the spatial situation. There, the eye
regards fuzzy edges as “normal”, perhaps because defocusing and depth-of-field mechanisms
are so fundamental physically, but aliased edges are unnatural and are regarded as artifacts.!
In video coding, as in physics, space and time are essentially different dimensions.

2.1 Motion estimation

A more powerful structure results from explicitly including image motion as a means for tem-
poral prediction. Motion estimation itself is a broad subject, having applications in machine
vision, stereo imaging, remote sensing, etc. in addition to source coding [31].

To illustrate the basic principle, Figure 2.2 shows two adjacent (cropped) frames from an
image sequence, “Marcie”. The difference picture (biased with gray, so that negative values are
dark gray and positive values are light gray) reveals that the face has moved with respect to
the background. The structure of the motion is shown by the vector field; deciding what form
this field should take, and devising some means of estimating it, are central design issues.

The second difference-picture in Figure 2.4 shows the result of subtracting the second frame
from an extrapolated version of the first frame (using the vector field). The energy in this image
is much reduced relative to the simple difference, and many fewer bits are needed to transmit
it to a given fidelity.

As with all adaptive predictive coding schemes [25], motion estimation may be used in either
a feedforward or a feedback mode. Forward prediction sends adaptation side information
explicitly to the receiver, whereas backward prediction computes adaptation information from
the received data. Figure 2.5 illustrates the two alternatives.

Forward prediction requires extra capacity for the side information, but backward prediction
forces all receivers not only to implement the predictor, which is expensive for video, but to
implement it in the same way for all time. (The transmitter and receiver must compute precisely
the same predictor, or the signals in the two prediction loops will diverge.) This restricts the
flexibility of the encoder, and so forward prediction is the usual choice.

1Perhaps this would not be so if the retina were undersampled or sampled more regularly. The fovea's receptors
are distributed pseudorandomly and rather more finely than the diffraction limit at a typical f/8 relative aperture,
and tremor further smooths the sampling process.
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(a) Frame 1

(b) Frame 2

Figure 2.2: DPCM and Motion-Compensated DPCM
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(a) Vector Field

Figure 2.3: Vector Field for Motion Estimation

2.1.1 Motion representation

Naturally, there are many ways of representing image motion. In some situations, global rep-
resentations can be used, which estimate only a few parameters that attempt to characterize
motion across the entire scene. A typical scenario would involve images with relatively fixed
internal structure and, perhaps, known camera motions. High prediction accuracies can result.

For general image coding, there are no useful global motion models. Any image sequence,
within reason, is fair game for coding, and many will involve motion that varies over the scene:
objects and people can move in arbitrary ways, camera motion will result in changes in per-
spective, and moving objects will obscure or reveal the background.

Therefore, motion should be represented locally, and this implies some sort of segmenta-
tion. In principle the most useful segmentations (and the most accurate motion models) view
the image from a high level. If the source coder is to benefit from notions like “object X moves
in fashion Y”, then it must have a flexible “object” concept and segmentation algorithms to
support it.

This is difficult and costly, so the prevailing trend is to work with simpler segmentations
and accept the tradeoff of lower prediction accuracies and higher side-information burdens.
Nevertheless, there is great potential for high-level coding, especially when the auxiliary (from
the source-coding point of view) data is independently interesting.
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(a) Simple Difference

(b) Motion-Compensated Difference

Figure 2.4: Motion Estimation Prediction Errors
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Figure 2.5: Adaptive Prediction Architectures

2.1.2 Block matching

Block matching uses the simplest nontrivial segmentation, that of a fixed, uniform partition into
blocks (often related to the spatial transform, though this is less important for subband/wavelet
coders, as we will see in Chapter 3). The algorithm for estimating motion vectors is simple:
match each block to its translates in the previous frame, and choose the vector with smallest
€ITOr.

The block size involves a tradeoff between adaptivity and side information. Large blocks
cannot adapt to motion localized to aregion smaller than the block. Very small blocks (say, 4 x4
pixels or smaller) adapt quickly, vielding higher prediction accuracies, but involve more side
information (even after entropy coding). To go even further in this direction, one could estimate
motions very finely, at the pixel rate or even higher, and then perform drasticlossy coding on the
resulting detailed motion map. This begins to look like the high-level segmentation algorithms
mentioned above.

2.1.2.1 Range and accuracy

The “full search” version of block matching enumerates all vectors over some range, say +v
pixels, to some precision p. This gives 4(r/p)? trial vectors; each is used to interpolate a block
from the previous frame. Figure 2.6 shows the geometry.

Motion estimator range is determined by the fastest motion the coder needs to track. Rea-
sonable limits are on the order of one picture width per second—at 1000 pixels and 60 frames
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Figure 2.6: Full-search motion estimation

per second, this gives about 16 pixels/frame. The coder used for this thesis uses a window of
+16x16 pixels; some proposals (at HDTV resolutions) extend to +32 pixels/frame horizontally,
since horizontal pans are faster and more common than vertical pans.

For forward adaptation, specifying large motion ranges for decoders does not involve much
cost. Large vectors are rare, and the encoder is free to implement some subset of the specifica-
tion. Increased range is a memory-system issue in the decoder, since the motion compensator
will need access to all pixels in range, but (especially horizontally) this is not serious.

Note that with such fast motions, camera filtering may substantially blur the image in the
direction of motion. High-accuracy vectors will not be needed in this situation, and the encoder
can use this to economize on side information.

What happens if image motion exceeds the motion estimator’s range? The predictor will be
degraded, since the estimator cannot see the true motion and will make another choice. This
makes the estimator’s failure “soft”—the spatial coder will see a more energetic image, and the
fidelity will decrease in a global and subtle way.

Motion vector accuracy needs to be better than p pixels for the resulting prediction to be
useful over corresponding scales. At a minimum, one-pixel resolution is needed to usefully
predict high spatial frequencies. 1/2-pixel resolution (resulting in 1/4-pixel maximum error) is
noticeably better with sharp imagery, but beyond this diminishing returns set in.

2.1.2.2 Refinements and implementations

Numerous refinements to the basic block-matching scheme have been proposed [31]. Most
common are schemes aimed at reducing the complexity of full search by considering subsets
of vectors either over the original image or over successively decimated versions of the original
image (which meshes well with wavelet representations).

Such hierarchical motion estimation cannot, of course, guarantee optimal vectors. Highpass
texture is one class of features for which motion may be invisible atlarge scales; initial estimates
from the upper levels may lead the search in a random or wrong direction.

