
Thread Scheduling Mechanisms for Multiple-Context
Parallel Processors

by

James Alexander Stuart Fiske

B.ENG., Electrical Engineering
McGill University

(1986)

S.M., Electrical Engineering and Computer Science
Massachusetts Institute of Technology

(1989)

Submitted to the Department of Electrical Engineering and Computer Science
In Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy
in Electrical Engineering and Computer Science

at the

Massachusetts Institute of Technology
May 1995

@1995 Massachusetts Institute of Technology
All rights reserved

A - 10

Signature of Author

Department of Electrical Engineering and

Certified by

Accepted by

Computer Science
May 26, 1995

4d-r(-7v ,,

William J. Dally
Associate Professor of Electrical Engineering and Computer Science

Thesis Supervisor

Frederic R. Morgenthaler
Chairman, Deartmental Committee on Graduate Students

MAASSACHUSETTS INSTITUTE
OF TECHNOLOGY

JUL 1 71995
LIBRARIES

,arkRr Fnn

Thread Scheduling Mechanisms for Multiple-Context
Parallel Processors

by
James Alexander Stuart Fiske

Submitted to the
Department of Electrical Engineering and Computer Science

on May 26, 1995, in partial fulfillment of
the requirements for the Degree of Doctor of Philosophy

in Electrical Engineering and Computer Science

Scheduling tasks to efficiently use the available processor resources is crucial to minimizing
the runtime of applications on shared-memory parallel processors. One factor that con-
tributes to poor processor utilization is the idle time caused by long latency operations,
such as remote memory references or processor synchronization operations. One way of tol-
erating this latency is to use a processor with multiple hardware contexts that can rapidly
switch to executing another thread of computation whenever a long latency operation oc-
curs, thus increasing processor utilization by overlapping computation with communication.
Although multiple contexts are effective for tolerating latency, this effectiveness can be lim-
ited by memory and network bandwidth, by cache interference effects among the multiple
contexts, and by critical tasks sharing processor resources with less critical tasks. This the-
sis presents techniques that increase the effectiveness of multiple contexts by intelligently
scheduling threads to make more efficient use of processor pipeline, bandwidth, and cache
resources.

This thesis proposes thread prioritization as a fundamental mechanism for directing the
thread schedule on a multiple-context processor. A priority is assigned to each thread
either statically or dynamically and is used by the thread scheduler to decide which threads
to load in the contexts, and to decide which context to switch to on a context switch. We
develop a multiple-context model that integrates both cache and network effects, and shows
how thread prioritization can both maintain high processor utilization, and limit increases
in critical path runtime caused by multithreading. The model also shows that in order to
be effective in bandwidth limited applications, thread prioritization must be extended to
prioritize memory requests. We show how simple hardware can prioritize the running of
threads in the multiple contexts, and the issuing of requests to both the local memory and
the network.

Simulation experiments show how thread prioritization is used in a variety of applications.
Thread prioritization can improve the performance of synchronization primitives by min-
imizing the number of processor cycles wasted in spinning and devoting more cycles to
critical threads. Thread prioritization can be used in combination with other techniques
to improve cache performance and minimize cache interference between different working
sets in the cache. For applications that are critical path limited, thread prioritization can
improve performance by allowing processor resources to be devoted preferentially to critical
threads. These experimental results show that thread prioritization is a mechanism that
can be used to implement a wide range of scheduling policies.

Thesis Supervisor: William J. Dally
Title: Associate Professor of Electrical Engineering and Computer Science

Acknowledgments

Now that this thesis is finally coming to an end, there are many people that I would like to
thank wholeheartedly for the help and support they provided me with along the way.

First of all, thanks to my research advisor Bill Dally for providing the knowledge, guidance,
encouragement, and resources that were necessary to complete this work. Miraculously he
succeeded in convincing me come back to MIT after my world travels, although he had the
advantage that my memory had faded somewhat after a year and a half away. I would also
like to thank my readers Charles Leiserson and Bill Weihl for their insightful and helpful
suggestions on the various proposals and thesis drafts I sent their way.

The great people of Tech Square that I have had the privilege to meet and know greatly
enriched my ordeal. The members of the CVA group all deserve my undying gratitude, as
they patiently listened to my countless group meeting talks on various thread scheduling
topics, and only occasionally nodded off. Rich Lethin, my friend and office mate of many
years, gave me valuable support and council, read many of my thesis chapter drafts, set me
up with all sorts of great job contacts, and lent me his car whenever some major system on
it was about to collapse. Steve Keckler always had a good bad joke ready and waiting for
me, and taught me the true meaning of the word dedication as he worked on his various
sailboat projects. Kathy Knobe gave me good advice and encouragement, and always offered
insightful comments about the various random scribbles I asked her to read. Peter and Julia
Nuth were good friends, and provided amusing stories from the West Coast. John Keen gave
many interesting talks on ephemeral logging and related topics, and was just generally a
very good-hearted guy. Eric MacDonald gave me the chance to share an office with the star
of the MIT cable network Star Trek phone in show. Duke Xanthopolous was always around
late at night and was always willing to take a break and exchange some good natured verbal
abuse. Larry Dennison provided a great example of how hard I should be working. Marco
Fillo showed me how not to agonize over job offers. Michael Noakes gave me many lifts to
hockey practice, and was full of insightful skepticism. Andrew Chang always kept things
up and running, and was always interested in how things were going. Lisa Kozsdiy always
found a way to fit me into Bill's Tuesday calendar. Debby Wallach deserves my thanks for
always knowing how to do esoteric things on the computer system, and for clearing up lots
of disk space when she finished her Master's thesis so I had space to do my work. Fred
Chong, Ken MacKenzie, and Kirk Johnson regularly exchanged good hard hockey checks
with me over the years. I shared regular talks and good laughs at Dilbert cartoons with
John Kubiatowicz and Don Yeung at the coffee machine. Jim O'Toole played tennis with
me regularly before we both got too busy finishing our theses. Ellen Spertus foisted off her
wooden cow on me, one with a big painted smile, allowing me to drive my roommates crazy
by keeping it in our living room. Thanks to the many other past and present inhabitants of
Tech Square that have made this a truly colorful and fun place to be including Whay Lee,
Waldemar Horwat, Nick Carter, Gino Maa, Silvina Hanono, Russ Tessier, Anne McCarthy,
David Kranz, Tom Simon, and John Nguyen just to name a few.

Amazingly enough I did have some friends OUTSIDE of the Tech Square environment.
Mark Wilkinson and Shawn Daly were always willing to go for a beer and tear up the town.

My roommates Marilyn Feldmeier and Taylor Galyean were great company, and great cooks.
My roommate Mike Drumheller allowed me to put aside any notion that I might be going
deaf by treating me to his impressive operatic voice periodically. Kati Flagg deserves my
thanks for her faithful phone calls and inquiries about when I was going to graduate. I
hope that she does not require treatment for shock when she hears I actually have. Brian
Totty provided regular amusing E-mail, and I am hoping we will get together for a beer
someday if he ever gets out of central Anatolia where I last left him. Carlos Noack, my
long departed Colombian yogurthead friend from the early MIT days, continued to provide
encouragement by regular correspondence.

A very big thank you goes to my special friend Adrienne, who has so patiently put up
with me through the worst of the thesis and job search stress. She has provided a great
incentive for me to lead some semblance of a normal life, and for me to do all sorts of fun
things: biking 100 miles in one day down to Cape Cod, spending 8 hours in a car on trip
to Washington D.C. with her mom, her mom's cat, and her Hungarian cousin, charging
down black diamond mogul ski runs after not skiing for two years, and hiking up Mount
Monadnock in gale force winds. Life just would not be much fun without her.

Finally, a special thanks to my entire family, especially my parents. Without their encour-
agement, support, and emphasis on education, I would probably never have come to MIT
at all, let alone got through. I am thankful also that Dad will have to find a new way to
greet me since "Are you almost done?" will no longer be appropriate. "Have you found a
job?" has a nice ring to it I think - at least for a little while.

Contents

1 Introduction 21

1.1 The Problem 21

1.1.1 The Latency Tolerance Problem 21

1.1.2 Using Multiple Contexts to Tolerate Latency 22

1.1.3 Problems with Multiple-Context Processors 23

1.2 Thread Prioritization 25

1.3 Contributions 26

1.4 Outline and Summary of the Thesis 27

2 Background 29

2.1 Thread Scheduling 30

2.1.1 An Application Model 30

2.1.2 The Thread Scheduling Problem 30

2.2 Thread Scheduling Strategies 32

2.2.1 Temporal Scheduling Strategies 33

2.2.2 Thread Placement Strategies 35

2.3 Thread Scheduling Mechanisms 37

2.3.1 Hardware Scheduling Mechanisms 37

2.3.2 Software Scheduling Mechanisms 39

2.4 Multithreading and other Latency Tolerance Techniques 40

2.4.1 Multithreading

2.4.2 Multiple-Context Processors

2.4.3 Other Latency Tolerance Techniques

2.4.4 Comparison of Techniques

2.5 Sum m ary

3 Thread Prioritization

3.1 Thread Prioritization .

3.1.1 Software and Hardware Priority Thread Scheduling

3.1.2 Assigning Priorities: Deadlock and Fairness

3.1.3 Higher Level Schedulers

3.2 Effect of Multiple Contexts on the Critical Path

3.2.1 Total Work and the Critical Path.

3.2.2 Previous Models

3.2.3 Metrics and Parameters

3.2.4 Basic Model

3.2.5 Spin-waiting Synchronization

3.2.6 Memory Bandwidth Effects

3.2.7 Network Bandwidth Effects

3.3 Network and Cache Effects

3.3.1 Network Model

3.3.2 Cache Model

3.3.3 Complete Model

3.3.4 Discussion

3.3.5 Cache and Network Effects with Spin-Waiting
width .

3.4 Thread Prioritization in the Multithreaded Model

3.4.1 Prioritizing Threads in the Basic Model . .

..............

..............

..............

..............

..............

..... °.........

..............

..............

..............

..............

..............

..............

..............

and with Limited Band-

.

..............

..............

CONTENTS

40

40

41

43

43

45

46

46

47

48

48

49

49

50

51

52

57

60

61

61

63

64

65

67

68

68

CONTENTS

3.4.2 Prioritizing Threads for Spin-Waiting Threads 69

3.4.3 Prioritizing Bandwidth Utilization 71

3.4.4 Prioritizing Threads in the Complete Model 73

3.4.5 Effect of Prioritization on the Critical Thread Runtime 77

3.5 Limits of the M odel 79

3.6 Conclusions 80

4 Implementation 82

4.1 Context Prioritization 83

4.1.1 Hardware 83

4.1.2 Software 86

4.1.3 Hardware/Software 86

4.2 Memory System Prioritization 88

4.2.1 Transaction Buffer Implementation 89

4.2.2 Thread Stalling 92

4.2.3 Memory Request Prioritization 93

4.2.4 Preemptive Scheduling 94

4.3 Unloaded Thread Prioritization 94

4.4 Sum mary 95

5 Simulation Parameters and Environment 96

5.1 System Parameters 97

5.1.1 Processor Parameters 98

5.1.2 Memory System 99

5.1.3 Network Architecture 101

5.2 Simulation Methodology 102

5.2.1 The Proteus Architectural Simulator 102

5.2.2 Application Assumptions 104

10 CONTENTS

6 Synchronization Scheduling 105

6.1 Synchronization Scheduling 106

6.1.1 Synchronization Scenarios 106

6.1.2 Synchronization Scheduling Strategies 106

6.2 Test-and-Test-and_Set 107

6.2.1 Results 109

6.3 Barrier Synchronization 113

6.3.1 Results 115

6.4 Queue Locks 120

6.4.1 Results . 121

6.5 Sum m ary 127

7 Scheduling for Good Cache Performance 128

7.1 Data Sharing 130

7.1.1 Blocked Algorithms 130

7.1.2 Reuse Patterns in Blocked Algorithms 132

7.1.3 Loop Distribution to Achieve Positive Cache Effects 132

7.1.4 Data Prefetching and Data Pipelining Effects 135

7.2 Favored Thread Execution 136

7.3 Experiments 137

7.3.1 M atrix M ultiply 138

7.3.2 SOR 142

7.3.3 Sparse-Matrix Vector Multiply 149

7.4 Summ ary 155

8 Critical Path Scheduling 157

8.1 Benchmarks 158

8.1.1 Dense Triangular Solve 158

CONTENTS

8.1.2 Sparse Triangular Solve 159

8.1.3 Dense LUD 161

8.1.4 Sparse LUD 163

8.2 Results 167

8.2.1 Dense Triangular Solve 167

8.2.2 Sparse Triangular Solve 167

8.2.3 Dense LUD 173

8.2.4 Sparse LUD 175

8.3 Summary 179

9 Reducing Software Scheduling Overhead 181

9.1 Message Handler Scheduling 182

9.2 General Thread Scheduling 183

9.3 Using Multiple Contexts 185

9.3.1 Radix Sort Example186

9.3.2 General Problem Characteristics . 189

9.4 Summ ary 189

10 Conclusion 191

10.1 Sum m ary . 191

10.2 Future W ork 193

10.2.1 Applications 193

10.2.2 Automated Thread Prioritizing 193

10.2.3 Other Uses of Thread Prioritization 194

10.2.4 Combining Latency Tolerance Strategies 194

10.3 Epilogue 195

A A Fast Multi-Way Comparator 196

12 CONTENTS

List of Figures

1.1 General multiprocessor system configuration. 22

1.2 Effect of long latency operations. a. Without multithreading long idle pe-
riods are spent waiting for long latency operations to complete. b. With
multithreading the processor can context switch and overlap computation
with communication 23

1.3 Multiple-context processor with N contexts. Loaded threads have their state
loaded in one of the hardware contexts. Unloaded threads wait to be acti-
vated in a thread scheduling queue in memory. 24

2.1 General DAG 31

2.2 General DAG viewed as a set of threads. 31

3.1 Multithreading using P contexts. a. Communication bound ((P-1)R+PC <
L). b. Computation bound ((P - 1)R + PC > L). 53

3.2 U and T/T~1 for different values of R (4, 8, 16, 32) and L (20, 100) 53

3.3 Multithreading assuming some threads are spin-waiting. D is the extra time
added to the execution of a critical thread. a. Communication bound ((P -
P, -1)R+PR, + PC < L). b. Computation bound ((P-P - 1)R+PR, +
PC > L) 54

3.4 U and To/Tel when threads are spin-waiting for different values of R (4, 8,
16, 32, 64) and L (20, 50). a. Processor utilization U assuming that there
are 16 threads running and that an increasing number of these threads are
spin-waiting. b. Critical thread runtime ratio Tc/T0 1 assuming that only one
thread is running and all the other threads are spin-waiting. 55

3.5 Multithreading in a single processor multiple-context system, assuming mem-
ory requests cannot be pipelined. a. Communication bound (R + C < L). b.
Computation bound(R + C > L) 58

LIST OF FIGURES

3.6 U and Tc/Tcl assuming references cannot be pipelined, for different values of
R (4, 8, 16, 32, 64) and L (20, 100). 59

3.7 Multithreading in a single processor multiple-context system, assuming mem-
ory requests can be pipelined at a rate of one request every Lr cycles with
a latency of L. a. Communication limited (R + C < Lr). b. Computation
limited (R + C > Lr). 60

3.8 Predicted latency for different values of R (4, 8, 16, 32).... 63

3.9 Region of operation for different values of R (8, 16, 32) and K (0.0, 0.2, 0.5).
The curves plot (P - 1)R + PC - L which is just the work available to overlap
with latency, minus the latency. The processor is computation bound when
the curve is above 0 and communication bound when the curve is below 0.. 66

3.10 U and TI/Tel for different values of R (8, 16, 32) and K (0.0, 0.2, 0.5). . . . 67

3.11 Multithreading with thread prioritization in the computation bound case.
Thread 1 is the critical thread. a. Non-preemptive scheduling. b. Preemptive
scheduling. 70

3.12 Comparison of Tc/Tel with prioritized (Pri) and unprioritized (Upri) schedul-
ing for different values of R (4, 8, 16, 32) and L (20, 100). 70

3.13 Multithreading with thread prioritization assuming some threads are spin-
waiting. Thread 1 is the critical thread and preemptive scheduling is used. a.
Communication limited ((P - P, - 1)R + (P - P,)C < L). b. Computation
limited ((P - P, - 1)R + (P - P,)C > L)..................... 72

3.14 Comparison of U with prioritized (Pri) and unprioritized (Upri) scheduling
when threads are spin-waiting, for different values of R (4, 8, 16, 32, 64)
and L (20, 100). Assumes that there are 16 threads running and that an
increasing number of these threads are spin-waiting. 72

3.15 Comparison of TI/T~1 with prioritized (Pri) and unprioritized (Upri) schedul-
ing when threads are spin-waiting, for different values of R (4, 8, 16, 32, 64)
and L (20, 100). Assumes that only one thread is running and all the other
threads are spin-waiting.............................. 73

3.16 Multithreading with prioritization assuming a bandwidth limited application
(Lr > R + C). Thread 1 is the critical thread. 74

3.17 Comparison of T,/T0 l with prioritized (Pri) and unprioritized (Upri) schedul-
ing assuming references cannot be pipelined, for different values of R (4, 8,
16, 32, 64) and L (20, 50)............................ 74

3.18 Comparison of U with prioritized (Pri) and unprioritized (Upri) scheduling
when loaded threads are uniquely prioritized, for different values of R (8, 16,

23 64) and K (0.0 0.2 0.7 1 1

LIST OF FIGURES

3.19 Utilization with R=8, K=0.5, and C=10. The peak utilization occurs during
the communication limited region. 77

3.20 Comparison of TI/Tel with prioritized (Pri) and unprioritized (Upri) schedul-
ing when the critical thread is given high priority and all other threads equal
priority, for different values of R (8, 16, 32, 64) and K (0.0, 0.2, 0.5). 78

4.1 Logic for selecting the next context on a context switch. The comparator logic
chooses all threads with the highest priority, and the round-robin selection
logic chooses among the highest priority threads. 84

4.2 Bit slice of the MAX circuit for 4 contexts. 85

4.3 MAX circuit for 4 contexts with 4-bit priorities. 85

4.4 Transaction buffer interface to the cache system, the memory system, and
the network interface 90

6.1 TTSET lock acquisitions. Unprioritized (U) and Prioritized (P) cases are
shown with both High Contention (HC) and Low Contention (LC) 110

6.2 TTSET lock acquisitions. SINGLE scenario with register save/restore times
of 4 cycles and 200 cycles. Unprioritized (U) and Prioritized (P) cases are
shown with both High Contention (HC) and Low Contention (LC). 112

6.3 TTSET lock acquisitions. ALL scenario with context switch times of 1 cycle
and 10 cycles.Unprioritized (U) and Prioritized (P) cases are shown with
both High Contention (HC) and Low Contention (LC). 113

6.4 Average barrier wait time for 64 processors. SINGLE, ALL, and LIM-
ITED scenarios. The Prioritized Queue case in the LIMITED scenario
prioritizes the software scheduling queue, but does round-robin scheduling of
the hardware contexts 116

6.5 Average barrier wait time. SINGLE scenario with register save/restore
times of 4, 32, and 200 cycles............... 118

6.6 Average barrier wait time. ALL scenario with context switch times of 1, 5,
and 10 cycles 119

6.7 Queue Lock acquisitions. SINGLE scenario with high and low lock contention. 122

6.8 Queue Lock acquisitions. ALL scenario with high and low lock contention. 122

6.9 Queue Lock acquisitions. LIMITED scenario with high and low lock con-
tention. 123

LIST OF FIGURES

6.10 Queue lock acquisitions. SINGLE scenario with high contention and register
save/restore times of 4 and 200 cycles. 125

6.11 Queue lock acquisitions. ALL scenario with register save/restore times of 4
cycles and 200 cycles 126

6.12 Queue lock acquisitions. ALL scenario with context switch times of 1 cycle
and 10 cycles 126

7.1 Straightforward matrix multiply code. 131

7.2 Blocked matrix multiply code 131

7.3 Hit rates and speedups for a 36X36 matrix multiply with a blocking factor
of 9. Multiple-context versions of the code use 4 contexts. Fully-associative
(FA) and direct-mapped (DM) caches are simulated. 140

7.4 Hit rates and speedups for a 32X32 matrix multiply with a blocking factor
of 8. Multiple-context versions of the code use 4 contexts. Fully-associative
(FA) and direct-mapped caches (DM) are simulated. In the DM case, sys-
tematic cache interference leads to poor hit rates. 141

7.5 Performance of mmkki comparing round-robin and favored execution for
different memory latencies and throughputs. A 36x36 matrix multiply is
done with a blocking factor of 9 and a 1Kbyte direct-mapped cache. 143

7.6 Straightforward 2D red/black SOR code 144

7.7 Blocked 2D red/black SOR Code 144

7.8 Hit rates and speedups for an 82X82 red/black SOR with a 1Kbyte direct-
mapped cache. Multiple-context versions of the code use 4 contexts. 146

7.9 Performance of sor-dyn comparing round-robin and favored execution for
different memory latencies and throughputs. An 82X82 SOR is done using a
blocking factor of 20 and a 1Kbyte direct-mapped cache. 147

7.10 Performance of sor-sta comparing round-robin and favored execution for
different memory latencies and throughputs. An 82X82 SOR is done using a
blocking factor of 20 and a 1Kbyte direct mapped cache. 148

7.11 Sparse-matrix vector multiply code. 150

7.12 Example of sparse matrix storage format using row indexing. 150

7.13 Hit rates and speedups for the Sparse-Matrix Vector Multiply using different
sparse matrices. Multiple-context versions of the code use 4 contexts. A
1Kbyte direct-mapped cache is used. 152

LIST OF FIGURES

7.14 Performance of smvm-dyn comparing round-robin and favored execution
for different memory latencies and throughputs. The sherman2 matrix is
used as an example, using a 1Kbyte direct-mapped cache. 153

7.15 Performance of smvmsta comparing round-robin and favored execution for
different memory latencies and throughputs. The sherman2 matrix is used
as an example, using a 1Kbyte direct-mapped cache. 154

8.1 Serial dense triangular solve code. 159

8.2 Example of sparse matrix storage format using row indexing. 160

8.3 Serial sparse triangular solve. 160

8.4 LUD with partial pivoting. 162

8.5 Critical path prioritization of LUD tasks for a 4 column problem........ 163

8.6 Data structures for the sparse LUD representation. 165

8.7 Serial sparse LUD code. 166

8.8 Performance of the dense triangular solve for different memory latencies and
throughputs. 168

8.9 Performance of the sparse triangular solve using the adjac25 matrix, for dif-
ferent memory latencies and throughputs. 170

8.10 Performance of the sparse triangular solve using the bcspwr07 matrix, for
different memory latencies and throughputs. 171

8.11 Performance of the sparse triangular solve using the mat6 matrix, for different
memory latencies and throughputs 172

8.12 Performance of the 64X64 LUD benchmark for different memory latencies
and throughputs................... 174

8.13 Processor lifelines for different versions of the LUD benchmark, 16 processors,
1 context per processor. a. Unprioritized. b. Prioritized. 176

8.14 Performance of the sparse LUD benchmark using the mat6 matrix, for dif-
ferent memory latencies and throughputs. 177

8.15 Performance of the sparse LUD benchmark using the adjac25 matrix, for
different memory latencies and throughputs. 178

9.1 Number of active threads running an 8-city traveling salesman problem on
64 processors 184

18 LIST OF FIGURES

9.2 Message interface configurations. a. All contexts have equal access to the
input message queue. b. One context has access to the input queue allowing
certain message interface optimizations. 187

9.3 Radix sort scan phase for different numbers of contexts running on 64 pro-
cessors. The digit size is six bits, requiring 64 parallel scans..... 188

A.1 Bit-slice of a ripple-compare circuit. Cascading N bit-slices forms an N-bit
RIPPLE-COMPARE circuit. 197

A.2 F-bit COMPARE/SELECT circuit used in the carry-select comparator. . . 198

A.3 16-bit carry-select COMPARATOR circuit using 3 COMPARE/SELECT
comparators of length 5, 5, and 6. 198

A.4 4-priority comparison circuit. 199

List of Tables

3.1 Basic model parameters 51

3.2 Baseline system parameters 65

4.1 Summary of context selection costs and priority change costs for different
implementation schemes, assuming C contexts. 87

4.2 Summary of major hardware costs for the different implementation schemes,
assuming C contexts, and N-bit priority. Note that this is the extra hardware
required to do prioritization in addition to the extra hardware required for
the multiple contexts 87

5.1 Important system parameters................. 97

7.1 Data that must be fetched into the cache depending on reuse patterns. . . 131

7.2 16X16 single processor matrix multiply using a fully-associative cache. Speedup
is given relative to the single context case with a 64 byte cache. 136

8.1 Sparse matrices used in the benchmarks. 161

20 LIST OF TABLES

Chapter 1

Introduction

1.1 The Problem

Scheduling tasks to efficiently use the available processor resources is crucial to minimizing
the runtime of applications on shared-memory parallel processors. One factor that con-
tributes to poor processor utilization is the idle time caused by long latency operations,
such as remote memory references or processor synchronization operations. One way of tol-
erating this latency is to use a processor with multiple hardware contexts that can rapidly
switch to executing another thread' of computation whenever a long latency operation oc-
curs, thus increasing processor utilization by overlapping computation with communication.
Although multiple contexts are effective for tolerating latency, this effectiveness can be lim-
ited by memory and network bandwidth, by cache interference effects among the multiple
contexts, and by critical tasks sharing processor resources with less critical tasks. This the-
sis presents techniques that increase the effectiveness of multiple contexts by intelligently
scheduling threads to make more efficient use of processor pipeline, bandwidth, and cache
resources.

1.1.1 The Latency Tolerance Problem

Figure 1.1 shows a typical multiprocessor configuration consisting of a collection of pro-
cessors connected to a high-performance network. Each processor has its own local cache
and local memory. Operations that read or write remote data, or that synchronize with
a remote processor, require the use of the network and give rise to long latencies. Even
high performance, low-latency networks with low overhead network interfaces have round
trip messages greater than 50 to 100 instruction cycles [76]. Processors that communicate

'In this thesis "task" and "thread" will be used interchangeably.

CHAPTER 1. INTRODUCTION

Figure 1.1: General multiprocessor system configuration.

often spend substantial amounts of time waiting for data, as shown in Figure 1.2a. With
the increasing ratio of processor speed to DRAM speed [43], the latency associated with ac-
cesses that require no remote communication but miss in the cache is becoming increasingly
important.

In order to efficiently use processor resources it is necessary to find ways of tolerating long
latency data accesses and synchronization events.

1.1.2 Using Multiple Contexts to Tolerate Latency

A multiple-context processor as shown in Figure 1.3 multiplexes several threads over a pro-
cessor pipeline in order to tolerate long communication and synchronization latencies. A
straightforward implementation provides multiple register sets, including multiple instruc-
tion pointers, to allow the state of multiple threads to be loaded and ready to run at the
same time. Each time the currently executing thread misses in the cache or fails a synchro-
nization test, an opportunity exists to begin executing one of the other threads loaded in
one of the other hardware contexts. This is shown in Figure 1.2b.

In a multiple-context processor threads are either loaded or unloaded. A thread is loaded if its
register state is in one of the hardware contexts, and unloaded otherwise. Unloaded threads

1.1. THE PROBLEM

Execute Context Idle

Thread 1 Thread 1

Remote Remote Access Latency
Access

Thread 1 Thread 2 Thread 3 Thread 4 Thread 1

Remote Remote Access Latency
Access

Figure 1.2: Effect of long latency operations. a. Without multithreading long idle periods
are spent waiting for long latency operations to complete. b. With multithreading the
processor can context switch and overlap computation with communication.

wait to be activated in a software scheduling queue. To allow a traditional RISC pipeline
design, we assume a block multithreading model [5, 23], in which blocks of instructions are
executed from each context in turn. At any given time, the processor is executing one of
the loaded threads. On a context switch, the processor switches from executing one loaded
thread, to executing another loaded thread, an operation that can typically be done in 0 to
20 cycles depending on the processor design. Keeping the context switch overhead low is
necessary for multiple contexts to be effective in tolerating latency.

On a thread swap the processor switches a loaded thread with an unloaded thread from the
software queue. A thread swap costs one to two orders of magnitude more than a context
switch, because the processor must save and restore thread state, as well as modify the
thread scheduling queue. Since thread swaps are expensive, it is preferable that they occur
infrequently.

1.1.3 Problems with Multiple-Context Processors

Although having multiple contexts can improve processor utilization, and hence perfor-
mance, a number of factors limit this improvement. Assuming that there is sufficient par-
allelism in the application 2 , these factors include:

2In this thesis we do not deal with the problem of not having enough parallelism.

CHAPTER 1. INTRODUCTION

Multiple context processor Thread queue in main memory

Figure 1.3: Multiple-context processor with N contexts. Loaded threads have their state
loaded in one of the hardware contexts. Unloaded threads wait to be activated in a thread
scheduling queue in memory.

1.2. THREAD PRIORITIZATION

* Bandwidth effects: the performance improvement with multiple contexts suffers if
there is insufficient memory and network capacity to service the increased number of
memory and network requests [2, 74]. Increasing the number of requests increases the
memory and network traffic and hence the latency. Adding contexts is self-defeating
if the latency of requests increases faster than the amount of extra work available to
tolerate latency.

* Cache interference effects: Because the contexts share a cache, their working sets
can interfere with each other [2, 81, 105, 37, 95]. Techniques for improving cache
performance by intelligently placing threads on processors to share data in the cache
have proven ineffective [96].

* Critical path effects: Multiple contexts can affect the runtime of the critical path if
a critical thread shares resources with other less critical tasks. This has not been
explicitly considered in the literature.

* Spin-waiting effects: When a thread spins while waiting for a synchronization event
to occur, many cycles can be wasted [112, 48, 67]. A multiple-context processor can
switch to executing another thread when it fails a synchronization test [67], but a
significant number of cycles can still be wasted, and useful work delayed, especially if
several threads are spinning at once.

Naive sharing of the processor resources among the threads is one of the main causes of
the performance limiting problems associated with multiple-context processors. Virtually
all studies of multiple-context processors assume a round-robin scheduling of contexts [2,
81, 74, 105, 59, 37, 13, 95, 64]. If there are more threads than contexts, then the software
scheduler shares the available contexts among the threads so that they all make progress.
The hardware scheduler schedules the contexts themselves in round-robin fashion. Even if
one thread is more important than the others, it is not given special treatment. Even if
there are more than enough threads to tolerate the observed latency, the processor will still
run all the threads loaded in the contexts and the cache performance will suffer. Even if a
thread is spin-waiting and is not doing any useful work, the processor will still context switch
to that thread in the round-robin schedule. In this thesis, we show how more intelligent
hardware and software scheduling of threads alleviates these problems.

1.2 Thread Prioritization

In this thesis we introduce thread prioritization, a scheduling mechanism that allows the
processor to intelligently schedule threads on a multiple-context processor. Thread priori-
tization is a simple scheduling mechanism that allows the processor to schedule threads so
as to try and maintain high processor utilization, and minimize the execution time of the
critical path. Each thread is associated with a priority that can change dynamically as the
computation progresses, and that indicates the importance of the thread at any given time.

CHAPTER 1. INTRODUCTION

The software uses this priority to decide which threads are loaded in the hardware contexts,
and the hardware uses this priority to decide which thread to execute next on a context
switch.

Thread prioritization addresses many of the problems caused by the strict round-robin
scheduling of contexts. By prioritizing the threads the processor can improve performance
by controlling how processor resources are allocated to the threads running in the multiple-
contexts. In particular, as we show in this thesis, thread prioritization can reduce the
negative cache interference effects due to having more contexts than necessary to tolerate
the observed latency, can reduce processor resources devoted to non-critical threads, and
can reduce the amount of cycles wasted spin-waiting.

It is important to stress that thread prioritization is a general scheduling mechanism that
can be used in many different ways. Good scheduling mechanisms provide efficient hardware
and software building blocks upon which different scheduling policies or strategies can be
implemented. It is important to be able to implement different strategies because different
types of problems require different strategies to achieve good performance e.g. one problem
may require dynamic load balancing, while another requires good cache performance. By
assigning priorities based on different criteria, thread prioritization can implement schedul-
ing strategies that are aimed at improving synchronization performance, improving cache
performance, scheduling the critical path, or a combination of these.

1.3 Contributions

The main contributions we make in this thesis are:

1. Thread prioritization as a general purpose hardware and software scheduling mech-
anism in multiple-context processors. Thread prioritization is used to address many
of the problems associated with naive scheduling of threads on a multiple-context
processor by allowing more intelligent thread scheduling.

2. Analytical models that capture the effect of multiple contexts on both processor uti-
lization and the critical path runtime of an application, and that show how thread
prioritization can be used to improve performance. Our models incorporate cache
and network latency effects, and also show that both spin-waiting synchronization
and limited memory and network bandwidth hurt the performance of multiple-context
processors. The models show that it is important to extend prioritization so that it
prioritizes the use of memory and network bandwidth, because applications can be
bandwidth rather than computation limited. Although previous models do consider
network [2, 74] and cache effects [2, 81], they do not consider the effect of multiple-
contexts can have on the critical path execution time, and do not consider the effects
of spin-waiting synchronization.

1.4. OUTLINE AND SUMMARY OF THE THESIS

3. A detailed simulation study of how thread prioritization can be used to improve the
performance of different types of benchmarks. Thread prioritization can be used to
be used to improve the performance of synchronization primitives, to reduce negative
cache effects, and to improve the scheduling of an application's critical path.

4. Data sharing techniques that closely coordinate the threads running in different con-
texts so that they use common data in the cache at approximately the same time,
thus improving cache performance.

The main emphasis of this thesis is on presenting scheduling mechanisms and techniques
that exploit the strengths of multiple-context processors, and compensate for their weak-
nesses. We are concerned with possible benefits, as well as architectural and implementation
details. This work suggests important areas for further study including automatic priority
assignment, using prioritization in operating system scheduling, and the interaction of mul-
tiple contexts and prioritization with other latency tolerance techniques such as prefetching
and relaxed memory consistency models. We will touch on these various issues and suggest
possible approaches for future work in these areas.

1.4 Outline and Summary of the Thesis

Chapter 2 provides background on the scheduling problem, as well as on multiple-context
processors and other latency tolerance techniques. We present a classification of thread
scheduling strategies used to improve the runtime of a variety of applications. Specifically,
scheduling can be divided into two parts: thread placement (i.e. where tasks run), and
temporal scheduling (i.e. when threads run). Within each of these sub-tasks many different
approaches are possible. A thread scheduling mechanism's usefulness can be judged in
part by evaluating how many different strategies it is useful in implementing. Thread
prioritization, the main mechanism we study in this thesis, is a general purpose temporal
scheduling mechanism.

Chapter 3 presents our multiple-context processor models with particular emphasis on how
multiple contexts can negatively effect the runtime of the critical path. We first develop the
model using traditional round-robin scheduling, and consider the effect of network, cache,
bandwidth, and spin-waiting synchronization. We then incorporate thread prioritization
into the model, and show how it helps solve these problems.

In Chapter 4 we evaluate several different ways of implementing thread prioritization. An
efficient hardware prioritization scheme can be used to prioritize the use of the processor
pipeline and of limited memory and network bandwidth.

In Chapters 5 through 8 we present our simulation results. Chapter 5 describes the simula-
tion environment and important simulation parameters, while Chapters 6 through 8 describe

CHAPTER 1. INTRODUCTION

simulation results from different types of scheduling benchmarks: Chapter 6 deals with syn-
chronization scheduling, Chapter 7 deals with scheduling for good cache performance, and
Chapter 8 deals with critical path scheduling. In particular we show that:

* Thread prioritization can be used to substantially improve synchronization perfor-
mance. For simple synthetic benchmarks such as Test-and-Test.-andSet, barrier syn-
chronization, and queue locks, performance improvement range from 10% to 91%
when using 16 contexts.

* Thread prioritization can help implement a number of techniques that improve the
cache performance of multiple-context processors. Data sharing involves closely co-
ordinating the threads running in each context so that they share common data in
the cache. Favored thread execution uses thread prioritization to dynamically allow
only the minimum number of contexts required to tolerate latency to be running.
Cache performance improves because the scheduling minimizes the number of work-
ing sets in the cache. Runtime improvements range up to 50% for bandwidth limited
applications using 16 contexts.

* Thread prioritization can help schedule threads based on the critical path. If perfor-
mance is critical path limited then prioritization can have a large impact, 37% for
one benchmark using 16 contexts. If performance is not critical path limited, or there
is insufficient parallelism to keep the multiple contexts busy, prioritization has little
effect.

Chapter 9 briefly looks at how multiple-contexts can be used to reduce software scheduling
overhead associated with scheduling threads in response to incoming messages.

Finally, Chapter 10 summarizes the main results of the thesis, and offers concluding remarks.