Hierarchical motion estimation also requires a nontrivial control structure, making it more
suited to general-purpose architectures. Full search, by contrast, has a very simple structure
that lends itself to parallel implementation—VLSI systolic arrays can now easily realize full
search for realistic ranges and pixel rates.
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Another class of refinements involves extending the uniform-translation motion model.
Changes in scene illumination, for example, would normally inject significant energy into the
residual image; sending a scale factor to model this would be worth the cost for many blocks.
More geometry could also be included in the vector field (for example, a field of affine maps),
modeling motions more general than translations. Such extensions would need to show signif-
icant benefits to warrant their complexity.

2.1.3 Distortion metrics for block matching

Block matching requires an effective, robust, and preferably simple metric on pairs of blocks.
This function need not attempt to closely match the human visual system response. Its job is
rather to permit the motion estimator to obtain vectors that are as useful as possible to the
source coder; this need not have any particular relationship to the subjective sameness of the
blocks under consideration.

Two measures in common use are the absolute error and squared error defined by

lla-Dbly =) la; - bl

i

1/2
la-bl2= (Z(ai - bi)z)

There does not seem to be much difference in performance between the two. On most archi-
tectures || - ||; is cheaper, since it requires no multiplies. (The square root may be elided when
computing | - ||2, since it is monotonic.)

These functions assume a scalar image, usually taken as the luminance part of the signal.
This is again for reasons of cost—a distortion function using full-color samples will be more ex-
pensive. The luminance subspace usually captures any relevant image motion, but not always:
a so-called isoluminant edge, one with different colors but the same luminance on either side,
will confuse a scalar estimator and damage the resulting prediction. Also, a color estimator
will be more robust to noise than its luminance-only counterpart.

An important benefit from forward adaptation, mentioned above, is that the encoder may
use any algorithm it pleases to compute motion vectors. Higher-quality encoders may use more
computationally intensive algorithms, yet remain backward-compatible with decoders.

2.1.4 Multiscale vector fields

The coder used in this thesis, as well as other proposed coders [6], avoids to some extent the
limitations of a single motion-estimator block size by using two. The granularity of other coder
objects is 16x16 pixels (see chapter 5); a heuristic is used to decide whether a given 16x16
block should use a single motion vector or be subdivided into four 8 x8 vectors.
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2.2 Motion compensation

Finally, a coding system must decide how to actually construct the predictor signal from the
motion data. When a given vector has a non-integer component, the block must be resampled
from the previous frame.

This resampling should ideally be the same as that performed by the camera. If the image
is moving by, say, 3.2 pixels per frame, then the best match to the current block would be the
previous block convolved with the camera response and sampled at —3.2 pixels. The coders
discussed here use a bilinear interpolator. This is doubtless a choice that could be improved,
given a better characterization of typical camera filtering.

Another way to interpret motion compensation is to imagine the prediction error to be
the result of a filter applied “along the vector”.> Thus far, the filter is merely 1 — z71, i.e.,
simple subtraction. (Or, including the spatial vector («, ), the filter is z;"‘z;B (1-z; 1)) Other
choices are possible. Filters such as 1 — az~!, for & € (0, 1), have decoder loops that look like
leaky integrators; while this sacrifices some prediction efficiency, it is one way to approach the
acquisition problem discussed in section 5.6.

Still other filter choices can involve prediction from the future, for example the central dif-
ference —z/2+1-2z"1/2. This can give better and smoother prediction, but at the price of more
computation and higher delay and memory costs (especially for high resolution applications).

Vectors are upsampled to the pixel rate by repeating them over the block. Some thought was
given to applying some other interpolation, perhaps in order to smooth sharp transitions be-
tween motion-objects. This does not seem to improve matters, since vector fields are inherently
discontinuous—enforcing higher regularity does not improve predictor accuracy.

2In this view, motion estimation is merely adaptive linear prediction of a special kind.



Spatial processing

The prediction error after temporal processing will still contain some redundancy, depending
somewhat on the sophistication of the temporal model used. For cases in which new imagery
pans or cuts into the scene, no temporal model will be useful, and it falls entirely on the spatial
part of the coder to represent it efficiently.

The problem of coding motion-compensated prediction errors, or residuals, resembles the
general still-image coding problem, and many of the same techniques apply. One caveat is that
the spatial representation should perform well with both prediction-error-like areas (which
tend to be “edgy” and fairly white) and original-image-like areas. The residual signal of normal
video is dominated by prediction-error-like areas, so it is important to code this class well.

3.1 Context of spatial coding

Figure 3.1 shows the context of spatial processing within a video coder. First a temporal pre-
diction, consisting of a motion-compensated version of the previous frame, is subtracted off.
The resulting prediction error is transformed to a more suitable basis for quantization with a
linear map T. The choice of an appropriate T is the subject of this chapter.

L
“\

receiver loop

vectors

Figure 3.1: Spatial processing within a video coder
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3.2 Transform/subband coding

The aim of transform/subband coding is to remove linear statistical redundancy from the
source. Historically, transform and subband coding had evolved separate terminologies, but
they are aspects of the same thing, transform coding merely distinguished by analysis and syn-
thesis filters with support no larger than the decimation factor. Figure 3.2 shows the analysis
and synthesis stages of a general multirate filterbank.

—

Figure 3.2: Multirate filterbank for transform/subband coding

There is a large collection of filters H and G that are perfect-reconstruction (PR), in the sense
that the recovered signal 7y is identical with x, perhaps with some delay. There is an even larger
collection whose members are nearly PR. Choosing among them is a matter of comparing their
performance.

Ultimately the most fundamental performance measure is the subjective response of the
human visual system. This is the measure used when “tuning” coders across a range of inputs,
testing among competing coders, and so on. Such evaluations are time-consuming, and they are
not terribly tractable mathematically, making them difficult to use for a priori design. Analytic
design techniques and stochastic image models may suggest designs, but in practice they must
be tempered by eyeball examinations of the results.

3.2.1 Fixed blocksize transforms

Fixed-block transform coding of images is a mature subject, and there is a large variety of
transforms available. If performance is taken to be mean squared error (MSE), there is a (signal-
dependent) optimal transform called the Karhunen-Loeve transform (KLT). If x denotes the
signal process (length-n blocks of samples), then

R=E(x®x)

is the crosscorrelation matrix of x, and the KLT is an orthonormal collection of eigenvectors
of R. (R is positive definite.)

The transformed vectors KLT (x) will then have a purely diagonal crosscorrelation matrix,
so that distinct members of KLT (x) are uncorrelated. This can be shown to result in the



3.2 Transform/subband coding 27

smallest mean-squared error under truncation of the coefficient-list, i.e. the KLT “compacts”
the energy optimally (the energy itself is unchanged, since KLT is orthonormal).

The KLT is useful as a bound for energy compaction performance of transforms, but it falls
short of being an ideal solution for transform coding of images. The reason for this is that
mean-squared error is far from a complete model of subjective image distortion. The filters
the KLT specifies do not respect important perceptual issues, such as the spatial disposition of
quantization noise (whether it is kept close to image detail or tends to spread out, for example)
and the nature of errors among independently transformed blocks.

The KLT also depends on estimates of second-order signal statistics, which requires on-line
computation if it is to be adaptive across blocks. Finally, the MSE optimality of the KLT is
distinct from optimality under quantization—quantization and coefficient-list truncation are
different processes.

If we consider only nonadaptive transforms that necessarily only approximate the KLT, the
simplest ones require no multiplies, trading performance for very low computational cost. The
discrete Walsh-Hadamard transform (DWHT) is a representative example, shown below for an
8x8 block size.

Figure 3.3: 8x8 DWHT

Experiment shows that the DWHT does not approach the KLT bound very closely for realistic
images. The intuition is that the basis vectors are not sufficiently regular, and in fact the KLT
for realistic image models usually contains smooth, cosine-like vectors. The discrete cosine
transform (DCT) approximates this situation more closely, and it has remained popular for
image and video coding for many years. It is given by

DCT;j5 = \/gci cos(2m(i—1)(2j - 1))

where ¢p = 2 and ¢; = 1 for i # 0. The 8x8-point DCT is shown in Figure 3.4. Notice that each
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basis function fills the block approximately uniformly.

NINTRTHT
: |

Figure 3.4: 8x8 DCT

The choice of block size results in a tradeoff between transform coding gain and stationarity;
smaller blocks may adapt more quickly to changing image statistics.

Though the DCT succeeds fairly well in producing uncorrelated transform coefficients, it
suffers from spatially regular block artifacts. These are image discontinuities arising from
quantization noise. Since the block supports are separate, the errors along block boundaries
are independent; since the boundaries form a regular structure, they are noticeable to the eye.
Figure 3.5 shows an enlarged section of a DCT reconstruction at a rate low enough to show
blocks distinctly.

There is another class of block transforms, called lapped orthogonal transforms (LOTS),
that aims to minimize block artifacts by overlapping synthesis kernels rather than keeping
them completely disjoint as in the DCT. They are described by Malvar [30]. A representative
filterbank is shown in Figure 3.6; the kernels are smoothly tempered at their boundaries, though
the support remains uniform across spatial frequency.

While blocking effects are reduced, they can still be perceived as “softer blocks” in images,
since the visual system can detect the aliasing despite the greater smoothness of the transitions.
Figure 3.7 is coded at a similar rate to the DCT example.

3.2.2 Multiresolution transforms

Multiresolution schemes attempt to finesse the fundamental tradeoff of fixed-blocksize trans-
forms. Rather than representing image detail by combinations of complex basis functions
distributed in spatial frequency, they use a limited set of “mother functions” which are then
replicated across space and scale.

A pyramidal filterbank for image coding was described by Burt and Adelson in 1983 [9].
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Figure 3.5: DCT blocking artifacts

This structure has complete flexibility in the choice of filtering, at the cost of an oversampling
ratio of, asymptotically, 4/3 (in dimension 2).

Figure 3.9 shows a collection of filterbank outputs for a sample image. The smallest image
represents detail on the coarsest scale, and each succeeding image represents the difference
between the interpolated coarse image and the finer image.!

Such non-critical sampling, or “data amplification”, in the sense of producing more coeffi-
cients than original samples, is not inherently evil. It is possible that more coefficients could
yet result in fewer bits after quantization and coding, and the unconstrained selection of filters
could result in better perceptual performance.

Recently, however, critically sampled dyadic tree structures offering the same advantages
for image coding as pyramidal filterbanks have been designed. These have been described from
both the subband filtering and from the wavelet point of view; Vaidyanathan’s Multirate Systems
and Filter Banks and Daubechies’ Ten Lectures on Wavelets are representative treatments [41,
16].

3.2.2.1 Wavelets

A wavelet ¢ is a function that is well localized (so that it is small in extent) and has vanishing
zeroth moment (so that it superimposes itself cleanly on larger waves). The map itself, though,
is less important than the family ¢, of related maps it engenders by scaling and translation,

1 The structure is identical to the multigrid algorithms of computational linear algebra, though in image coding
there is no notion of back-and-forth among the levels: the filterbank is merely evaluated and the results quantized.
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Figure 3.6: Lapped orthogonal transform

since it is this family that serves to represent other functions. It is defined by
bap(x) = 2*2¢(2°x - b)

for a,b € Z. (Naturally, there are also versions that sample continuously in space and scale.)
Each ¢4, is a copy of the “mother wavelet” ¢, compressed by a factor of 2%, translated by b,
and suitably normalized. Figure 3.10 shows a mother wavelet and a few of the children.

Wavelets are most convenient when ¢, is an orthonormal basis of L2(R). Orthonor-
mal wavelets with compact support are available with arbitrarily high regularity, as shown
by Daubechies [16], with a tradeoff between regularity and spatial extent. If compact support
is not a requirement, simpler constructions suffice.

In discrete time, a wavelet corresponds to a quadrature-mirror filter pair Hy and H;; Fig-
ure 3.11 shows the transform algorithm as an iterated convolution and downsampling. As
always, discrete time imposes a limit on the frequencies the sampling lattice can support.

There are straightforward extensions to LZ(R™) via product constructions. Special wavelets
designed for the unit interval have also been designed, although for image coding it is not clear
whether they are better than symmetric extension using unbounded wavelets. Figure 3.12
shows the filterbank signals for a 2D wavelet transform, organized in the canonical way. The
corresponding synthesis kernels are shown in Figure 3.13; compare with those of the DCT.

Full wavelet transforms have O(nlog n) complexity, since the convolution kernel is fixed in
length and the pyramid will have log n stages. Many image coding applications in fact truncate
the pyramid after three or four levels, since the need for information at very coarse detail is
not great.