Chapter 2

Background

In this chapter we give background on both the general scheduling problem and the la-
tency tolerance problem in multiprocessor systems. The general scheduling problem is very
difficult and as a result many different heuristic strategies have been used. Scheduling
requires both a temporal scheduling strategy and a thread placement strategy in order to
decide when and where threads execute. A thread scheduling mechanism is a software
or hardware building block that can be used to implement different scheduling strategies.
Many of the previously proposed mechanisms only address one particular aspect of either
the temporal scheduling problem or the thread placement problem. The mechanisms and
techniques proposed in this thesis are general temporal scheduling mechanisms, that can
be used to implement many different temporal scheduling strategies. Although we do not
deal directly with the issue of thread placement in this thesis, for completeness we describe
thread placement strategies in this chapter as well.

Multithreading using multiple hardware contexts has been found to be an effective latency
tolerance technique. However, insufficient parallelism and negative cache effects can limit its
effectiveness. Alternative techniques such as prefetching and non-blocking loads and stores
are also effective for latency tolerance, especially for applications with regular data reference
patterns, and little synchronization. Ultimately, the most effective latency tolerance will
most likely be achieved with some combination of several different techniques, and this is
an interesting area for further research.

Section 2.1 describes the thread scheduling problem and Section 2.2 reviews the many
different scheduling strategies that have been found useful in scheduling threads for different
types of problems. Section 2.3 looks at thread scheduling mechanisms that have been
implemented in various commercial and experimental parallel processors both in hardware
and software. Section 2.4 discusses work done on multithreading and other latency tolerance
techniques, including prefetching, and non-blocking loads and stores.

CHAPTER 2. BACKGROUND

2.1 Thread Scheduling

2.1.1 An Application Model

In this thesis we are concerned with minimizing the runtime of a single application, and it
is convenient to think of the problem in terms of a simple application model. The execution
of any application can be viewed as a Directed Acyclic Graph (DAG), as illustrated in
Figure 2.1. Each node represents a task, and each edge represents a dependency between
tasks. Any task can execute only once its dependencies are satisfied, i.e., once all its
predecessors have executed.

A task can be defined in many different ways. At the most basic level, it can be an abstract
task that takes a given amount of time to execute. For the purposes of proving various
interesting scheduling theories, it is often assumed that these tasks are of unit or fixed time
delay. In practice a task might represent a computer instruction or group of instructions
that can take a variable time to execute depending on various system level conditions.
When considering a multithreaded computation, it is convenient to think in terms of a
simple model similar to the one presented by Blumofe [11]. In this model, each thread is a
group of tasks that are executed in sequential order, and edges going between tasks represent
different types of dependencies between the threads and the tasks. Continue edges represent
the sequential ordering within a thread, spawn edges represent one thread creating another
thread, and data dependency edges represent the data being produced by one thread being
used by another. An example multithreaded computation is shown in Figure 2.2. As noted
by Blumofe, it is important to realize that this type of graph may represent a particular
unfolding of the program that is dependent both on the program threads as defined by the
user, and the input data.

2.1.2 The Thread Scheduling Problem

The thread scheduling problem involves deciding where each thread should run, and when
it should run. Solving the problem optimally is NP-complete [30, 83]. Thus all practical
scheduling algorithms are just heuristic strategies used to find a good (hopefully) approxi-
mation of the optimal solution. A number of non-ideal factors make it so that even these
heuristic strategies must use inexact information to make their decisions. These non-ideal
factors are all related to the dynamic nature of the DAG, and include:

* Variable or unknown task costs: The length of each task is variable. Even if each
task is broken down to a single instruction, there is a big difference between the cost
of a LOAD instruction which hits in the cache, one that misses in the cache but is
local to the processor, and one that misses in the cache and requires a shared memory
protocol to orchestrate the fetching of the data.

2.1. THREAD SCHEDULING

Figure 2.1: General DAG.

a-- Continue edge

Spawn edge

- - -- Data dependency edge

/

- -. -

Figure 2.2: General DAG viewed as a set of threads.

STAR1 D

Thread

START

Cr

END

II
I/

\

\\

4

CHAPTER 2. BACKGROUND

* Variable or unknown communication costs: The costs of the dependency edges are
non-zero, and depend on the edge type. A continue edge typically represents simply
a change in a program counter and is very cheap. A spawning edge on the other hand
represents the creation of a new thread, and requires that a context be allocated for the
new computation, and that the thread be scheduled in a scheduling queue. The data
dependency edges represent data communication between threads which introduces a
communication cost. Depending on thread placement, the cost of the edges changes.
If a thread is spawned on another processor, then the communication cost must be
added. If a data dependency exists between threads on different processors, then this
data must be communicated, and the communication cost added in. A continue edge
can also have a variable cost if for instance threads can migrate between processors.

* Dynamic DAG generation: The DAG of a computation is often not known a priori,
but rather unfolds dynamically as a program executes. For dynamic programs, the
number of nodes in the DAG and their interdependence depends on the input data.

* Scheduling overhead: There is overhead associated with doing dynamic scheduling.
The scheduling algorithm thus has to be online, and must be efficient. In some sense
the scheduling algorithm itself can be seen as adding tasks, edges, and costs to the
computation DAG.

Despite the NP-completeness of the scheduling problem, and the non-ideal nature of the
data available to make heuristic decisions, there are many different approaches that have
been found to lead to good scheduling decisions. Some of the strategies that have been
found useful are discussed in the following sections.

2.2 Thread Scheduling Strategies

A complete scheduling algorithm requires that two different types of strategies be defined:
a temporal scheduling strategy which decides when threads should run, and a thread place-
ment strategy that determines where threads should run. Temporal scheduling strategies
range from precomputed static thread schedules, to dynamically created priority queues.
Thread placement strategies range from complete static placement of threads to the use of
dynamic load balancing schemes. As we discuss in the next few sections, both the tem-
poral scheduling and the thread placement components of different scheduling algorithms
are examined extensively in the literature. The general conclusion that can be drawn from
these studies is that different temporal and placement strategies are appropriate for differ-
ent types of applications. Ultimately then, the ideal is to have a general purpose parallel
processor that allows the efficient implementation of all useful scheduling strategies. This
thesis focuses on general architectural mechanisms that are useful in implementing different
temporal scheduling strategies.

A number of studies and survey papers have looked at classifying different aspects of the

2.2. THREAD SCHEDULING STRATEGIES

scheduling problem, such as load balancing [104, 108], or the specific algorithms used to
determine the schedule [17]. Our survey in this chapter is more pragmatic, and provides a
reference from which to show that the mechanisms and techniques discussed in following
chapters address scheduling problems of interest. Also, any general scheduling mechanism
should facilitate the implementation of several of these different scheduling strategies that
are appropriate for different types of applications. For instance, we are not so much con-
cerned with the many different possible heuristic strategies that are used to decide when
tasks should be scheduled, as with the few mechanisms that should be provided at the
hardware and software level that allow the easy specification of a task schedule based on
whatever heuristic the user cares to use.

2.2.1 Temporal Scheduling Strategies

In this thesis we will principally be concerned with providing mechanisms that allow the
effective and efficient specification of when threads should run. There are a number of
program characteristics that can be used as the basis for deciding when threads should run.
These include the characteristics of the DAG, the desire to exploit temporal locality, the
type of synchronization being used, and the resource requirements of the application.

DAG scheduling

One strategy for deciding when to run different threads is to analyze the program DAG
and try and minimize the execution time by carefully scheduling the critical path. Different
heuristic strategies [31, 19] decide where tasks should run (see Section 2.2.2), and then given
this assignment, decide when each task should run.

If the DAG is dynamically generated at runtime then static DAG scheduling is not possible.
However, the user may know which tasks are more important, and want to schedule them
first. For instance, in a search problem such as the Traveling Salesman Problem, there
may be tasks that are specifically aimed at pruning the tree and reducing the search space.
Despite the fact that the exact DAG of the computation is not known, it may make sense
to schedule these tasks before tasks that are generating more work.

Temporal Locality

A thread exploits temporal locality in the cache when it brings data into the cache and
references it several times. The set of data that a thread needs over a specific period of
time constitutes its working set, and if the cache is large enough to hold the working set the
processor achieves good cache hit rates. Scheduling decisions can be based on an affinity that
a task has for a specific processor because its data is likely to be loaded in the processor's

CHAPTER 2. BACKGROUND

cache [90, 26, 97]. Although this affinity scheduling is largely a thread placement issue that
requires that a descheduled thread be rescheduled on the same processor (see section 2.2.2),
there is also a temporal component: if a task swaps out but soon begins to execute again
then some of its data is likely to still be in the cache and will not have to be reloaded, but
if the thread has not been run for a long time most of its data will have been removed from
the cache.

Different threads can cooperate to exploit temporal locality as a group. If threads that
operate on the same data are run at approximately the same time, then they will share
data in the cache. If on the other hand threads with largely unrelated data are run at
approximately the same time, their data will destructively interfere with each other in the
cache. This is particularly important for multiple-context processors where several threads
are running at the same time.

Synchronization

Shared memory multiprocessors that use spin-waiting to implement synchronization prim-
itives such as mutual exclusion locks [8, 34, 36, 3, 71], barrier synchronization [111, 71],
and fine-grain synchronization using Full/Empty bits [55] raise another set of scheduling
issues. The particular problem with spin-waiting types of synchronization is that tasks can
be active but not making progress, and thus be uselessly consuming resources [112, 67].
For instance it is typical to have tasks waiting for the release of a lock by spinning on a
synchronization variable. In this case it would be best to schedule the specific task that
currently controls the lock, or at least, not schedule those tasks that require acquisition of
the lock.

Two-phase algorithms have been studied as a method for deciding whether a thread should
spin or block (i.e. swap itself out and allow another thread to run) on a synchronization
failure [48, 67]. A two-phase algorithm first spins for a determined amount of time in the
hope that the synchronization condition will be satisfied and the blocking overhead will be
avoided, and then blocks if this is not the case. In particular, Lim and Agarwal [67] study
two-phase algorithms in the context of a multiple-context shared memory multiprocessor.
Having multiple contexts allows additional strategies such as "switch-spinning", in which a
spinning thread can rapidly switch to other contexts, thus doing useful work while waiting
for the synchronization to complete.

Resource Utilization

It is important to be able to control the thread generation pattern of a program. Uncon-
trolled thread generation in problems that exhibit abundant parallelism can overwhelm a
parallel machine, exhausting memory or causing severe performance degradation [9, 41].
Conversely, not generating enough tasks can lead to starvation with not enough work for

2.2. THREAD SCHEDULING STRATEGIES

all the processors. Blumofe [11] uses a simple thread model and describes scheduling al-
gorithms that are provably time and space efficient when certain dependency conditions
between threads are met.

An example of how scheduling can affect task generation is the expansion of an execution
tree in either depth first or breadth first fashion. Scheduling in depth first fashion tends to
limit parallelism since at any given time only one path is being followed (as would be done
in a serial execution). Scheduling in breadth first fashion tends to generate many tasks,
the number of which grows exponentially with the depth of the tree. Ideally, we would first
expand the tree in breadth first fashion until there was enough work for all the processors,
and then continue in a depth first manner.

2.2.2 Thread Placement Strategies

Although we will not be dealing directly with the issue of thread placement in this thesis, it
is the other important component of the thread scheduling problem and is included here for
completeness. The most important issues in determining the location of threads are trading
off parallelism and communication overhead, load balancing the work across the nodes, and
exploiting spatial locality in the memory system.

Parallelism versus Communication

In an ideal system with no communication cost or overhead, the best thing to do is max-
imize parallelism. In a real system, tasks are on different nodes and must share data and
communicate their results to each other. Depending on the communication cost, it may be
better to run threads serially in a single processor rather than run them in parallel on dif-
ferent processors. Given a DAG, a number of heuristics can be employed to decide whether
given tasks should be run on the same processor [31]. These heuristic approaches start
with a DAG that has a computation cost assigned with each node of the graph as well as
a communication cost associated with each edge that depends on thread placement. Based
on minimizing a cost function such as the parallel running time, they then use different
heuristics to merge nodes together in clusters. Performance improvement is achieved be-
cause every time two nodes with a direct data dependency are merged, the communication
cost becomes 0, potentially decreasing the parallel runtime.

DAG clustering techniques typically make a number of idealistic assumptions to make the
problem more tractable. They assume that the tasks are constant length. They assume
that the architecture is a completely connected graph so that the communication costs are
unaffected by the particular network being used or the network traffic. They assume an
unbounded number of homogeneous processors so that if there are fewer processors than
clusters, the clustering step must be followed by an assignment of clusters to processors,
another NP-complete problem [83].

CHAPTER 2. BACKGROUND

Despite these assumptions, the heuristic approaches to DAG scheduling can provide good
performance results. Also, even if the DAG is not static and depends on the input, it can
be advantageous to use these heuristic techniques to determine a good schedule at runtime.
This is particularly true if the same schedule can be reused many times [82, 19].

Load balancing

Load balancing involves distributing work across processors so as to minimize running time.
Load balancing techniques are either static or dynamic [104, 17]. Static load balancing
schemes assign tasks to processors before the program is run based on execution time and
communication pattern information. Once assigned to a given processor, a task remains
there for the duration of the computation.

In dynamic schemes, tasks are generated on processors or moved between processors at
runtime. Dynamic schemes are either centralized or distributed. Centralized dynamic load
balancing uses either a master process or a centralized data structure to distribute work
across the processors. The centralized approach often leads to bottlenecks in the task
distribution and is often not appropriate for large systems. Distributed schemes do not
have a single point of serialization, and the scheduling data structure and decision making
are distributed across all the processors.

Dynamic load balancing schemes differ in the policies they adopt to implement load balanc-
ing. Willebeek-LeMair and Reeves [108] define a 4-phase dynamic load balancing model:

* Processor load evaluation: Estimate the amount of work a processor has to do, and
use it in deciding whether to load balance.

* Load balancing profitability determination: Determine the degree of imbalance, and
decide whether it is worthwhile to do load balancing. The amount of information that
goes into making this decision can vary widely from using entirely local information, to
centralized schemes that use much more global information but may incur significant
overhead.

* Task migration strategy: Determine the source and destination for task migration.
Policies include random selection, a fixed pattern such as a simple nearest neighbor
pattern, or other more complex patterns. How load balancing is initiated is an im-
portant characteristic of the strategy. Load balancing can be initiated at given time
intervals, or can be initiated by the producer or the consumer of tasks. If initiated
at given time intervals, all the processors cooperate to do the load balancing. In
producer-initiated load balancing, a processor with too much work initiates load bal-
ancing activity, whereas in consumer-initiated load balancing a processor that needs
work initiates the load balancing activity. Consumer-initiated load balancing has the
advantages of being more communication efficient [12], and of having the less highly

2.3. THREAD SCHEDULING MECHANISMS

loaded processors incur most of the load balancing overhead while the highly loaded
processors continue executing tasks.

* Task selection strategy: Decide which tasks to exchange. An important issue is
whether task migration is allowed, meaning whether threads can migrate between
processors once they have begun executing. Migrating a task once it has begun exe-
cuting can be expensive as it requires that stack information be migrated as well [91].

Spatial Locality

Programs can exploit spatial locality at the cache level and at the local memory level. To
do this, data and thread placement policies can place data and threads operating on that
data on the same node.

Cache performance improves if different threads use the same data and operate out of the
same cache. For instance, in the context of a multiprogramming operating system, space-
sharing the processors between applications rather than time sharing the entire machine may
result in better performance [98]. A number of studies have looked at affinity scheduling,
which schedules tasks on processors to better exploit this locality in the cache [90, 26, 70,
97]. In attempting exploit this locality, tradeoffs are made with load balancing since load
balancing and affinity scheduling often are in opposition to each other [69, 70, 91].

Programs can exploit spatial locality at the node memory level by co-locating a thread and
its data on the same node. If a thread's data is located in local memory rather than in
remote memory, remote memory references can be avoided. In particular, reorganizing data
between computation stages to maximize locality can be beneficial [53, 52].

2.3 Thread Scheduling Mechanisms

The goal of thread scheduling mechanisms is to provide efficient building blocks upon which
to implement the different scheduling strategies described in the previous section. Hardware
mechanisms include such things as hardware support to schedule threads in response to
incoming messages, and to manipulate multiple hardware contexts. Software mechanisms
may define threads and task queues in ways that allow the easy implementation of different
scheduling policies.

2.3.1 Hardware Scheduling Mechanisms

Hardware mechanisms aim at reducing overhead of specific scheduling operations such as
scheduling the handling of incoming messages, or at managing the allocation and scheduling

CHAPTER 2. BACKGROUND

of the multiple contexts in a multiple-context processor. They typically lack the flexibility
required to do. general thread scheduling.

One important hardware mechanism is hardware support for handling incoming messages
from other nodes. The processor usually uses some form of automatic enqueuing and direct
dispatch to a message handler routine. For instance in the J-Machine [23] there is hardware
support for enqueuing tasks in memory as they arrive, without interrupting the processor1.
When a task arrives at the head of the queue, a direct dispatch mechanism jumps directly
to the correct message handler. There are two priority levels each with their own queue
of tasks. On the Alewife machine [4] the message interface generates an interrupt and the
message is handled in a hardware context reserved for that purpose. Alewife also has special
hardware that deals with shared memory protocol messages. In typical dataflow machines,
there is specialized hardware for scheduling support. Monsoon [78], for instance, has special-
ized hardware for dynamically synchronizing and scheduling individual instructions based
on the availability of operands. The *T architecture [75] is an example of how dataflow
architectures are evolving towards a more conventional multi-threaded approach: it pro-
vides special scheduling queues and co-processors for handling memory request messages
and synchronization request messages. Henry and Joerg [44] study hardware network inter-
face optimizations that improve the performance of dispatching, forwarding, and replying
to messages.

Multiple-context processors such as April [5] or Tera [6] provide mechanisms for managing
contexts. April uses the trap mechanism to do a context switch, with the context switch
done inside the trap handler. A special instruction changes the context that is executing
instructions. The Tera hardware provides special instructions and state for reserving, cre-
ating, and de-allocating thread hardware contexts, but the software must decide whether
to execute the thread in another hardware context or in the current one [7]. The software
generates new threads only when there are hardware contexts available to execute them,
otherwise the code executes in the current hardware context.

The hardware mechanisms described above are of limited use for general scheduling because
of their lack of flexibility. The hardware message mechanisms aim specifically at reducing the
overhead of handling incoming messages, which although important, does not address the
larger problem of doing general thread scheduling. The context management mechanisms of
the April and Tera processors are useful for managing contexts but they do not address one
basic issue: on any given context switch, which context should execute next. The April trap
handler could make this type of decision in software, but this would greatly increase the
context switch time. Waldspurger [101] proposes a scheme that does the context switching
in software in just 4 to 6 cycles, but again it is not clear that scheduling contexts in a way
other than in round-robin fashion can be implemented cheaply. The mechanisms proposed
in this thesis are more general and are useful for deciding which of multiple available threads
should execute, and are not restricted to scheduling messages. The thread prioritization
mechanism we propose aims specifically at correctly deciding which context to execute next

1Although a memory cycle is stolen when the queue row buffers are written.

2.3. THREAD SCHEDULING MECHANISMS

in a single cycle.

2.3.2 Software Scheduling Mechanisms

Various scheduling mechanisms are implemented in software as well. These mechanisms
are more general then the hardware mechanisms because they allow different scheduling
algorithms to be constructed on top of them.

Lazy task creation [72] is one example of a flexible scheduling mechanism. Lazy tasks are
a means of allowing dynamic partitioning of tasks. New tasks are created at runtime only
as needed to keep all the processors busy, thus providing a mechanism for both increasing
the granularity of tasks and throttling excess parallelism. This mechanism is flexible as it
allows the possibility of many different load balancing strategies to be implemented on top
of the lazy task creation model.

Culler et al. [21] have proposed TAM, an execution model for fine grained parallelism
that uses a multilevel software scheduling hierarchy. They follow the basic dataflow model
in which a thread does not execute until all its arguments are available, and a thread
always runs to completion. They provide a basic system for scheduling related threads as
a quantum: threads related to specific code block invocation are run at approximately the
same time so as to exploit locality. A higher level scheduler schedules these quanta on the
processors, and this higher level scheduler can implement different scheduling policies.

At the operating system level, Waldspurger and Weihl's Lottery Scheduling [102] provides
a mechanism that allows flexible control over the relative execution rates of different tasks.
Further, this mechanism can be generalized to manage different types of resources such as
I/O bandwidth and memory.

Thread prioritization as proposed in this thesis is also a software scheduling mechanism
that allows different scheduling algorithms to be implemented on top of it. Rather than
aiming at dynamic load balancing like lazy tasks or locality improvement like TAM, it aims
at allowing a flexible specification of when threads should run relative to each other. Unlike
Lottery Scheduling, it is aimed specifically at scheduling the threads in a single application.
Each thread has a priority that can be assigned and changed dynamically, and used by the
thread scheduler to decide which thread to run at any given time. This priority can also be
used to improve data locality as discussed in Chapter 7, and could potentially be useful in
making load balancing decisions.

CHAPTER 2. BACKGROUND

2.4 Multithreading and other Latency Tolerance Techniques

Different techniques are useful for tolerating the long communication and synchroniza-
tion latencies that occur in parallel processors, including multithreading, multiple-contexts,
prefetching, non-blocking accesses, and relaxed consistency models. This thesis is specif-
ically concerned with the use of multithreading and multiple-context processors, but it is
probable that the ideal set of latency tolerance techniques involves some combination of all
of these.

2.4.1 Multithreading

Multithreading involves dividing a problem into multiple tasks and then running these tasks
in parallel to achieve better performance. Latency is tolerated by running a different task
whenever a long latency operation occurs. Analytical [2, 81, 46, 74] and experimental [105,
59, 37, 13, 95, 64] studies show that it is a good technique for tolerating latency but that
lack of parallelism, as well as cache and network effects can limit performance.

The analytical models [2, 81, 46, 74] use processor utilization as a metric. They show
that network bandwidth limits performance because it limits the number of requests that
can be outstanding without seeing a substantial increase in the network latency. Cache
performance can suffer with multiple contexts because of increased cache miss rates that
occur when the working sets of different threads are trying to occupy the cache at the same
time [2, 81]. Some of these studies [46, 74] consider the feedback that occurs between the
different subsystems of the multiprocessor more carefully and show how this feedback can
limit the maximum message rate of the network. None of these models specifically consider
the effect of multithreading on the execution time of an application's critical path, or the
effect of spin-waiting synchronization latencies.

Simulation studies have also shown some of the benefits and weaknesses of multithread-
ing [105, 59, 37, 13, 95, 64]. These studies show that substantial performance improvements
are possible provided that certain conditions hold. Specifically, there must be sufficient par-
allelism in the application, the context switch time must be low, the run length to latency
ratio must be favorable, the distribution of run lengths must be favorable (in particular
clustered misses can reduce multithreading effectiveness), and the negative cache effects
must be minimal.

2.4.2 Multiple-Context Processors

Having multiple hardware contexts is one useful technique for supporting efficient multi-
threading. Multiple-context processors come in several different flavors, depending on how
instructions from the different contexts are issued. Block multithreaded processors run

2.4. MULTITHREADING AND OTHER LATENCY TOLERANCE TECHNIQUES 41

blocks of instructions from each context in turn [105, 5]. This allows a single thread to
fully use the processor pipeline, though the data dependencies within a single thread can
introduce pipeline bubbles. A context switch occurs on special interrupts or on long latency
operations such as a miss in the cache, or a synchronization event. Finely multithreaded ar-
chitectures interleave instructions from different contexts on a cycle-by-cycle basis. Some of
these architectures concentrate on eliminating pipeline dependencies by having each context
issue instruction only once every D cycles, where D is the pipeline depth [88, 42]. All the
instructions in the pipeline are independent from one another since they are from different
contexts. The performance of these architectures suffers when there are not enough threads
to fully use the pipeline. More aggressive designs provide pipeline interlocks which allow
any ready thread to issue an instruction provided it satisfies data and pipeline dependen-
cies [50, 64]. This dynamic interleaving of instructions hides pipeline stalls as well as long
latency operations.

The type of multithreading performed depends very much on the design philosophy and
budget for the processor. Block multithreading allows the most conventional processor
design, and only requires support for multiple register sets. For instance the April processor
is a commercial processor that has been modified to provide 8 hardware registers sets to
support multithreading [5]. Other schemes for providing multiple register sets are possible,
including the mostly software scheme presented by Waldspurger and Weihl [101], and the
hardware intensive context cache presented by Nuth [77]. Cycle-by-cycle interleaving has a
significant hardware cost to redesign the processor core and pipeline to allow the different
contexts to issue instructions simultaneously [50, 64].

2.4.3 Other Latency Tolerance Techniques

Prefetching

Prefetching tolerates latency by requesting data before it is required. Latency is minimized
if the data has arrived before it is referenced, or is reduced if the data has not arrived
but is on its way. Prefetching schemes are either binding or non-binding [73]. A binding
prefetch is one in which the value of the requested data is bound at the time the prefetch
completes rather than when the actual load occurs. A non-binding prefetch is one in which
the requested data is brought close to the requesting processor (i.e. into its cache), but the
value is not bound until the actual reference occurs. Prefetching can be implemented in
hardware or software.

The fact that prefetched data may become stale if it is modified between the prefetch and
the subsequent load [65] limits binding prefetch schemes. In the uniprocessor case this
can occur when a write to the same address occurs between the prefetch and the load. In
the multiprocessor case it can also occur when another processor modifies the value. Non-
binding prefetches have the advantage that they are simply hints to the memory system and
do not have semantic significance to the program. Thus they can be placed anywhere in the

CHAPTER 2. BACKGROUND

program and not affect correctness. When latencies become large, the flexibility of being
able to place a prefetch well in advance of its subsequent reference becomes important.

The benefits of hardware prefetching are that it discovers the locations to prefetch dynam-
ically, and that it has no extra instruction overhead. However, the more effective schemes
are still only good at predicting very simple access patterns, require non-trivial hardware
modifications to do limited instruction lookahead, branch prediction, and stride prediction
[89, 10]. The amount of latency they can hide is limited by these factors. The benefits
of software prefetching [35, 16, 51, 85] are that it requires only the addition of a prefetch
instruction, the prefetching can be done selectively so as to reduce the bandwidth require-
ments, and the prefetches can be positioned to better tolerate long latencies (if non-binding).
The disadvantages are that there is extra overhead due to the prefetch instructions them-
selves, and due to the fact that addresses have to either be calculated twice (once at prefetch
time and once at load time), or have to be preserved in a register between the prefetch and
the load.

Non-Blocking Accesses and Relaxed Consistency Models

Another way to tolerate latency is to pipeline memory accesses, by allowing non-blocking
loads, and by buffering store operations. When a load operation misses in the cache or if
there is no cache for shared data, the processor continues executing code, including issuing
other loads, until it actually needs the data. Only if the data is needed and it still has not
arrived does the processor stall. The processor can pipeline write operations by using write
buffers.

To tolerate long latencies it is desirable to move a non-blocking load as far ahead of the
instructions that use the returned value as possible. However, non-blocking loads have
the same semantics as binding prefetches into registers, and just like binding prefetches,
memory disambiguation is required in order to guarantee that a non-blocking load is not
moved before a write to the same address. Furthermore, the non-blocking loads require the
use of a register to store the value until it is needed. This puts additional pressure on the
register file, especially when the loads are moved far ahead of their use. Non-blocking loads
require a synchronization mechanism such as Full/Empty bits on the registers in order to
signal when a non-blocking load has been completed.

In multiprocessor systems, performing non-blocking accesses is more complicated. This
is because multiple processors are reading and writing the same data at the same time,
and if not restricted in some way, memory accesses can perform in unexpected orders.
The extent to which non-blocking loads and buffered writes can be used to hide latency
in multiprocessors is restricted by the memory consistency model used, which is the set
of allowable memory access orderings [62, 27, 33]. For instance a common model is the
Sequential Consistency [62] model which requires that the memory accesses appear as if
performed by some interleaving of the processes on a sequential machine. Unfortunately,

2.5. SUMMARY

this severely restricts the use of non-blocking loads and stores to tolerate latency [32].
Relaxed consistency models attempt to remove some of these restrictions, to allow better
use of non-blocking accesses, while still providing a reasonable programming model.

2.4.4 Comparison of Techniques

Different latency tolerance techniques are appropriate in different situations. Prefetching
and non-blocking accesses are good for improving the runtime of a single thread, but do not
provide any way of tolerating synchronization latencies. Multithreading requires sufficient
parallelism to be effective, does not improve single thread performance, but can be effective
in tolerating long synchronization latencies.

Gupta et. al. [37] study different latency tolerance techniques in the context of a shared
memory multiprocessor. They conclude that non-blocking accesses in conjunction with
prefetching is the most effective in tolerating both read and write latencies. Non-blocking
and multithreading was also quite effective, because the non-blocking accesses allowed longer
run lengths between context switches, and fewer contexts were necessary to tolerate latency.
However, multithreading was not effective in some cases due to cache effects and limited
parallelism. They also found that multithreading and prefetching together could actually
hurt performance. First, because using both methods adds the overhead of both methods
even though only one may be needed to hide the latency. Second, the methods can affect
each other in the cache e.g. the time between when data is prefetched and when it is actually
used can become long due to intervening executing contexts, and the prefetched data has a
higher probability of being removed from the cache before it is used. They do note however
that the prefetch instructions were not added with the knowledge that multithreading was
also being used. It is hard to draw any general conclusions from this study since only a
small number of benchmarks are used, and these are fairly coarse grain benchmarks with
limited synchronization. It is clear however that these latency tolerance techniques can be
complementary, and this is an area where further research is needed.

2.5 Summary

Scheduling consists of two components: deciding when threads should run and deciding
where threads should run. Temporal scheduling strategies attempt to optimally schedule
threads based on the form of the DAG, to exploit temporal locality, to manage resource uti-
lization, and to optimize synchronization scheduling. Thread placement strategies attempt
to deal with the tradeoff of parallelism and communication, to do load balancing, and to ex-
ploit spatial locality. Which strategies are most appropriate depends on the characteristics
of the problem, the architecture, and the programming model. Thread scheduling mecha-
nisms are aimed at providing efficient building blocks for implementing different scheduling
strategies. A general purpose parallel processor should provide the mechanisms required to

44 CHAPTER 2. BACKGROUND

implement a wide range of these strategies. This thesis will present a number of scheduling
mechanisms aimed at implementing different temporal scheduling strategies in a multiple-
context processor. Specifically, strategies that schedule tasks based on the program DAG,
that schedule threads to exploit temporal locality, and that schedule threads to improve
synchronization performance.

In large scale multiprocessors it is necessary to find ways of tolerating long latency op-
erations. Multithreading using multiple-context processors has been found to be a useful
technique for doing this, but performance can be limited by lack of parallelism, by network
bandwidth, and by cache performance degradation. Other latency tolerance methods, in-
cluding prefetching and relaxed consistency models, are also useful in tolerating latency.
An interesting topic of research is to determine which combinations of methods should be
used for any given problem.

Chapter 3

Thread Prioritization

In this chapter we introduce thread prioritization, a mechanism that allows the processor
to devote pipeline and bandwidth resources preferentially to high priority threads in order
to increase the utilization of the processor, and decrease the runtime of the critical path.
We use an analytical model to show how thread prioritization can be used to improve the
performance of multiple-context processors.

Our model is based on existing multiple-context scheduling models, and incorporates both
network and cache effects. Unlike other models, it considers not only how multiple contexts
affect processor utilization, but also how the multiple contexts can affect the runtime of the
critical path. Further, it considers the effect of spin-waiting synchronization and limited
memory and network bandwidth on multiple-context performance. The model shows that
with simple round-robin scheduling, both processor utilization and the runtime of a critical
thread can be hurt when the number of contexts exceeds the minimum number required to
tolerate latency. Processor utilization is hurt because the working sets of the cache interfere
with each other, leading to more cache misses, more network traffic, and longer latencies.
The runtime of a critical thread can increase substantially if there are many contexts because
the execution of the critical thread can be delayed by other threads using the processor
pipeline, network, and memory resources. Spin-waiting decreases processor utilization and
increases the runtime of the critical path because spinning threads do no useful work even
when they are occupying the pipeline. Limited memory and network bandwidth can also
affect utilization and the critical path. Bandwidth requirements increase with an increasing
number of contexts and contexts can be delayed waiting for bandwidth resources.

Thread prioritization is a mechanism that allows contexts to be scheduled based on a priority
scheme rather than in round-robin fashion. Each thread is assigned a priority, and on each
context switch the context with the highest priority that is ready to execute is chosen next.
The model shows that in the case that there are more than enough contexts to tolerate the
observed latency, thread prioritization can be used to dynamically choose a minimum set
of contexts required to tolerate the observed latency to execute at any given time. This

CHAPTER 3. THREAD PRIORITIZATION

improves cache performance, and as a result processor utilization, because a smaller number
of working sets are trying to occupy the cache. Thread prioritization can also be used to
minimize the impact of multiple contexts on the runtime of a critical thread, by allowing
the critical thread to execute every time it is ready. We show that for bandwidth limited
applications we must prioritize the use of bandwidth. Thread prioritization can be used to
choose a minimum set of contexts necessary to saturate the available bandwidth, and it can
give priority to accesses by critical threads.

The model makes a number of simplifying assumptions having to do with run lengths
between context switches, the cache behavior, and network traffic patterns. However sim-
ulations done in later chapters using real applications confirm the trends predicted by the
model.

Section 3.1 introduces thread prioritization. Sections 3.2 and 3.3 develop our multiple-
context processor model without thread prioritization, and finally Section 3.4 shows the
effect of thread prioritization on the model.

3.1 Thread Prioritization

Thread prioritization involves associating a priority with each thread based on knowledge
about how threads should be scheduled. It is a method for encapsulating in a hardware-
and-software-usable form the best guess at identifying the critical thread or threads. This
information is used to bias the allocation of processor resources to those threads.

Thread prioritization is dynamic, since which threads are critical can change as the com-
putation unfolds, especially in situations that use spin-waiting synchronization where the
critical thread is not known a priori, but only once the synchronization occurs. Further-
more, having many priorities allows more descriptive information to be encoded, such as
an estimate of the second most critical thread, and so on. Thread prioritization is a very
flexible means of specifying the relative importance of different threads.

3.1.1 Software and Hardware Priority Thread Scheduling

Prioritizing Execution

Consider an application that consists of a set T of threads on each processor, where each
processor has C contexts. Each thread t4 E T has a priority pi, with a higher value of pi
indicating a higher thread priority. The hardware and software schedulers use the priority
to do the scheduling.

3.1. THREAD PRIORITIZATION

First, the software scheduler uses the priority to decide which threads are loaded. Specifi-
cally, it chooses a set TL of threads to load into the C contexts, and a set Tu of unloaded
threads to remain in a software scheduling queue. The scheduler chooses the loaded threads
such that pi 2 Pu for all ti E TL and t, E Tu. Threads of equal priority are scheduled in
round-robin fashion..

Second, at each context switch the hardware scheduler uses the priority to determine which
loaded thread to execute. At any given time some threads will be ready to execute and
others will be stalled waiting for a memory reference to be satisfied. If TR is the set of
ready, loaded threads, the scheduler chooses a thread tx E TR such that p. = max{pr}
for all tr E TR. If several loaded threads have the same priority, then these threads are
chosen in round-robin fashion. A context switch can occur on a cache miss, on a failed
synchronization test, or on a change of priority of one of the threads on the processor. Each
change in priority results in a re-evaluation of Tu, TL, and t,. In this sense, the scheduling
is preemptive.

Prioritizing Bandwidth

The processor pipeline is only one of the important processor resources that can limit
performance. Limited memory and network bandwidth can also limit performance. Thus we
extend the notion of prioritization to include the prioritized use of both memory bandwidth
and network bandwidth. Any context's long latency transaction that is waiting for either the
memory resource or the network resource sits in a transaction buffer waiting for that resource
to become available. In the case that the application is memory or network limited, there
can be several transactions waiting for either the memory or the network. With prioritized
scheduling, when the resource becomes available the highest priority transaction that needs
the resource is issued. Thus the priority of the thread extends to the use of the memory
and network bandwidth resources, as well as to the use of the processor pipeline.

3.1.2 Assigning Priorities: Deadlock and Fairness

In our benchmarks of later chapters, the user explicitly assigns a priority to each thread,
and changes this priority as the application requires. Although initially the use of thread
prioritization is likely to be limited to special runtime libraries (e.g. synchronization primi-
tives) and user-available program directives, we expect that it will eventually be possible to
have a compiler assign priorities to threads automatically. Automatic thread prioritization
is particularly straightforward when the program can be described as a static DAG.