The wavelet transform algorithm is very uniform. All stages use the same small set of
coefficients, unlike the FFT and DCT, in which different sets of sinusoidal multipliers are needed
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Figure 3.7: LOT blocking artifacts

Figure 3.8: Oversampled pyramidal filterbank

for each stage. In addition, high-detail subband signals are available from wavelet transforms
with low latency, whereas all FFT coefficients are arrived at simultaneously.

Symmetry and perfect reconstruction are unfortunately incompatible for wavelets. One
approach to recovering symmetry is a biorthogonal wavelet system, for which there are two
independent analysis and synthesis kernels [5]. By contrast, the wavelet synthesis filters are
related in a simple way to the analysis filters.

3.3 Criteria for image coding
Image coding places unique requirements on analysis/synthesis filterbanks. In addition to

sparse representations for most image types, filterbanks should respect a number of perceptual
and systems issues.



3.3 Criteria for image coding 32

(a) (b) AC mid (c) AC high
DC

Figure 3.9: Pyramidal filterbank signals

3.3.1 Isotropy

As mentioned in Chapter 1, isotropy of a filterbank structure occurs on two levels: first on the
level of the sampling lattice itself, and second as a result of the geometry of the responses of
the filterbank analysis and synthesis filters. Perfect isotropy, in the sense of invariance of the
entire system under rotation, is not possible on either level (even the human visual system has
some preferred directions; for example, deterministic halftoning patterns are less visible at 45°
than at 0° to the horizontal).

From an image coding point of view, tensor product filters based on 1D designs seem to
be adequate. These distinguish two directions, horizontal and vertical, but superpose the two
diagonal directions into a single subband. At low rates, the result of this can sometimes be
seen in a “notching” or jaggedness of some edge features, as diagonal coefficients are coded
with greater or lesser accuracy.

Another symmetry a coding system ideally should have is translation invariance, that is, lack
of aliasing. In the absence of quantization noise, of course, all perfect-reconstruction systems
are translation invariant; under quantization, however, it is the statistics of the distortion,
viewed as a random process, that is important to the eye. Is the distortion stationary, in the
sense of conditional probabilites that do not change under translation? That is emphatically
not the case with the DCT, for which transients are more likely along the decimation grid; it is
the cause of block artifacts.

3.3.2 Perfect reconstruction

It might seem axiomatic that perfect reconstruction is a desirable property, but it does come
with the price of restricting the choice of filters. Since the output of the filterbank is to be
quantized anyway, some balancing of filterbank distortion and quantization noise might seem
appropriate.

In practice, there is apparently sufficient freedom to choose perceptually nice PR filter-
banks. Doing so renders the quantizer the sole source of distortion in the entire system, which
simplifies evaluation and tuning.
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The filterbanks used for this thesis, namely the DCT and a biorthogonal wavelet filter-
bank, are both PR. (Finite-precision arithmetic contributes some error, of course, but it is much
smaller than any quantization noise.) Section 5.2 discusses filterbank design and implementa-
tion.

3.3.3 Small support

It is ultimately a matter of physiology and perception that most signal types are best thought
of as purely time- or space-like, purely frequency-like, or somewhere in between. Vision starts
with rod cells and cone cells. They are compact sensors, only a few microns across, and they are
situated in the focal plane of the eye’s optical system. If each cell’s output were used directly,
without subsequent signal processing, then distortions in an image coding system would be
simple to evaluate and control.

For example, hearing does not operate directly on the incident acoustic waveform. Such
structures are in principle possible; one can imagine a kind of shift-register arrangement in
which sound propagates along a transmission line and sensor cells sample synchronously along
the line. But acoustic information is most often in the form of modulated relaxation oscillators
(animal speech) or modulated resonators, because they are easy to implement physically. A
direct spectral acoustic sense, realized in the cochlea as a mechanical frequency analyzer, is
more efficient for these signals. (The corresponding switch for vision is well out of the realm
of possibility: lenses are much more cost-effective than phased-array optics.)

In a similar way, investigation has shown that processing in the retina and cortex does
result in some coupling of responses in neighboring areas [34]. This can be interpreted as
a kind of filtering (though the responses are not always usefully modeled as linear). These
coupled responses, though, are still quite local.

What, then, does this imply about the space-domain requirements for image filterbank ker-
nels? They should be short, since short synthesis filters will closely confine quantization noise
to energetic features in an image. Noise that is allowed to spread becomes more visible, for the
same noise energy. Such filters should also attempt to mimic other aspects of low-level vision,
such as orientation sensitivity and hierarchical processing.

Strictly compact support isn’t necessary from a vision point of view; fast decay is sufficient.
As with perfect reconstruction, though, it is convenient—compact support completely isolates
one region from another.

3.3.4 Energy compaction

As discussed above, energy compaction is an important efficiency metric. While crude image
models, like AR(1) processes with a high correlation coefficient, should not be counted on to
provide designs with good perceptual performance, raw statistical performance is still impor-
tant to efficiency.
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3.3.5 Symmetry

Edges and lines are common features in natural imagery, and image coders should preserve
their form as well as possible. A given edge between two objects has an odd symmetry about its
midpoint, and an unresolved line has an even symmetry. For asymmetric filters, quantization
noise could disrupt that symmetry and bias the features in an unpleasant way.

For multiresolution analysis, biorthogonal systems offer exact symmetry at the cost of a
larger design problem, since two wavelets must form a PR filterbank.
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Figure 3.11: Tree-structured filterbank

Figure 3.12: Wavelet filterbank signals
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Figure 3.13: 8x8 wavelet synthesis kernels



Adaptive prediction

Thus far, temporal and spatial signal processing have been treated independently. The redun-
dancy mechanisms are unrelated—motion predictability of a given scene is independent of its
spatial predictability—so it might seem natural to simply cascade the two techniques.

In practice, though, some coupling is necessary. Motion-compensated processing does not
always give a useful prediction signal. Such situations can arise either globally (scene cuts)
or locally (object occlusions, pans), and using the unmodified prediction can result in very
unnatural artifacts.

Conventional block-transform coders solve this problem by adapting the prediciton signal
to scene content. If, in a given region of the image, there is much new signal that cannot be
predicted from the previous frame, the coder discards the prediction (by setting it to zero).

Since this thesis investigates wavelet representations for video, there should be a compa-
rable mechanism to deal with such signals. It is here, for subband coders, that a significant
wrinkle arises, since prediction segmentations that work acceptably well with block transforms
fail when directly applied to subband coders.

Section 4.3 will show a novel restructuring of the prediction loop, so that a video subband
coder can use a natural segmentation that results in good performance. The strategy is to use
blocks of filterbank coefficients, rather than blocks of image samples, as the basis for prediction
decisions by the encoder.

4.1 Need for adaptive prediction

Figure 4.1 shows a block diagram of a video coder without adaptive prediction, consisting of
a motion compensation step and an independent spatial coding step. (Throughout the next
two chapters, block diagrams will contain abbreviations of common operations: T and T~ will
denote a block transform or subband filtering operation and its inverse, Q and Q! a quantizer
and inverse quantizer, ME and MC motion estimation and motion compensation, and z~! a unit
delay, usually a frame.)

For sufficiently benign video, without cuts or complex motions, this can work well, but the
simplest and most dramatic failure mechanism is a cut from a busy scene to a simple one.
Figure 4.2 shows two adjacent frames and resulting prediction error given to the spatial coder.

Notice that the residual contains the new scene information, as it should, but associated

38
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Figure 4.1: Video coder without adaptive prediction

with an energetic corrupting image similar to the previous frame. The spatial coder is in effect
being asked to transmit information to enable the decoder to “uncode” all the detail in the
preceding scene, in order to render it close to the new simple scene.

This is naturally quite wasteful, and it may result in a “scrubbing” or “trailing” artifact
in which several frames are required to remove all traces of the previous scene, because of
quantization noise.!

Figure 4.3 shows the first three reconstructed frames after the cut, assuming no motion in
the new scene, and using a simple rate control scheme. (Rate control is discussed in chapter 5;
a coder might choose to use a high rate up front to mitigate the “scrubbing”, at the cost of
buffer complications.)

In this example the residual is costlier to transmit than the new frame itself, although things
are not always so drastic. Even for situations in which only a small part of the image will
benefit from adaptive processing, though, the net efficiency of the coder will improve—the
sicde information requirements are small.

4.2 Segmentation and prediction measures

As with motion estimation, adaptive prediction requires an appropriate segmentation. The
task is to specify the region for which temporal prediction is useful (and, of course, the com-
plementary region for which it is not).

Figure 4.4 shows a block segmentation; this structure works well for DCT systems, since
it is evidently either identical to, or a subsampled version of, the transform structure itself.

1 This effect is similar to noise enhancement in linear equalizers for communications, and the remedy is the same:
abandon linear processing.
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(a) Frame 1 (b) Frame 2

(c) Residual

Figure 4.2: Prediction error of scene cut
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(a) Frame 1

(b) Frame 2

(c) Frame 3

Figure 4.3: Reconstructed scene cut
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The switch in the block diagram is the prediction decision: if the switch is up, the residual will
contain the current block; if the switch is down, the residual will contain the usual difference
between the current block and the predicted block.

rate adaptation

to channel

video

inter/intra vectors

decisions
Figure 4.4: Adaptive prediction for block transform coder

A representative residual image under this scheme is shown in Figure 4.5. The prediction is
kept for most of the image area, but the region containing the changing object is more efficiently
intraframe-coded, that is, coded with the temporal prediction set to zero.

Naturally, the encoder must send side information specifying the prediction for each block.
Here this amounts to (at most) one bit per block, that is, about 0.004 bits/sample for 16x16
blocks (assuming the decision is replicated for chroma, which is usually a good policy). This is
about 1% of a typical coding rate, well worth the improvement it gives.

The prediction decision is made by a process that evaluates both options. Counting the bits
required to code each block-type is the most fundamental measure, if it makes sense (some
statistical coding techniques may yield bits associated with more than one block). Another
measure, less sharp but more orthogonal to the rest of the system, is to compare the relative
energies of the two errors. That is the choice used in the implementation described in chapter 5,
with a few refinements for “better” choices: DC energy is ignored, and the remainder of the
samples are weighted by spatial frequency.

4.3 Adaptive prediction for subband coders

A video coder based on subband coding or wavelets requires an extension of these techniques.
First the deficiencies of block decisions will be described; then a structure based on collocated
coefficient-blocks will be shown to remove nearly all of the difficulty.
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(a) Frame 1 (b) Frame 2

(c) Residual

Figure 4.5: Spatially adaptive prediction error
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4.3.1 Conventional segmentation

The block-prediction algorithm described above is not useful for subband coders. It can cer-
tainly be tried, and the result is interesting: when the prediction error of Figure 4.5, say, is
filtered by the spatial part of the system, the transitions from interframe blocks to intraframe
blocks interfere with the filtering. (For the DCT, these transitions scarcely exist, because they
line up with the transform blocks and are invisible to the filters.)

This interference of the prediction-block edges results in much high-frequency energy, since
each edge borders an approximately DC-free region (with prediction) and a DC-normal region
(without). Moreover, the filtered transient will be coarsely quantized, and quantization errors
near the block will be visible.

Figure 4.6 shows an example for which several blocks are intra-coded in this way; the dis-
tortion of the high frequencies can be clearly seen. Though the interiors of these blocks are
simple, the errors resulting from filtering the edges are unacceptable.

Figure 4.6: Subband coder reconstructed frame, spatially adaptive prediction

One could try to repair the situation by removing the mean (or perhaps the median) from
the intra-coded blocks before filtering, in an effort to remove all the transients. Such efforts are
doomed. There will always be blocks that behave badly under whatever modeling is applied to
clean up the edges. For example, mean-removal will be fooled by blocks with significant average
gradient, and similarly a more ambitious affine-removal by blocks with significant curvature or
edge.

What is needed is a way to smoothly change from inter-coding to intra-coding, and this is
precisely what the filterbank itself can be made to provide.

4.3.2 Coefficient-domain segmentation

Figure 4.7 shows a prediction loop that has been rearranged to switch among blocks of fil-
terbank coefficients. This structure involves an extra spatial filtering operation, since both
the current frame and the predicted frame must be filtered, but it allows adaptive prediction
unhindered by spatial concerns.
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Figure 4.7: Adaptive prediction for subband coder

What is the effect of this modification? A walk through the block diagram will highlight
the differences. First, incoming video is immediately filtered and organized into blocks of
coefficients, in the way of all linear coders. Although there is no spatial-domain block structure
in Figure 4.7, it is useful to imagine what spatial structure now corresponds to a prediction
block. It is simply the collection of synthesis basis functions of each coefficient of the block;
Figure 4.8 shows the 16x16 case, illustrating the overlap of the DC and lower-frequency kernels.