Prioritizing threads incorrectly can lead to a number of deadlock situations. Specifically, if
thread A is waiting for another thread B to complete some operation, and thread B has a low
priority that does not allow it to be loaded, deadlock results. There are a number of ways of
overcoming this problem, including guaranteeing that the priorities of the threads respect

CHAPTER 3. THREAD PRIORITIZATION

the dependencies of the computation, implementing priority inheritance type protocols [86],
or guaranteeing that all threads will receive some amount of runtime even if they are lower
priority [102].

For our benchmarks we make sure that the thread priorities respect the dependencies of
the computation, and that scheduling is fair only between threads of the same priority.
This is the lowest cost alternative for avoiding deadlock, and avoids the overhead of more
complicated protocols. Also, as we will show in the examples, doing fair scheduling without
regard to priority, or not specifying the priority of threads as exactly as they could be, can
lead to a serious performance penalty. It is in our interest to prioritize threads as exactly
as possible.

3.1.3 Higher Level Schedulers

The thread scheduling as defined here is purely a local operation. Each processor has its own
set of threads, and schedules only these. The assigning of threads to processors is governed
by a higher level scheduler, for instance a scheduler that dynamically load balances work
between processors by moving threads between them. Note that the thread priorities may
be useful to the global scheduler for making its scheduling decisions.

It should also be noted that the thread scheduler uses the thread priority in a very different
way than process scheduling in the UNIX operating system for instance, where the goals
and constraints are different. The thread scheduler always executes the highest priority
ready thread, and is not concerned with fairness or guaranteeing progress of all the threads.
Operating system schedulers, on the other hand, aim at achieving good interactive per-
formance, at achieving time sharing between competing processes, and guaranteeing some
progress for all jobs [66]. The operating system schedulers also make decisions at a much
larger scheduling granularity: the scheduling algorithm can be fairly heavyweight since a
process will run for many thousands of cycles before the next process switch occurs. In
multiple-context scheduling a scheduling decision is made on every hardware context switch
that can take place every few cycles, and must be very inexpensive. The goal of thread
prioritization is to identify as exactly as possible which threads are most important and
devote as many resources as possible to these threads.

3.2 Effect of Multiple Contexts on the Critical Path

In this section, we develop a simple model to gain intuition about the effect of multiple
contexts on processor utilization and critical path execution time. This simple model shows
that the processor utilization reaches a peak utilization once it has enough contexts to
completely tolerate latency. It also shows that if we increase the number of contexts beyond
the minimum required to tolerate all the latency, the runtime of a critical thread suffers.

3.2. EFFECT OF MULTIPLE CONTEXTS ON THE CRITICAL PATH

We consider a number of important special case scenarios including cases where there are
threads spin-waiting, and cases in which the application is bandwidth limited. If threads are
spin-waiting then both the processor utilization and the critical path suffer because spinning
threads use processor cycles doing synchronization tests and generating unnecessary context
switches. Limited memory and network bandwidth limits the effectiveness of multithreading
when there is not sufficient bandwidth to handle the increased number of requests coming
from the multiple contexts.

The simple model neglects cache and network effects that occur when there are multiple
contexts. These effects are incorporated into the model in Section 3.3. Thread prioritization
is incorporated to the model in Section 3.4.

3.2.1 Total Work and the Critical Path

As discussed in Chapter 2, a general task graph can be viewed as a DAG in which the
nodes represent the tasks, and the edges represent the dependencies between tasks. The
total work in a DAG is simply defined as the total number of tasks, and the computation
depth is the length of the longest directed path in the DAG. Borrowing notation from
Blumofe [11], we define TN as the time to execute the DAG with N processors using a
best case schedule. In this case T1 represents the total work of the computation, and Too
represents the computation depth. Trivially, it is clear that TN Ž T1/N, and that TN Ž Too.
Brent's theorem [14] shows further that TN <• T1/N + Too. The important intuitive idea is
that the execution time is limited by two factors: first by the amount of work that has to
be done, and second by the critical path through the DAG.

3.2.2 Previous Models

Previous work on modeling the effects of multiple contexts has concentrated on the ability
of multiple contexts to increase processor utilization, and in this way execute more work in
a given amount of time [2, 81, 46, 74]. Agarwal [2] presents a model in which he considers
the effects of context-switch overhead, network contention, and cache interference due to
the multiple contexts. Saavedra-Barrera, Culler, and Eicken [81] develop a mathematical
model in which they identify three operation regimes for multithreaded contexts: a linear
region in which processor efficiency is proportional to the number of threads, a transition
region, and a saturation region in which the efficiency depends only on the run length
between context switches and the context switch overhead. This model takes into account
variable run lengths by assuming that the run length of a thread is a random variable
having a geometric distribution, and includes a first order model of the cache effects of
multiple contexts. They do not take into account the variation in memory latency due to
increased memory traffic. A number of researchers including Johnson [46] and Nemawarkar
et. al. [74] have emphasized the importance of incorporating the feedback effects between the
subsystems of the multiprocessor, especially the feedback that occurs between the processor

CHAPTER 3. THREAD PRIORITIZATION

and the network. They show with a limited number of memory requests per processor,
latency and the maximum message rate are limited. Neither of these studies considers
cache effects.

The main emphasis of all these models is evaluating performance based on processor effi-
ciency or utilization. Thus, they address the issue of executing large amounts of work, but
do not address the issue of how the critical path is affected by the scheduling of the multiple
contexts. Also, they do not consider long synchronization latencies or the particular effects
of spin-waiting synchronization. The following sections examine these issues.

3.2.3 Metrics and Parameters

We consider two metrics when examining multiple context execution: the utilization U, and
the runtime of a critical thread T,. U is the fraction of time that the processor spends doing
useful work, and T, is the amount of time it takes a critical thread to complete execution.
In evaluating the effect of multiple contexts on T, we will typically be interested in the
critical thread runtime ratio TI/T~1 where T,1 is the runtime of the critical thread when
there is only one context. It is important to note that the lengthening of the runtime of
a critical thread does not necessarily translate into a lengthening of the application run
time. Consider for instance a computation in which all the threads have the same total
runtime. Although the run time of each individual thread is increased by the multithread-
ing, improving performance relies almost entirely on the processor maximizing processor
utilization. However, if the application is critical path limited, then the increased runtime
of a critical thread will have an effect on the overall application runtime.

The metrics U and Tc/T~1 are quantified in terms of a number of basic parameters shown in
Table 3.1. P is the number of contexts, R is the run length between context switches, C is
the context switch overhead, L is the memory latency, and I, is the number of instructions
executed by the critical thread. The main parameters we will vary are the number of
contexts P and the run length R. We will first assume that R and L are independent of each
other and of P. The complete model of Section 3.3 takes into account their interdependence.
For the purpose of calculating the runtime of a critical thread we use the parameter Ic, the
number of instructions executed by a critical thread. The number of context switches done
by the critical thread is just Ic/R. Finally, when we consider spin-waiting, the parameter

P, corresponds to the number of contexts that are spinning, and R, corresponds to the time
for a spinning thread to do a synchronization test.

Note that a context switch occurs on every cache miss. In the case that a thread is spinning,
a context switch is performed explicitly by the spinning thread. Also note that we are
assuming that there is only one critical thread on a processor at any given time. The values
for the different parameters shown in Table 3.1 will be used for illustrative purposes in the
following sections.

3.2. EFFECT OF MULTIPLE CONTEXTS ON THE CRITICAL PATH

Parameter Description Value
P Number of contexts 1-16
R Runtime between context switches 4-64 cycles
C Context switch time 5 cycles
L Latency 20-100 cycles

L4 Cycles required between memory requests 5-20 cycles
Ic Number of instr. executed by a critical thread 1024
PS Number of spinning contexts 0-16
R, Time to do a synchronization test 5 cycles

Table 3.1: Basic model parameters.

3.2.4 Basic Model

Figure 3.1 shows a simple diagram of how execution proceeds on a single processor, as-
suming there are P contexts, scheduled in round-robin fashion. There are 2 cases to be
considered. In the first case (Figure 3.1a), the computation is communication bound, mean-
ing that the latencies are long enough that there are not enough contexts to hide all the
latency ((P - 1)R + PC < L). In the second case (Figure 3.1b), the computation is compu-
tation bound meaning that there are enough threads to hide all the communication latency
((P - 1)R + PC > L). In general, assuming P threads executing at once, the processor
utilizations in the communication limited region (Ucomm) and in the computation limited
region (Ucomp) are given by the following equations:

PR
Ucomm = R (3.1)R+L

Ucomp R (3.2)
R+C

This tells us something about the processor utilization, but it does not tell us anything about
the critical path. To study this, suppose that thread 1 of the P threads being executed is
on the critical path, and consider how the other executing threads affect the performance
of this critical thread. If the computation is communication bound and we assume a thread
is ready to begin executing as soon as its long latency memory request is satisfied', then
to first order there will be no effect on the critical path. If however the computation is
computation bound, then on each cache miss the critical path will be increased by an

1This assumes a signaling mechanism in which contexts waiting for long latency operations are inactive,
and are woken up when the memory request is satisfied. If contexts are polling instead of stalling, there is
extra delay due to extra context switching. The effect of polling is the same as the effect of spin-waiting
discussed in the next section.

CHAPTER 3. THREAD PRIORITIZATION

amount (P - 1)R + PC - L. In terms of the basic parameters, it is easy to show that
the execution time of the critical thread in the communication limited (Tc..omm) and the
computation limited (Tc,,,mp) regions is given by:

Tccomm = I + ((Ic/R) - 1)L (3.3)

((I/R)(R + L) (3.4)

Tccomp = Ic + ((Ic/R)- 1)((P- 1)R + PC) (3.5)

, (Ic/R)P(R + C) (3.6)

(Ic/R - 1) is the number of times the critical thread context switches, and the approxima-
tions in equations 3.4 and 3.6 hold when (Ic/R) >> 1.

Figure 3.2 shows the utilization U, and the ratio Tc/Tci. With small values of R it takes
more threads for the processor to be working at its maximum utilization rate, and this
maximum utilization rate increases with increasing R. The runtime of the critical thread
remains unaffected until there are more contexts than necessary to tolerate latency at which
point it begins to increase. Thus Tc is made worse by increasing R and there is a tradeoff
between guaranteeing maximum U and minimizing Tc. Tc/Tc1 is also worse for L=20 than
for L=100 because the computation limited region is reached sooner, and the extra delay
due to the increased number of contexts is more important.

3.2.5 Spin-waiting Synchronization

When spin-waiting is used to do synchronization in a multiple-context processor, both pro-
cessor utilization and the critical path performance can suffer. Synchronization performance
is a very important parameter of any parallel processor, especially in terms of latency tol-
erance, because the latencies can be much longer than simple remote reference latencies.
Spin-waiting is an attractive, low overhead way of allowing threads to wait at a synchroniza-
tion point without incurring the overhead of swapping the thread out of the context [71].
The thread repeatedly checks a value in shared memory until it becomes equal to a certain
value, at which point the synchronization condition is satisfied, and the thread can proceed
beyond the synchronization point.

In multiple-context processors, several threads may be spin-waiting in different contexts on
the same processor. Processor utilization can suffer because each time a spinning thread
unsuccessfully checks a synchronization variable, it uses cycles to do the context switching
and to do the flag checking. These cycles could potentially be used by some other thread to

3.2. EFFECT OF MULTIPLE CONTEXTS ON THE CRITICAL PATH

Execute S Context IdleSwitch

R L

R L (P-1)R+PC - L

3.1: Multithreading using P contexts. a. Communication
Computation bound ((P - 1)R + PC > L).

bound ((P - 1)R + PC <

A-a R= 4, L= 20
o-o R= 8, L= 20
0-D R=16, L= 20
m-m R=32, L= 20
o-o R=64, L= 20

S...... R= 4, L=100
o o R= 8, L=100
S...... o R=16, L=100
S...... R=32, L=100

o o R=64, L=100

I I I I I

0 2 4 6 8 10 12 14 16 18 20 22 24 26
Contexts (P)

b. Critical Thread Runtime Ratio (Tc/Tcl)

Figure 3.2: U and Tc/T 1 for different values of R (4, 8, 16, 32) and L (20, 100).

Figure
L). b.

0 2 4 6 8 10 12 14 16 18 20 22 24 26
Contexts (P)

a. Processor Utilization (U)

C

ooooo

"T"

- ~' --

54 CHAPTER 3. THREAD PRIORITIZATION

Execute Spin- Context Idlexecute Wait Switch Ide

1 2 3 4 P 2 3 P 2 3 P 1

a)

R L D

1 2 3 4 P 1 2

b)

k +z >,q
R D C Rs

Figure 3.3: Multithreading assuming some threads are spin-waiting. D is the extra time
added to the execution of a critical thread. a. Communication bound ((P - P, - 1)R +
P,R, + PC < L). b. Computation bound ((P - P, - 1)R + PR, + PC > L).

do useful work. The runtime of a critical thread can also suffer because the critical thread
is delayed while other threads execute spin-wait cycles.

The effect on processor utilization and the critical path is illustrated in Figure 3.3. The
time D represents the extra delay in the critical path execution for each time the critical
thread context switches. A spinning thread checks its flag and if it is unsuccessful does a
context switch2 . Some threads are shown as spin-waiting, and some threads are shown as
doing useful work. In this case we use two additional parameters to express the processor
utilization: the number of spinning threads, defined as P,, and the time to do an unsuccessful
check of the synchronization variable, defined as R,. The computation is communication
bound when there is sufficient latency for all spinning threads to check their synchronization
variable at least once, and all the non-spinning threads to take a cache miss. This is true if
(P - Ps - 1)R + PR, + PC < L. Otherwise, the computation is computation bound. The
resulting equations for the expected values of the processor utilization and the critical path
thread are shown in equations 3.7 through 3.10.

(P - P,)RUcomm (P) (3.7)
R + L + P,(R, + C)/2

2A number of different policies are possible when spin-waiting that involve deciding on whether to spin,
to swap out the thread and free the context, or to spin multiple times before eventually swapping [67].

0..
L-l, ,L

-I'
ill

3.2. EFFECT OF MULTIPLE CONTEXTS ON THE CRITICAL PATH

A-A R= 4, L= 20
0--0 R=8,L= 20
o-0 R=16, L= 20

w-- R=32, L= 20
o-o R-64, L= 20
* A R= 4, L=100
o o R= 8, L=100
S...... o R=16, L=100

...... R32, L=100
o o R--64, L=100

0 2 4 6 8 10 12 14 16 18 20 22 24 26
Contexts that are spinning

a. Processor Utilization (U)

a-- R=4, L= 20
o-o R= 8, L= 20
0-0 R=16, L=20
m -)- R=32, L= 20
o--o R--64, L= 20
S...... R= 4, L=100

o o R= 8, L=100
S...... o R=16, L=100

...... R=32, L=100
o o R--64, L=100

0 2 4 6 8 10 12 14 16 18 20 22 24 26
Contexts

b. Critical Thread Runtime Ratio (Tc/Tcl)

Figure 3.4: U and Tc/T 0 1 when threads are spin-waiting for different values of R (4, 8,
16, 32, 64) and L (20, 50). a. Processor utilization U assuming that there are 16 threads
running and that an increasing number of these threads are spin-waiting. b. Critical thread
runtime ratio TI/Tel assuming that only one thread is running and all the other threads are
spin-waiting.

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0

CHAPTER 3. THREAD PRIORITIZATION

(P - P,)R (3.8)
cop = (- Ps)R + PR, + PC

Tc.comm Ic + ((Ic/R) - 1)(L + Ps(Rs + C)/2)

~ (Ic/R)(R + L + Ps(Rs + C)/2) (3.9)

Tc.comp = Ic + ((IcR)- 1)((P- 1 - Ps)R + P, R, + PC)

R (Ic/R)((P - P,)R + PR, + PC) (3.10)

Note that equations 3.7 and 3.9 assume that the processor will have to run through exactly
half the spinning contexts before resuming execution of the critical thread (P,(R, + C)/2
cycles).

Figure 3.4a shows U when there are 16 threads, and the number of these threads that
are spinning is gradually increasing from 1 to 16. Utilization drops off as an increasing
number of spinning threads begin using cycles. The curves are the same when L=20 as
when L=100 because the processor is always in the computation bound region with this
number of threads.

Figure 3.4b shows Tc/T~1 in a slightly different situation: only one thread is running useful
instructions, and all the other threads are spinning. When the latency is only 20 cycles, there
is a very large impact on the runtime of a critical thread because the time to switch through
all the other spinning contexts is much longer than the 20 cycles for the critical reference
to be satisfied. When the latency is 100 cycles, the time spent running through the other
contexts is not so important since the critical thread would have had to wait a long period
anyway. The discontinuity of the curves at 3 contexts for L=20, and at 11 contexts for L=100
represent transitions from the communication bound region to the computation bound
region, and are due to the simplifying assumptions we made regarding the communication
bound region. We assumed once the critical reference was ready the processor would still
have to on average run through half the spinning threads before resuming the critical thread.
In fact we expect the model to show several discontinuities in the communication bound
region as the number of spinning threads increases: in some cases the timing is such that
the processor has to switch through only a few of the spinning contexts before resuming the
critical thread, and in other cases the processor may have to switch through many spinning
threads.

These example shows that the spinning threads negatively affect both the utilization and
the runtime of the critical thread by consuming processor resources. As in the basic model,

3.2. EFFECT OF MULTIPLE CONTEXTS ON THE CRITICAL PATH

the runtime of a critical thread increases the most when latencies are short and there are
many contexts.

3.2.6 Memory Bandwidth Effects

Memory bandwidth can limit the effectiveness of multiple-contexts, reducing processor uti-
lization and increasing the runtime of the critical path. The previous cases do not consider
the effects of limited memory bandwidth. All the memory requests are pipelined, and L
was taken to be independent of the number of contexts. It is useful to consider the other
extreme, in which all memory accesses are serialized. This case is shown in Figure 3.5. If
R + C < L the processor is communication bound and the multiple contexts will be ineffec-
tive in tolerating latency. All contexts will have outstanding references and each of these
references has to wait until all the outstanding references that have been issued before it
are handled. If on the other hand R + C > L then the processor is computation bound and
utilization will be good with just two threads. At most one context will have an outstanding
reference at any given time. The processor utilization in each of these cases is:

Ucomm = R (3.11)

R
Ucomp = R (3.12)

R+C

It is worth noting that in the second case, having more than two contexts can still be useful
in covering up transient variations in the run length R i.e. if there are sections of code in
which R + C < L so that the number of outstanding memory requests increases, followed
by sections of code in which R + C > L so that the number of outstanding memory requests
decreases. The runtime of the critical thread in each of these scenarios becomes:

Tc.comm = ((I/R)- 1)PL + R

M (Ic/R)PL (3.13)

Tccomp = I + ((I/R)- 1)((P- 1)R + PC)

(IcIR)P(R + C) (3.14)

Figure 3.6 shows U and To/Tel for different numbers of contexts assuming the memory

58 CHAPTER 3. THREAD PRIORITIZATION

SExecute Context Idle
1 2 3 P- PSwitch Idle

1 2 3 P-1 P 1

a)

L1

-... M - ...
4L 4::L~L~

L3 LP Li L2

1 2 3 4

b) ...

LP L1 L2 L3

Figure 3.5: Multithreading in a single processor multiple-context system, assuming memory
requests cannot be pipelined. a. Communication bound (R + C < L). b. Computation
bound(R + C > L).

requests cannot be pipelined. Maximum utilization is always reached with 2 contexts. When
L=100 the processor is always communication bound and utilization is low. T, increases as
soon as there is more than 1 context per processor because either the thread is waiting for
other threads' requests to be issued and satisfied, or it is waiting for other threads to finish
executing.

This simple example shows that limiting memory bandwidth can seriously limit the effec-
tiveness of multiple contexts to tolerate latency related to local misses in the cache, and
can also cause a large increase in the runtime of a critical thread. In the case that memory
requests cannot be pipelined to a memory module, multiple contexts will provide very lim-
ited latency tolerance for local accesses. Note however that the multiple contexts will still
be useful in tolerating remote latencies since requests that have to go through the network
will typically be pipelined.

Pipelined Memory Systems

The large negative effect memory bandwidth can have on processor utilization and critical
thread execution time implies that in order to tolerate local misses using multiple contexts
there must be sufficient local bandwidth. This in turn implies the use of more complicated
memory systems, such as the use of interleaved memory banks in order to allow the pipelin-
ing of memory requests to a single memory module. Such a pipelined memory system is
characterized not only by its latency L, but also by its throughput or bandwidth. The
throughput determines how often the memory can accept a memory request. We define L,

0..

3.2. EFFECT OF MULTIPLE CONTEXTS ON THE CRITICAL PATH

A-A R= 4, L= 20
So-0 R=8, L=20
0-o R=16, L= 20

Sm- R=32, L= 20
So- R---64, L= 20

...... A R= 4, L=100
...... o R=8, L=100

o o R=16, L=100
-,m R=32, L=100

S...... o R--64, L=100
- K

.0. .- - -.0- 0.- - - 0

0 2 4 6 8 10 12 14 16 18 20 22 24 26
Contexts

a. Processor Utilization (U)

S-A R= 4, L= 20
o-o R= 8, L=20
o-0 R=16, L=20

S-3 R=32, L= 20
S-o R--64, L=20

.

...... R= 4, L=100

S...... o R=8, L=100
S...... o R=16, L=100

m...... R-32, L=100
o...... o R=-64, L=100

I I I I

0 2 4 6 8 10 12 14 16 18 20 22 24 26
Contexts

b. Critical Thread Runtime Ratio (TcTfcl)

Figure 3.6: U and Tc/Tz. assuming references cannot be pipelined, for different values of R
(4, 8, 16, 32, 64) and L (20, 100).

as the minimum number of cycles between memory requests. For instance, a 4-way inter-
leaved memory might have a latency L of 20 cycles, and a throughput of 1 request every 5
cycles (L, = 5). A non-pipelined system simply implies that L, = L and a fully pipelined
system implies that Lr = 1.

Given a finite memory bandwidth, we find that an application will be communication limited
if R+C < L, and will be computation limited if R+C > L,. Figure 3.7a and 3.7b show each
of these scenarios starting from an initial state in which there are no outstanding memory
requests. It is obvious that the equations for the processor utilization and the runtime of a
critical thread will be the same as equations 3.11 through 3.14 with L replaced by L,. Even
with a pipelined memory system the application can be limited by the memory bandwidth.

For the purposes of our simulations in later chapters, we will distinguish between the mem-
ory latency and the memory throughput or bandwidth, and we will explicitly take into
account the serialization of memory requests at each node. Assuming that the throughput
is sufficient, the memory latency tolerance properties of multiple contexts have a chance of
being effective.

0.5

0.4

0.3

0.2

0.1

0.0 | | | | | | | | | | |
L

-

-

CHAPTER 3. THREAD PRIORITIZATION

Execute Context Idle

1 2 3 1 2 3 1 2 3

Issue rate L
Lrl Lr2 Lr3 Lrl Lr2 Lr3 Lrl Lr2 Lr3

Latency Ll I< L1 i Li L
L2 < > - L2 L2 < LL3 L3 L3

1 2 3 1 2 3 1 2 3
b)

Issue rate U t M tU t1 t IM i 1:
Latency

L2 L > L2 LI L2L3 L3 L3

Figure 3.7: Multithreading in a single processor multiple-context system, assuming memory
requests can be pipelined at a rate of one request every Lr cycles with a latency of L. a.
Communication limited (R + C < L,). b. Computation limited (R + C > Lr).

3.2.7 Network Bandwidth Effects

To first order, the effect of limited network bandwidth is the same as the effect of limited
memory bandwidth. The network input and output port can only accept a message once
every Lr,,nt cycles, and once a message is sent, it requires a latency of L,,et for a response
to come back. In practice, the situation is more complicated.

First of all, the latency through the network is dependent on the traffic in the network, and
this depends on the activity of the other processing nodes. The next section discusses a
model that takes the network into account when calculating the network latency. Second,
there may be additional queuing delays at the remote processor's memory, especially if this
memory is not highly pipelined. This component of the latency depends on how busy the
remote memory module is. Third, the rate at which the network can accept messages or
the minimum number of cycles between message sends Lret is variable because there can
be contention for the outgoing network channel, that can delay the launching of a message.

Though the dependencies are more complicated, the implications are the same as for the
memory bandwidth. If there is insufficient network bandwidth, both U and T, suffer.

3.3. NETWORK AND CACHE EFFECTS

3.3 Network and Cache Effects

Section 3.2 looked at a first order model in which the parameters R and L were considered
to be independent of the number of contexts P. In fact, the average run length R decreases
with P, and the latency L increases with P. The run length R decreases because the cache
miss rate increases when more contexts use the same cache. The latency L increases because
with an increasing number of contexts the number of outstanding requests to the network
increases, thus increasing the network load and latency. This section first considers these
effects independently, and then incorporates them into the multiple-context model.

3.3.1 Network Model

We consider a packet-switched, direct interconnection network, of the k-ary n-cube class.
A model for the latency associated with such a network was derived by Agarwal [1] and
we use the model in the same way as he uses it to estimate the expected response time
for a multiple context processor [2]. This model assumes cut-through, dimension ordered
routing. It also assumes infinite buffering at the switch nodes, uniform traffic rates from all
the nodes, and uniformly distributed and independent message destinations. This model
gives the following expression for the average remote latency:

kdj kd) h+B+M-1 (3.15)(1 - p)

ir Bkd
p- 2 (3.16)

In these equations, M is the memory access time, B is the message size, h is the number of
network switch delays and depends on n, the network dimension, and k, the network radix,
p is the network channel utilization, kd is the average distance traveled by a message in a
given dimension, and ir is the per node message injection rate. The delay L is the sum of
the memory access time (M), the pipeline delay (B-1), and the h switch delays, h/2 hops
for the request and reply respectively. The per hop contention delay is a function of the
channel utilization p, the message length B, and the average distance in a dimension kd3 .

The average number of hops kd in any given dimension assuming bi-directional channels
with no end-around connections can be shown to be kd -k-/k =~ - . The expression for
the channel contention p assumes that there are separate channels in each direction, or 2n
channels per switch.

3 A slightly more accurate result includes an extra (1 + 1/n) factor to the per hop queuing delay. The
expression shown is the same approximation used in [2].

62 CHAPTER 3. THREAD PRIORITIZATION

The channel utilization is a function of the injection rate i,. The injection rate depends on
the number of.contexts and the regime of operation. Specifically, from Figure 3.1, ir in the
communication and computation limited regions is given by:

2P
ircom, = (3.17)R+L

2, Comp = (3.18)
R+C

The factor of two accounts for the fact that messages are generated both for requests and
for responses. The network delay without contention is defined as Lo = h + M + B - 1.
Using this expression, as well as kd = k/3 and h = 2nkd, we find two expressions for L
depending on whether the thread is communication bound or computation bound:

L= BPk R 1 + 2 k 3
Lcomm = + BPk + Lo - BPk +R)+ 8PB2n 1 - (3.19)

2 6 2 2V 3 3 k

2nB2(k 1)Lcomp = Lo + (3.20)C+R-Bk3

The expected latency for the parameters of Table 3.2 and different values of R are shown in
Figure 3.8. In the communication bound region, latency increases approximately linearly
with the number of contexts, and becomes constant if and when the computation bound
region is reached. As noted in other studies [46, 74], in the communication bound region
with a finite number of outstanding transactions per processor, there is feedback between
the network and the processor such that the message injection rate and latency do not
become unbounded. The more outstanding references per processor there are, the higher the
injection rate, the longer the latencies become, which in turn causes the message injection
rate to decrease. Latency per hop does not become unbounded as in studies which decouple
the injection rate from the network [22, 1], but rather reaches a steady state at which
the injection rate is equal to the network service rate. Johnson [46] shows that the per
hop latency tends to a limiting constant when the network becomes very large (kd -- o0).
Nemawarkar et al. [74] shows that the rate at which each processor sends messages increases
with P only as long as the network remains unsaturated.

Once the computation bound region is reached, the latency becomes constant since the in-
jection rate is constant. In practice, increasing the number of contexts beyond the minimum
required will cause R to decrease because of increased cache interference. This is discussed

3.3. NETWORK AND CACHE EFFECTS 63

002n

180
160

140

120

100

80

60

40

20

0

- o -.-o R=4
*-w R=8r I

- o.oR..o=16
A---a R-32

.3 .B . D .. f

leg~~~---~-------

0 1 2 3 4 5 6 7 8 9 10111213141516
Contxts

Figure 3.8: Predicted latency for different values of R (4, 8, 16, 32).

in more detail in the next section.

3.3.2 Cache Model

Intuitively, having multiple contexts will lead to decreased cache performance because the
cache will contain the working sets of multiple threads at once. The miss rate for each
thread will be larger than it would be if the thread were running with only its own working
set in the cache, resulting in lower values of R, and higher values of (I/1R). This means
there will be more context switches and a longer critical path.

Determining an analytical model for how multiple contexts will affect cache performance
is a tricky problem. Cache behavior is highly problem and machine dependent, and cache
miss rates vary widely depending on the cache size, the working set size, and data reference
pattern. A number of different models have been used to approximate these cache effects,
and found to be useful in predicting the effect of cache behavior.

Saavedra-Barrera et al. [81] use a simple approximation which divides the cache evenly
between the different contexts, and then uses results from the uniprocessor domain to
estimate the effect of multiple contexts. Specifically, they note that the cache miss rate m
can in general be approximated as m = AS-K where S is the cache size, and A and K are
positive constants that depend on the workload. Using this relationship, they show that the
miss rate for P contexts m(P), and the corresponding run length R(P) can be expressed as:

CHAPTER 3. THREAD PRIORITIZATION

m(P) = (3.21)
1 ifP > mi1/K

R(P) = (3.22)
1 ifP > [RI/K

m, and R 1 are the miss rate and the run length for a single context. Typical values of K
range from 0.2 to 0.5. Note that this model does not take into account data sharing between
processors that can result in misses due to invalidations.

Agarwal [2] does a more detailed analysis, and considers a breakdown of the miss rate
in terms of its different components. Specifically, the steady state miss rate consists of
the non-stationary component due to misses that bring blocks into the cache for the first
time, the intrinsic miss rate due to the size of the cache, the extrinsic interference due to
the multi-threading, and the invalidation miss rate due to coherence related invalidations.
Qualitatively, the model we use and Agarwal's models are similar. Both attempt to capture
the cache effects based on the problem characteristics, specifically working set size, cache
size, and data reference pattern. In the model we use, low values of K imply either a high
fixed miss rate, or a small working set size in Agarwal's model, resulting in small change in
the run length R with increasing P. Conversely, a large value of K implies a large intrinsic
miss rate and a large working set size. In Agarwal's model, the effects of fixed miss rate are
isolated from the effects of the intrinsic miss rate more clearly, rather than lumped together
into a single parameter.

3.3.3 Complete Model

The complete model incorporates the network model and the cache model into the basic
model of Section 3.2.4. Thus both the latency L and the runtime between context switches
R are now functions of the number of contexts P. For simplicity we will use the simple cache
model used by Saavedra-Barrera which gives the following expression for the runtime R:

R = R1 P-K (3.23)

The calculation is communication bound when (P - 1)RIP -K + PC < L, and computation
bound when (P - 1)R1P

-K + PC > L. Note that L depends on P and the network
as determined by the latency equations 3.19 and 3.20. Substituting equation 3.23 into
equations 3.1 and 3.2 we find the following equations for the processor utilization:

3.3. NETWORK AND CACHE EFFECTS

Parameter Description Value
M Memory latency 20 cycles
C Context switch time 5 cycles
B Message length 4
n Network dimension 3
k Network radix 8

Table 3.2: Baseline system parameters.

PR 1P - K

Ucomm = R 1P-K + Leomm

R 1 P - K

Ucomp = R 1P-K + C

(3.24)

(3.25)

Similarly, substituting into equations 3.4 and 3.6 we find the following equations corre-
sponding to the communication bound and the computation bound cases respectively:

Tccomm , (IcI(RP-K))(R1P- K + Lcomm)

Tc-comp / (Ic/(RP-K))P(RiP- K + C)

(3.26)

(3.27)

3.3.4 Discussion

Having developed a simple model for the effects of multiple contexts on both the processor
utilization and the critical path, we now look at the implications of this model. For this
purpose, we will use the parameters shown in Table 3.2.

Region of Operation

The first question of interest is whether the system is working in the communication or the
computation bound region. As we will show in Section 3.4, only in the computation bound
region are we able to influence the execution time of a critical thread. Figure 3.9 shows
curves that correspond to the work available for overlap minus the latency (P-1)R+PC-L.
Whenever the latency is smaller than the work available for overlap, the processor is in
the computation bound region, otherwise it is in the communication bound region. The

CHAPTER 3. THREAD PRIORITIZATION

1 500

400

300
200

100

-100

-200

n-0 , =---V

o-o R=•, K-2 ,o
w-w R6, K=0.5 "
o o R=16, K=O.0
- R=16, K=.2,e
r...... R=16, K=0.5 P
o---o R-32, K=O.O0
o -- - R=32, K=0.2 e'
r---rn R=32, K=0.5 - ..

--

.
0 1 2 3 4 5 6 7 8 9 10111213141516

Contextrs

Figure 3.9: Region of operation for different values of R (8, 16, 32) and K (0.0, 0.2, 0.5).
The curves plot (P - 1)R + PC - L which is just the work available to overlap with latency,
minus the latency. The processor is computation bound when the curve is above 0 and
communication bound when the curve is below 0.

curves are shown for different single processor run lengths, and different values of the cache
degradation index K.

For low values of R, the processor may never reach the computation bound region of oper-
ation due to the extra network traffic causing latency to increase at a faster rate than the
extra work available to each processor. The lower bound on R for which the computation
bound region is reached increases as the cache degradation factor increases. Thus when K
= 0.2, the R = 8 curve no longer reaches the computation bound region, and when K =
0.5, neither does the R = 16 case. Increasing K both reduces the average run length R, and
increases the network latency.

Processor Utilization

Figure 3.10a shows the processor utilization for different values of R and K. These curves
are much the same as the results found in [2, 81]. Initially utilization improves almost
linearly with the number of contexts, until it becomes computation bound at which point
adding more contexts decreases the utilization because of decreased cache and network
performance4 . It should be noted that except in the case that cache effects are very high
(K = 0.5), the processor utilization remains quite close to its maximum value even when

4Saavedra-Barrera et.al. [81] also identify the transition region where utilization increases, but at a less

than linear rate. This transition region is caused by variations in the run length R. In the transition region
the processor is sometimes compute bound if there is a series of long run lengths, and sometimes latency

Rd 00

3.3. NETWORK AND CACHE EFFECTS

S-se--ee-&ee-e-e o-.

S 0 00-0 R-8, K0.2a o- R=8, K-=O.O

o o R=18, K=0.0
o R=6, K=.2I ... *. R.16, K.O.5

0 ---o R= 3, K=0.0
0---o R=32, K=O.2

*--- R=32, K=O.5

I I I I I I I I I I I I

4

2

0
0 2 4 6 8 10 12 14 16 18 20 22 24 26

Conbxa
a. Processor Utlliztdon (U)

S -o o R=8, K=O.O
/ 0-0 R=8, K-0.2

' -- m R=8, K=0.5
S o o R=16, K=O.O

...... o R=16, K-0.2
i a R=16, K=0.5
,K p' -o---o R=32, K=O.0

00I 0 ---o R=32, K=0.2. ---a -R=32, K=0.5

X '. '.

i i i i i i i '

0 2 4 6 8 10 12 14 16 18 20 22 24 26
Conexts

b. Crtical Thread Runtine Redo (Tc/Tcl)

Figure 3.10: U and Tc/T 1 for different values of R (8, 16, 32) and K (0.0, 0.2, 0.5).

there are more contexts than required. This is because in the computation bound case, the
message injection rate remains relatively constant, and increases only slightly due to cache
performance degradation.

Critical Thread Runtime

Figure 3.18b shows the increase in the runtime of a critical thread with multiple contexts.
The runtime of a critical thread now increases more than just linearly with the number of
contexts as it did in the basic model. The decreased cache performance causes the critical
thread to cache miss more often, and the increased number of contexts causes the network
latency to increase.

3.3.5 Cache and Network Effects with Spin-Waiting and with Limited
Bandwidth

The cache and network effects can be incorporated into the spin-waiting models and band-
width limited models, with similar implications as when it is incorporated into the basic
model.

When there are threads spin-waiting, to first order the spinning threads do not generate any

limited if there is a series of short run lengths. Adding more contexts causes the processor to be more and
more in the computation bound region. With sufficient contexts it will be in this region with very high
probability.

1.0

Ul _/.V · · · · · · · · · · · · ·

CHAPTER 3. THREAD PRIORITIZATION

network traffic since they repeatedly hit in the cache. Also, aside from the synchronization
variable the spinning threads' working sets do not have to be in the cache. As a result,
the cache effects and the network effects will not be as significant as when all threads
are executing. With limited bandwidth, there is an additional constraint on the message
injection rate: the injection rate cannot exceed the maximum bandwidth of the memory
and network systems.