Next, a prediction coefficient-block is subtracted off. This block is constructed by the pre-
diction loop: it will be zero for blocks with no useful prediction data, and it will be part of the
filtered motion-compensated previous frame otherwise.

Now the coefficients are simply quantized and sent to the entropy coder, together with
the side information specifying all of the prediction data. This is sufficient for the decoder
to reverse all of these operations, and in fact the lower part of the block diagram is just the
receiver processing.

The receiver processing is more complex than in the system in the previous section. It
consists of two filtering operations, one to assemble the dequantized coefficients and transform
to the spatial domain for motion compensation, and one to flip back to coefficients to serve
the prediction for the next frame.

Ideally, neither would be necessary. Motion compensation is conceptually something that
might operate on filter coefficients directly, as in Figure 4.9. But I'm not aware of any filterbanks
or motion-compensation algorithms that can do this without incurring essentially the same
complexity as Figure 4.8; the reason would seem to be the unavoidable aliasing in the filterbank,
which cannot be space-invariant and so is incompatible with the motion compensation.

Finally, notice that for block transforms like the DCT, this system is equivalent to the one in
Figure 4.4, since the “switch” operation and the transform T commute. It is only for subband
coders that they interfere.
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Figure 4.8: Spatial extent of prediction block

rate adaptation

video to channel

inter/intra vectors
decisions

Figure 4.9: More efficient, but unworkable, receiver scheme
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4.3.3 Tradeoffs

As we have seen, the wavelet adaptive prediction scheme requires three filters rather than two
in the encoder (and two versus one in the decoder). However, filtering is only a small part of the
computational burden of a video coder—the temporal signal processing places much greater
demands on computation and memory systems.

One restriction the wavelet structure places on coder design is that all motion vectors must
be sent even if some blocks are intra-coded. This is because the transform operation in the
receiver loop requires (potentially) all samples of the motion-compensated previous frame.
(The DCT case does not need any samples of an intra-coded block, so a vector need not be
sent). This means extra overhead, but it is not too severe, especially as the vector field is itself
differentially coded.

These issues must be balanced against the perceptual and statistical benefits of good filter-
banks, which will be evaluated in the next chapter.



System aspects of video subband coders

Video coding, at the level of systems design, is an experimental enterprise. There is no sub-
stitute for a working system, not only for observing the output for quality, but for extracting
the quantities that serve to characterize the system’s efficiency and to train the quantizers and
statistical coders.

This chapter will describe a coder that implements the style of adaptive prediction described
in the previous chapter. The coder is designed around the infrastructure available at ATRP,
namely a network of workstations, a video frame buffer, and motion imagery at 720x1280
resolution.

At the highestlevel, the coding system consists of an encoder process and a decoder process.
The encoder reads a stream of frames and writes bits, and the decoder does the reverse; thus
there is complete isolation between the two except for the transmitted data. The encoder
optionally writes statistics and status to an auxiliary stream.

5.1 Motion estimation

The search range for motion vectors is taken to be 16 pixels, which is adequate for images with
medium to high dynamics. The first-stage search uses integer vectors, to avoid interpolation,
and the second stage refines the vector to 1/2 pixel, within a range of 2 pixels. The metric is
mean absolute error.

Vector data is computed every 16x16 pixels, but 8x8 blocks are used for distortion calcula-
tions. If the (integer) vector that minimizes the entire 16x16 block yields significantly higher
prediction energy than the individual 8x8 blocks, 8x8 vectors are used.

A software implementation of full-search motion estimation is expensive, and if the entire
coder runs on a uniprocessor it will dominate the run time. It seems natural, then, to distribute
the motion-estimation task among many machines.

Figure 5.1 shows the subtasks involved in computing the vector field. Each block requires
not only its own image data, but also neighboring samples out to the maximum vector length.
A large grain-size will minimize this overhead, but limit the possible speedup; a small grain
will do the opposite. For the workstation-LAN environment, and for about 50 available hosts,
the best grain size was 64x64, resulting in a speedup of about 20. A message-passing library
called PVM, written at Oak Ridge, handled the low-level communication and synchronization
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Figure 5.1: Parallelizing motion estimation

In principle, other coder tasks like filtering and quantization could be similarly distributed,
but the communication dependencies become more complicated. Especially for filtering, keep-
ing all data in the same address space simplifies bookkeeping.

5.2 Filtering

The coder uses an instance of a biorthogonal wavelet filterbank. There are a number of filter
choices in the literature, often with parameters that generate entire families of filterbanks, so
that some experimentation is necessary to get a feel for filter properties under quantization.
One that gives especially good results visually is due to Barlaud, and is shown in Figures 5.2
and 5.3 in dimensions 1 and 2.

The implementation is a straightforward recursive direct polyphase FIR filter using three
levels. Boundary conditions are enforced by symmetric or antisymmetric extensions at the
image edges.

Filtering produces a collection of subband signals, but it is necessary to place the datain a
coefficient-block context with all members of a block approximately colocated in space. For the
usual subband-image organization, this turns out to be a multiscale shuffle operation (which
turns out to be rather expensive, since the images are large and the index gymnastics generate
constant cache misses).
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Figure 5.2: Wavelets and scaling function (synthesis)

5.3 Quantization

Representing video as a collection of subband coefficients does not by itself produce a sequence
of bits, but rather a suitably sparse representation of the video. It remains for a quantization
process to produce a sequence of symbols from some finite alphabet to represent the coeffi-
cients, and an entropy coding process to represent the symbols as bits.

The quantization step is the only irreversible operation in the entire coder, since the various
representation mappings and the entropy coding are invertible (or “noiseless” in the signal-
processing vocabulary, though for the filters there are always numerical issues). The only
important distortion is quantization noise, although the nature of this noise of course depends
crucially on the details of the representation.

The total coefficient space will have large dimension, and it is necessary to partition it in
some way and apply quantizers to smaller pieces (though there have been some recent efforts
to quantize the entire image directly while avoiding an intractable quantizer design problem
[4, 8]). Assigning a sequence of bits to each point in one of these spaces so as to minimize
the expected number of bits per point is called vector quantization (VQ). Scalar quantization
consists of factoring the space into a product of one-dimensional terms, then applying (perhaps
different) quantizers to each term.

While naive vector quantization is efficient, its complexity and training data grow exponen-
tially in the dimension. The practical choice is therefore between one of the constrained VQ
techniques {21] or scalar quantization with entropy coding. This coder uses scalar quantizers,
in fact the uniform (boundless) mid-tread quantizer shown in Figure 5.4. Mid-tread is used to
obtain a slight noise-coring effect and to avoid any oscillations around the nominal coefficient
value.

While the form of the quantizer is the same for each coefficient, its scale sets the perceptual
importance. The relative scales were chosen from still-image experiments, since the perceptual
requirements for video ought to be very similar. The absolute scale is set by the rate control
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Figure 5.3: Mesh plots of tensor product wavelets (synthesis)

loop discussed in section 5.5.
For a system with entropy coding, quantizers that saturate are often a hindrance rather than
a help—the real use of a hard limit is to make possible a symbol map without entropy coding.

5.4 Entropy coding

The result of quantization is a set of indices or symbols that the entropy coder will translate
into a sequence of bits. In this case the symbols are 8x8 blocks of integers, each of which is a
quantized coefficient block.

Q(x)

Y

Figure 5.4: Uniform mid-tread quantizer
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An off-line computation produces a Huffman codebook from suitable training data. (Arith-
metic coding would have been another possibility, with potential advantages in flexible adap-
tation at very low cost.) The codebooks were trained with quantized coefficient data from the
analysis of about 40 frames of video, taken from various test sequences to achieve a good mix.

5.4.1 Codebook structure

The coefficient codebook consists of a library of low-energy 4x4 symbols, medium-energy 2x2
symbols, symbols for individual coefficients, and an end-of-block symbol. Each 8x8 block is
traversed from high frequency to low frequency, using the octave boundaries as guides for
symbol selection. Figure 5.5 shows the structure of an 8x8 block. The DC coefficient is coded
separately, using a differential Huffman code distributed over the macroblock (similar to the

motion vectors).

DC coded
separately;
intra—macroblock
DPCM

Figure 5.5: Codebook symbol

This illustrates one of the conveniences of octave-band subband representations. Since
many of the kernels are identical except for translation, there is no reason to distinguish be-
tween them for training. By contrast, all 64 kernels in an 8x8 DCT are distinct and potentially
need separate treatment.

5.4.2 Codebook search

Since the total codebook is fairly large, a search to discover the codeword for a particular
symbol is time-consuming. A codebook hash table does not significantly increase the space
requirements for the coder, and it implements the mapping in constant time. (Hashing is
useful even for zig-zag scanning, since it is cheaper than the sequential algorithm.)

5.5 Rate control

Except in very simple situations, the rate at which bits are emitted from the entropy coder is un-
predicable. In general, the finer the quantization, the more bits will be needed to represent the
output, but this is not detailed enough a model to permit interfacing to synchronous channels
that require an information source at a constant rate.

One way around this problem would be to dispense with constant-rate channels. Some
communications technologies, for example packet-switched and spread-spectrum networks,
are designed for asynchronous sources; a source coder could then transmit at whatever rate
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it needed at the moment. The instantaneous rate is commonly based on a constant-quality
criterion.

More usual for video, though, are channels with fixed rate. This situation is mostly historical,
since current systems are point-to-point or broadcast analog links with constant bandwidth
(though there is increasing use of digital source coders for contribution sources internal to
networks). The natural evolution, therefore, is to take an analog channel, for example a 6 MHz
terrestrial channel or a 36 MHz satellite transponder, and simply allocate to it some number
of HDTV signals (together with a suitable digital communications system).

Physical-layer channels for video include terrestrial VHF and UHF broadcasting, geosyn-
chronous satellite repeaters, coaxial cable, and fiber. In principle, there is no reason that any
of these media could not be adapted from their current form into networks more suitable for
coded signals. The recent ATM protocols are designed from the start with bursty, real-time
sources in mind (as well as high rates, which is convenient for the video problem).

5.5.1 Rate adaptation for fixed-rate channels

Assuming that the interface is to a fixed-rate channel, the general scheme involves a buffer and
a rate control algorithm designed to prevent the buffer from underflowing or overflowing (see
Figure 5.6).

forward
analysis

-

receiver
loop

Figure 5.6: Buffer feedback for rate adaptation

The information required by the adaptation mechanism more or less determines its com-
plexity. The two architectures most often encountered are a feedback algorithm, relying only
on buffer fullness to set future quality or quantization levels, and a feedforward mechanism,
which uses an abbreviated version of the encoder process to more accurately estimate the
rate-distortion relation for the near future.

For a given buffer size, the feedforward algorithms give better performance at the cost of
higher complexity (and perhaps delay for the forward path). For this coder, since overall delay
is not an important issue, the buffer is made large enough to allow the use of simpler feedback
algorithms. Figure 5.7 shows the precise scheme.

Note that the overall loop is first-order, the usual choice for this kind of system: there is
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receiver
loop

Figure 5.7: Feedback quantizer adaptation

no state variable corresponding to a filtered rate (in contrast to, say, a PLL, for which this is
usually essential). The adaptation data and buffer fullness may then fluctuate rapidly, but this
has no direct bearing on image quality.

To illustrate a typical buffer response, Figure 5.8 shows buffer fullness over the course of
a 60-frame sequence. The cut at 30 frames is clearly visible, as are overall trends in scene
information.

o , R A A
) 10 20 30 40 50 60

Figure 5.8: Buffer fullness history

5.6 Acquisition and error concealment

As mentioned in chapter 2, acquisition is an essential part of temporal processing. In a broad-
cast mode receivers need to synchronize with a running transmission, so signals must provide
sufficient redundancy to allow acquision on timescales of a second or so, limited on the high
side by user impatience (usually thought of in the channel-flipping mode, though perhaps HDTV
will provide a better search paradigm!) and on the low side by the data overhead.

There are two styles of refresh, progressive and leak. Progressive refresh reserves a certain
(variable) image region exclusively for intraframe coding (in addition to the sources discussed in
chapter 4) so every pixel is eventually covered. In contrast, leak schemes, instead of refreshing
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some of the picture all at once, refresh all of the picture a little at a time. This is done by
including in the prediction error a small fraction of the current frame, or equivalently by scaling
the prediction appropriately. Figure 5.9 shows block diagrams for the two methods.

video ‘
- F> - Q
X leak (spatial)
leak,
e.g. 0.95 L—— predictor
video
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|
progressive
mask &
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Figure 5.9: Acquisition

Each of these algorithms can be refined into a number of alternatives. For progressive re-
fresh, one has the choice of allocating a certain number of intra-blocks for every frame (usually
in a swept or wiped pattern from top to bottom or left to right), or else dedicating an entire
frame to intra-coded blocks (a so-called I-frame) every so often. The wipe allows acquisition to
become visible sooner, but it suffers from a minor glitch: rapid motion in the same direction
and speed as the wipe can cause the effective acquisition time to increase, since the motion
compensator will propagate uninitialized data until it reaches the image edge.