3.4 Thread Prioritization in the Multithreaded Model

In this section, we examine the effect of thread prioritization on the multithreading models
discussed in Sections 3.2 and 3.3. For the simple model, thread prioritization improves
the runtime of the critical thread by allowing it to proceed as soon as it is able, rather
than executing other ready threads. If spin-waiting is used, thread prioritization improves
both processor utilization and the runtime of a critical thread by avoiding unnecessarily
switching to threads when they are spinning. If the application is either memory or network
bandwidth limited, prioritizing the use of the available bandwidth also improves the runtime
of the critical thread.

The complete model shows that provided the processor reaches the computation limited
region, prioritizing threads appropriately can improve both processor utilization, and the
runtime of the critical thread. We can prioritize threads so as to avoid the negative cache
effects of having more contexts than needed to reach the computation limited region, thus
improving utilization. If a critical thread is given the highest priority, it will execute when-
ever it is able, and thus its runtime will improve.

3.4.1 Prioritizing Threads in the Basic Model

Consider the basic model of section 3.2.4. In the communication bound case, there is little
that can be done about reducing the critical path. In the computation bound case however,
the critical path is lengthened by the fact that there are more threads than necessary
to tolerate latency. If we are not restricted to round-robin scheduling, then the critical
thread could begin executing as soon as its memory request was satisfied. This is shown in
Figure 3.11. In Figure 3.11a we assume that scheduling is non-preemptive so that the critical
thread only resumes execution on the next context switch. In Figure 3.11b we assume that
scheduling is preemptive so that the currently executing thread is interrupted as soon as the
critical thread memory reference is satisfied. The expressions for the processor utilization
remain essentially the same as equations 3.1 and 3.2. Similarly, the expression for the
communication bound case, Tc..comm, is still given by equation 3.4. However, the runtime
for the critical thread in the compute bound case changes to:

3.4. THREAD PRIORITIZATION IN THE MULTITHREADED MODEL

Tccomp Ic + ((IR) - 1)(L + R/2 + C) with nonpreemptive scheduling

x (Ic/R)(3R/2 + L + C) (3.28)

Tc..Comp = Ic + ((1 0 /R) - 1)(L + C) with preemptive scheduling

M (I/R)(R + L + C) (3.29)

In the first case 5, the critical path is increased by an average amount of (Ic/R)(R/2+C) and
in the second case, (Ic/R)C. With the prioritized scheduling the increase in the runtime
of the critical thread no longer depends on the number of contexts executing as it does
with round-robin scheduling, but only on R and C. Note that the decision of whether it
is better to context switch immediately or whether it is better to wait until the currently
executing thread misses in the cache involves a tradeoff between processor utilization and
critical path length: switching immediately decreases the critical path length, but incurs
the cost of a premature and unnecessary context switch, whereas waiting until the next
cache miss increases the critical path length slightly, but does not incur the premature
context switch. Figure 3.12 shows Tc/Tcl when threads are prioritized and when they are
unprioritized assuming preemptive scheduling. Tl/T1I increases slightly when the processor
becomes computation bound, but does not increase linearly with P when prioritized.

3.4.2 Prioritizing Threads for Spin-Waiting Threads

Giving a critical thread high priority can also prevent it from being needlessly delayed
by spinning threads. This is illustrated in Figure 3.13, assuming preemptive scheduling
with an immediate context switch upon completion of the long latency reference. When
threads are prioritized the definition of when the processor is communication bound and
when it is computation bound changes because now the processor no longer needs to execute
any of the spinning threads before resuming execution of a critical thread. The processor is
communication bound when there are not enough non-spinning threads to keep the processor
busy ((P - P, - 1)R + (P - P,)C < L), and it is computation bound when there are enough
((P - Ps - 1)R + (P - P9)C > L). The resulting equations for the processor utilization and
the critical path assuming preemptive scheduling are:

5This expression is approximate, and valid when C << R. A more exact expression assumes that the
critical reference can become satisfied either during a context switch or while a thread is executing, and that
if it happens during a context switch, another context switch will be required in order to start executing the
critical thread. The expression in this case is (Ic/R) (R + L + R-(R/2 + C) + c-(R + 3C/2)).

CHAPTER 3. THREAD PRIORITIZATION

Execute Context IdleSwitch -

JL j1
L R/2+C
L R12+C

L C

Figure 3.11: Multithreading with thread prioritization in the computation bound case.
Thread 1 is the critical thread. a. Non-preemptive scheduling. b. Preemptive scheduling.

L.20

S-a R= 4, Upn
o-o R= 8, Upri
0-o R=16, Updn
s -)K R=32, Upd
o-o R=64, Upn
a R= 4, Prd
o o R=8, Prd
S...... o R=16, Prd

...... R=32, Prn
o o R=64, Prd

0 2 4 6 8 10 12 14 16 18 20 22 24 26
Contexts

a. Critical Thread Runtime Ratio (Tc/Tcl) with L-=20

L=100

S- a R= 4, Upri
o-o R= 8, Upri
o-o R=16, Upd
m -- R=32, Upn

-o R--64, Upd
A A R= 4, Pri
o o R=8, Pd
S...... o R=16, Pri
K R=32, Pr

o o R=64, Pn

0 2 4 6 8 10 12 14 16 18 20 22 24 26
Contexts

b. Critical Thread Runtime Ratio (&Tocl) with L100

Figure 3.12: Comparison of TI/Tel with prioritized (Pri) and unprioritized (Upri) scheduling
for different values of R (4, 8, 16, 32) and L (20, 100).

k-AI

..L .

&I ~ -----

3.4. THREAD PRIORITIZATION IN THE MULTITHREADED MODEL

(P - P,)R (3.30)Uomm, = (3.30)R+L+C

R
Ucomp = R C (3.31)R+C

Tccomm = Ic + ((Ic/R) - 1)(L + C)

, (10 /R)(R + L + C) (3.32)

Tc.comp = I + ((Ic/R) - 1)(L + C)

S(Ic/R)(R + L + C) (3.33)

Figure 3.13 makes the assumption that all threads that are not spinning have higher priority
than threads that are. This clearly cannot be the case indefinitely as the spinning threads
would never execute. The issue of how to prioritize threads in the context of this type
of synchronization depends on the application and we will look at a number of different
scenarios in later chapters.

Figures 3.14 and 3.15 plot U and Tc/TcI respectively, when threads are prioritized and
when they are unprioritized. When threads are prioritized, utilization does not fall off
due to spinning threads wasting cycles, but rather falls off only once the processor leaves
the computation bound region. Tc/TcI increases slightly even when threads are prioritized
due to the overhead of switching to the critical thread once its long latency reference is
satisfied, but does not increase linearly with the number of contexts as when threads are
not prioritized.

3.4.3 Prioritizing Bandwidth Utilization

In the case that memory or network bandwidth is the limiting factor, then prioritizing the
bandwidth utilization also helps the critical path. Figure 3.16 shows how in a bandwidth
limited situation the prioritization allows the most critical thread to proceed before less
critical threads. In this example thread 1 is critical and this thread's critical reference
will proceed as soon as the desired resource is available. Thread 2 and thread 3 have the
same priority and so they share equally whatever bandwidth remains. Note that though
the processor utilization remains unchanged, the runtime of the critical thread suffers much
less. Thus when L, 2 R + C, the expected value of the critical thread runtime given in

CHAPTER 3. THREAD PRIORITIZATION

SExecute
1

SSpin- ContextWait Switch - Idle

3 4

V-A
C Rs

R L C

Figure 3.13: Multithreading with thread prioritization assuming some threads are spin-
waiting. Thread 1 is the critical thread and preemptive scheduling is used. a. Com-
munication limited ((P - P, - 1)R + (P - P,)C < L). b. Computation limited
((P - Ps - 1)R + (P - P,)C > L).

0 2 4 6 8 10 12 14 16 18 20 22 24 26
Contexts that are spinning

a. Processor Utilization (U) with L=20

L=f10

A--A R= 4, Upd
o-o R= 8, Upn
0-0 R=16, Upn
m -- K R=32, Upd
o-o R--64, Upd
A...... R=4, Pn
o o R= 8, Pn
S...... o R=16, Pn

...... .R=32, Pn
o o R=64, Pn

0 2 4 6 8 10 12 14 16 18 20 22 24 26
Contexts that are spinning

b. Processor Utilization (U) with L-100

Figure 3.14: Comparison of U with prioritized (Pri) and unprioritized (Upri) scheduling
when threads are spin-waiting, for different values of R (4, 8, 16, 32, 64) and L (20, 100).
Assumes that there are 16 threads running and that an increasing number of these threads
are spin-waiting.

0: M= 0 1"MMOMM"" 0 0 = = = I I
"--2s

3.4. THREAD PRIORITIZATION IN THE MULTITHREADED MODEL 73

8.0

7.0
6.0

a 5.0

E 4.0

S3.0

2.0

1.0

0.0

S7.0
80

6.0

5.0

S4.0

3.0

2.0

1.0

nfn

L=100

- -A R= 4, Upn
o-o R= 8, Upri
o0- R=16, Upd
S-*W R=32, Upri
e-o R--64, Uptn
A R=4, Pr
o o R= 8, Pn
o o R=16, Pn
- R-=32, Pn
oo R--64, Pd

6-0%641 , i I I

0 2 4 6 8 10 12 14 16 18 20 22 24 26 0 2 4 6 8 10 12 14 16 18 20 22 24 26
Contexts Contexts

a. Critical Thread Runtime Ratio (Tc/Tcl) with Lm20 b. Critical Thread Runtime Ratio (Trlcl) with 1100

Figure 3.15: Comparison of TI/Tel with prioritized (Pri) and unprioritized (Upri) scheduling
when threads are spin-waiting, for different values of R (4, 8, 16, 32, 64) and L (20, 100).
Assumes that only one thread is running and all the other threads are spin-waiting.

equation 3.13 becomes:

Tc Ic + ((Ic/R) - 1)(L + Lr/2)
, (Ic/R)(R + L + Lr/2) (3.34)

This assumes that the critical thread has to wait L,/2 cycles before it can issue its memory
request. Although the runtime still suffers because the thread may have to wait until
the resource is next available, it no longer has to wait until all previous transactions are
processed. Tl/Tc1 is shown in Figure 3.17 for the case that L = L,.

3.4.4 Prioritizing Threads in the Complete Model

The effect of thread prioritization in the model that takes into account network and cache
effects depends on the exact details of how threads are prioritized. For instance, if only a
single thread has a high priority, and all the other threads have the same lower priority,
then as in the basic model the only thing that changes is the expression for the critical
thread runtime in the computation bound case. Specifically, equation 3.27 becomes one of

0.0

CHAPTER 3. THREAD PRIORITIZATION

Execute Context Idle

1 2 3 1

Issue rate
Lrl Lr2 Lrl Lr3 Lrl Lr2

Latency <_ _ < ->L1< L > L1 < > L1 L2L2 L3 L2

Figure 3.16: Multithreading with prioritization assuming
(L, > R + C). Thread 1 is the critical thread.

16.0
15.0
14.0
13.0
12.0
11.0
10.0
9.0
8.0
7.0
6.0
5.0
4.0
3.0
2.0
1.0
0.0

L--20

A-A R= 4, Upri
o-o R= 8, Upr
0-0 R=16, Uprn
)m-) R-32, Uprn

-0o R--64, Upi
S..... .A R= 4, Pri
o o R= 8, Pd
0o R=16, Pn

m...... R-32, Prn
o o RR=64, Prd

0 2 4 6 8 10 12 14 16 18 20 22 24 26
Contexts

b. Critical Thread Runtime Ratio (Tc/Tcl) with L.20

16.0
15.0
14.0
13.0
12.0
11.0
10.0
9.0
8.0
7.0
6.0
5.0
4.0
3.0
2.0
1.0
0.0

a bandwidth limited application

L=10W

A-A R= 4, Upn
o0-o R= 8,Upr
0-0 R=16, Upn
m- - R=32, Upd
o-o R=64, Upd
S...... A R=4, Pil

o o R= 8, P
o o R=16, Pd
m...... R=32, Pn
o o R=64, Pi

0 2 4 6 8 10 12 14 16 18 20 22 24 26
Contexts

b. Critical Thread Runtime Ratio (Tc/rTl) with L=100

Figure 3.17: Comparison of TI/Tel with prioritized (Pri) and unprioritized (Upri) scheduling
assuming references cannot be pipelined, for different values of R (4, 8, 16, 32, 64) and L
(20, 50).

3.4. THREAD PRIORITIZATION IN THE MULTITHREADED MODEL

the following depending on whether the scheduling is preemptive or not:

Tccomp ; (Ic/(RP-K))(3RP - KI/2 + Lcomp + C) with nonpreemptive scheduling (3.35)

Tc.comp (10 /(RP-K))(RIP- K + Lcomp + C) with preemptive scheduling (3.36)

Thus although the critical thread runtime is much better than it was without prioritization,
it is still affected by the number of messages in the network and by the negative cache
interference that occurs among all the contexts. By doing more detailed prioritization, it
is possible to minimize this effect by adaptively adjusting the number of contexts that are
running to the minimum necessary to tolerate latency. This is discussed in the next section.

Effect of Prioritization on Processor Utilization

In Figure 3.10 we saw that processor utilization suffers even when we are in the computa-
tion bound region, because of negative cache effects that occur with an increasing number
of contexts. These negative cache effects cause a decrease in the runtime between context
switches which in turn incurs more context switch overhead penalties, and causes increased
network traffic and latency. Ideally, we want to minimize the contexts that are actually run-
ning instructions to the number required to achieve the maximum utilization. Provided the
maximum utilization occurs when the processor is in the computation bound region, we can
prevent the degradation of processor utilization by prioritizing the threads appropriately.

To stabilize the utilization, each thread is given a unique priority. If there are P contexts
available, but only P, of them are necessary to reach the computation bound region, then
only the P, highest priority threads will be executing. This is because on a context switch
it is always the highest priority unblocked thread that executes. Thus cache performance
improves because less than the total number of threads are issuing instructions. According
to our simple cache model the miss rate will be m = mlP,-K rather than m = mlP -K
This prioritization of threads dynamically restricts the number of threads that are executing
to the minimum required to tolerate the observed latency. Note that when the number of
contexts actively executing instructions is limited to the minimum required, the average
latency L also decreases, since the run length R is longer and there is less network traffic.

The effect on processor utilization is shown in Figure 3.18. Provided the processor reaches
the computation bound region, the processor utilization stabilizes and remains constant
even with an increased number of contexts. If the thread does not reach the computation
bound region, then the prioritization will not prevent the utilization from falling off with
increasing contexts. In the case that we are communication limited it may be necessary to

CHAPTER 3. THREAD PRIORITIZATION

R=8 i

A-A

0-0

0 0m-Uo ao
m 3.

K= 0, Upn
K= 0, Uprd
K= 0, UpnI
K=0.0, Prn
K-0.2, Pni
K=0.5, Pdn

II I1 I11 * I I I

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0

Rw16

A-A K= 0, Upn
o - K= 0, Upd

Sm- K= 0, Upil
S...... A K=0.0, Pd
o o K--0.2, Pn

...... K=0.5, Ptn

0 2 4 6 8 10 12 14 16 18 20 22 24 26
Contexts

R=32

A-A K= 0, Updn
o-o K= 0, Upd

Sm- K= 0, Upd
S...... A K=O., Pri

o o K=0.2, Pri
...... K--0.5, Pni

I I I I I I I I I I I I

0 2 4 6 8 10 12 14 16 18 20 22 24 26
Contexts

c. Processor Utilization (U) with R=32

R=64

A-a K= 0, Upd
o-o K= 0, Upd
U-•- K=0, Upd
S...... K=0.0, Pdi

o o K=0.2, P
...... K--0.5, Pi

0 2 4 6 8 10 12 14 16 18 20 22 24 26
Contexts

d. Processor Utilization (U) with R=64

Figure 3.18: Comparison of U with prioritized (Pri) and unprioritized (Upri) scheduling
when loaded threads are uniquely prioritized, for different values of R (8, 16, 32, 64) and K
(0.0, 0.2, 0.5).

0 2 4 6 8 10 12 14 16 18 20 22 24 26
Contexts

a. Processor Utilization (U) with -=8 b. Processor Utilization (U) with R=16

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.00.0

I I I I I II I I I I I I

3.4. THREAD PRIORITIZATION IN THE MULTITHREADED MODEL

S1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0

- --N K= 0.5, Upn
...... Em K=0.5, Pri

I I I I I I I I

0 2 4 6 8 10 12 14 16
Contexts

Figure 3.19: Utilization with R=8, K=0.5, and C=10. The peak utilization occurs during
the communication limited region.

statically limit the number of contexts that are executing instructions in order to achieve
the maximum utilization.

The utilization achieved by prioritizing threads in the computation limited region is not
necessarily the maximum achievable utilization rate. Consider for instance the case that 2
contexts executing are just 1 cycle short of being in the computation limited region. Adding
an additional context may put the processor into the computation limited regime, but may
decrease the run length R of all the threads by more than 1 cycle. If the context switch
overhead C were 0, then this still improves utilization to be 100%, but if C is not 0, the
utilization will fall off. In general it is possible for the processor utilization to achieve its
peak in the communication limited region, and then have lower utilization when in the
computation bound region. An example of this is shown in Figure 3.19. The processor
only reaches the computation limited region with 11 contexts, and is in the communication
limited region before then. Reducing C, increasing R, and decreasing K will reduce this
effect since run lengths will suffer less with additional contexts, and C will present a smaller
overhead.

3.4.5 Effect of Prioritization on the Critical Thread Runtime

Figure 3.20 shows the effect on the critical thread runtime when context prioritization
is used. Only one thread is given high priority and all others are given equal priority.

CHAPTER 3. THREAD PRIORITIZATION

!

I
b

10

10

0 2 4 6 8 10 12 14 16 18 20 22 24 26
Contexts

a. Critical Thread Runtime Ratio (T/Tcl) with R=8

R=16

S-A K=O.O, Pni
o- o K=0.2, Pri

-m K--0.5, Pn
S...... A K=O.O, Pri

o o K=0.2, Pn
...... K=0.5, P

I I I I I I I I I I I I I

0 2 4 6 8 10 12 14 16 18 20 22 24 26
Contexts

b. Critical Thread Runtime Ratio (Tr/Tcl) with R=16

R=32

A -A K-O.O, Pit
o-o K-0.2, Pri

)m- K=O.5, Pit
S...... A K--O.O, Pi

o o K=0.2, Pdi
a...... K=0.5, Pri

14

12

10

I I I I I I I I I I

0 2 4 6 8 10 12 14 16 18 20 22 24 26
Contexts

c. Critical Thread Runtime Ratio (TcfTcl) with R=32

R=64

A-A K--O.O, Pd
o-o K-0.2, Pd
S-m K=0.5, Pd
S...... A K-O.O, P

o o K--.2, P
m...... K=0.5, Pd

I I I I I I I I I I I I I

0 2 4 6 8 10 12 14 16 18 20 22 24 26
Contexts

d. Critical Thread Runtime Ratio (Tc/Tcl) with R=64

Figure 3.20: Comparison of Tc/T 0 l with prioritized (Pri) and unprioritized (Upri) scheduling
when the critical thread is given high priority and all other threads equal priority, for
different values of R (8, 16, 32, 64) and K (0.0, 0.2, 0.5).

io

14

12

10

,,
r-

rL1

I E

I

I

I

I

I

3.5. LIMITS OF THE MODEL

All the cases in which the threads are computation bound benefit substantially from the
prioritization, whereas those that are communication bound do not.

3.5 Limits of the Model

The model described in this chapter is meant primarily to provide intuition about the
possible effects of thread prioritization, and makes a number of idealized assumptions.
These include:

1. Uniform run length R: In actuality the run length R is not a constant, and will vary
from a minimum value of 1 cycle to some maximum that is determined by the max-
imum number of cycles that one context can execute before releasing the pipeline.
Furthermore, some studies have shown that the effectiveness of multithreading in tol-
erating latency is negatively affected by clustered loads in which a rapid sequence
of closely spaced cache misses leads to very short run lengths, so many contexts are
stalled waiting for remote references. The practical consequence of this is that more
contexts are necessary to effectively tolerate latency. This situation is somewhat alle-
viated by allowing several memory references from a single context to be outstanding
at once because threads can run longer before context switching [13].

2. Divided cache assumption: The model assumes that the cache is divided evenly be-
tween all the available contexts, and does not consider the effects of the threads sharing
a cache. Negative cache effects are caused by the different contexts invalidating each
other's data in the cache. Positive cache effects are caused by threads having overlap-
ping working sets so that some data in the cache is used by several threads at once.
If these effects occur, they tend to change the K parameter in the cache model, thus
affecting the run length R. If there are positive cache effects, the average latency can
be reduced if threads prefetch data for each other into the cache.

3. Idealized working set behavior: We assume that the cache miss rate is governed by
the relationship m = ASK. Recent work by Rothberg, Singh, and Gupta [80] that
studies the cache performance based on working sets suggest that the performance
of the cache has a more step-like behavior. Specifically, for each thread there is a
hierarchy of working sets, and each time the cache becomes large enough to contain
another level of the hierarchy, cache performance increases in a step like fashion. For
instance if the number of contexts increases beyond the point where their first level
working sets all fit into the cache, the drop in cache performance can be substantially
larger than that suggested by the K parameter.

4. Uniform remote latencies: In the model all latencies are assumed to be equal. In fact,
latencies will vary from reference to reference based on locality, and on the type of
reference. For instance, a write operation may require invalidations to be sent and
acknowledged, adding substantially to the latency of the operation. Again this implies

CHAPTER 3. THREAD PRIORITIZATION

that the number of contexts required to tolerate latency will be different at different
points in the computation.

5. Constant number of messages per transaction: It was assumed that only a request
and reply message are required for each cache miss. Memory writes may require data
to be invalidated, thus requiring more than two messages per transaction. When more
than two messages are required the base latency increases as does the network traffic.

6. Uniform traffic: Real applications will not generate uniform traffic. This can lead
to two effects. First, there can be hot spots in the network, as well hot nodes that
are getting an undue portion of the memory references. This will tend to increase
the latency of remote references. Second, by exploiting locality the latency of remote
memory references can be reduced by reducing the number of hops that each mes-
sage must make. This reduces both the contention free latency Lo and the channel
utilization, and thus the contention delay. By reducing the latency, fewer contexts
are required to tolerate latency, and both the processor utilization and the effect of
multiple contexts on the critical path will be reduced.

The main effect of incorporating more realistic assumptions into the model is to cause
changes in the basic parameters associated with the model: the number of contexts required
to reach the computation bound region, the cache miss rate, and the latency. Some effects
cannot be accounted for in the model. For instance the possibility of step-like behavior in the
cache performance is best examined by simulation. Also, hot spots are highly application
dependent and usually have to be eliminated in the program in order to achieve good
performance.

3.6 Conclusions

The general conclusions to be drawn from the model described in this chapter are the
following:

1. When the processor is computation bound, that is, there are more than enough con-
texts to fully tolerate latency given the average run length R, then prioritization can
substantially improve the runtime of a critical thread. It can also improve proces-
sor utilization by dynamically restricting the number of contexts that are actually
executing to the minimum required to fully tolerate latency.

2. When the processor is communication bound, prioritization is ineffective in reducing
the run length of the critical path execution. In this case, the only way of reducing
it is to reduce the latency L, and increase the average run length R. The only ways
of doing this are to restrict the number of contexts, and to promote data sharing
between running threads so as to improve both cache and network performance.

3.6. CONCLUSIONS 81

3. When there are spin-waiting threads, thread prioritization can be used to minimize
the cycles consumed by spinning threads.

4. When the application is bandwidth limited, thread prioritization can be used to pri-
oritize the use of bandwidth and substantially improve the runtime of a critical thread
by giving it priority to the available bandwidth. It can dynamically restrict the num-
ber of contexts that are actually executing to the minimum number required to fully
utilize the bandwidth.

The behavior of real programs will be examined in more detail in the following chapters
where a number of benchmarks are run in a simulation environment. These experiments
confirm the general trends predicted by the model.

Chapter 4

Implementation

This chapter explores the different software and hardware alternatives that are available
for implementing the thread prioritization mechanisms. We look at the performance and
cost of these alternatives to justify the range of cost assumptions made in the following
chapters. We conclude that for loaded threads, prioritizing in hardware is best because
it allows extremely fast context selection on a context switch. For unloaded threads, a
software queuing structure is appropriate, since the frequency of thread swapping is much
lower than the frequency of context switching.

Sections 4.1 and 4.2 examine implementation issues related to loaded thread prioritization,
which include fast implementations of context prioritization, thread stalling based on data
availability, memory request prioritization, and preemptive scheduling. How we implement
context prioritization is crucial because it affects performance on every context switch and
on every change of priority. In the case of frequent context switches or frequent changes
in a thread's priority, both these operations must be extremely efficient. We show that a
simple hardware implementation can minimize the context selection time and the priority
change time, while software implementations can choose the next context efficiently but
make changing a thread's priority costly.

The memory system must also participate in the thread prioritization for it to be effective.
Thread stalling means stalling a thread while it is waiting for data to be returned. Thread
stalling is crucial to multiple-context scheduling because it allows other contexts to use
the pipeline. An alternative to stalling a thread is to have it poll regularly for the data,
but in a multiple context system this leads to contexts consuming cycles doing polling
operations when other contexts could be doing useful operations. To prioritize memory
requests, transaction buffers are used. Transaction buffers store and track the multiple
outstanding references coming from the different contexts. When several memory requests
that are waiting in transaction buffers require the same resource, the highest priority request
is issued.

4.1. CONTEXT PRIORITIZATION

Finally, we must decide whether scheduling is going to be preemptive or not. Preemptive
scheduling involves forcing a context switch to a higher priority thread if it becomes ready
to execute while a lower priority thread is executing. The performance impact of allowing
preemption depends on the cost of context switching. If the cost is low, forcing an extra
context switch may be better, whereas if the cost is high, it may be better to wait until the
executing thread wants to context switch.

Section 4.3 examines unloaded thread prioritization. Unloaded thread prioritization is done
by software and consequently has considerable flexibility. However, it can benefit from
a mechanism to preempt a lower priority loaded thread when a higher priority unloaded
thread becomes available.

4.1 Context Prioritization

Context prioritization has two costs: the cost of selecting the next context to run on a
hardware context switch or the context selection cost, and the cost of changing the priority
of a loaded thread or the priority change cost.

The context selection cost is added to the hardware context switch time to determine the
total context switch time. Context switches are frequent, so this cost must be low. The
impact of the priority change cost depends on how frequently thread priorities change.
In the case that it occurs frequently, the cost must be low, but if priorities only change
infrequently, then a higher cost is acceptable.

A number of alternatives for implementing both context selection and priority changing are
possible. The alternatives range from very high performance, hardware intensive solutions,
to lower performance and lower cost software solutions. These options are described below.

4.1.1 Hardware

In this implementation, each context has a priority register which contains the priority of
the loaded thread, and these values feed into a combinational comparator circuit that selects
the next context to schedule. A diagram of this logic is shown in figure 4.1. The comparator
logic takes as inputs the priorities of all the contexts, and for each context outputs a bit that
indicates whether the context has one of the highest priority loaded threads (implements a
MAX function). The round-robin selection logic takes these outputs as inputs and schedules
all the high priority threads in round-robin fashion.

A one bit slice of a 4-input MAX circuit is shown in figure 4.2. For an N-bit priority, N slices
are needed to implement the complete comparison. A MAX circuit for a 4-bit priority is
shown in figure 4.3. An output of the least significant bit is a 1 if the given context contains

CHAPTER 4. IMPLEMENTATION

Px = Priority of context x
Cx = Context select bit (1 = selected, 0 = unselected)

Comparator
Logic

CO

C1

C2

C3

Round-Robin
Selection

Logic

Next Context

Figure 4.1: Logic for selecting the next context on a context switch. The comparator logic
chooses all threads with the highest priority, and the round-robin selection logic chooses
among the highest priority threads.

a thread of the highest priority. The hardware cost of an individual bitslice grows as O(C),
where C is the number of contexts. Thus the size for the complete N-bit comparator is
O(NC). If a context is not loaded with a thread, the carry-in of the highest priority bit
for that context can be set to 0, thus guaranteeing that it will have lower priority than all
other contexts that are loaded.

For large N, this circuit will be slow due to the long carry-chain dependence and will
require several processor cycles to evaluate. An alternative is to use a tree of two-way
comparators rather than the single N-way comparator. The advantage of this is that the
this time can easily be reduced to time that is proportional to log(N)log(C) using carry-
select techniques [107] in each two-way comparator, and allowing comparisons to proceed
in parallel. This circuit is described in Appendix A.

Using this implementation it takes zero cycles to choose the next thread to execute on
a context switch since the circuit continuously outputs the next choice. A single cycle
is needed to change the priority of a loaded thread. The principal cost of this hardware
implementation is the cost of the priority registers, one 64-bit register for each context, and
the cost of the comparator. If we require fewer priority levels, then we can use smaller
registers.

PO

P1

P2

P3

11~

4.1. CONTEXT PRIORITIZATION

Figure 4.2: Bit slice of the MAX circuit for 4 contexts.

p33 p23 p13 p03 p32 p22 p12 p02 p31 p21 pll11 p01 p30 p20 pl0 p00

p3 p2 pl p0 p3 p2 pl p0 p3 p2 pl p0 p3 p2 pl pO
ci3 co3 ci3 co3 ci3 co3 ci3 co3
ci2 co2 ci2 co2 ci2 co2 c2 co2 Highest

Prioritycil col cil col Cil col cil ol Contexts

ciO coO ~ ciO coO ciO coO ciO coO

Figure 4.3: MAX circuit for 4 contexts with 4-bit priorities.

CHAPTER 4. IMPLEMENTATION

4.1.2 Software

It is possible to do both context selection and priority changing using software with min-
imal hardware support. A fault occurs on a cache miss, and the fault routine selects the
next context. The April processor uses a 6 cycle trap routine to do round-robin context
switching [5]. Waldspurger and Weihl [101] present one scheme for doing this which uses
dedicated registers in each context to contain a thread queue data structure which the pro-
cessor uses to do software context switching. Each context has its own registers, three of
which are used to store an IP, a pointer to the next context, and a Processor Status Word
(PSW). On a context switch, 4 to 6 cycles are required to set up the processor to point to
the next context's registers, load the PSW, and jump to the new thread's IP 1. These values
are kept in registers so that no memory data structures are being used. Although they
looked only at round-robin scheduling, they suggested adapting the scheme to implement
more complicated prioritized schemes.

A simple modification to the Waldspurger and Weihl scheme would chain loaded contexts
into priority groups. A typical context switch from one context in a group to another context
in a group would require just their simple 4 to 6 cycle context selection cost, or less if the IP
and PSW registers are duplicated for each context. The cost of changing a priority however
would be much higher, in the range of 10's of instructions, as it would require deleting
the thread from one group and putting it in another. In this scheme instructions would

only be running from threads with the highest priority, and threads with lower priority in
other contexts would be idle. One can imagine more complicated data structures, but more

complicated data structure will either consume more resources if stored in registers, or have
to be stored in memory resulting in slower context switching. Also, as we will discuss in

Section 4.2, incorporating thread stalling with this software approach is difficult.

4.1.3 Hardware/Software

To reduce the hardware cost, a combination of hardware and software can be used to

prioritize the contexts. Rather than maintaining a priority register for each context, the

runtime system maintains a software priority queue in memory, and uses a single hardware

context control register (HCCR). The hardware control register could consist of Clog2C bits,

log2C bits for each context, with each set of bits being a hardware priority for each loaded

thread. The software has the job of translating the N-bit software priorities into log2C bit
hardware priorities that maintain the same relative ordering of the loaded threads. The

hardware priorities of the contexts then determine which context to select on a context

switch using the same circuit as for the pure hardware case, except that a factor of N

less register and comparator area is needed.

1Their scheme aims at having a flexible number of contexts, and a flexible number of registers per context.

This is not our goal here, but the method of context switching is still applicable.

4.1. CONTEXT PRIORITIZATION

Alternative Context Selection Priority Change
Cost Cost

Hardware 0 cycles 1 cycle
Software 4-6 cycles O(C) cycles
Hardware/Software 0 cycles O(C) cycles

Table 4.1: Summary of context selection costs and priority change costs for
mentation schemes, assuming C contexts.

different imple-

Table 4.2: Summary of major hardware costs for the different implementation schemes,
assuming C contexts, and N-bit priority. Note that this is the extra hardware required to
do prioritization in addition to the extra hardware required for the multiple contexts.

In this scheme, the context selection time is zero cycles, just like the hardware schemes,
since the HCCR hardware does the selection. However, the priority changing time is a
function of the software that updates the hardware control register. Changing the priority
of a loaded thread requires changing its position in the software queue, and determining
the new HCCR. In the best case, an application might use a number of priority levels less
than or equal to the number of contexts. In the worst case, an application might use many
more priority levels than the number of contexts. Maintaining the relative priorities of the
different contexts on a thread priority change then becomes linear in the number of available
contexts.

Comparison of Alternatives

The relative performance and hardware costs for the different implementation alternatives
are shown in tables 4.1 and 4.2. The hardware alternatives are more attractive because they
offer high performance context selection and priority changing, for only a small incremental
increase in chip area.

The hardware alternative minimizes the number of cycles required for both context selection
and priority changing. The chip area cost of doing this is the area of the priority registers and
the comparator. Compared to the area cost of implementing a multiple-context processor
in the first place, this cost is low. If each context has 32 registers, then the extra priority

Alternative Approximate Hardware Costs

Hardware C priority registers of N bits
O(NC) comparator area

Software none
Hardware/Software hardware control register of Clog2C bits

O(Clog2C) comparator area

CHAPTER 4. IMPLEMENTATION

register represents a 3% increase in total register area, with the comparator area being
considerably smaller than this. Current processors devote between 1% and 5% of their area
to registers [38, 40]. Assuming that we devote 20% of the chip area to general registers
because of the increased number of contexts2, the extra area cost will be less than 1% of
the total chip area.

The hardware/software option is the next best option as it offers the same minimum context
switch time, at a considerably smaller area. The difficulty arises in translating a software
priority into a hardware priority that maintains the same relative priority of the loaded
threads. Experiments are required to determine the impact of the increased number of
cycles required to change a thread's priority.

Finally, the software option is the least appealing of the options. Both the context switch
cost and the cost of changing a threads priority are non-negligible. In particular, the
minimum of 4 to 6 cycles required to choose the next context actually doubles the cost of a
context switch when added to the nominal 5 cycle cost of draining the pipeline. This may
be alright if the latencies being tolerated are sufficiently long, but it will limit the ability
of the multiple-contexts to tolerate shorter latencies (to local memory for instance), and
further, the context selection cost can easily rise above this if we try to implement a more
sophisticated scheduling policy. For instance, if we wish to incorporate thread stalling,
the software now has to include a check to see whether a context is stalled or not before
scheduling it. Finally, although the software option has no special hardware costs, it may
require that certain registers be reserved to contain a scheduling data structure.

4.2 Memory System Prioritization

As discussed in Chapter 3, the memory system must also participate in the prioritization
process in order for prioritization to be effective. It does this in several ways. First, it stalls

and unstalls contexts depending on whether their memory reference has been satisfied or not.

Second, when bandwidth is limited and several contexts have memory references waiting to
be issued, the memory system issues the memory requests in highest priority order. Third,
we can optionally implement preemptive scheduling so that when a high priority thread is

unstalled the memory system will cause an interrupt and a context switch if a lower priority

thread is executing. This section describes a shared-memory system based on transaction

buffers that allows both of these functions to be performed in a straightforward manner.

2This is a pessimistic estimate since the area of a multi-ported register file is typically dominated by the

area requirements of implementing the multiple ports rather than by the extra storage cells [39].

4.2. MEMORY SYSTEM PRIORITIZATION

4.2.1 Transaction Buffer Implementation

Any system which allows multiple outstanding memory references requires a lock-up free
cache [56, 84, 92] that allows the cache to continue to accept new requests even if a memory
request misses in the cache. An essential component of such a system is some means of
tracking outstanding memory references. One way of doing this is by using transaction
buffers. When a miss in the cache occurs, an entry is made into one of the transaction
buffers that includes all the information necessary for completing the memory request: an
address, the type of request and other status bits, and space for data. When the requested
cache line arrives and a match is detected on one of the transaction buffers, the transaction
buffer controller completes the memory operation which may require storing data in the
transaction buffer, and updating the cache.

Figure 4.4 shows the transaction buffer scheme we implemented in our simulator. Each
context has a transaction buffer associated with it, and uses this transaction buffer to
satisfy its requests. Transaction buffers work as follows to satisfy a memory request:

1. Memory Request: when a context makes a request, it sends the request to both the
cache logic and the transaction buffer. The request is satisfied immediately if there is
a hit in the cache, or if the transaction buffer contains the valid data. Otherwise, an
entry is made in the transaction buffer.

2. Request Issue: the transaction buffer issues the memory request once the necessary
resource is available, and there are no other transaction buffers that have higher
priority requests. A request requires either the local memory system or the network
depending on whether the reference is a local or a remote reference. Note that if
several transaction buffers are waiting for the same cache line then the request will
only be issued once. The transaction buffer logic performs an associative match on
the address field in order to merge memory requests to the same cache line.

3. Request Completion: upon reception of a return message, the transaction buffers and
the cache are updated. The transaction buffer logic updates all the transaction buffers
that require the cache line with the appropriate status and data. The update occurs
as if each request executes sequentially on the cache line, and so the state of the cache
line can change. For instance one of the transaction buffers may execute a write,
and this would change the value of the cache line. The next transaction buffer could
then read this word. Once all the transaction buffers are updated, the cache line is
inserted into the cache so that further references to the cache line will be satisfied
from the cache. Note that the reference may or may not be successful depending on
the protocol message that is returned to the transaction buffer. For instance, one
protocol message simply says that any requests must be tried again because the cache
line is busy being written in another processor.

This scheme can also be extended to handle multiple outstanding references per context,
as well as software prefetching. To do this, additional transaction buffers are used that

CHAPTER 4. IMPLEMENTATION

Figure 4.4: Transaction buffer interface to the cache system, the memory system, and the
network interface.

4.2. MEMORY SYSTEM PRIORITIZATION

allow additional memory requests to be outstanding. In the case that multiple requests
from a single context are allowed, the transaction buffer must include information about
destination registers. If the memory request is a software prefetch, then the cache line is
simply stored in the cache and the transaction buffer does not store the data in its data
field.

Comparison to Alewife Transaction Buffers

Note that this transaction buffer scheme is different than the one implemented in the Alewife
system [58] from which we take our shared memory protocol. In the Alewife machine the
transaction buffers store a complete cache line that continues to participate in the cache
coherence protocol as if it were another line in the cache. In addition to keeping track of
multiple outstanding memory requests, the transaction buffers are used as an aid to avoid
memory thrashing problems, as a fully-associative cache, as a flush queue to local memory,
and as storage for prefetched data. Of particular importance is its role as a means of
avoiding thrashing problems that occur in their system [57]. Because they rely on polling in
which memory requests must be retried until they are satisfied, different thrashing situations
can arise in which data arrives at a node but is invalidated by cache conflicts before the
memory request can be re-issued to use the data. If this happens repeatedly, the processor
can be fatally livelocked. Using a combination of transaction buffers, disabling interrupts,
and selective locking, the polling scheme can be made to avoid these situations.

Our implementation avoids the thrashing problem by using a signaling approach. When
a cache line arrives at a processor, all transaction buffers that are waiting for this cache
line commit before the cache line is allowed to be invalidated. Thus forward progress is
guaranteed without having to disable context switching. Note that to implement atomic
operations such as Fetch-and-Add in this way, there must also be an ALU associated with
the transaction buffers.

Which type of implementation is better is not an issue that we deal with in this thesis. The
best approach would probably be a combination of using a small fully-associative cache as
a victim cache and prefetch storage, along with a mechanism that would avoid thrashing by
having memory requests commit when their cache line becomes available. We implemented
the signaling approach to simplify the modification of our simulator, and because modern
processors that use register scoreboards and allow multiple outstanding memory references
will necessarily use a signaling approach where values are returned directly into registers.
Finally, the effects of having such an associative store should be similar to increasing the
associativity of the main cache [47].

CHAPTER 4. IMPLEMENTATION

4.2.2 Thread Stalling

Threads are stalled to prevent them from being scheduled as long as they cannot make any
forward progress. It is more useful to run a thread which is of lower priority but is not
stalled, then to remain waiting for a higher priority thread to be able to make progress 3.

Stalling threads requires the tracking of which threads are waiting for references to be
satisfied, and which are not.

In the simplest case where each context has at most one outstanding memory reference and
a single transaction buffer associated with it, we implement stalling by disabling the context
on a miss, and re-enabling it when the memory reference is satisfied. We can also do this if
there are multiple outstanding references per context, but only a single primary reference
on which the context can stall. This might be the case if we are doing software prefetching:
each context may have several prefetch requests in transaction buffers, but only a single
primary memory request on which it can stall.

In this single primary outstanding reference case, it is possible to use either polling or
signaling in order to detect the completion of a memory request. With polling, each context
must re-issue a memory reference until it succeeds. The stalling and unstalling of a context
prevents a context from polling without the data having first been returned. The advantage
of polling is that only the context selection logic has to be modified, and not the processor
pipeline itself. Also, all the state of an unloaded thread is contained within the context
registers. Alternatively, a signaling approach can be used in which the processor does
not have to re-issue the memory request, but rather the data is returned directly to the
required register before the context is re-enabled. Kubiatowicz [58] points out a number of
the complications in implementing a signaling approach to context switching, including the
more complicated register file and pipeline design, and additional complication in dealing
with memory operations that may trap.

If multiple memory requests are allowed per context, then it is necessary to return data
directly to registers. Modern superscalar processors typically allow multiple outstanding
memory requests, and out of order issue and completion of memory requests. Such proces-
sors use a scoreboard to keep track of which registers are present and ready for use, and
which are still outstanding. If the processor tries to use a register that is not yet available
it stalls. When a memory request returns it is sent directly to the register which unstalls
the processor. Thus stalling is a very straightforward operation that puts very little burden
on the processor design. However, there are some additional complications as the transac-
tion buffer must keep track of the correct register to return data to, and control must be
provided to allow value to be inserted into the register file.

3This is generally true, but not always true. For instance if running the lower priority thread removes

some of the critical thread's data from the cache, overall performance can still suffer.

4.2. MEMORY SYSTEM PRIORITIZATION

Stalling and Context Selection

We can easily incorporate stalling into both the hardware context selection scheme, or the
hardware scheme with software support. This can be done with a very simple addition to the
logic of figure 4.3. We assume that for each context we have a thread presence bit indicating
whether the context is loaded with a thread, and stall bit that says whether thread can make
progress or not. The thread presence bit can be ORed with the complement of the stall
bit and this result can be used as an input to most significant carry-in of the MAX logic.
The output of the MAX becomes the highest priority contexts that have a loaded thread
and are not stalled. For the purposes of the next context selection, the currently executing
context should be considered stalled. This means that the context selection will not choose
the executing context on a context switch, and the fact that the stall bit has just been set
for the currently executing context does not have to propagate through the MAX circuit.
If all the contexts are stalled, we must disable the issuing of all instructions.

Implementing stalling in the purely software case is less straightforward because without
explicit hardware support, the software must check to see whether a thread is stalled or
not and this adds additional cycles to the context switching. Also, instead of switching
immediately to an unstalled thread, the software may have to run through several contexts
before it finds one that is unstalled.

4.2.3 Memory Request Prioritization

For prioritization to be effective the processor must issue memory requests in priority order
to both the local memory system, and to the network interface. The logic required to pri-
oritize the memory requests is the same as the logic required to prioritize context selection.
Whenever the local memory system is available the highest priority memory request requir-
ing the local memory system is issued, and whenever the network interface is available, the
processor issues the highest priority pending memory request in the transaction buffers.

Note that there is arbitration that is required for both the local memory system and the
network output resources. The local memory system must service requests coming from
the transaction buffers, as well as requests from the local cache (when a dirty line is being
written back for instance), and requests from remote nodes that come in from the network.
Similarly, the network interface must accept messages from the transaction buffers, the local
cache, the local memory system, as well as messages sent directly by the user.

Although the exact priority of access to these resources is an interesting issue, we have
defined the order somewhat arbitrarily. The local memory system gives first priority to
requests from the cache and from the network interface, and second priority to new requests
from the transaction buffer. The reasons for doing this are that we want to service already
issued requests before issuing new requests into the system, and we want to minimize the
backup of messages into the network. Similarly, the output network interface gives first

CHAPTER 4. IMPLEMENTATION

priority to the cache logic, the local memory system, and user messages, and second priority
to new requests from the transaction buffers. Independent of priority, any given request to
one of these resources will be delayed until the resource is free.

4.2.4 Preemptive Scheduling

Once stalling is introduced, one must decide whether scheduling will be preemptive or not.
Preemptive scheduling means that when a lower priority thread is executing and a higher
priority thread that is stalled becomes unstalled, then a context switch is forced even if there
is no cache miss or synchronization failure. In the non-preemptive case, the switch to the
higher priority thread will only occur on the next normal context switch. The preemptive
case minimizes the execution time of a potentially critical thread, but pays the cost of a
context switch. Also, the preemptive case requires that hardware be provided to force a
context switch when a higher priority thread becomes unstalled. The non-preemptive will
delay the execution of the higher priority thread until the next context switch.

Context switches usually occur frequently enough that this effect does not occur, and for
convenience reasons, our simulations used the non-preemptive approach. It should be noted
that the extra costs of the preemptive case are moot in architectures that provide cycle by
cycle context switching with instructions from different threads being interleaved on a cycle
by cycle basis, since all the mechanisms for preemptive scheduling are already in place.

4.3 Unloaded Thread Prioritization

A software priority queue prioritizes the unloaded threads. Thus there is considerable flex-
ibility in how this is implemented. Preemptive scheduling however requires some hardware
support in order to force a loaded thread to swap out when a higher priority thread becomes
available.

Preemption may be desirable when a new thread is created, and its priority is higher than
the priority of one of the loaded threads. Preemptive scheduling at the unloaded thread
level is different than in the loaded thread case. An interrupt must occur, and the context
with the lowest priority thread should run an interrupt routine that swaps its thread with
the higher priority thread. Whether preemptive scheduling is advantageous or not depends
on the particular situation. If all the loaded threads are long running threads, then it makes
sense to incur the overhead of a thread swap, and allow the more critical thread to proceed.
If on the other hand threads are short running, then a context will soon be free anyway,
perhaps in a shorter time then it takes to perform a thread swap, so that it is best to wait.

Implementing preemption in a multiple context processor is straightforward and can be
implemented as an asynchronous trap. The trap handler simply runs the code to swap the

4.4. SUMMARY

lowest priority thread with the new higher priority thread.

4.4 Summary

In this chapter, we looked at ways of implementing thread prioritization in a multiple-
context processor, both for loaded and unloaded threads, and show that it can done in a
straightforward manner.

The loaded thread prioritization must prioritize both the selection of contexts on a context
switch, and the memory requests going to the memory system. Simple hardware can im-
plement the context prioritization: one priority register per context and a multi-way MAX
circuit. Other schemes that use only software, or a combination of hardware and software
are also possible, but they increase the context selection time and/or the priority changing
time. All that is required to incorporate stalling into the hardware scheme is a bit indicating
if a context is still waiting for an outstanding memory request.

The memory system prioritization allows context stalling, prioritized memory requests, and
preemptive scheduling. Transaction buffers are used to issue and track memory requests.
When a context is waiting for a memory request it is stalled and cannot be chosen to execute.
When several requests are waiting in the transaction buffers to be issued, the highest priority
one is selected once the necessary resource is available using the same type of circuit that
is used to prioritize the context selection. When a memory transaction completes, the
corresponding context is unstalled. Preemptive scheduling can also be implemented by
having a trap generated when a higher priority thread becomes unstalled.

Finally, a software scheduler prioritizes unloaded threads and has considerable flexibility
in its implementation. Preemptive scheduling is done by forcing a trap when a thread is
created that has a higher priority than a currently loaded thread.

Chapter 5

Simulation Parameters and
Environment

In the next few chapters we discuss the results from simulation studies of how prioritization
affects performance of several different types of benchmarks. With these simulations we
accomplish two things: first, we show that the simple model of Chapter 3 correctly predicts
some of the important behavior that occurs in real programs, and we uncover effects that
occur in real programs but that were not brought out by the model due to the idealized
assumptions that were made. Second, we show that thread prioritization is a versatile
scheduling mechanism that can be used in many different ways to implement the scheduling
strategies that are appropriate for different types of problems.

In this chapter we list and discuss the important system assumptions and the parameters
that were varied in the studies, and we give an overview of the Proteus architectural sim-
ulator [15, 25] and the simulation methodology. The most important system parameters
are the multiple-context processor parameters, memory system parameters, and network
parameters. These parameters affect the extent to which latency can be tolerated, as well
as how much impact latency tolerance has on performance. Processor parameters include
the number of contexts, the hardware context switch time, the context selection time, and
the thread switch time. The number of contexts affects how much latency can be toler-
ated, whereas the hardware context switch time, the context selection time, and the thread
switch time are overhead components that can limit the effectiveness of multiple-context
processors as a latency tolerating mechanism. Memory system and network parameters
affect the latency of memory requests, and the bandwidth available to satisfy requests. A
shared memory protocol is used and this increases latency because the protocol can require
several messages to be sent and received before the data is available. The local memory
latency and bandwidth, as well as the network latency and bandwidth also have first order
effects on the latency of data requests.

The Proteus architectural simulator was modified to simulate a multiple-context multipro-

5.1. SYSTEM PARAMETERS

Parameter Typical Range
Number of Contexts - 1-16
Hardware Context Switch Time 5 cycles 1-10 cycles
Time to Unload Registers 32 cycles 4-200 cycles
Time to Reload Registers 32 cycles 4-200 cycles
Software Scheduling Cost 10 - 100 cycles
Cache Latency 1 cycle
Local Memory Latency 20 cycles 20-160 cycles
Memory Controller Throughput 4 cycles/request 4-20 cycles/request
Network Wire Delay 1 cycle
Network Switch Delay 1 cycle
Network Flit Size 16 bits
Network Interface Input Bandwidth 1 flit/cycle
Network Interface Output Bandwidth 1 flit/cycle

Table 5.1: Important system parameters.

cessor. It provides a reconfigurable high-level substrate on which to write applications and
measure system performance. To achieve reasonable simulation times, it makes certain
simplifying assumptions such as only simulating shared memory for certain important data
structures, and assuming that all instructions and stack references hit in the cache. The
applications express parallelism explicitly, and are written in C with language extensions
for concurrency.

5.1 System Parameters

As discussed in Chapter 1, the simulated system consists of a collection of multiple context
processors, connected with a high performance interconnection network. Throughout the
simulations we vary different system parameters to represent variations in the architecture
of the three main components of the machine: the processor datapath and pipeline, the
memory system, and the network architecture. We describe the important parameters
below, and summarize them in Table 5.1 along with the different values used throughout
the simulations.

CHAPTER 5. SIMULATION PARAMETERS AND ENVIRONMENT

5.1.1 Processor Parameters

Number of Contexts

The number of hardware contexts (register sets) is as key parameter. More contexts gen-
erally allow longer latencies to be tolerated and allows more flexibility in the scheduling.
At the same time, more contexts also require more hardware. In our simulations, we vary
the number of contexts from 1 to 16 contexts. Our simulations confirm previous results
that the optimal number of contexts varies depending on the application and the typical
latencies [105, 2, 81]. For the parameters we used, between 2 and 8 contexts typically gave
the best performance.

Hardware Context Switch Time

Hardware context switch time is the time from when one context is stalled due to a cache
miss or synchronization failure, to the time that a thread in another context begins ex-
ecution. For a block multithreaded processor with a conventional processor pipeline, the
minimum time to switch contexts is the time to drain the pipeline - all the instructions
following the stalled instruction are squashed. This cost increases if additional instructions
have to be executed to perform the context switch. For instance, to do context switching
in the April processor [5], a small trap routine executes to switch the registers being used
and save and restore status information.

With suitable modifications to the pipeline, specifically some way of saving the pipeline
state of any context that stalls, the context switch time can be reduced to zero cycles. This
requires significant redesign of the processor pipeline [63]. When a pipeline does dynamic
cycle by cycle interleaving of instructions, the context switch time is by definition zero
cycles. However, at the time of a stall there may be several instructions from the stalled
thread that are in the pipeline and need to be squashed, resulting in a larger than zero cycle
cost for the stall. Once again however, if we store the pipeline state of a context, the cost
of thread stalling can be zero cycles.

In our simulations, we consider a range of 1 to 10 cycles, with the typical cost being 5 cycles.
Experiments in which we vary the context switch time show that the context switch time
can have a large impact on performance when context switching is frequent, and latencies
are short. Thread prioritization reduces the impact of the higher context switch time by
reducing the number of unnecessary context switches.

5.1. SYSTEM PARAMETERS

Context Selection Time

In addition to the hardware context switch time, there is overhead associated with selecting
the next context to be scheduled. This cost can be 0 cycles if a simple hardware scheme is
used, or it can be several cycles if the processor must determine in software which context
is to be chosen next. Our simulations merge this cost with the cost of the hardware context
switch.

Thread Swap Time

The thread swap time is the time it takes to remove one thread from a hardware context, and
load another thread into that hardware context for execution. For a conventional processor,
this typically requires unloading the state of the context registers into memory and loading
the state of the new thread into the context before execution can begin or continue. It
also requires manipulating the software scheduling data structures to insert and delete the
threads.

For the purposes of our simulation, we consider a range of 4 to 200 cycles to save or
restore the registers during a thread swap, with a typical value of 32 cycles. A 200 cycle
save/restore time might occur if restoring the context causes several misses in the cache. A
4 cycle save/restore time is achievable with hardware techniques such as the Named-State
Register file [77], that dynamically manages a register file that is shared between all the
contexts, and only one or two special registers, such as the instruction pointer and a status
word, have to be explicitly saved.

The time to manipulate the software scheduling queue is explicitly accounted for in our
simulations by having software routines that do the queue manipulation. Depending on the
implementation, this cost typically ranges from about 10 to 100 instructions.

5.1.2 Memory System

Local and Global Shared Memory

For our simulations we assume a machine which has both local and global memory. Local
memory is only visible to the processor which owns it, whereas global memory is visible to all
processors. We assume support for global shared memory in the form of a directory-based
cache coherence protocol. The shared memory protocol used is an invalidation protocol
based on an early version of the protocol used in the Alewife machine [18] modified to
include transaction buffers as described in the previous chapter. This protocol provides a
sequentially consistent view of memory. Conceptually, the hardware used to support the
shared memory is in the form of a cache controller, and a memory controller. The cache

CHAPTER 5. SIMULATION PARAMETERS AND ENVIRONMENT

controller handles all protocol requests which require action in the local processor cache,
whereas the memory controller handles all protocol messages which require action in the
local processor memory, including the management of the directory information.

A current limitation of the simulator as it is currently implemented is that it only al-
lows a single outstanding unsatisfied reference per context. Allowing multiple outstanding
references per context would have several effects: first, it would improve single thread per-
formance since references from one thread can proceed in parallel. Second, it would allow
fewer contexts to tolerate a given amount of latency by increasing run lengths between
context switches, and reducing the number of contexts required to fully utilize the available
memory bandwidth. This limitation leads to a worst case scenario for multithreading as a
latency tolerance mechanism and for any given latency we find that a higher number of con-
texts is required to tolerate latency. The effect of allowing multiple references per context
can be approximated by reducing the average latency so that fewer threads are required to
tolerate latency.

Cache and Memory Latencies

The base cache latency is 1 cycle in the case of a hit, and the base memory latency is 20
cycles in the case that the data is in local shared memory, and no shared memory protocol
messages have to be sent. This 20 cycle latency corresponds roughly to a processor cycle
time of 5ns and a memory system access time of 100ns which is a reasonable baseline given
current technology [93]. Technology trends indicate that this difference between processor
speed and memory speed will further increase over the coming years [43].

The latency of any given memory reference is different depending on whether the data is
in the cache, is not in the cache but is in local memory, or is not in the cache or the local
memory but on remote node. The memory reference time is also affected by the cache
coherence protocol, which may send out several messages per memory transaction, and
possibly have to wait for reply messages. Thus, in addition to the base cache and memory
latencies, the latency of a memory reference also depends on the performance of the network
and the network interface.

We will vary the memory latency between 20 and 160 cycles to simulate longer memory
latencies due to differences in processor and DRAM speed, and to simulate the long latencies
that occur when data is on a remote node.

Memory Controller Throughput

Another important parameter is the memory bandwidth associated with each node. In
our simulations this is modeled as the memory controller throughput, or the rate at which
the memory controller can handle incoming protocol messages. Specifically, although the

100

5.1. SYSTEM PARAMETERS

local memory latency may be L cycles, the memory system of each node may be able to
accept requests more frequently, say every B cycles, thus pipelining the memory requests so
that L/B memory requests can potentially be outstanding at any given time. Pipelining of
memory requests in this fashion can be accomplished by having interleaved memory banks.
Note that in order for multiple contexts to be efficient in tolerating latency, it is essential
to have sufficient memory bandwidth.

In our simulations the bandwidth is varied from a maximum possible local bandwidth of 1
word per cycle or 4 cycles per request for a 4 word cache line, to a minimum bandwidth of
1/5 words per cycle or 20 cycles per request.

5.1.3 Network Architecture

The nodes are assumed to be connected by a low latency, k-ary N-cube network that uses
wormhole routing [24]. The network interface consists of a network output interface and a
network input interface.

Network Flit Size

A flit is the unit of flow control in the network. In our simulations this is 16 bits or half a
word.

Network Latencies

Associated with the network are a switch delay and a wire delay. The switch delay is the
time for a single flit to be routed through the network switch located at each network node.
The wire delay is the time for a single flit to cross from one network node to the other. Our
simulations assume a switch and wire delay of 1 cycle.

Network Interface

Although the shared memory view of the machine provides ease of use and programming,
it is often convenient to have direct access to the network interface in order to be able to
pass information directly via messages. Recent work has shown the benefits of having both
shared memory and message passing [54]. Specifically, if the data communication pattern
is known, explicit message passing can be used to bypass the shared memory interface
and protocol and thus optimize communication. Thus our simulations also assume direct
message passing capability, and this capability is used in a number of the benchmarks.

101

CHAPTER 5. SIMULATION PARAMETERS AND ENVIRONMENT

The network interface consists of both a network output interface and a network input inter-
face both of which are tightly coupled to the processor and memory systems. Conceptually,
the processor does a message send by assembling a message then doing an atomic SEND
operation. Depending on the implementation, the message can either be assembled directly
in registers, or can be assembled by writing special memory mapped registers. Thus the
cost of sending a message is just the cost of assembling the message arguments. The shared
memory controller and cache controller access the network in similar fashion. The output
network interface bandwidth is limited to 1 flit per cycle, which is the same as the network
channel bandwidth. Messages coming from the cache controller, the memory controller, and
the processor are queued and serviced in a first come, first serve manner.

The network input is the more complicated part of the network interface because of its
interaction with the thread scheduling. The handling of a message which arrives at a
processor must be scheduled along with the threads that currently exist on the processor.
We assume that the response to messages is interrupt driven, and is in the style of active
messages [100]. This means that when a message arrives it generates a processor interrupt,
and runs a message handler which is guaranteed to run to completion in a short period of
time. In particular, a message handler can generate and schedule a new thread.

We assume that the cost of an interrupt is the same as the cost of a hardware context
switch.

5.2 Simulation Methodology

5.2.1 The Proteus Architectural Simulator

Proteus [15, 25] is a high-performance simulator for MIMD computer architectures. It
allows architectural parameters such as the network and the memory system to be varied.
Programs are written in C with language extensions for concurrency, and simulator calls
that support non-local interactions between processors including shared-memory operations,
spinlock operations, inter-processor interrupts, and message passing. Proteus is written in
a modular fashion so that certain components such as the network simulator or thread
scheduler can be easily modified in order to perform architectural studies. Proteus also
has a flexible accounting system that allows the user to modify the costs associated with
different functions.

At the software level, Proteus estimates the software cost of the parallel code by compiling
it down to SPARC code. This code is run during simulation as if the multiprocessor node
were an actual SPARC processor and the simulator keeps track of the number of cycles
required to execute the code. It is also possible to change the cost of the code explicitly by
adding or subtracting cycles from it. Proteus also provides a number of nice features for
debugging applications, and collecting statistics.

102

5.2. SIMULATION METHODOLOGY

Memory Modeling

One of the simplifying assumptions that occurs in order to make the shared memory sim-
ulation tractable is to only simulate memory references to data items that are explicitly
declared as being shared. Thus references to important shared data structures will be simu-
lated, but instructions references and stack references are local references and are assumed
to hit in the cache. This approach is reasonable since instruction cache hit rates are typi-
cally very high, as are hit rates on scalar data and stack variables. Cache performance is
typically most affected references to large program data structures. To compensate for the
fact that all the data accesses are not explicitly being simulated, the size of the cache is
reduced.

Proteus Modifications

A number of changes were made to Proteus to reflect the architectural features and assump-
tions, as well as to correct certain deficiencies of the basic simulator. The most important
changes are listed below:

* Multiple Contexts: We extended Proteus to simulate multiple hardware contexts, and
to allow the changing of different costs associated with hardware context switching
and thread swapping.

* System Routines: We replaced various system routines, specifically the routines that
have to do with thread creation, thread deletion, thread suspending, and thread
scheduling. We also wrote various system fault routines such as the fine-grain syn-
chronization fault routines.

* Memory System: We changed the shared memory simulation to simulate a more re-
alistic shared memory implementation1 . We also implemented set-associative caching
in the context of the directory based shared memory protocol, and implemented a
mechanism for stalling contexts based on data availability. We introduced memory
transaction buffers to hold the outstanding memory request from the multiple con-
texts.

* Network Interfaces: We modified the network interface to reflect the cost of sending a
message, and the limited network output bandwidth available to each processor. We
also made modifications to cause an interrupt only once a message has completely
arrived.

* Instrumentation: We wrote code to measure a variety of interesting parameters such
as the number of hits and misses over a given time period.

1Thanks to Kirk Johnson for providing us with his version of Proteus which reflected the costs associated
with the Alewife shared memory implementation.

103

CHAPTER 5. SIMULATION PARAMETERS AND ENVIRONMENT

5.2.2 Application Assumptions

This thesis discusses small applications that illustrate a variety of problem characteristics,
and their interaction with thread scheduling. Specifically, the benchmarks used are meant to
reflect the importance of synchronization performance, critical path scheduling, cache per-
formance, and the interaction of thread scheduling with interprocessor interrupt scheduling.
Each benchmark will be described in the chapter in which it is first used.

In all the applications, the user explicitly generates parallelism by spawning threads. Each
thread is allocated storage that it uses as its stack space to do function calls. The appli-
cations use coarse-grained threads, where the thread runs many hundreds or thousands of
instructions. This reduces the overhead that comes with the spawning and the destroying
of threads.

The synchronization between threads is also explicit and we explore a variety of implemen-
tations of locks, barriers, join counters, and fine grain synchronization using Full/Empty
bits. Although the threads are coarse-grain in the sense that each thread executes a large
number of instructions, they can be fine-grain in the sense that they require frequent access
to remote data, and synchronization with remote threads.

104

Chapter 6

Synchronization Scheduling

In this chapter we show how assigning a priority to threads in a multithreaded computation
can improve the performance of synchronization primitives by reducing the number of cy-
cles wasted in spin-waiting, and by preventing spinning threads from slowing down critical
threads. Tolerating synchronization latencies is a critical issue since synchronization laten-
cies have the potential to be much longer than simple remote references. Multithreading is
the only latency tolerance mechanism that is effective in tolerating these latencies.

Three synthetic synchronization benchmarks are examined: a Test-and-Test-and-Set (TTSET)
lock benchmark, a combining tree barrier benchmark, and a queue lock benchmark. In most
cases spinning is used as a way of implementing synchronization primitives, but multiple
context versions suffer from the problem identified in Chapter 3: spinning threads consume
processor resources and delay critical threads.

The results show that by correctly prioritizing threads, synchronization performance is sub-
stantially improved. Using the priority to determine which threads are loaded improves
runtime performance the most. With exactly prioritized threads, performance improve-
ments ranged up to 66% with 4 threads per processor, and up to 91% with 16 threads per
processor. Using the priority to choose among loaded threads is also important, in some
cases with runtime improvements up to 20% with just 4 contexts, and improvements of up
to 83% for 16 contexts. Unprioritized scheduling shows much higher sensitivity to changes
in the thread swap time and the context switch time because many more unnecessary thread
swaps and context switches take place than when threads are prioritized.

105

CHAPTER 6. SYNCHRONIZATION SCHEDULING

6.1 Synchronization Scheduling

6.1.1 Synchronization Scenarios

For each benchmark in this chapter, three different scenarios are considered:

1. SINGLE: There are several threads, but there is only one context so that only a
single thread is loaded at a time.

2. ALL: There are sufficient contexts so that all threads created can be loaded. We use
16 contexts in our simulations.

3. LIMITED: There are several contexts, but there are potentially more threads than
contexts so that only a limited number of the available threads are loaded. We use 4
contexts in our simulations.

Each of these situations represents a different part of the scheduling space. The SINGLE
and LIMITED cases represent situations in which not all threads can be loaded at the
same time. These cases can arise in the context of data dependent thread spawning, runtime
dynamic partitioning, or in a multiprogramming environment. The ALL case is balanced
in the sense that all threads can be loaded at once. The SINGLE case illustrates how the
thread scheduler must keep the critical thread loaded and avoid unnecessary thread swaps
to achieve good performance. The ALL case illustrates how the thread scheduler must
also avoid unnecessary context switches for good performance. Finally, in the LIMITED
case the thread scheduler must both keep the critical thread loaded in a context, and avoid
unnecessary context switches.

6.1.2 Synchronization Scheduling Strategies

A number of different scheduling strategies are possible when considering how to deal with
a failed synchronization test. The effect of spinning versus blocking has been studied in the
context of shared memory multiprocessors [48, 67], where blocking means suspending the
thread by swapping it out of its context and waking it up at a later time. These studies
have shown that it is possible to use competitive waiting algorithms in which on a failed
synchronization a thread first spends some fixed time spinning, and only swaps threads
after this spinning time has elapsed. For instance it is easy to show that if a thread first
spins for the amount of time it would take to block before swapping, then the cost of this
competitive strategy is no more than two times the cost of the optimal choice of swapping or
spinning. With multiple contexts it is also possible to switch-spin [67] rather than just spin
while using these 2-phase strategies. Switch-spinning means context switching and running
round-robin though all the other available contexts, potentially doing useful work rather

106

6.2. TEST-AND-TESTANDSET

than just spinning. All these strategies are heuristics that use only limited information
about the problem in order to decide what combination of spinning and blocking is best to
adopt.

Our approach to determining what synchronization strategy should be adopted is to use
extra information about the situation of the threads. A priority associated with each thread
gives a clue as to whether the thread should swap, or whether it should spin. The priority
is more useful with multiple hardware contexts where there are more choices than just
spinning or swapping: the processor can spin, it can do a context switch, it can swap, or it
can do both a swap and a context switch. The priority associated with each thread helps
make the correct decision.

The following sections describe different synchronization benchmarks that illustrate different
aspects of the synchronization scheduling problem, and show how prioritization can be used
to help make scheduling decisions. These benchmarks are shown in increasing order of
complexity. The Test-and-Test and-Set benchmark shows how prioritization can be used
to prevent a thread owning a lock from being descheduled before it has released the lock.
The barrier synchronization benchmark shows how prioritization can be used to identify a
critical thread on a given processor and devote all processor resources to this critical thread.
The final benchmark, a queue lock benchmark, shows how thread prioritization can be used
to guarantee not only that a thread will not be descheduled when it owns a lock, but also
will cause critical threads to be ready and waiting to accept the lock when it is released. In
all cases the thread prioritization is used to minimize the number of unnecessary context
switches and thread swaps.

6.2 Test-and-Test _andSet

Mutual exclusion is a means of ensuring that only one processor at a time is accessing
shared data. In shared memory multiprocessors, this is often implemented using spin locks,
in which threads wait for access to the lock by spinning on a variable waiting for it to be
changed to a certain value. Once this value changes, the thread can acquire the lock. Mellor-
Crummy and Scott [71] give a good overview of different mutual exclusion algorithms and
of other spin lock studies [36, 8]. This section considers the simple Test-and-Test..andSet
(TTSET) lock. Section 6.4 considers a more complex queue lock.

TTSET is a reasonable way of guaranteeing mutual exclusion in the case that there are
only a few processors trying to synchronize and the contention is low. Each processor
trying to acquire the lock first polls the synchronization variable until it becomes true (The
Test portion of Test-and-Test.and-Set). When the lock is released and becomes true, the
processor executes a Test.and_Set operation. If this operation succeeds the lock is set to
false and the thread has successfully acquired the lock, otherwise the thread must go back
to the polling phase.

107

CHAPTER 6. SYNCHRONIZATION SCHEDULING

To benchmark TTSET mutual exclusion, a synthetic benchmark was run on Proteus. A
number of threads are created on each processor, and these threads all try to acquire a
single lock. Once the thread acquires the lock, it runs a critical section, releases the lock,
and then runs a non-critical section before attempting to re-acquire the lock again. With
multiple contexts, after each failed Test a context switch takes place. The length of the
critical section is fixed, and the length of the non-critical section is based on a uniformly
distributed random variable. Two cases are considered: a high contention case in which
the non-critical section is short, and a low contention case in which the non-critical section
is relatively long. In this test threads swap out of the hardware contexts at the end of
an operating system (OS) quantum, and unloaded threads swap in This OS quantum can
be considered as an OS scheduling quantum in a multi-programming system, or a slicing
quantum that is used to guarantee some scheduling fairness for the threads of a single
application. The evaluation criterion chosen is the number of times the lock is acquired in
a fixed time interval.

The test was run with just 4 processors, since TTSET mutual exclusion is most appropriate
for a small number of processors. The quantum was chosen to be 10000 cycles, and the
measurements were taken over a 107 cycle period. The critical section is approximately 100
cycles long when run to completion without context switching, but two potential context
switches are forced during its execution to simulate a cache miss. If the critical thread does
do a context switch while it is executing this section, then the time from when a thread
acquires a lock and then attempts to release it can be much longer than 100 cycles. For
the high contention case the length of the non-critical section varies from 50 to 150 cycles
with a uniform distribution, and for the low contention case the non-critical section varies
from 500 to 1500 cycles with a uniform distribution. While a thread runs a context switch
is forced approximately every 40 cycles, again to simulate a cache miss.

The following variations on the TTSET benchmark are run:

* Unprioritized: Threads all have the same priority. A thread context switches every
time there is a miss in the cache even if the critical section is being run. A context
switch also occurs every time the polling Test fails. Even if the thread owns the lock
the scheduler can swap it out at the end of a quantum.

* Prioritized: When a thread is spinning waiting for the acquisition of the lock (in the
Test part of Test-and-Test andSet), it has low priority. Once the Test succeeds, then
the thread becomes high priority for the Test-andSet operation. If the Test.andSet
succeeds, then the thread maintains its high priority until it has finished executing its
critical section and released lock, after which it reduces its priority before executing
its non-critical section. If the Test.andSet fails, then the thread again makes itself
low priority before returning to the Test phase. If a thread has high priority at the
expiration of a quantum, the scheduler will not swap it out.

108

6.2. TEST-AND-TEST.ANDSET

6.2.1 Results

Figure 6.1 shows the total number of lock acquisitions for the three scenarios SINGLE,
ALL, and LIMITED with a varying number of threads. For each case two sets of curves
are shown, one for the high contention case, and the other for the low contention case.
Figures 6.2 and 6.3 show the sensitivity of the benchmark to the thread swap time and the
context switch time respectively.

Results show that thread prioritization improves performance in the TTSET lock by re-
ducing the amount of time spent executing the critical section, and by preventing a thread
from swapping out if it owns the lock. We find further that performance of the lock is not
sensitive to thread save/restore time, because thread swaps are done infrequently, when an
OS quantum expires. Performance is sensitive to context switch time, particularly in the
unprioritized case with many threads, because it contributes directly to the run length of
the critical section. These results are discussed in detail below.

SINGLE

In the SINGLE scenario, performance falls off dramatically in the unprioritized case as
the number of threads increases. This is because a thread owning the lock often swaps out
on a quantum expiration. Before the thread owning the lock can run again and release the
lock, all the other threads on the processor swap in and run ineffectually for one quantum.
Performance drops slightly faster in the high contention case because the thread owning the
lock is more likely to swap out due to higher contention, and when the thread owning the
lock swaps out the other threads have less work to do.

When threads are prioritized, a thread never swaps out when it owns a lock, and as a result
the performance remains relatively constant for an increased number of threads, both in the
high and the low contention cases. If we consider the runtime required to acquire a certain
number of locks, for 4 threads per processor the prioritized case has 66% and 47% better
runtime performance than the unprioritized case, in the high contention and low contention
cases respectively. If the number of threads increases to 16, these numbers increase to 91%
and 82% respectively.