Similarly, leak can operate either spatially or in spatial frequency. An interesting variation,
possible only in the latter mode, is to adjust the integrator gains (and so the acquisition time
constants) according to frequency. The low frequencies should be configured for rapid access,
on the order of a few frames, while high frequencies can be given a longer time, perhaps 10
frames. Since the human visual system is remarkably insensitive to detail for as much as a
few hundred milliseconds after a scene cut, the net result is increased efficiency for the same
subjective acquisition performance.

Finally, refreshing can have useful interactions with other system issues. General Instru-
ment has used a clever synthesis of progressive refreshing and partitioning to allow all motion
estimation to occur within panels [12].

Error concealment is closely related to acquisition, since incorrect video resulting from
data errors would result in catastrophic error propagation around the receiver loop were it not
repaired. (Indeed, the lack of any signal at receiver startup can be regarded as a single large
error.) Error handling needs first a strong error detection mechanism, then a good choice of
substitute data until the error is refreshed.

Error detection is so inexpensive that very strong schemes are affordable. The coder uses
a 32-bit CRC every macroblock; this is a natural granularity, since macroblocks are the bound-
aries of differentially coded DC and motion vectors. The resulting overhead is negligible. The
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consequences of an undetected error would be a trashed macroblock, essentially random video
from decoded random bits, moving about on the screen. This is much worse perceptually than
a disguised error.

There does not seem to be any error concealment scheme much better than the natural one,
namely setting the errored macroblock to zero and allowing the receiver loop to substitute the
motion-compensated data from the previous frame (assuming the vectors are available). This
not only provides plausible video, it allows updates from future frames to continue to provide
estimates until the region is refreshed.

Here error lifetimes are the same as acquisition times, though ideally the errors should
probably be shorter-lived.

5.7 Source-adaptive processing

Television systems need to support a wide variety of image sequence types in addition to their
native or default mode. Motion picture film, for example, uses a wide variety of aspect ratios
and frame rates, and HDTV will also need to accommodate analog video from tape libraries or
for simulcasting. The NTSC solution to this problem is to require a transconversion from every
source format to the 480-line interlaced, 60 Hz field rate, 4:3 aspect ratio specification.

That entails unavoidable quality tradeoffs. Temporal rate conversion is perhaps the most
difficult problem; even today, 50 Hz to 60 Hz is far from perfect, and 24 Hz to 60 Hz suffers
from some judder and window-blinding (in the case of interlace). Aspect ratio conversion can
always be handled with letterboxing, but this wastes bandwidth in an analog system, and it
also leaves part of the display unused. The alternative is pan-and-scan, which discards a part
of the image. Purely spatial conversions are less difficult, though of course the transmission
format is a bottleneck for high quality sources.

Digital television systems can avoid many of these problems by allowing several image for-
mats to be sent. Provided receivers are flexible enough to render all of the formats acceptably,
source-adaptive coding can trivially exploit differences in the source’s spatial resolution, frame
rate, and possibly color space. For example, a separate format for film at 24 Hz will allow the
available data rate to represent finer spatial detail, since the temporal bandwidth is only 2/5
that of a 60 Hz signal.

5.8 Auxiliary services and data

Practical HDTV systems include data types other than video (which nevertheless usually domi-
nates in terms of rate). Audio, control and sync, and header/descriptor information are usually
sent with all video, and various other data, such as text and graphics, may be needed.

Much progress has been made in audio source coding over the past eight years or so. Es-
sentially perfect audio, statistically indistinguishable from original material by expert listeners,
can be attained at rates around 2.5 bits/sample for a monophonic channel, and only somewhat
higher for multichannel, surround-sound modes [26]. Multirate representations for audio are
also productive, but for different perceptual reasons.
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Video can have a number of formats, as described in the previous section. It falls to
header/descriptor data to describe these formats (but not necessarily the decoder algorithm
or display algorithm—that is up to the receiver). It is a nontrivial, cultural decision as to how
flexible to make descriptor data structures—too general and the implementation is costly or
ad-hoc; too restrictive and desirable future enhancements cannot be supported. The coder
presented here avoids all these issues, but large designs cannot be so cavalier.

5.9 Comparison of subband and DCT representations

While rates on the order of 0.3 bits/pixel are needed to give high perceptual quality, this is
inconvenient for tuning and characterization of artifacts, since they can be difficult to see at
this rate.

Figure 5.10 shows a representative still frame from sequences coded with the wavelet coder
and a comparable DCT coder. (One of the reasons for choosing elementary 8x8 coefficient
blocks was to facilitate this comparison—the coder need only “swap in” a different transform
and different quantizer tables and coders.)

Both images have significant distortions at this rate. In the DCT coder some image areas
are rendered as blocks (corresponding to transform blocks) with sharp edges, whereas in the
wavelet coder the detail becomes blurry. The DCT block edges can in fact give the impression
of a greater subjective sense of sharpness, even if the sharpness is unrelated to image high-
frequency information.

At close viewing distances, though, when the 8x8 blocks are well resolved, the wavelet
image seems less objectionable. It is difficult to make a quantitative assessment between the
perceptual improvement from smooth kernels and increased statistical efficiency due to the
localization, but both probably contribute.
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Figure 5.10: DCT and subband artifacts



Conclusions

This thesis investigates wavelet representations for video in a motion-compensated subband
coding context. The conclusion is that subband or wavelet spatial coders for video offer some-
what better perceived quality than block transform coders, especially at low rates, at the cost
of some receiver complexity and coding constraints.

6.1 Future representation issues

One important degree of freedom this coder does not support is locally adapting the filters
themselves to the signal, rather than relying on a single filterbank to uniformly represent
the entire signal. Such “best-basis” algorithms [44] offer very natural rate-distortion-guided
schemes for kernel choice, and side information requirements seem to be acceptable.

Subband coders are always constrained by their low-level signal model. As spatial and
temporal resolutions and available computation increase, a gradual migration to models en-
compassing more than one frame or more than a few pixels will be profitable.
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