ALL

In the ALL scenario, performance again falls off with increasing number of threads when
the threads are unprioritized, and remains approximately constant when the threads are
prioritized. The poor performance of the unprioritized case is due principally to the increase
in the amount of time a thread spends running its non-critical section. A thread spends
more time in its non-critical section because it context switches due to the simulated cache

109

CHAPTER 6. SYNCHRONIZATION SCHEDULING

o-o U, HC
o o U, LC
o-o P, HC
So...... o P, LC

30000

25000

p 20000

S15000

10000

5000

0 1 2 3 4 5 6 7 8 9 10111213141516
Threads per Proceassor

c. SINGLE

o o U, LC
o-o P, HC
o P, LC

I I I I I I I I I I I

0 1 2 3 4 5 6 7 8 9 10111213141516
Threads per Processor

b. ALL

30000

25000

20000

S15000

10000

5000 0 0 P, LC

I I I I III I I I I I I I

0 1 2 3 4 5 6 7 8 9 10111213141516
Threads per Processor

c. LIMITED

Figure 6.1: TTSET lock acquisitions. Unprioritized (U) and Prioritized (P) cases are shown
with both High Contention (HC) and Low Contention (LC).

110

30000

25000

S20000

15000

10000

5000

IIIIIII

F-

1-

E-

6.2. TEST-AND-TEST.ANDSET

miss, and the processor must run through all the other contexts before again executing
the thread that is in the critical section. Performance falls off slightly faster in the low
contention case than in the high contention case because the non-critical threads are more
often executing their non-critical sections as opposed to just spinning. A thread executing
its non-critical section occupies the pipeline for a longer period of time than a thread that
is just spinning, causing it to take longer for the critical thread to resume execution.

Prioritizing the threads solves the problem. A context switch occurs only if there is a thread
with higher or equal priority than the one that is currently running in one of the other con-
texts. Thus the thread will not context switch while running a critical section. Performance
remains approximately constant for 1 to 16 threads per processor. Again considering the
time required to acquire a certain number of locks, for 4 threads per processor the priori-
tized case has 11% and 19% better runtime performance than the unprioritized case, in the
high contention and low contention cases respectively. If the number of threads increases
to 16, these numbers increase to 58% and 62% respectively.

LIMITED

When a quantum expires in the LIMITED scenario, as many of the loaded threads as
possible swap with unloaded threads in the software queue. If there are no unloaded threads
available then nothing occurs, and if there are at least 4 unloaded threads then all the
loaded threads can potentially swap out. Thus the LIMITED scenario is similar to the
ALL scenario when there are 4 threads or less per processor because the thread owning the
lock never swaps out, and it is similar to the SINGLE scenario when there are more than 4
threads because the thread owning the lock can swap out on a quantum. Note however that
if a thread that owns the lock swaps out, it takes fewer quanta than in the SINGLE case
for it to swap back in because the threads swap in and out 4 threads at a time. Thus for
16 threads per processor, the prioritized case has 71% and 73% better runtime performance
than the unprioritized case, in the low contention and high contention cases respectively.

Sensitivity to Thread Swap Time

Figures 6.5a and 6.5b show the runtime for the SINGLE scenario with a 4 cycle save/restore
time, and with a 200 cycle save/restore time. Changing the thread swap time does not have
a big impact on performance because the thread swapping only takes place on quantum
expiration, and the quantum is relatively large. Also, the quantum can expire at slightly
different times on the different processors so that while one processor is swapping in new
threads, another processor is still actively acquiring the lock. The larger thread swap causes
a small but noticeable reduction in performance of the prioritized, low contention case. This
is because time that was previously devoted to running threads in their non-critical section
is now being used to do thread swapping.

111

CHAPTER 6. SYNCHRONIZATION SCHEDULING

30000

0-0 U, HC
0 0 U, LC
O-0 P, HC
O O P, LC 15000

10000

30000

25000

20000

15000

10000

5000

I I I I I I I 11111111I II 0
1 2 3 4 5 6 7 8 9 10111213141516

Threads per Processor

a. 4 cycle save/restore time.

0-0 U, HC
O U, LC

-0- P, HC
S...... O P, LC

I I I I I I
0123456

11 1 11111 II

7 8 9 10111213141516
Threads per Processor

Figure 6.2: TTSET lock acquisitions. SINGLE scenario with register save/restore times
of 4 cycles and 200 cycles. Unprioritized (U) and Prioritized (P) cases are shown with both
High Contention (HC) and Low Contention (LC).

Sensitivity to Context Switch Time

Figure 6.3 shows the runtime for the ALL scenario with context switch times of 1 cycle
and 10 cycles. The unprioritized case is sensitive to the context switch time. Any increase
in the context switch time leads directly to an increase in the time it takes a thread to
execute its critical section. For instance, in the high contention case the performance of
the unprioritized test drops by 52% in going from 1 to 16 threads with a context switch
time of 1 cycle, whereas it drops by 69% when the context switch time is 10 cycles. The
prioritized case is also sensitive to context switch time, and an interesting reversal occurs
between Figures 6.3a and 6.3b. With a context switch time of 1 cycle, the low contention
case performs better than the high contention case, whereas with a context switch time of
10 cycles, it is the opposite. The reason for this is that with a context switch time of 1
cycle the low contention case has more cycles to devote to actually executing threads, while
at the same time having lower contention on the lock. The high contention also has these
extra cycles but since most of its threads are spinning, it cannot put them to good use. The
prioritized high contention case drops by about 3% when the context switch time increases
from 1 to 10 cycles, and the prioritized low contention case drops by 13%.

112

5000

a. 200 cycle save/restore time.

_____ ___~~_ ~ I

m

-

-

-

-

-

4

I-

I-

)
I-

6.3. BARRIER SYNCHRONIZATION

- 30000

S25000

i20000

S15000

30000

25000

S20000

15000

10000

5000

0

.:; E 3... a " 'J-a . .".fE . ". E

."0.'.

0-0 u, HC
o o U, LC
0o- P, HC
S...... P, LC

0 1 2 3 4 5 6 7 8 9 10111213141516 0 1 2 3 4 5 6 7 8 9 10111213141516
Threads per Processor Threads per Processor

a 1 cycle context switch time b 10 cycle context switch time

Figure 6.3: TTSET lock acquisitions. ALL scenario with context switch times of 1 cycle and
10 cycles.Unprioritized (U) and Prioritized (P) cases are shown with both High Contention
(HC) and Low Contention (LC).

Conclusion

These three scenarios show that the prioritizing of both loaded and unloaded threads is
important for the performance of the TTSET lock. In particular:

* Using the priority at the software level prevents a thread that owns the lock from
swapping out when a quantum expires.

* Using the priority at the hardware level allows the thread owning the lock to quickly
execute its critical section and release the lock.

* The TTSET benchmark is not sensitive to the thread switch time because the thread
switch time is only a small fraction of the OS quantum.

* Using thread priorities reduces the sensitivity of the test to context switch time by
eliminating most unnecessary context switches.

6.3 Barrier Synchronization

Barrier synchronization is another important synchronization primitive. Mellor-Crummey
and Scott [71] provide a good overview of different possible implementations of barriers in

113

o-o U, HC 10000
S...... o U,LC

a-c P, HC
i P, LC 5000

1 1 1 1 1 1 1 1 1 1 10

-

-

CHAPTER 6. SYNCHRONIZATION SCHEDULING

shared memory multiprocessors. A simple barrier uses a centralized shared counter. Each
thread increments this counter as it arrives at the barrier, and then spins on a flag. When
the last processor arrives at the barrier, it resets the flag, thus releasing all the spinning
processors. This simple barrier works well for a small number of processors, but for larger
numbers of processors causes a large amount of contention on the shared counter. More
scalable algorithms distribute the barrier so that processors do not spin on a single variable.
A software combining tree barrier [111] uses a k-ary tree structure, with the threads assigned
to the leaves of the tree. Each group of k threads first perform a simple shared counter
barrier. When the last thread in a group arrives at barrier, it proceeds up the tree and
another simple barrier is performed for each group of k leaves. This continues on up the
tree to the root, at which point all the processors have reached the barrier. To release
the processors, the thread that arrives at the root resets the flag on which its children are
spinning, and this propagates down the tree releasing all the threads. Other variations on
this distributed, scalable barrier theme include the Mellor-Crummey and Scott tree barrier
and tournament barriers [71]. These optimize the combining tree barrier idea, by including
a shorter critical path through the tree, and by guaranteeing that spinning is done only on
locally allocated variables.

We implemented a barrier benchmark using a shared memory combining tree. In this bench-
mark, a number of threads are spawned on each processor, and these threads repeatedly
perform a barrier synchronization. The first level of the combining tree has a fan-in equal
to the number of threads on each processor'. The threads on each processor first perform
a local combine, and then the last thread to combine on each local processor participates
in a global barrier using a radix-4 combining tree. The simulation uses 64 processors, with
a fully associative cache, so that only cache invalidation traffic affects performance.

The following variations on the barrier benchmark are run:

* Unprioritized: Threads all have the same priority. When threads are waiting to be
released they repeatedly poll the node in the combining tree at which they are stalled
until it changes and releases them. A failed poll results in a context switch. If there
are more threads than contexts, then there is also a thread swap with an unloaded
thread.

* Prioritized: When a thread arrives at the barrier and it is not the last thread
in the leaf group, it decreases its priority in preparation for the next phase of the
computation, and begins to spin. The last thread to arrive at a leaf node maintains its
priority and proceeds up the combining tree. Thus on each node, only the thread that
is participating in the non-local barrier tree is actually using any cycles - it can either
be spinning at an intermediate node of the combining tree, or it can be proceeding
up or down the combining tree. Once a thread going back down the combining tree
reaches a leaf of the tree, it decreases its priority to the priority of the other spinning
leaf threads, and they can all proceed to the next phase of the computation. Note

'If there is only a single thread per processor, then this first level is eliminated.

114

6.3. BARRIER SYNCHRONIZATION

that the prioritization required for other tree-like barriers including the tournament
barriers and the MCS tree barriers [71], is qualitatively similar to the prioritization
of the combining tree barrier.

One prioritization scheme that does not work very well is to increase the priority of the
last thread that arrives at the barrier on each processor. This would allow a single thread
on each processor to participate in the non-local portion of the combining tree without
interference from the others. The problem with this scheme is that it does not differentiate
between threads spinning at the barrier, and threads that are still doing useful work to get
to the barrier. Making this differentiation is important to prevent spinning threads from
stealing cycles from threads that have not yet reached the barrier.

6.3.1 Results

Figure 6.4 shows the average barrier wait times for the three different scenarios, SINGLE,
ALL, and LIMITED, where the barrier wait time is the time spent by a thread waiting at
the barrier. Figures 6.5 and 6.6 show the sensitivity of the benchmark to the thread swap
time and the context switch time respectively.

Results show that the threads prioritization improves performance by eliminating unneces-
sary thread swaps and context switches. Threads critical to the completion of the barrier
are given priority, and a minimum of time is spent on non-critical spinning threads. Elim-
inating unnecessary thread swaps and context switches also reduces the sensitivity to the
thread save/restore time and to the context switch time. These results are discussed in
detail below.

SINGLE

With unprioritized threads, performance of the barrier decreases as the number of threads
increases due to two factors. First, each thread that participates in the barrier must swap
into the context in order to reach the barrier. Second, when a thread that is spinning at
an intermediate node of the combining tree does an unsuccessful poll, the scheduler swaps
out this thread, and successively loads in all the other spinning threads on the local node.
It does this because it does not differentiate between the locally spinning threads and thus
treats them all fairly. In the prioritized case, the time to perform the barrier increases due
to the larger number of threads, but once the local barrier has been completed and one
thread has been chosen to represent the node in the global barrier, this thread never swaps
out regardless of how often the polling is unsuccessful. As a result, the second component
which contributed to poor performance in the unprioritized case is eliminated. For 4 threads
per processor performance improves by 18%, and for 16 threads per processor performance
improves 42%.

115

CHAPTER 6. SYNCHRONIZATION SCHEDULING

o - o Unpriortized
o - o Prioritized

IIIII IIIIIIIII

0 1 2 3 4 5 6 7 8 9 10111213141516
Threads per Processor

a. SINGLE

10000

9000

8000

7000

6000

5000

4000

3000

2000

1000

0

n0-0 nnrtinad

I I I I I I I I I I I I I I I I

0 1 2 3 4 5 6 7 8 9 10111213141516
Threads per Processor

b. ALL

11000

10000

9000

8000

7000

6000

5000

4000

3000

2000

1000

0

o-0 Unpioritized
A- • Pioritized Queue
o - o Prioritized

I I I I I I I I I I I I I I I I

0 1 2 3 4 5 6 7 8 9 10111213141516
Threads per Processor

c. LIMITED

Figure 6.4: Average barrier wait time for 64 processors. SINGLE, ALL, and LIMITED
scenarios. The Prioritized Queue case in the LIMITED scenario prioritizes the software
scheduling queue, but does round-robin scheduling of the hardware contexts.

116

10000

9000

8000

7000

6000

5000

4000

3000

2000

1000

0 0

-

6.3. BARRIER SYNCHRONIZATION

Note that for this benchmark we did not investigate 2-phase algorithms [48, 67] in which
a thread spins a certain number of times, and then if it is still unsuccessful, suspends and
is woken up later. Doing this makes the benchmark more complex because we must record
which threads have to be woken up and which processors they are on, as well as signal these
threads to wake up. Performance of this more complex approach is likely to be worse than
the unprioritized case with a small number of threads, and better when there are a large
number of threads and the thread swapping cost becomes more important. It will be worse
than the prioritized case in all cases because of the extra overhead and the extra spinning.

ALL

The unprioritized ALL scenario suffers from a similar problem to the unprioritized SIN-
GLE scenario, except that no thread swapping is necessary since all threads are loaded,
only context switching. Although a context switch is much cheaper than a full thread swap,
the context switches happen more often in the ALL case than thread swaps in the SIN-
GLE case because they occur not only on failed synchronization tests, but also on cache
misses. Each time the thread participating in the global barrier misses in the cache or does
an unsuccessful polling operation, the processor runs through all the other contexts before
returning to the critical context. It is important to note that the time to switch between
the contexts is more than simply the number of cycles to switch between hardware contexts,
in this case 5 cycles. This is because once the actual context switch takes place, the new
thread issues some number of instructions, until it either misses in the cache, or tests its
flag unsuccessfully and context switches. The prioritized scheduling eliminates unneces-
sary context switching during the global barrier with performance improving by 15% for 4
threads, and by 60% for 16 threads.

LIMITED

The case of having more threads than contexts with multiple contexts can potentially suffer
from the worst of both the SINGLE, and the ALL scenarios. With unprioritized threads,
each time a non-critical spinning thread runs, it not only checks its flag but also does a thread
swap if there are other threads on the scheduling queue. Thus the time between when the
critical thread context switches to the time it is again the executing thread is increased by
the time to run through all the other loaded threads, where each is checking its flag and then
swapping itself with some other spinning thread on the software scheduling queue. Note that
this in effect represents a worst case scenario in terms of the amount of thread swapping that
is done when threads are unprioritized. The more complex 2-phase algorithms mentioned
previously will certainly perform better because they eliminate many unnecessary thread
swaps, although they will again be worse than the prioritized case because of the extra
complexity and extra spinning overhead. Figure 6.4c also shows the case when the thread
priorities are used only by the software scheduler, and not the hardware scheduler. In this
case the hardware scheduler does round-robin scheduling of the loaded threads rather than

117

118 CHAPTER 6. SYNCHRONIZATION SCHEDULING

A 24000

1S8

I 20000

16000

12000

8000

4000

0

o- - - o Unpdriorize, 200 cycle saveirestore
- o- - -o Pdortlzed, 200 cycle save/restore - -

o- o Unpdriodlzed, 32 cycle save/restore
io - Pdortlzed, 32 cycle save/restore ,s
o o Unpdordtlzed, 4 cycle save/restore,'
o Prioritzed, 4 cycle save/restore 10

-

-5,"

.,r

I I I I I I I I I I I I I I I

0 1 2 3 4 5 6 7 8 9 10111213141516
Threads per Processor

Figure 6.5: Average barrier wait time. SINGLE scenario with register save/restore times
of 4, 32, and 200 cycles.

priority scheduling and thus does some amount of unnecessary context switching. With 16
threads, software thread prioritization without hardware thread prioritization reduces the
barrier wait time by 54%, whereas doing both software and hardware thread prioritization
reduces the wait time by 59%.

Sensitivity to Thread Swap Time

Figure 6.5 shows the runtime for the SINGLE scenario with different thread swap times.
In addition to the curves shown previously for a register save/restore cost of 32 cycles,
results are also shown for a save/restore time of 4 cycles and 200 cycles. Since both the
prioritized and the unprioritized cases must do some thread swaps to perform the barrier,
both are sensitive to the increase in thread swap time. However, since the unprioritized
case does many unnecessary thread swaps, it is much more sensitive than the prioritized
case. With 16 threads per processor, in going from a 4 cycle save/restore time to a 200
cycle save/restore time, the performance decreases by a factor of 4.6 in the unprioritized
case, and by a factor of 2.4 in the prioritized case. As expected, the prioritization has a
larger impact when the context switch cost is high.

6.3. BARRIER SYNCHRONIZATION

1UUUU

9000

8000

7000

6000

5000

4000

3000

2000

1000

0

- o---o Unpriordlized, 10 cycle context switch
S- - 0- Pdordized, 10 cycle context switch

- 0-o Unpriodulzed, 5 cycle context switch
0- 0 Pdoritized, 5 cycle context switch p9

-o o Unpdodrilzed, cycle context swidth
o 0 Pfriorflzed, 1 cycle context switch Dr. _'

L

-

I ~ I I I I I I I

0 1 2 3 4 5 6 7 8 9 10111213141516
Threads per Processor

Figure 6.6: Average barrier wait time. ALL scenario with context switch times of 1, 5, and
10 cycles.

Sensitivity to Context Switch Time

Figure 6.6 shows the runtime for the ALL scenario with different context switch times. In
addition to the curves shown previously for a context switch time of 5 cycles, results are
also shown for context switch times of 1 and 10 cycles. From this figure we see that the
unprioritized case is more sensitive to the increased context switch time than the prioritized
case. In going from a 1 to 10 cycle context switch time the wait time for the unprioritized
case increases by 30%, whereas for the prioritized case it increases only by 9%. This is as
expected since the unprioritized case does many unnecessary context switches whereas the
prioritized case does not.

Conclusion

These three scenarios show that the prioritizing of both loaded and unloaded threads is im-
portant for the performance of the barrier synchronization. Prioritizing unloaded threads in
the thread queue is important because it guarantees that threads that still have to partici-
pate in the barrier are loaded, and it eliminates unnecessary thread swapping. Prioritizing
the loaded threads themselves guarantees that lower priority spinning threads do not steal
cycles from the higher priority threads, so that a critical thread can proceed as soon as it
is able. Prioritizing threads also substantially reduces the effect of both increased thread
swap time and increased context switch time.

119

~~A~~

D

CHAPTER 6. SYNCHRONIZATION SCHEDULING

6.4 Queue Locks

A queue lock is a mutual exclusion mechanism that is appropriate for high contention
locks [71, 8]. Each thread inserts itself onto a queue, and then spins on its own flag so as
to not generate the hot spots and excess network traffic that can be generated by simpler
Testand.Set style locks. Our implementation of queue locks is inspired by the MCS lock of
Mellor-Crummey and Scott [71]. The MCS lock has the advantage that the flag on which
each thread spins while waiting in the queue is locally allocated and generates no global
traffic while the thread is spinning.

Scheduling threads waiting for a lock raises a number of issues. Once a lock is acquired,
the thread owning the lock should not swap out [112, 67]. This is because all other threads
waiting for the lock will be unable to make progress until the lock is released, and so perfor-
mance can be seriously degraded. In the case of the queue lock, there is an additional factor
to be considered. The order in which threads are going to acquire the lock is determined
by the order in which threads are inserted into the queue lock. The priority of a spinning
thread should reflect the position of the thread in the queue, so that when there are multi-
ple spinning threads on a processor, the processor gives priority to the thread earlier in the
queue.

The synthetic queue lock benchmark consists of an equal number of threads on each pro-
cessor that are trying to obtain a lock. Each thread repeatedly obtains the lock, runs a
critical section, releases the lock, and then runs a non-critical section. We consider both a
high contention and a low contention case. In the high contention case, the critical section
is about 100 cycles, and the non-critical section varies between 50 and 150 cycles, with a
uniform distribution. In the low contention case, the critical section is the same, but the
non-critical section varies between 5000 and 15000 cycles with a uniform distribution. The
total number of locks acquired over a sample period of 106 cycles was taken as the figure of
merit. It should be noted that the latency tolerance properties of having multiple threads,
as well as possible cache interference between threads are not measured in this benchmark,
but rather only the effects of the thread scheduling. The simulation uses 16 processors,
with a fully associative cache so that only invalidation traffic occurs.

The following variations on the queue lock benchmark are run:

* Priorityl: The threads repeatedly poll a local variable to determine if they are at the
head of the queue. A failed poll results in a context switch. If there are more threads
than contexts, then there is also a thread swap with an unloaded thread. When a
thread acquires the lock, it increases its priority so that it does not swap out, and
when it releases the lock it decreases its priority.

* Priority2: If a thread owns the lock or is trying to determine its position in the
queue, it has the highest priority. If the thread is trying to insert itself into the queue,

120

6.4. QUEUE LOCKS

it has the next highest priority2 . Threads that are spinning in the queue have a
priority based on their position in the queue3 . Thus whenever a processor has several
threads waiting in the queue, it will give priority to the thread that will next acquire
the lock. Note that this requires the addition of a count field to the data structure in
order to keep track of the position in the queue, and slightly more complicated lock
acquisition code.

* Signalingl: In this version, after inserting itself into the queue a thread suspends
itself. A suspended thread is put into a suspended thread data structure until it is
explicitly woken up. When the thread currently owning the lock releases the lock, it
sends a message to wake up the next thread. This requires that the location and the
ID of each thread be available in the queue data structure. A thread owning the lock
has high priority.

* Signaling2: This version combines signaling and spinning. When a thread first
acquires the lock, it sends a message to the next thread in the queue to increase its
priority. It releases the lock by writing the shared memory location on which the
next thread in the queue is spinning. By doing this the next thread will get advanced
warning that it is about to receive the lock, allowing the processor to load the thread
if it is not already loaded.

6.4.1 Results

The results of the simulations for the three different scenarios, SINGLE, ALL, and LIM-
ITED are shown in Figures 6.7, 6.8, and 6.9. Figures 6.10, 6.11, and 6.12 show the
sensitivity of the benchmark to the thread swap time and the context swap time respec-
tively.

The results show that prioritizing threads improves performance not only by giving high
priority to a thread that owns the lock so that the critical section is executed quickly as in
the TTSET benchmark, but also by making sure that the next thread in the lock's queue
gets the lock quickly once it is released. The results also show that the sensitivity to thread
save/restore time varies depending on the prioritization scheme. If the save/restore time is
in the critical path between when the lock is released and when it is next acquired, then
the results are sensitive to the save/restore time, otherwise they are not. The Priorityl
case is also sensitive to the context switch time because it can context switch many times
before it reaches the next thread in the lock's queue. These results are discussed in more
detail below.

2There is a subtle issue here having to do with a thread trying to release the lock while the next element
in the queue is in the midst of inserting itself into the queue. The thread owning the lock has to drop its
priority temporarily to allow the insertion to take place before it can release the lock.

3Note that the priority only needs to be calculated once during insertion into the queue, and does not
have to be recomputed each time the lock is released.

121

CHAPTER 6. SYNCHRONIZATION SCHEDULING

500
0 I '

0 1 2 3 4 5 6 7 8 9 10111213141516
Threads per Processor

a. SINGLE HIGH CONTENTION

1800

1600

1400

1200

1000

800

600

400

200

0 I I I I I I I I I I I I I I I I

0 1 2 3 4 5 6 7 8 9 10111213141516
Threds per Processor

b. SINGLE, LOW CONTENTION

Figure 6.7: Queue Lock acquisitions. SINGLE scenario with high and low lock contention.

5000

I4500
19

4000-
3500

o 3000

I 2500-
U

2000 -o-o Priortyl
o-o Priority2

1500 I a- Signalling1
- -r Signaling2

1000

500

0 1 2 3 4 5 6 7 8 9 10111213141516
Threads per Processor

a ALL, HIGH CONTENTION

1800

1600

1400

1200 .. .

1000 -- oo Pdoriyl
-a Priority2

800 -- ~- Signallingi
x - w Signalling2

600
400

200

0
0 1 2 3 4 5 6 7 8 9 10111213141516

Thread per Processor
b. ALL, LOW CONTENTION

Figure 6.8: Queue Lock acquisitions. ALL scenario with high and low lock contention.

122

5000

8 4500'K500
4000

S3500

t 3000

E 2500

2000

1500

1000

0

6.4. QUEUE LOCKS 123

! 1800
1600

1400

I 1200

1000

800

600

400

5000

S4500

8 4000

S3500

S3000

i 2500
2000

1500

1000

500

7

S0o-o Prorityl
0o- PnorIy2
\-~- Signalling1
I I- I I I gnaII I ng

7 777

0 1 2 3 4 5 6 7 8 9 10111213141516 0 1 2 3 4 5 6 7 8 9 10111213141516
Threads per Processor Threads per Processor

a. ULIMITED, HIGH CONTENTION b. ULIMITED, LOW CONTENTION

Figure 6.9: Queue Lock acquisitions. LIMITED scenario with high and low lock con-
tention.

SINGLE

Figures 6.7a and 6.7b show the results for the SINGLE scenario. The main problem is
making sure that the next thread to acquire the lock does so in a timely fashion. The
Priorityl scheme does not solve this problem because the next thread in the queue is still
likely to be in the software scheduling queue of another processor and the next acquisition
of the lock will be delayed until this thread is loaded. In both the high and low contention
cases the performance drops significantly as the number of threads per processor goes from
1 to 16, by factors of 5.8 and 2.8 respectively. The Priority2 scheme deals with this
problem by prioritizing spinning threads such that their priority depends on their position
in the queue. On any given processor, the next thread that is to acquire the lock is loaded
and spins waiting for the lock to be released, which results in much better performance.
For 16 threads, the Priority2 case runtime performance is 83% and 64% better than the
Priorityl case, for the high and low contention cases respectively. The Signalingl scheme
also performs consistently. Passing the lock requires a message send and the loading of the
receiving thread's state into a hardware context. This can require a full thread swap if
the receiving processor is already busy. It is never the case that the next thread is ready
and waiting to acquire the lock. Because of this, Signalingl performs 8% worse than
Priority2 in the high contention case, and 14% worse in the low contention case when
there are 16 threads per processor and passing the lock nearly always requires a full thread
swap. Signaling2 performance drops off as the number of threads increases because the
overhead of passing a lock has now increased. The length of the critical section increases
because the thread owning the lock must both send a message, and change the shared

200II

I P P P P I I P I I

CHAPTER 6. SYNCHRONIZATION SCHEDULING

memory variable on which the remote thread is spinning. On the remote node, expensive
re-scheduling operations take place based on the new priorities. In the low contention case
the performance of Signalingl, and Signaling2 become similar because both typically
require a thread swap operation when the next thread is signaled to acquire the lock.

ALL

Figures 6.8a and 6.8b show the results for the ALL scenario. In the high contention case,
Priorityl performance suffers because of unnecessary context switching when it should
wait for a critical reference to be satisfied. Performance drops by 44% in going from 1 to
16 threads per processor. Priority2 performs best because it keeps all threads loaded and
executes them in the correct order. Signaling2 performs better than Signalingl because
it never suspends a thread. In the low contention case with a low number of threads,
performance is no longer dominated by the performance of the lock, and all 4 scenarios
perform similarly up to 9 threads per processor.

LIMITED

Figures 6.9a and 6.9b show the results for the LIMITED scenario. In the high contention
case, Priorityl performance drops by a factor of 6 in going from 1 to 16 threads per
processor, with a dramatic drop occurring once there are more threads than contexts due
to all the thread swapping done on failed polling operations. The performance of the other
three cases is much the same as in the ALL scenario when there are 4 or less threads per
processor, and much the same as in the SINGLE scenario when there are more than 4
threads. Having more contexts helps the Signalingl scenario in the low contention case,
because it is more likely that a context will be free when a thread's state has to be loaded
in order for it to acquire the lock.

Sensitivity to Thread Swap Time

Figures 6.10 and 6.11 shows the runtime for the SINGLE and ALL scenarios respectively,
using the high contention test with save/restore times of 4 and 200 cycles.

In the SINGLE scenario, a change in thread swap time influences all scenarios except
Priority2. It does not affect Priority2 because the thread that is going to next acquire
the lock is always loaded well before the lock is released. The thread swap time has a
large effect on the Signalingl scenario because threads always suspend when they enter
the queue, and always have to be reloaded once they are next in line in the queue. When
the save/restore cost is just 4 cycles it performs slightly better than the Priority2 case,
but when the save/restore cost is increased to 200 cycles, its performance is about 42%

124

6.4. QUEUE LOCKS

5000

4500

4000

3500

3000

2500

2000

1500

1000

500

0
0 1

I I I I I I I I I I I I I

2 3 4 5 6 7 8 9 10111213141516
Threads per Processor

a. 4 cycle save/restore time.

Figure 6.10: Queue lock acquisitions. SINGLE
save/restore times of 4 and 200 cycles.

5000

4500

4000

3500

3000

2500

2000

1500

1000

500

0
0 1 2 3 4 5 6 7 8 9 10111213141516

Threads per Processor

b. 200 cycle save/restore time.

scenario with high contention and register

worse than the Priority2 case. The performance of Priorityl and Signaling2 suffers
the most from the increased thread swap time. For 16 threads per processor, when the
thread save/restore time increases from 4 to 200 cycles, performance drops by 76% and
62% respectively.

In the ALL scenario, only the Signalingl performance decreases with increased save/restore
time since it is still suspends and wakes up threads. Priorityl and Priority2 and Sig-
naling2 never do a thread swap operation since there are enough contexts to have all the
threads loaded.

Sensitivity to Context Switch Time

Figure 6.12 shows the runtime for the ALL using the high contention test with different
context switch times. Priority2, Signalingl, and Signaling2 all suffer from 3% to 7%
when the context switch time goes from 1 to 10 cycles. This is because when the context
switch time increases the penalty for cache misses and inter processor interrupts increases.
The Priorityl case suffers by as much as 14% because of the extra context switches that
are done.

125

1

0

CHAPTER 6. SYNCHRONIZATION SCHEDULING

5000

4500

4000

3500

3000

2500

2000

1500

1000

500

0

-0- 0 Plorityl
S- 0 Priority2

- A A Signalingl
X -) Signalling2

0 1 2 3 4 5 6 7 8 9 10111213141516
Threads per Processor

a. 4 cycle save/restore time.

5000

4500

4000

3500

3000

2500

2000

1500

1000

500

C

Figure 6.11: Queue lock acquisitions. ALL scenario with
cycles and 200 cycles.

5000

4500

4000

3500

3000

2500

2000

1500

1000

500

0

5000

4500

4000

3500

3000

2500

2000

1500

1000

500

- 0- Pdorty1l
0 - 0 Proity2

- A - A Signallingl
m - X Signalling2

I I

ui
0 1 2 3 4 5 6 7 8 9 10111213141516

Threads per Processor

a. 1 cycle context switch time.

- 0-0 Pdorltyl
0 - 0 Pdorly2

- A - A Signalling 1
A - Signalling2

It I I 1 I 11111 I I

0 1 2 3 4 5 6 7 8 9 10111213141516
Threads per Processor

b. 200 cycle sava/restore time.

register save/restore times of 4

-G - -ýý s

-0- 0 Pdomtyl
0 - 0 Pority2

- A - A Signalling 1
S- * Signaling2

S- 2 3 4 5 6 7 8 9 1011
m--m~e~

0 1 2 3 4 5 6 7 8 9 10111213141516
Threads per Processor

b. 10 cycle context switch time.

Figure 6.12: Queue lock acquisitions. ALL scenario with context switch times of 1 cycle
and 10 cycles.

126

i-)K

1111111111111111

6.5. SUMMARY

Conclusion

Several general observations can be drawn from this queue lock study. First, some sort
of prioritization is helpful to make sure that threads acquire the lock in reasonable time,
without having to resort to polling threads by continuously swapping them in and out of
the loaded set to determine the next thread in the queue. Associating a priority with each
thread based on its position in the queue is one approach to solving the problem. It allows
the next thread that is to acquire the lock to be loaded and ready to accept the lock. Note
however that determining a prioritizing of threads that is both correct and performs well is
trickier than one would expect. Using a signaling mechanism to wake up the next thread in
the queue is also a reasonable approach, but incurs the extra overhead of swapping threads
in and out of contexts. Also, the relative performance of the three cases that prioritize
effectively, Priority2, Signalingl, and Signaling2, depends on the assumptions made
about thread swapping time, the length of the critical section, and the cost of message
sends. In particular, if the cost of waking up a suspended thread is assumed to be higher
than just the minimum time to load the context from the cache (due to cache misses for
instance), the relative advantage of Priority2 over Signalingl will increase. Also, if the
cost of loading a thread is sufficiently high, and the length of the critical section is sufficiently
long then the Signaling2 will perform better than Signalingl.

6.5 Summary

In the context of multithreaded, multiple-context parallel processors, thread prioritization
can be successfully used to prevent the performance of spin-waiting synchronization op-
erations from degrading when the number of threads and/or the number of contexts is
increased. Specifically, software thread prioritization that decides which threads should be
loaded and which should be unloaded prevents critical threads from swapping out and be-
coming unloaded. Hardware prioritization of the loaded threads prevents spinning threads
from needlessly consuming cycles, and allows critical threads to proceed as quickly as pos-
sible.

Three synthetic benchmarks were studied: A TTSET benchmark, a barrier synchronization
benchmark, and a queue lock benchmark. In all cases performance suffered when threads
were unprioritized, and did not suffer when threads were prioritized. Prioritization also
reduced the sensitivity to the thread swap cost and the context switch cost because many
unnecessary thread swaps and context switches are avoided.

127

Chapter 7

Scheduling for Good Cache
Performance

Cache memory plays a key role in improving the performance of modern processors by
significantly reducing the average latency of memory requests. The increasing ratio of pro-
cessor speed to DRAM speed makes the cache even more critical, since loads and stores that
miss in the cache require a larger number of cycles before they can be satisfied. Multiple-
context processors allow the latency of cache misses to be tolerated, but can also lead to
reduced cache hit rates due to negative cache effects: the different working sets interfere
with each other causing misses that would not normally occur if only a single thread was
executing [2, 105, 37, 81]. It is also possible for the threads in the multiple contexts to
have significant overlap in their working sets, leading to positive cache effects. In this sce-
nario, one context can make a reference that brings data into the cache, and when other
loaded threads refer to the same data it is already in the cache. In this way different con-
texts prefetch data for each other. This data sharing also reduces invalidation misses since
threads using the same data may be on the same processor.

Several studies conclude that negative cache effects dominate over positive cache effects
[105, 37]. These studies however made little or no effort to schedule threads so that the
working sets of the different running threads are overlapped. Thekkath and Eggers [96]
studied the effect of thread placement on cache performance and runtime and conclude
that sharing-based placement has no positive impact. One or more factors contributed to
this being true: the threads accessed shared data in a sequential manner referring several
times to the data before it is invalidated, the shared data was uniformly shared across
the processors so that no placement of threads was clearly superior, and the shared data
references were an insignificant part of the overall number of references. This study does
not make any special effort to define threads in a way that will lead to positive cache
effects, and does not attempt to closely coordinate their execution so that they are using
shared data at the same time. Another study by Thekkath and Eggers [95] concludes that
multiple-contexts are much more effective when the application has threads that have been

128

129

optimized for locality. Again however, the threads are optimized individually, and not as a
whole.

In this chapter we present a number of techniques for improving the cache performance of
multiple-context parallel processors, in particular data sharing and favored thread execution.
Data sharing makes the working sets of the loaded threads overlap as much as possible, by
tightly coupling their execution so that they use much of the same data, at approximately
the same time. This technique is particularly useful in the context of blocked algorithms
where there is considerable sharing of data between loop iterations. Favored thread exe-
cution requires assigning a priority to the threads so that in the case that there are more
contexts than necessary to tolerate latency, the processor favors the execution of high pri-
ority threads. This can lead to better cache behavior because the cache favors the working
sets of the high priority threads.

We show a number of simple experiments that illustrate the benefits of data sharing and
favored thread execution. These experiments concentrate on parallel loops for which cache
performance is critical. We show that depending on how threads are defined and how work is
distributed to the threads, they can have significant overlap of their working sets, or almost
no overlap. We show that distributing work to the different contexts dynamically a single
iteration at a time rather than statically provides good load balance between the contexts,
and guarantees that latency tolerance is provided throughout most of the computation.
Using favored thread execution, the minimum number of threads required to tolerate latency
is selected to execute at any given time. This minimizes the hit rate degradation as the
latency increases. We also show that though favored thread execution can improve hit rate,
it can still in some cases have worse runtime than round-robin execution. This is caused by
the load imbalance that occurs when some threads finish well ahead of others, leaving those
few remaining threads without any means to tolerate latency. This effect can be minimized
however by distributing work dynamically in small chunks. The results also show that
favored execution has a much bigger effect on performance when the memory bandwidth
is limited, because fewer threads are required to saturate the available bandwidth, and the
penalty for additional cache misses is much higher.

Performance improvements depend on the number of contexts, the cache parameters, the
memory latency, and the memory throughput. For the range of parameters and cache sizes
simulated, multiple context versions of the benchmarks that use both techniques yield cache
hit rates that are 25 to 50 percentage points higher than versions of the benchmarks that
did not. Runtime improvement due to the improved cache performance depends on the
memory throughput available. With high memory throughput the effect of low cache hit
rate is not so important, and improvements range from almost none to about 16% with 16
contexts. If memory throughput is limited, than the improved cache performance has a big
impact, with runtime improvements up to 50% with 16 contexts.

CHAPTER 7. SCHEDULING FOR GOOD CACHE PERFORMANCE

7.1 Data Sharing

Data sharing requires that the threads executing in the different contexts use common
data, so as to maximize positive cache effects, and minimize negative cache effects. We
will examine these effects principally in the context of parallel loop constructs. The key
observation in this context is that the most data sharing typically occurs between successive
iterations of a loop i.e. threads that are working on successive iterations of a loop are likely
to share data. In the case of nested loops, there is typically one loop across which the
most sharing occurs, and if different threads execute interleaved iterations of this loop then
significant sharing will occur. The discussion of data sharing in the next section in the
context of a blocked matrix multiply algorithm serves to clarify these points.

7.1.1 Blocked Algorithms

Blocked algorithms attempt to exploit data locality by operating on small blocks of data
that fit into the cache, so that data loaded into the cache is reused [61, 109]. A simple
example is matrix multiply that computes the matrix Z = XY, shown in unblocked form
in Figure 7.1, and in blocked form in Figure 7.2.

To understand the effects of blocking, consider each loop of the code starting from the
innermost loop. In the unblocked case, the only reuse over the iterations of the innermost
k loop is the register allocated X array element. In the next innermost loop, the j loop, an
entire row of the Z matrix is reused on each iteration. Provided there is sufficient room in
the cache, this will lead to reuse of this data among the j loop iterations. If there is not
enough room in the cache, then the entire Z row will have to be read in at each j iteration.
In the outermost i loop, the entire NxN Y matrix is reused on each iteration. Provided the
cache is large enough, there is the potential to reuse the Y matrix data. If the cache is not
large enough, the entire Y matrix is likely to have to be read in at each i iteration.

Now consider the blocked case. The three innermost loops are the same as the unblocked
case, except that we change the bounds so that for reuse in the j loop, only B (the blocking
factor) elements of the Z row have to fit into the cache in order to have reuse, although
it should be noted that due to the change in the number of j iterations, we use the data
only B times rather than N times as in the unblocked case. Similarly, in the i loop, we
reuse a BXB portion of the Y matrix N times provided it fits in the cache. Table 7.1 shows
the amount of data the processor must bring into the cache for the blocked and unblocked
algorithm, depending on the amount of reuse that can be exploited.

A couple of important notes should be made about this blocked algorithm. First, there is
a tradeoff between data reuse, the blocking factor B, and loop overhead. To get the reuse,
B must be chosen small enough so that the data fits in the cache, but large enough so that
the data is reused as many times as possible, and so that the loop overhead is reduced.

130

7.1. DATA SHARING

for (i = 0 ; i < N ; i++)
for (j = 0 ; j < N ; j++) {
r = X[i][j] ; /* register allocated */
for (k = 0 ; k < N ; k++)
Z[il [k] += r*Y[j] [k];

}

Figure 7.1: Straightforward matrix multiply code.

for (jj = 0 ; jj < N ; jj += B)
for (kk = 0 ; kk < N ; kk += B)

for(i = 0; i < N ; i++)
for (j = jj ; j < MIN(jj+B,N) ; j++) {

r = X[i][j]; /* register allocated */
for (k = kk ; k < MIN(kk+B,N) ; k++)

Z[i] [k] += r*Yj] [k] ;

Figure 7.2: Blocked matrix multiply code.

Table 7.1: Data that must be fetched into the cache depending on reuse patterns.

Reuse Pattern Words Fetched Into Cache
Unblocked Blocked

No data reused 2N 3 + N 2 2N 3 + N 2

Z data reused N 3 + 2N 2 N3 + + N
Z and Y data reused 3N 2 2N3+ N 2

--R-+N

131

CHAPTER 7. SCHEDULING FOR GOOD CACHE PERFORMANCE

Lam, Rothberg, and Wolf [61] found that it is important to consider the amount of cache
interference that occurs, which is highly sensitive to the matrix size, the blocking factor, and
the stride. They found that the blocking factor B that leads to the least cache interference
depends heavily on the matrix size and should be tailored accordingly.

7.1.2 Reuse Patterns in Blocked Algorithms

Wolf and Lam identify a number of different types of reuse in blocked algorithms [109].
These include:

1. self-temporal reuse: A reference in a loop accesses the same location in different
iterations.

2. self-spatial reuse: A reference accesses the same cache line in different iterations.

3. group-temporal reuse: Different references access the same location.

4. group-spatial reuse: Different references access the same cache line.

Looking at the different references in the blocked matrix multiply code, and assuming that
there are 2 double words per line, and that we store the arrays in row major order, we can
identify the types of reuse that we can exploit for each reference. Z[i][k] has self-spatial
reuse in the k loop since successive iterations use successive elements in the row. It has
self-temporal reuse in the j loop because the same portion of the Z row is reused at each
iteration. Similarly, Y[k][j] has self-spatial reuse in the k loop, and self-temporal reuse in
the i loop. Finally, X[iJ[j] has self-spatial reuse in the j loop, and self-temporal reuse in the
kk loop.

In a blocked algorithm, there is typically one loop in which the most reuse takes place.
Consider the blocked matrix multiply loops beginning with the innermost loop, and with
a blocking factor B. In the k loop, we can exploit only the self-spatial reuse of the Z and
Y references. In the j loop, self-temporal reuse of the Z reference occurs as well. In the i
loop, we can exploit the self-temporal reuse of the Y reference. Finally, each new iteration
of the outermost loops kk and jj requires that we bring in a new set of data into the cache.
Thus, assuming that the cache can hold a BxB Y matrix block, as well as B elements of the
Z matrix, the loop in which most of the reuse occurs is the i loop. This fact can be used to
maximize positive cache effects as described in the next section.

7.1.3 Loop Distribution to Achieve Positive Cache Effects

In order to exploit positive cache effects we want to have loop iterations that use common
data execute in different contexts at the same time. In the matrix multiply example, the

132

7.1. DATA SHARING

ideal loop to distribute across the multiple contexts is the i loop because these iterations
are independent in the sense that they update (write) different sections of the Z matrix, and
because threads executing different i iterations will share significant amounts of data in the
cache. Since the i iterations are independent, several iterations of the i loop can proceed at
once in different hardware contexts. To get good reuse the thread should hold the BxB Y
matrix block that all the iterations are using, as well as B elements of the Z array for each
context.

Distributing loops other than the i loop leads to a number of different problems. Distribut-
ing the k loop iterations to different contexts incurs a large amount of overhead because
each iteration performs only a single multiply accumulate. Distributing the j loop has
higher granularity but is problematic because different iterations update the same Z matrix
locations, and some form of synchronization is required'. Distributing the kk or jj loops
to the different contexts means that the different contexts have no overlap at all between
their working sets. Each context requires a separate BxB Y matrix block, and a separate
set of B elements of the Z array. This can lead to significant negative cache effects, and a
resulting degradation in performance.

Efficient Local Loop Distribution

The simple technique we use for distributing multiple iterations to different contexts on
a single processor is to have each thread running in a context dynamically acquire the
next iteration by using an atomic Fetch-and-Increment instruction. Distributing the loop
iterations one at a time leads to several good effects in the multiple-context processor:

* Different contexts are working on closely spaced iterations that tend to share data. As
will be shown in the benchmarks later in this chapter, this can lead to better spatial
and temporal locality in the cache as compared to schemes where the threads are not
working on closely spaced iterations at the same time.

* Distributing work a single iteration at a time means that contexts will be load balanced
and provide maximum latency tolerance for each other. If work is distributed statically
in big chunks, there can be a load imbalance if some threads have lots of work to do,
while others have very little.

Our implementation of local loop distribution to multiple-contexts is similar to a multiple
processor loop distribution scheme described by Weiss, Morgan, and Fang [106]. The loop is
scheduled using a shared structure that contains two values, one shared counter for acquiring
an iteration, and one shared counter for signaling the end of an iteration. A thread acquires
an iteration by atomically incrementing the acquire variable, executes the iteration, and

1This could be accomplished with Full/Empty bits, locks, or a floating point Fetch-and-Add instruction.

133

CHAPTER 7. SCHEDULING FOR GOOD CACHE PERFORMANCE

then signals the end of the iteration by incrementing the end counter. An easy optimization
to this scheme counts the number of contexts that have completed, rather than the number
of iterations that have completed: once there are no more iterations to acquire, each context
increments a counter to signal that it has finished execution. This effectively represents a
software barrier performed by all the threads. If the loop being distributed across the
contexts is contained within other loops, then the last processor updates the outer loop
indices, resets the acquire and the end counters, before releasing the barrier.

To give a concrete example, the case of the matrix multiply would work as follows. Each
context atomically increments a shared variable to determine the i iteration that it is to
execute. If no more i iterations are left, the thread atomically increments the end counter,
and enters a local barrier. The last thread to finish an i iteration updates the jj and kk
iteration variables in preparation for the next i loop, resets the shared counters, and then
releases the barrier. Note that hardware prioritization of threads plays an important role
in optimizing this local barrier: when there are no more iterations to be executed, a thread
arrives at the barrier and drops its priority, so that threads that are spinning at the barrier
do not steal cycles from threads that are still executing iterations.

Comparison to Multiprocessor Loop Distribution Techniques

The problem of distributing iterations to the threads running in the contexts of a multiple-
context processor has a number of similarities and differences with the more general problem
of distributing loops to multiple processors that have been discussed in the literature [79,
68, 99, 70]. The similarities are that the distribution can be done statically or dynamically,
and there can be a load imbalance problem. The major difference is that fine-grain loop
distribution is much cheaper with multiple contexts that share a cache, than with multiple
contexts that do not.

Multiprocessor loop distribution studies compare static loop distribution in which iterations
are statically assigned to multiple processors, and dynamic distribution using a shared
iteration counter. All the studies of multiprocessor loop distribution lead to the same basic
results:

* The static distribution of loops can lead to serious load imbalance when the amount of
work in each iteration is unknown or variable. Dynamic distribution schemes achieve
much better load balance.

* Dynamic distribution schemes suffer from a bottleneck on the iteration variable as
the number of processors increases. To relieve this bottleneck various schemes are
possible. More than a single iteration can be obtained at each iteration variable
access [79, 68, 99]. Deciding how many iterations should be acquired requires a tradeoff
between reducing the contention on the iteration variable, and achieving good load
balance between the processors. Alternatively, one can start by statically allocating

134

7.1. DATA SHARING

iterations to processors and then do load balancing if a load imbalance occurs [70].

Similarly to the distribution of loops to multiprocessors, the distribution of loops to multiple
contexts can be done either statically or dynamically. A static distribution to the multiple
contexts can lead to a load imbalance. This imbalance can cause threads with less work
to finish well before others, so that not all the contexts will be running at the same time.
Although the processor will never be completely idle until all the contexts have finished
executing their work, there can be significant periods of time where there are not enough
contexts running to completely tolerate latency.

The main difference between distributing iterations to multiple processors and distributing
iterations to multiple contexts is the cost of dynamic loop distribution: it is much cheaper
to use a Fetch-and-Increment instruction to acquire an iteration in the multiple-context case
than in the multiprocessor case. This is because all the contexts share a cache and no global
operations have to take place to invalidate remote copies of the iteration variable. Typically
the iteration variable will always be available in the cache. Complicated schemes to avoid
contention on iteration variables are not needed, and further this fine-grain distribution of
threads has the data sharing advantages mentioned in the previous section.

Note that the loop distribution to multiple contexts we have described is done at a purely
local level, and thus requires a method for distributing work at a global level to the multiple
processors. In some cases we can distribute the global work statically. Alternatively, we can
distribute a loop to the processors using any one of the multiple processor loop distribution
schemes, and then redistribute iterations locally to the multiple contexts using the local
scheme.

7.1.4 Data Prefetching and Data Pipelining Effects

In addition to the reuse of data that occurs when multiple contexts share data, two other
effects can impact performance. First, a reference in one context often acts as a prefetching
mechanism for another context. This can increase the cache hit rate and decrease the
latency penalty. This is a form of implicit prefetching, which avoids the complications and
overhead associated with doing explicit prefetching.

Second, even if the working set of data does not fit in the cache, data can be pipelined
through the cache and be used by each context as it executes a single iteration. Consider
again the blocked matrix multiply example, and consider a blocking factor B for which the
BxB portion of the Y matrix does not fit in the cache. The different iterations running in
the different contexts all request the Y data in the same order. Elements of the Y block
are brought gradually into the cache, and are used by each context in turn. We achieve a
reuse factor of C, where C is the number of contexts, where normally we would not achieve
any reuse because the data block was too big. These effects are observable in the matrix
multiply example as described next.

135

CHAPTER 7. SCHEDULING FOR GOOD CACHE PERFORMANCE

Table 7.2: 16X16 single processor matrix multiply using a fully-associative cache. Speedup
is given relative to the single context case with a 64 byte cache.

Example Hit Rates for Matrix Multiply

We can easily calculate analytically the effect of data reuse on the hit rate for the matrix
multiply example. We consider a fully-associative cache, and assume two double words per
cache line, a 16x16 block, and consider only the matrix data references. The worst hit rate,
assuming that we exploit only the temporal and spatial locality in one cache line, is 65%.
If we exploit the self-temporal locality of the Z references, then the hit rate increases to
81%. The best hit rate is when we exploit the self-temporal locality of both the Z and the
Y references, and is 97%. Finally, if we assume we can exploit the self-temporal locality of
the Z references but not the self-temporal locality of the Y references, and that the i loop
is being distributed to 4 contexts and that these contexts are exploiting the data pipelining
effect (i.e each Y value is used by all 4 contexts before being removed from the cache), then
we calculate the hit rate to be 93%.

Table 7.2 shows the results for a 16x16 matrix multiply for 1 and 4 contexts, with various
cache sizes. In this case it is the i loop that is being distributed across the contexts.
Initially, for small cache sizes, negative cache effects dominates, and the cache hit rate for
the multiple context case is worse than the single context case. Note that performance
is still better for the multiple context case, because of the latency tolerance provided by
the multiple contexts. For moderate size caches, the cache hit rate is actually better for
the multiple context version of the code than the single context version due to the data
pipelining that occurs. With a large cache the hit rate of both examples are very similar,
and because the hit rate is so high in both cases, the benefits provided by the latency
tolerance of the cache are small.

7.2 Favored Thread Execution

Favored thread execution requires prioritizing threads so that they are executed preferen-
tially in a certain order. The main benefit of this prioritization is that the cache will have a

16 X 16
Cache Size Single Context Four Contexts

Speedup HR Speedup HR
64 bytes 1.00 0.65 1.35 0.46
512 bytes 1.17 0.77 1.55 0.69
1 Kbytes 1.22 0.80 1.74 0.89
2 Kbytes 1.24 0.81 1.77 0.92
4 Kbytes 1.65 0.96 1.81 0.96

136

7.3. EXPERIMENTS

tendency to contain more of the working set of the higher priority threads, and less of the
working set of the lower priority threads. Consider for instance the case where there are 4
threads executing in 4 contexts. If only 2 and sometimes 3 threads are necessary to hide
the processor latency, and the cache is not big enough to contain the working sets of all 4
threads, then the prioritization can make it so that the working set of the 2 high priority
threads are loaded, some portion of the third thread's working set is loaded, and virtually
none of the working set of the fourth, and lowest priority thread.

The big advantage of this scheme is that the number of loaded threads that are using
processor cycles can be dynamically chosen to be the minimum required to tolerate the
observed latency. If the average latency increases, lower priority threads will begin executing
to tolerate the additional latency. If the average latency decreases, then some of the lower
priority threads will stop receiving processor cycles. Choosing the minimum number of
loaded threads to execute means that the minimum required number of working sets will
be in the cache, leading to overall better hit rates.

There are also a number of disadvantages of prioritizing threads in this way including:

* Insufficient loaded threads: Favored thread execution is most effective when there are
more than enough contexts to fully tolerate latency. If there are not, then all the
contexts will be executing in an attempt to tolerate the long latencies, and so all their
working sets will want to be loaded. The only effective way of influencing the cache
ratio in this case may be to limit the number of loaded threads.

* Load balancing: Favored thread execution may exacerbate the load balancing problem
mentioned in the previous section. Consider for example the case that 3 contexts are
required to tolerate latency, and 4 threads are created with decreasing priority. The
lowest priority will not begin to execute a significant number of cycles until at least one
of the other threads completes. If all the three other threads finish at approximately
the same time, the one remaining thread will find itself executing alone, without any
other threads available to tolerate latency.

We can solve the insufficient loaded thread problem and the load balancing problem by
distributing work in small enough chunks so that many threads can be loaded, and no one
thread has an unduly large piece of work that will cause it to run a long time beyond when
other threads have no more work. Distributing work in small chunks has extra overhead,
which is usually compensated for by better cache performance and better latency tolerance.

7.3 Experiments

In this section we quantify the effects of data sharing and favored execution by examining in
detail three benchmarks: matrix multiply, Successive Over-Relaxation (SOR), and sparse-

137

CHAPTER 7. SCHEDULING FOR GOOD CACHE PERFORMANCE

matrix vector multiply. We wrote different versions of each code that show different levels of
data sharing and favored execution, and simulate them on a single processor with multiple
contexts, varying the latency and memory bandwidth.

The results confirm that defining threads so that they share data in the cache, and closely
coordinating their execution, leads to better cache hit rates. Runtime performance improves
as well, especially when memory bandwidth is limited and cache performance is critical. Fa-
vored execution can also improve performance especially when latencies are short, memory
throughput is low, and the data sets of threads do not share much data. When these condi-
tions hold, favored execution is the most successful in reducing the amount of data that has
to be in the cache. However when latencies are long and work is statically distributed in
big chunks, favored execution can make the load balancing problem worse by causing high
priority threads to finish early, leaving low priority threads without any means of tolerating
the long latencies.

For these benchmarks the default memory latency is 20 cycles, and the default memory
throughput is 1 request every 4 cycles. We simulate the long latencies that might occur
with slower DRAM and in multiple processors by increasing the memory latency of the
single processor to 80 and 160 cycles. We also vary the memory throughput available, and
consider what happens when the memory throughput is a much lower 1 request per 20
cycles.

7.3.1 Matrix Multiply

We simulate the following versions of the matrix multiply benchmark:

1. mm: Single context version that runs the straightforward blocked matrix multiply
code.

2. mmAi: Multiple context version that does fine-grain distribution of the i loop across
multiple contexts.

3. mm-kk: Multiple context version that does fine-grain distribution of the kk loop
across multiple contexts. Note that in this case, essentially no data reuse is exploited
between the different contexts. When this is done for large block sizes, there can be
fewer iterations than contexts.

4. mmkki: Multiple context version that does fine-grain distribution of both the kk
and the i loops as a unit by coalescing the loops [79]. A single shared counter is
incremented, and the value of kk and i are computed from the result. The goal of
doing this is to reduce the synchronization overhead due to synchronizing the different
contexts at the end of each group of i iterations.

138

7.3. EXPERIMENTS

Data Sharing Effects

Data sharing between contexts varies depending on the version of the code being run, and
on the block and cache sizes. Figure 7.3 show the results for a blocked matrix multiply
with a matrix size of 36, a blocking factor of 9, and a range of cache parameters. The
multiple context versions of the benchmark all use 4 contexts. All the threads that use
multiple contexts perform better than the single context case due to the latency tolerance
provided. The cache hit rates for both mm-i and mm_kk.i are about the same as for mm
despite the larger aggregate working set size because of the sharing of data between contexts.
They are a bit worse for the direct-mapped cache where there is more interference between
references, and a bit better for a fully-associative cache where there is less interference and
the pipelining and prefetching are more effective. The differences in performance between
mmAi and mmkki are minor, with the extra cost of synchronization in mmii offset by
the extra work required to calculate i and kk from the coalesced loop index in mmkki.
The mm_kk benchmark which only distributes the kk loop has considerably worse cache
performance for smaller cache sizes because the working sets of the 4 threads do not share
any data. This lower hit rate translates to lower performance due to the extra context
switching. However, once the cache is large enough, the hit rates for all the cases are about
equal.

Systematic interference can sometimes be a problem, particularly with direct-mapped caches.
Due to the relationship between the cache size, the matrix size, and the blocking factor,
many values in the block map to the same cache lines so that different references within
a block systematically interfere with each other [61]. For instance, Figure 7.4 shows the
results for a blocked matrix multiply with a matrix size of 32 and a blocking factor of 8. In
all cases the direct-mapped hit rates are less than for the 36X36 matrix using a blocking
factor of 9. The problem is worse in the mmii and mmkk.i cases because they have
several references outstanding to the same block. When the cache is fully-associative the
hit rates show similar behavior to the 36X36 matrix with a blocking factor of 9. In general,
we must choose blocking factors carefully to avoid this systematic cache interference [61].

In general, assuming the absence of systematic cache interference, the considerable overlap
in the working sets of different iterations in the case of mm..i and mmkk cause them to
have comparable cache hit rates to the single context mm example, and better performance
than the mm_kk scenario in which their is little overlap of the threads working sets.

Favored Thread Execution Effects

Using favored thread execution rather than round-robin execution of contexts improves
cache hit rates and performance in the case that there are more than enough contexts
to tolerate the observed latency. Figure 7.5 shows the runtime and the cache hit rate
for mmkki as the number of loaded threads increases, using a 36X36 matrix size, a
blocking factor of 9, and different memory latencies and memory system throughputs. Two

139

CHAPTER 7. SCHEDULING FOR GOOD CACHE PERFORMANCE

36 X 36 Matrix Multiply, Blocking Factor = 9

100

S50

1.0

n•l

HIT RATE

OF-I

I

mm_

mm_kk

mm kk

mm

mmikk

mm_kk_i

512 bytes 512 bytes 1 Kbytes 1 Kbytes 4 Kbytes 4 Kbytes
DM FA DM FA DM FA

Cache Sizes

Figure 7.3: Hit rates and speedups for a 36X36 matrix multiply with a blocking factor
of 9. Multiple-context versions of the code use 4 contexts. Fully-associative (FA) and
direct-mapped (DM) caches are simulated.

140

512 bytes 512 bytes 1 Kbytes 1 Kbytes 4 Kbytes 4 Kbytes
DM FA DM FA DM FA

Cache Sizes

SPEEDUP

v.v

--- I

__L __IL __L

.

I I

7.3. EXPERIMENTS

32 X 32 Matrix Multiply, Blocking Factor = 8

100

50

0

512 bytes 512 bytes
DM FA

D mm

D mm_i

mm_kk
mmkk_i

1 Kbytes 1 Kbytes 4 Kbytes 4 Kbytes
DM FA DM FA

Cache Sizes

Figure 7.4: Hit rates and speedups for a 32X32 matrix multiply with a blocking factor of
8. Multiple-context versions of the code use 4 contexts. Fully-associative (FA) and direct-
mapped caches (DM) are simulated. In the DM case, systematic cache interference leads
to poor hit rates.

141

512 bytes 512 bytes 1 Kbytes 1 Kbytes 4 Kbytes 4 Kbytes
DM FA DM FA DM FA

Cache Sizes

D mm

D mm_i

mm_kk
mm_kk_i

SPEEDUP

7

2.0

0.0

r----"------

I i

i,...~.....
i

I

!
i
I

I

iiiiliIiii
;"il

·''':''j
iiii;ii
iiiiiiiiil
:::

is:i
ii:i:iili

'iiiiiiiii

iiii·i:i

!:iiiiiiii

'::-::::::::::::

''':''''-'

::::-
i::i

·:·:·:
:::::::

:i:i:i:

:::::::
i-~i
::::':'
i:i.i:::::::
::::::::::::::
IB
i-iii

::::::

:liI

i·:·

:::':':
a_
i:
':::::

:::i:i
:_iiiiii::::::::
iiiiiii
:::i:i::
iiiiijii

:ili'iii:

i

:~:'::
i:i:i::
::::::
iiIiii:liiii-:·::
ii:iiii:·:·:iliiiii
iiiii
·:·:-:·;:::::::
:i:i:i:
iiiiil
iiilii
iliiii
iiiii-~
iiiii
:i:
iii:ii
i:iiii
ii::
ii:i:
:i:ii
iiili:i

iiiiii
:·:
iiiiiii:·::
:::;
iiiiii
::':':

iiiii
::::::::':'::
::::::::

iiiiiii
ii:iic:':':
ii:ilil
iiilil
iiiiiiii::·::

iiiii:i
:i:::i:

iai

'i:,iii
:iiiiiii::·:·:·
i.ii:i:':'::
::::::::
iii

-iiiiiil
i:iiiiil

:::::::

:iiiiiii
iii:iiii

iiiiii
:'liiii:·:::
:::-::::·:

:,iiiiii

::l:i:i:
`i:iiii:':'::

:':':':
::....

I

CHAPTER 7. SCHEDULING FOR GOOD CACHE PERFORMANCE

scheduling schemes are shown, one in which the multiple threads have equal priority, so
that threads run in round-robin fashion, and one in which threads have a priority based on
the iteration that they are calculating, so that they execute in a favored order.

With round-robin scheduling the cache hit rate decreases uniformly as the number of loaded
threads increases independent of the latency. With the favored thread scheduling the hit
rate decreases, but eventually reaches a stable value. This is because the favored execution
dynamically chooses the minimum required number of contexts to tolerate the observed
latency, and stabilizes the hit rate at the value corresponding to this number of contexts
executing at once.

The impact of the improved hit rate is small for both high and low memory throughput
because the hit rates are high, leading to long run lengths and an application that is
not bandwidth limited. The only performance penalty is the cost of the extra context
switching. The largest performance difference occurs with a memory latency of 20 cycles
and 16 contexts. The favored execution scheduling increases the hit rate from 65% to 82%,
and leads to a 9% reduction in runtime.

7.3.2 SOR

Figures 7.6 and 7.7 show an unblocked version and a blocked version respectively, of code
for 2D red/black successive over-relaxation (SOR). This SOR code divides the domain into
red and black points layed out in a checkerboard pattern, and at each iteration updates
first the red points, and then the black points [29].

Looking at the different references in the SOR code, and assuming that there are 2 double
words per cache line, and that we store the arrays in row major order, we can identify
the types of reuse exploited by each reference. A[i][j], A[iI[j-1], and A[i][j+1] have group-
temporal and group-spatial reuse within the j loop, such that each iteration requires only
one new element from the i row. All the references have group-temporal reuse within the i
loop, since we use values from the current row in the calculation of the next row.

We simulate three versions of the benchmark:

1. sor-sing: Single context version of the blocked code.

2. sordyn: Multiple context version with fine-grain distribution of the i loop to the
different contexts.

3. sor.sta: Multiple context version with static distribution of blocks of rows to the
different threads. The code does blocking within each thread if there are sufficient
rows.

142

7.3. EXPERIMENTS

K-

S o0
o0

- o

[

5•0+06
•.5e+06

3.0e+06
-0O 20, round-robin
...... 0 80, round-robin
-- - 0 160 round-robin
-0 20, favored
...... 80, favored
-- -0 160 favored

I I I I I I I I I I I I I I II

0 1 2 3 4 5 6 7 8 9 10111213141516
Active Threads

2.5e+06

2.0e+06

1.5e+06

1.0e+06

5.0e+05

0.0o+00

a. Hit rate with high memory throughput

.0oe+06

.5e+06

3.5e606
3.09+06

- O - 0 20 cycles, round-robin
0 0 80 cycles, round-robin

- 0 -- -0 160 cycles, round-robin
O - 0 20 cycles, favored
S O 80 cycles, favored
0 -- -0 160 cycles, favored

I I I I I I I I I I I I I I lI

0 1 2 3 4 5.6 7 8 9 10111213141516
Active Threads

c. Hit rate with low memory throughput

2.50+06

2.06+06

1.5•+06

1.0e+06

5.00+05

00"+00

-ci

S 0--0 20 cycle
0o 0 0 cycle
O--I 0 Qcyci0 - 0 20 cycle

- 0 80 cycie
[0 0---0 160cyc

-
-

s, round-robin
s, round-robin
es, round-robin
s, favored
s, favored
us, favored

I I I I I I I I I I I I I

0 1 2 3 4 5 6 7 8 9 10111213141516
Active Threads

b. Runtime with high memory throughput

0 - O 20 cycles, round-robin
0 0 80 cycles, round-robin
S 0--- - 160 cycles, round-robin
O - 0 20 cycles, favored
S 0 80 cycles, favored
0 - -- 0 160 cycles, favored

I I I I I I I I I I I I I I I I

0 1 2 3 4 5 6 7 8 910111213141516
0 1 2 3 4 5 6 7 8 9 10111213141516

Active Threads

d. Runtime with low memory throughput

Figure 7.5: Performance of mmikk i comparing round-robin and favored execution for dif-
ferent memory latencies and throughputs. A 36x36 matrix multiply is done with a blocking
factor of 9 and a 1Kbyte direct-mapped cache.

143

7U10

60

20

U

.. .. a ome ww wane m

w n

--

r

-
:-

-

I

I

I

L-T ~'~"""'-~ - .* , • ,,. ..

i

r-

-k

CHAPTER 7. SCHEDULING FOR GOOD CACHE PERFORMANCE

for (t = 0 ; t < T ; t++) {
for (i = 1 ; i < N ; i++)
for (j = (odd(i) ? 1 : 2) ; j <= N-i ; j += 2) {

AEi][j] = 0.2 * (AEi] j] + AEi]Ej-1] + A[i] Ej+1] +
A[i-1][j] + A[i+1][j]);

}
for (i = 1 ; i < N ; i++)
for (j = (even(i) ? 1 : 2) ; j < N-1 ; j += 2) {

A[i][j] = 0.2 * (A[i] [j] + Ai] [j-1] + A[i] [j+1 +
AEi-E [j] + AEi+i][j]);

}

Figure 7.6: Straightforward 2D red/black SOR code.

for (t = 0 ; t < T ; t++) {
for (ii = 1 ; ii < N ; ii += B)
for (jj = 1 ; jj < N ; jj += B)
for (i = ii ; i < MIN(ii+B,N) ; i++)
for (j = (odd(i) ? (jj):(jj+l)); j < MIN(jj+B,N-1) ; j+=2) {

AEi]Ej] = 0.2 * (A[i][j] + A[i][j-1] + AEi][j+1] +
AEi-1][j] + AEi+l][j]);

for (ii = 1 ; ii < N ; ii += B)
for (jj 1= ; jj < N ; jj += B)
for (i = ii ; i < MIN(ii+B,N) ; i++)
for (j = (even(i) ? (jj):(jj+l)); j < MIN(jj+B,N-1) ; j+=2) {

A[i,j] = 0.2 * (Ai] [j] + Ai] [j-1] + A[i][j+1] +
AEi-1 Ej] + A[i+l3]Ej);

}
}

Figure 7.7: Blocked 2D red/black SOR Code.

144

7.3. EXPERIMENTS

Data Sharing Effects

Figure 7.8 shows the performance of the different versions for a variety of blocking factors.
In the case that there is no blocking (blocking factor = 80), the performance of sor-sing
suffers due to poor data reuse. For each i iteration data from 3 rows is needed, and if these
rows do not fit in the cache, there will be little reuse on the next i iteration. sordyn cache
performance is much better in this case, due to data pipelining. Four threads progress at
once and share their row data, giving a hit rate of 74% as opposed to 53% for sorsing.
As the blocking factor decreases, the cache hit rate of sorsing and sor_dyn increase with
the best performance at a blocking factor of 10 or 20 when most of the shared row data
between i iterations is reused. The cache hit rate of sorsta suffers because of the disjoint
working sets. As a result, the hit rate increases uniformly as the blocking factor decreases
and the working set sizes of the loaded threads decrease.

It is interesting to note that for the relatively small latency of 20 cycles, the best performing
cases are not the ones with the best hit rate. This is due to the increased overhead that
occurs with smaller block sizes. This is particularly bad in the sordyn case, since a barrier
is performed after each block is calculated. The overhead can be estimated by removing the
calculations from the innermost loop and rerunning the code. For instance, at a blocking
factor of 80 the overhead corresponds to about 17% of the computation in the sor.dyn
case. At a blocking factor of 5, overhead has increased by a factor of 3.7 and corresponds to
42% of the computation time. By contrast, overhead increases by only a factor of 1.7 over
the same range of blocking factors for both sor.sing and sorsta. At a blocking factor of
5, sor-sta performs better than sordyn because of less overhead, despite having a smaller
hit rate. As the latency increases and the memory bandwidth is restricted, the effect of the
hit rate becomes more important on performance, and the tradeoff of decreasing overhead
versus improving hit rate will change.

Favored Thread Execution Effects

The effect of favored execution on the SOR cache hit rate and runtime varies depending
on how data is divided up between the threads. It has a small effect on the cache hit rate
when the threads are working on common data, and a large effect when threads are working
on disjoint data. The effect on the runtime varies depending on whether the application is
bandwidth limited or not. Figures 7.9 and 7.10 show the runtime and the cache hit rate
for sordyn and sor-sta respectively, as the number of loaded threads increases, using
a blocking factor of 20 and different memory latencies and throughputs. Two scheduling
schemes are shown, one in which the multiple threads have equal priority, so that thread
are scheduled in round-robin fashion, and one in which threads have a priority based on the
iteration that they are calculating, so that threads are executed in a favored order.

For the sor_dyn case shown in Figure 7.9, favored thread execution has a small effect on
the hit rate and on the runtime, compared to the round-robin execution. This is because

145

SCHEDULING FOR GOOD CACHE PERFORMANCE

82 X 82 red/black SOR

50

HIT RATE

U
sorsing

sor_dyn

sor_sta

80 40 20 10 5
Blocking Factor

SPEEDUP

U
sorsing

sordyn

sorsta

80 40 20 10 5

Blocking Factor

Figure 7.8: Hit rates and speedups for an 82X82 red/black SOR with a 1Kbyte direct-
mapped cache. Multiple-context versions of the code use 4 contexts.

146 CHAPTER 7.

E

7.3. EXPERIMENTS

O - O 20 cycles, round-robin
0 0 80 cycles, round-robin
0 -- - 0 160 cycles, round-robin
O - 0 20 cycles, favored

S...... 80 cycles, favored
[- - 0 160 cycles, favored

111111 III III III

0 1 2 3 4 5 6 7 8 9 10111213141516

11.8&+06

,,.6e+06

1 .4e+06

C1.2e+06

1.0e+06

8.0e+05

6.0e+05

4.0e+05

2.0e+05

0.Oe+00

Active Threads

a. Hit rate with high memory throughput
--

61.8e+06

.2.6e+06

&.4e+06

87.2o+06
-O-0 20 cycles, round-robin
O O 80 cycles, round-robin 1.0e+06
% 1 - --- %j I ;yces, rounuroiuur

O - O 20 cycles, favored
O O 80 cycles, favored
O --- O 160 cycles, favored

I ILtI _I I I I I I I I I
0 1 2 3 4 5 6 7 8 9 101 I 4

0 1 2 3 4 5 6 7 8 9 10111213141516
Active Threads

c. Hit rate with low memory throughput

8.08+05

6.0e+05

4.0e+05

2.0e+05

0.08+(O0

0 - 0 20 cycles, round-robin
0 0 80 cycles, round-robin
0 ---0 160 cycles, round-robin

- 1 --0 20 cycles, favored
0O 80 cycles, favored
0 ---0 160 cycles, favored

--

-
- ' .• .- ... -' -- -, 'j _i

i e n a s e s s u

0 .1 ..3 ..5 ..7 ..9.1111131151
0 1 2 3 4 5 6 7 8 9 10111213141516

Active Threads

b. Runtime with high memory throughput

w
-,

-

,,

0 - 0 20 cycles, round-robin
0 0 80 cycles, round-robin
0 -- -0 160 cycles, round-robin
O - 0 20 cycles, favored
S...... O 80 cycles, favored

- L -- - i 1 60 cycles, favored
01 2 45 67 910111213141516'"."

-• , - - - • -m -, - , - • • m

-

-

-

0 1 2 3 4 5 6 7 8 9 10111213141516
Active Threads

d. Runtime with low memory throughput

Figure 7.9: Performance of sor-dyn comparing round-robin and favored execution for dif-
ferent memory latencies and throughputs. An 82X82 SOR is done using a blocking factor
of 20 and a 1Kbyte direct-mapped cache.

147

0i
I I·

CHAPTER 7. SCHEDULING FOR GOOD CACHE PERFORMANCE

A - A 20 cycles, round-robin
A A 80 cycles, round-robin
A -- - A 160 cycles, round-robin

I I I I I I I I I I I I I I I

.1.8e+06

,,.6e+06

!1.4e+06

k1.2e+06

1.0e+06

8.00+05

6.0e+05

4.0e+05

2.0e+05

(7.Tp+-(j

A - A 20 cycles, round-robin
A A 80 cycles, round-robin
A - -- A 160 cycles, round-robin

- -*- 20 cycles, favored
S...... * 80 cycles, favored
X -- - * 160 cycles, favored

-.. ,

- i,- -- a

0 1 2 3 4 5 6 7 8 9 10111213141516
Active Threads

a. Hit rate with high memory throughput

A - A 20 cycles, round-robin
S......A 80 cycles, round-robin

A -- - A 160 cycles, round-robin
m - * 20 cycles, favored
X M 80 cycles, favored
)K- -- K 160 cycles, favored

6-

c

~:~'m.. *·- ·)K ...)K ...
)K)Kt-m-

K- c-)K- -)K-m~~m_

S111111111 1111111
0 1 2 3 4 5 6 7 8 9 10111213141516

Active Threads

c. Hit rate with low memory throughput

4)1.8e+06

2.6e+06

!1.4e+06

ý1.2e+06

1.0e+06

8.0e+05

6.0e+05

4.0e+05
2.0e+05

0.Oe+0)n

b. Runtime with high memory throughput

A - A 20 cycles, round-robin
S...... A 80 cycles, round-robin

- A - - - A 160 cycles, round-robin
E -) 20 cycles, favored
S...... 80 cycles, favored

Sm -- -M 160 cycles, favored

-E

-j

0 1 2 3 4 5 6 7 8 9 10111213141516
Active Threads

d. Runtime with low memory throughput

Figure 7.10: Performance of sor.sta comparing round-robin and favored execution for
different memory latencies and throughputs. An 82X82 SOR is done using a blocking
factor of 20 and a 1Kbyte direct mapped cache.

148

01234567 8 9 10111213141516
Active Threads

I L/

90

30

20

1I I I II I I I I I I I I
rrU

,,

,,lfl
r"

I-

1-

7.3. EXPERIMENTS

the threads are closely coordinated and are working on closely related rows and columns so
that there is significant overlap in the working sets.

For the sorsta case shown in Figure 7.10 the situation is much different as threads have
only a limited amount of overlap in their working sets. As a result, with round-robin
scheduling the cache hit rate decreases with increasing loaded threads independent of the
latency. Going from 1 to 2 contexts gives the biggest drop in hit rate as 2 working sets
are immediately too much for the cache to handle, though the runtime is better due to the
latency tolerance provided by the multiple threads. With the favored thread scheduling,
the hit rate also decreases, but then stabilizes approximately at the value corresponding to
the minimum number of loaded threads required to tolerate the observed latency, just as it
did in the matrix multiply example. The effect of the better hit rate on runtime depends
on the memory throughput. If memory throughput is high, the only runtime penalty is
due to the extra context switching and it is small. If memory throughput is low however,
bandwidth becomes the limiting factor, and the penalty is not only a context switch, but
also a penalty due to using more bandwidth. With low memory throughput and 16 threads,
favored scheduling is better than the round-robin case by 42%, 25%, and 11% for latencies
of 20, 80, and 160 cycles respectively.

Doing favored execution can lead to a load imbalance problem when work is distributed
statically in large chunks and the latency is long. When threads have about the same work
to do between barrier operations, and they are scheduled in round-robin fashion, they tend
to arrive at the barrier at about the same time. This means that the multiple contexts
effectively provide latency tolerance for each other throughout most of the computation.
When favored execution is used, the favored threads tend to finish first, and a situation can
arise in which only a few threads have work remaining, but not enough threads are doing
work to effectively tolerate latency. The graph of the sorsta runtime shows a number of
cases in which the round-robin scheduling performs better than the favored scheduling due
to this problem. This is the case for instance with a latency of 160 cycles, and high memory
throughput. With 16 threads, a 160 cycle memory latency, and round-robin scheduling,
threads arrived at the barrier in a span of about 32000 cycles. When favored scheduling
was used, the threads arrived at the barrier in a span of about 324000 cycles, a span that
is over a factor of 10 longer. Note that sor.sta is particularly susceptible to this problem
because the work is divided up statically into large chunks. The sor_dyn does not suffer
from this problem because work is dynamically acquired in small chunks, and threads always
arrive at the barrier fairly close in time.

7.3.3 Sparse-Matrix Vector Multiply

Figure 7.11 shows the code for multiplying a vector with a sparse matrix. Figure 7.12 shows
the compressed storage format used for the sparse matrix. This format stores the non-zero
elements of the matrix in a linear data array, and uses index arrays to denote the start and
the end of the each matrix row, as well as the column position of each row element.

149

CHAPTER 7. SCHEDULING FOR GOOD CACHE PERFORMANCE

for (row = 0 ; row < numrows ;row++) {
index.start = rowstart[row];
index.end = rowstart [row+1];
partial = 0.0;
for (index = indexstart; index < indexend ; index++)
partial += x[columnpos[index]] * a[index];

result [row] = partial;

Figure 7.11: Sparse-matrix vector multiply code.

Row Start Index Array:

1 2 0 0 0
4000

05600 0 0
000 7 0 8 9
07089

Matrix

Data Array:

Column Positions Array:

Size = (# rows) + 1

0 2 4 6 7 10

12 3 4 5 6 0 7 8 9

0 1 0 1 1 2 4 1 3 4

Size = (# Non-Zero Elements)+(# Zero Rows)

Figure 7.12: Example of sparse matrix storage format using row indexing.

150

7.3. EXPERIMENTS

The data reuse patterns in sparse matrix code are less clear than for regular dense matrix
code. We can exploit self-spatial reuse in the sparse matrix references, as different values
are read linearly from the index and the data arrays. There can also be self-temporal reuse
of vector elements because several rows of the sparse matrix will have non-zero elements
in the same columns, and will need to read the same vector elements. In typical sparse
matrices, rows that have non-zero elements in the same column are close to one another in
the matrix.

We simulate three different versions of the sparse matrix code:

1. smvm.sing: Single context version of the code.

2. smvmdyn: Multiple context version with fine-grain distribution of the row itera-
tions to the multiple contexts.

3. smvm.sta: Multiple context version that statically assigns contiguous blocks of rows
to each context.

Data Sharing Effects

Results for different matrices taken from the Harwell/Boeing sparse matrix set [28], a col-
lection of matrices taken from a variety of scientific disciplines, are shown in Figure 7.13.
The general trend is that multiple context versions perform better than the single context
version due to the latency tolerance provided by the multiple contexts. Furthermore, the
multiple context version in which the contexts dynamically acquire row iterations performs
better than the version that assigns contiguous blocks of threads to the contexts, due to
improved cache performance. This improved cache performance is due to the fact that
threads tend to be working on row numbers that are contiguous, these rows have a number
of the same columns that have non-zero entries, and so share vector data.

Favored Thread Execution Effects

Figures 7.14 and 7.15 show the cache hit rate and the runtime for smvmdyn and smvm.sta
respectively, with an increasing number of contexts, and different memory latencies and
throughputs. The sherman2 test matrix is used as a representative example. Two cases are
shown, one in which threads have equal priority, so that threads are scheduled in round-
robin fashion, and one in which threads have a priority based on the iteration they are
calculating so that threads execute in a favored order.

The curves show much the same trends as the curves for the SOR benchmark. For the
smvm.dyn case shown in Figure 7.14, data sharing minimizes the drop in cache perfor-
mance even with round-robin scheduling. Though the favored execution minimizes the drop

151

CHAPTER 7. SCHEDULING FOR GOOD CACHE PERFORMANCE

Sparse-Matrix Vector Multiply

smvm_sing

smvmdyn

smvmsta

Matrix

SPEEDUP

mcca_2 steaml bp_1600

l smvm_sing

smvm_dyn

smvm_sta

sherman2

Matrix

Figure 7.13: Hit rates and speedups for the Sparse-Matrix Vector Multiply using different

sparse matrices. Multiple-context versions of the code use 4 contexts. A 1Kbyte direct-
mapped cache is used.

152

100

50

0

2.0

1.0

0n L_•v.
w

7.3. EXPERIMENTS

O - O 20 cycles, round-robin
0 0 80 cycles, round-robin
0 ---0 160 cycles, round-robin
S [- 0 20 cycles, favored
O [80 cycles, favored
El -- - l 160 cycles, favored

:m • -1 •r.- r'• ~l rl r' m r'lm,...j•

E
-

I I I I I I I I I I I I I I I I
0 1 2 3 4 5 6 7 8 9 1011 1213141516

Active Threads

b. Hit rate with high memory throughput

.50+06
.00+06

.50+06

1.Oe+06

3.50+06

3.00+06

2.5e+06

2.0e+06

1.5e+06

1.0e+06

5.00+05

ta n.&nor

0 - 0 20 cycles, round-robin
0 0 80 cycles, round-robin
0 -- - 0 160 cycles, round-robin
0 - 0 20 cycles, favored
Li L. OW clul u, avureU

Sl --O -160 cycles, favored

-1, "El

0 i.. . . .

I I I I I I I I I I I I I I I I

0 1 2 3 4 5 6 7 8 9 10111213141516
0 1 2 3 4 5 6 7 8 9 10111213141516

Active Threads

a. Runtime with high memory throughput

0 - 0 20 cycles, round-rob
0 0 80 cycles, round-robi
0 - - - 0 160 cycles, round-ro
O - 0 20 cycles, favored
O 80 cycles, favored
E -- - El 160 cycles, favored

n 5.50+06

i" .0e+06

.5e+06

14.00+06

35e+06

3.00+06

2.5e+06

2.0e+06

1.5e+06

1.0e+06

5.0e+05
I I I I I I I I I I I I I I I

0 1 2 3 4 5 6 7 8 9 10111213141516
Active Threads

b. Hit rate with low memory throughput

0.

0 - 0 20 cycles, round-robin
0 0 80 cycles, round-robin
0 -- - 0 160 cycles, round-robin
0 - El 20 cycles, favored
El 80 cycles, favored
E - - - l 160 cycles, favored

-Q

I

0 1 2 3 4 5 6 7 8 9 10111213141516
0 1 2 3 4 5 6 7 8 9 10111213141516

Active Threads

c. Runtime with low memory throughput

Figure 7.14: Performance of smvm.dyn comparing round-robin and favored execution for
different memory latencies and throughputs. The sherman2 matrix is used as an example,
using a 1Kbyte direct-mapped cache.

153

40

30

20

I UU

90

80

70

40

30

IIII

Y-b~·(F~f~:~

I--- ~ ~ ~ ~ ~ ~ ~ .. '1 -- '- I ----- ~i i i j d f I • i i

0+0-0o

LB

I

I
I

rnn
-

-

-

-

I I I I I I I I I I I I I I I I

CHAPTER 7. SCHEDULING FOR GOOD CACHE PERFORMANCE

A - A 20 cycles, round-robin
...... A BO cycles, round-robin

A -- - A 160 cycles, round-robin
A - A 20 cycles, favored
m * 80 cycles, favored

S- -- m 160 cycles, favored

111111111111111I I I I I I I I I I I I I I I

8 9 10111213141516
Active Threads

.5e+06

.0Oe+06

44.5e+06

3 0e+06
9.5e+06

3.0e+06

2.5e+06

2 0e+06

1.5e+06

1.0e+06

5.0e+05

O.Oe+00

A- A 20 cycles, round-robin
S...... 80 cycles, round-robin

A - - - A 160 cycles, round-robin
* - K 20 cycles, favored

S 0...... cK 8velhs favored
m ---K 160 cycles, favored

- .

SI I II II I I

01234 5 6 7 8 9 10111213141516
Active Threads

b. Hit rate with high memory throughput

A - A 20 cycles, round-robin
A A 80 cycles, round-robin
A -- - A 160 cycles, round-robin
* - A 20 cycles, favored
m * 80 cycles, favored
* -- - X 160 cycles, favored

I 1 i i 111 1
0 1 2 3 4 5 6 7 8 9 10111213141516

Active Threads

b. Hit rate with low memory throughput

.5e+06

.Oe+06

'4.5e+06

4.0e+06

C;.5e+06

3.0e+06

2.5e+06

2.0e+06

1.5e+06

1.0e+06

5.0e+05

0.Oe+ on

a. Runtime with high memory throughput

A - A 20 cycles, round-robin
S...... A 80 cycles, round-robin

A - - - A 160 cycles, round-robin

- I

3) --)K 20 cycis, ravoro
-X K 80 cycles, favored

X --- K 160 cycles, favored

dK.. .

IIIIII II ll I IIII
0 1 2 3 4 5 6 7 8 9 10111213141516

Active Threads

c. Runtime with low memory throughput

Figure 7.15: Performance of smvm.sta comparing round-robin and favored execution for
different memory latencies and throughputs. The sherman2 matrix is used as an example,
using a 1Kbyte direct-mapped cache.

154

01234567

17UU

90

80

70

30

20

IIIIII

IJ

I I I

-

-

-

-

A ... X ... A ... W ... X··m
~C'~c-1~~-3-)K- * -)K--

r zm ý - - - - - - - - - - -m

7.4. SUMMARY

in the cache hit rate, there is almost no gain in performance in the high memory throughput
case, and a small gain in performance in the low memory throughput case. For 16 threads,
the performance is better by about 11% independent of the latency.

For the smvmsta case, data sharing is not so good, and with round-robin execution cache
performance drops off dramatically. Favored execution minimizes the drop in cache hit
rate. If there is more than sufficient bandwidth then the better hit rate again has little
impact on performance, and the load balancing problem can cause the favored execution
to perform worse than round-robin execution. If bandwidth is limited, favored execution
has a significant impact on performance. With 16 threads, performance was better by 33%,
20%, and 11% for latencies of 20, 80, and 160 cycles respectively.

7.4 Summary

In this chapter we examined the effects of multithreading on cache performance using a
multiple-context processor. Previous studies show that cache performance suffers as the
number of threads executing increases, and that this can limit the benefits of multithreading.
We present two techniques that limit the negative effects of multithreading on the cache:

* Data sharing: We define threads so that they share common data, and we closely
coordinate thread execution so that they use common data at approximately the
same time. When the threads share data they can both prefetch data for each other,
and data can be pipelined through the cache and be used by each thread in turn.
A key component of maximizing data sharing is the dynamic distribution of work in
small chunks to the different threads so that they remain closely synchronized. In the
context of loop iterations, we can do this very efficiently since the contexts share a
cache, and we can use a simple Fetch-and-Increment to distribute loop iterations at a
very fine grain.

* Favored Execution: We use thread prioritization to make the threads execute in a
preferred order. In this way the minimum number of threads needed to tolerate
latency can be executing, thus minimizing the number of working sets that are in the
cache, and maximizing the hit rate. Favored execution allows the number of threads
executing to adjust dynamically to the observed latency, provided there are more than
enough threads to tolerate latency.

Several simple experiments illustrate the benefits of data sharing and favored execution as
well as the following interesting points:

* Thread definition is very important. For the different applications it is possible to
define threads so that they have considerable working set overlap, or so that there is
much less working set overlap.

155

CHAPTER 7. SCHEDULING FOR GOOD CACHE PERFORMANCE

* Dynamic distribution of iterations is very important because it minimizes the load
balancing problem, and allows the close coordination of threads. The versions of the
benchmarks that distribute the work in small chunks avoid the load balancing problem
in which several threads finish their execution and leave other threads to execute for
long periods without the benefit of latency tolerance. Also, when work is dynamically
distributed to the threads they work on closely spaced iterations which leads to better
data sharing.

* Barrier overhead can still be an issue. If a local barrier is being done between groups of
iterations (to exploit blocking for instance) then the amount of work between barriers
has to be large enough to compensate for this extra overhead. Since this overhead is
quite small due to the contexts sharing a cache, it only becomes an issue when barriers
are very frequent as in the sor_dyn case with a blocking factor of 5.

* Favored execution succeeds in choosing the minimum number of threads required to
tolerate the observed latency. As the latency increases an increasing number of threads
execute, but only just enough to tolerate the latency. As a result, although the cache
performance decreases with increased latency because more contexts are executing,
the hit rate stabilizes once enough contexts are available to fully tolerate latency.

* Favored execution has a greater impact when the threads have less overlap in their
working sets because each additional thread that is executing adds a greater amount
of data that has to be in the cache than if the threads have more overlap.

* Favored execution can make the load balancing problem worse. It does this by caus-
ing some threads to finish well before others, leaving insufficient threads to tolerate
latency.

* The effect of favored execution on runtime depends on the memory bandwidth avail-
able. If lots of memory bandwidth is available, then the impact of the improved cache
performance will be reduced, because the only penalty for an extra cache miss is
the cost of a context switch. If memory bandwidth is limited, favored execution can
have a large impact on performance since the increased hit rate reduces bandwidth
requirements.

The performance improvements due to data sharing and favored execution depend on the
number of contexts, the memory latency, and the memory throughput. For our three simple

benchmarks, versions of the code written to exploit data sharing have better cache hit rates
and runtimes than versions that are not. With 4 contexts, round-robin scheduling, and a
1Kbyte direct-mapped cache, the cache hit rate was better by 1 to 26 percentage points.
Favored execution is also useful in improving cache hit rate, especially when there are many
threads that do not share much data. For 16 threads, favored execution had better hit rates
than round-robin execution by 7 to 24 percentage points. The runtime improvement due to
better cache hit rates depends on the cost of a context switch, and the memory throughput.
Combining both data sharing and favored execution, runtime improvements range up to
16% for the high memory throughput case, and up to 50% for the low memory throughput
case.

156

Chapter 8

Critical Path Scheduling

In this chapter we concentrate on showing how thread prioritization can be used to guide
the scheduling based on the critical path. This may be an actual critical path determined
from a static program graph, or the path that the user or compiler heuristically chooses as
being the most important. Many programs can be analyzed by the compiler to determine
which threads are most critical. In some dynamic cases where it is not possible to determine
a good schedule at compile time, it is possible to determine a schedule at runtime using a
pre-processing step which examines the task graph. We use a number of simple benchmarks
to study how prioritization affects performance.

The experiments show how the effect of the prioritization depends very much on the charac-
teristics of the problem. In particular, the problem must be critical path limited, and there
must be sufficient parallelism. For this type of problem, performance of the prioritized cases
is as much as 37% better than the unprioritized case. When the problem is not critical path
limited, or there is insufficient parallelism, prioritization has a negligible effect.

We also examine the effects of memory latency and memory throughput. The most impor-
tant parameter is the memory latency. As the latency increases, hardware prioritization
is less effective in improving performance because more of the contexts are stalled at any
given time, and the choice of which context to execute next is reduced. Memory throughput
affects the overall performance if the application is memory bandwidth limited or there is
a memory bottleneck. The impact of prioritization tends to increase when the application
is memory bandwidth limited.

157

CHAPTER 8. CRITICAL PATH SCHEDULING

8.1 Benchmarks

In this chapter we use both regular and irregular problems that benefit from scheduling
threads based on an estimate of the critical path.

The first two benchmarks are a dense triangular solve and a sparse triangular solve that
evaluate the benefits of hardware prioritization of the contexts. The number of threads
generated is always less then the number of contexts. The dense triangular solve is a
regular problem with a well defined DAG and it is easy to statically distribute the work
across processors. The sparse triangular solve has a much more irregular DAG that depends
on the sparsity pattern of the matrix, and that can only be determined at runtime. This
represents a class of problem which can benefit from an inspector-executor approach [82] in
which the inspector analyzes the dependencies at runtime, and based on this analysis, places
and schedules tasks on the processors. The executor then executes these tasks. Provided
the same pattern of computation is performed many times, the cost of doing the scheduling
analysis can be amortized over many computations. Since we are not primarily interested in
the load-balancing aspect of these problems, we use a specific approach to load balancing,
and then concern ourselves with the effects of prioritizing threads and contexts.

The next two examples are dense matrix Lower-Upper Decomposition (LUD) and sparse
matrix LUD that evaluate the benefits of both hardware and software prioritization. In
these examples we adopt a more dynamic approach to task generation, and there can be
more threads than contexts. As with the two triangular solve algorithms, the dense LUD is
a regular problem which can be statically load balanced, and the sparse LUD is an irregular
problem that benefits from runtime DAG analysis and scheduling.

These 4 benchmarks are described in more detail below.

8.1.1 Dense Triangular Solve

A dense triangular solve finds a vector x such that Tz = b, where T is an upper or lower
triangular matrix. For instance, given the LUD of a matrix A such that Ax = LUx = b,
we can solve for the vector x by first doing a forward substitution step to find the vector y
such that Ly = b, and then a backward substitution step Ux = y to find x.

Figure 8.1 shows the code for the forward substitution. Each element of the result vector
x[i] depends on all the previous elements x[j] where j < i. Assuming we create a thread
to calculate each element, the prioritization is such that earlier i iterations have higher
priority.

The benchmark does forward substitution using a 256x256 triangular matrix that is dis-
tributed in blocks of rows across the processors. Processors are responsible for calculating

158

8.1. BENCHMARKS

for (i = 0 ; i < N ; i++) {
result = b[i] ;
for (j = 0 ; j < i ; j++) {

result -= x[j] * TEi) [j]

x[i] = result/T[il] ;i

Figure 8.1: Serial dense triangular solve code.

interleaved elements of the result vector. There is some inherent load imbalance both in
the problem itself, and in the way of dividing up the work across the processors. The load
imbalance within the problem comes from the fact that there is a different amount of work
required for calculating the final value of each element, and the calculation of these elements
is distributed in an interleaved fashion across the processors. Each processor spawns a cer-
tain number of threads into its different contexts, and each thread acquires an element x[i]
to update by incrementing a counter local to each processor. Each processor has its own
copy of the x vector and when a processor writes an element to the x vector it explicitly
sends messages to update the vectors on all the other processors. Fine-grain synchronization
using Full/Empty bits is used to make sure that a processor does not use an element of the
x vector before it has been calculated. A thread that tries to read an empty location does
a context switch and attempts to read the location again at a later time. Three different
prioritization schemes are used:

1. Unprioritized: Threads are run in round-robin order.

2. Write Prioritized: Threads writing a final value to the x vector are given high priority.

3. Level Prioritized: Threads are prioritized based on the index of the element that they
are calculating. Lower indices have higher priority.

The benchmark uses 16 processors. Each processor has an 8Kbyte, 4-way set-associative,
16 bytes per line cache.

8.1.2 Sparse Triangular Solve

The sparse triangular solve benchmark does forward elimination using a sparse triangular
matrix. The overall calculation is the same as for dense triangular solve, except that it
exploits the sparse nature of the matrix to eliminate unnecessary computations associated
with the 0 elements of the matrix. The sparse matrix format is the same as used in Chap-
ter 7, and is shown again in Figure 8.2 for convenience. Figure 8.3 shows the code for the

159

CHAPTER 8. CRITICAL PATH SCHEDULING

Size = (# rows) + 1

Row Start Index Array: 0 2 4 6 7 10

3 4 0 0 04000
05600
00000
07089

MatrixMatrix

Data Array:

Column Positions Array:

1 2 3 4 5 6 0 7 8 9
0 1 0 1 2 4 14 3 4

Size = (# Non-Zero Elements)+(# Zero Rows)

Figure 8.2: Example of sparse matrix storage format using row indexing.

for (i = 0 ; i < N ; i++) {
result = b[i] ;
for (j = rowstart(i) ; j < rowstart(i+l) ; j++) {

result -= x[j] * T[columnpos[j]] ;

x[i] = result/T[columnpos[i]] ;

Figure 8.3: Serial sparse triangular solve.

sparse forward elimination. Each element of the result vector x[i] depends on only some of
the previous elements x[j] where j < i. Depending on the pattern of the sparse matrix, the
dependencies can be quite complex.

It is important to perform some amount of pre-scheduling and load balancing [82, 19]. In the
prescheduling phase, the depth of each element x[i] is calculated. The depth of element i is
the length of the longest dependency chain of x elements that begin with x[i]. The elements
are sorted in order of decreasing depth and assigned round-robin to the processors. Each
processor will calculate its x vector elements starting with those of greatest depth.

The code is parallelized by having each processor spawn a given number of threads into
different contexts, and each thread acquires an element x[i] to update by incrementing a
counter local to each processor and accessing the next element in the pre-calculated schedule.
Fine-grain synchronization with Full/Empty bits and spinning is used to prevent threads
from using elements of the x vector before they have been calculated.

We used two different prioritization schemes, and various sparse input sparse matrices:

160

8.1. BENCHMARKS

Matrix Description n nonzeros
bcspwr07 Power Network 1612 3718
mat6 Circuit Simulation 687 6449
adjac25 Adjacency Matrix 625 22797

Table 8.1: Sparse matrices used in the benchmarks.

1. Unprioritized: Threads are run in round-robin order.

2. Level Prioritized: Threads are prioritized based on their distance from the outputs
of the DAG that describes the dependencies between x[i] elements. Threads that are
further from the outputs have higher priority.

We used the three different sparse matrices described in Table 8.1 as input to the benchmark,
representing very different sparsity patterns. bcspwr07 is a very sparse matrix from the
Harwell-Boeing Sparse Matrix suite and comes from the sparse matrix representation of
a power network. mat6 is from the circuit simulation domain, and represents the fill-in
pattern for a direct sparse LUD solve as will be discussed in more detail in section 8.1.4.
adjac25 comes from a grid adjacency matrix, and again represents the fill-in pattern that
occurs during direct sparse LUD.

It should be noted that the ordering of thread execution is different from the approach taken
by Saltz et. al. in [82]. In their case they divide the computation into wavefronts, where
each wavefront consists of those tasks that can be calculated independently assuming that
all previous wavefronts have completed. Barriers can be performed between each wavefront
calculation phase. Our use of fine-grain synchronization allows the emphasis to be placed
on scheduling the critical path. Also, our benchmark depends on the multiple contexts to
tolerate latency rather than taking a data driven approach as done by Chong et. al. [19].

Note that only the runtime of the compute phase is measured, not the time for the schedul-
ing, which is done serially. The benchmark uses 16 processors. Each processor has an
8Kbyte, 4-way set-associative, 16 bytes per line cache.

8.1.3 Dense LUD

One way of solving a system of linear equations Ax = b is to first find the LUD of the
A matrix, followed by forward and backward substitution steps to find the vector x [49].
The decomposition phase of the algorithm is O(n3) where n is the size of the matrix,
and represents the major portion of the computation for large problems. This phase of
the algorithm uses Gaussian elimination to find the lower triangular matrix L and upper
triangular matrix U such that A = LU.

161

CHAPTER 8. CRITICAL PATH SCHEDULING

col col col col
k k k k

PPP

MUU

MUU

row

Find Pivot Row Swap Rows Calculate Multipliers Update Elements

M[i,k] = M[i,k]/P[k,k] U[i,j] = U[i,j] - P[k,j] M[i,k]

Figure 8.4: LUD with partial pivoting.

The algorithm with partial pivoting is shown pictorially in Figure 8.4. At each step of the
computation one row and one column of the final LUD matrix is determined. Each iteration
requires the following 4 steps to be taken:

1. Search all elements in the leftmost column of the current submatrix for the element
with the largest absolute value. This element is the pivot and its row is the pivot row.

2. Switch all the elements of the pivot row and the topmost row of the current submatrix.

3. Calculate the multiplier column by dividing all the elements below the pivot by the
pivot.

4. Update all elements in the new submatrix which excludes the topmost row and left-
most column of the current submatrix, by subtracting the product of the multiplier
corresponding to the element's row and the element in the pivot row from the same
column.

The benchmark does a 64X64 LUD with matrices distributed in a column interleaved fashion
across the processors. Processors are responsible for calculating all values related to the
columns that they own. Note that there is some inherent load imbalance both in the problem
itself, and in the way of dividing up the work across the processors. The load imbalance
within the problem comes from the fact that there is a different amount of work required
for calculating the final value of each column and that the work for each column is statically
allocated across the processors. Two different versions of the benchmark were used1:

'Though a simple LUD example has been chosen here for illustration purposes, it should be noted
that there is generally enough easily exploitable parallelism in LUD to achieve good performance without
resorting to fine-grain synchronization. The real benefits of fine-grain synchronization are only obvious in
more complex wavefront computations such as the preconditioned conjugate gradient computation discussed
by Yeung and Agarwal [110].

162

8.1. BENCHMARKS

P/M x = Pivot and Multiplier
calculation for column x

P/M1 U x = Update of column x

Pri= 5 Pri= 2 Pri= 1

U4 U4 U4

Figure 8.5: Critical path prioritization of LUD tasks for a 4 column problem.

1. Unprioritized: The fine-grain synchronization version of the program uses the fact
that it is not necessary to wait for all the processors to finish before calculating the
next pivot and multiplier column. At each stage, each processor generates one thread
to update each column it owns. Also, the processor responsible for generating the
next multiplier column generates a thread to do so. Thus stages of the computation
related to different multiplier columns can proceed at the same time. Threads are
scheduled in FIFO manner on the scheduling queue, and loaded threads are run in
round-robin fashion. If a synchronization fault occurs, a new thread is switched in if
one is available.

2. Prioritized: In this version the threads are prioritized so that at any given stage the
thread that is updating the first column is given higher priority than the threads
calculating the other columns, as is the thread that is responsible for generating
the next multiplier column for use in the next stage. In this way, two stages of
the computation are nearly always loaded, and the calculation of the next multiplier
column is effectively overlapped with the updating of the submatrix. An example of
this prioritization is shown in Figure 8.5 for a simple 4 column problem.

The benchmark uses 16 processors. Each processor has a small 1Kbyte, 4-way set-associative,
16 bytes per line cache.

8.1.4 Sparse LUD

The sparse LUD benchmark performs LUD on a sparse matrix. Instead of the O(n3)
operations required by the dense algorithm, O(n") operations are required, where a depends
on the sparsity of the matrix. For instance, for a grid problem a is equal to 1.5, and typically
smaller for other circuit simulation problems.

Telichevesky [94] provides a good overview of the different steps involved in the sparse LUD
which are the following:

163

CHAPTER 8. CRITICAL PATH SCHEDULING

1. Reordering: interchange rows and columns of the matrix to minimize the number
of fill-ins. A fill-in is a given element aij that was originally 0, but becomes non-
zero during the decomposition. A given source row will create a fill-in in any target
row that has a 0 in the same column that the source row has a non-zero. Although
computationally expensive, this step can typically be performed on symbolic data
once at the beginning of the computation.

2. Load balancing and scheduling: load balance the work across the processors and their
scheduling priority. Because the work per row can vary significantly, and because the
dependencies between rows can be very irregular, the simple row interleaved load-
balancing done in the dense LUD case does not perform well. Telichevesky [94] uses
a simple load balancing scheme that estimates the amount of work associated with a
row, and then assigns the rows to the processors in round-robin order. Furthermore,
a priority is associated with each row update based on remaining completion time,
or the minimum time for completion of all the tasks that depend on the current row
update.

3. Data structure creation: Create data structures which allow easy access to the required
matrix elements both along rows and along columns.

4. Decomposition: Using the special data structures, perform the decomposition.

The benchmark assumes a re-ordered matrix, as well as an assignment of rows to processors
based on a load balancing heuristic similar to the one used by Telichevesky. The data
structures used to represent the matrix are shown in Figure 8.6. An Overlapped Scattered
Array (OSA) is used to represent the sparse array. OSA is a vector representation of a sparse
matrix in which the distance between two non-zero elements in the same row is preserved,
and no pair of non-zero elements occupy the same physical location in the vector. An offset
array indicates the starting position of each row within the OSA vector. To easily identify
target rows for a given source row, and non-zero entries for a row update, a special diag data
structure is used. This data structure has an entry for each diagonal element, and along
with the r-inc and the cin.r vectors, identifies all rows with non-zero elements below the
diagonal, and all columns with non-zero elements to the right of the diagonal. Specifically,
each diag entry contains 4 values: the first is the number of elements below the diagonal,
the second is an offset into rinc identifying where the row numbers of the elements in
the diagonals column are stored, the third is the number of elements to the right of the
diagonal, and the fourth is the offset into cinr identifying where the column numbers of
the elements in the diagonals row are stored. Using this data structure, the serial code for
the LUD is shown in Figure 8.7.

The code is parallelized by assigning rows to processors, and having each processor spawn
a thread for each target row that it is responsible for updating. Each one of these threads
updates their target row by taking each source row that has to update the target row, and
performing the appropriate calculation. The source rows that have to update a target row
are all those rows for which the target row has a non-zero element to the left of the diagonal.
An additional data structure, Ic_in_r keeps track of all non-zero elements to the left of the

164

8.1. BENCHMARKS

Row
01234

offset: 0 1 1 4 5

120 3 0 0 403004
0 0 5 6 0 OSAmatrix: 1 2 3 5 6 4 8 7 0 9
00070
08009

Matrix Diagonal

diag

Additional fields and structures
used in parallel version of the
sparse LUD code.

Number of rows
below the diagonal:

Offset into r_in_c:

Number of columns to
the right of the diagonal:

Offset into c in_r:
Number of columns to
the left of the diagonal:

to lcinr:

r_in_c:

cin r:

t II I

0 1 2 3 4

0 1 0 0 0

0 0 1 1 1

1 1 1 0 0

0 1 2 3 3

0 0 0 0 1

0 0 0 0 0

14 3

Figure 8.6: Data structures for the sparse LUD representation.

165

- -l s

CHAPTER 8. CRITICAL PATH SCHEDULING

for(i=O; i<nrows; i++) {
diagval = 1.0/matrix[offset[i]+i];
elimrow.num = diag[4*i;
elimrow.index = diag[4*i+l];
elimcolnum = diag[4*i+2];
elimcolindex = diag[4*i+3];
for(j=elimrownum; j > 0; j--, elim.row.index++) {

index.i = i;
index.j = rin.c[elimrow.index];
/* Normalize elements in the i column */
matrix[offset [index.j] + i] *= diag.val;
for(k=elimcolnum; k > O; k--, elim.colindex++) {

index-k = cin.r[elim.col.index];
matrix[offset[index4j] + index.k] -=

matrix[offset[indexj] + indexi] *
matrix[offset[indexil + indexk];

}

Figure 8.7: Serial sparse LUD code.

diagonal of any given row so that the appropriate source rows can easily be identified. Each
thread starts with the lowest numbered source row, and proceeds to the highest numbered
source row 2. Fine-grain synchronization is used to detect whether the next source row is
available yet, and if it is not, then the thread suspends and is woken up when the desired
source row becomes available. Two different prioritization schemes were used:

1. Unprioritized: Threads are scheduled in FIFO order in the scheduling queue, and
loaded threads are run in round-robin order.

2. Prioritized by Remaining Work: Threads are prioritized based on estimate of the
remaining work. Remaining work corresponds to the work that the thread itself has
to do, plus the length of the longest chain of work that depend on this row being
completed.

Note that we measure only the runtime for the decomposition step in this benchmark, as
the other steps run serially. The benchmark uses 16 processors. Each processor has an
8Kbyte, 4-way set-associative, 16 bytes per line cache.

2This represents a more restrictive DAG than the true data dependency DAG because in some cases the
order in which a row is updated by two different source rows can be interchanged. Detecting this dependency
requires a more detailed analysis of the DAG however, and was not done in our case.

166

8.2. RESULTS

8.2 Results

8.2.1 Dense Triangular Solve

Figure 8.8 shows runtimes of the triangular solve for different latencies and memory through-
puts. This benchmark is critical path limited since at any given time the thread responsible
for calculating the next element of the x vector is the most important, and any delay in this
calculation decreases the overall performance. Because this specific problem is so highly
critical path limited, threads spend most of their time spinning and waiting for the next
element x to be calculated, and there is little advantage to having more than 3 or 4 contexts
even at high latencies. With more contexts, it is essential to prevent the spinning threads
from slowing down the writing of the arriving z element. It is also essential to allow the
thread calculating the xi with the lowest index value to proceed first since the other pro-
cessors use this value first. As seen in all the figures, giving high priority to the writing of
the x vector array elements improves performance slightly over the unprioritized case for
large number of contexts. The completely prioritized case further improves performance by
allowing the highest priority thread to proceed first when a new xi has been written.

There are a number of anomalous points on the unprioritized curve, for instance the sudden
increase in runtime in the case of an 80 cycle memory latency and 15 loaded threads. This
is due to the round-robin scheduling being particularly bad during several portions of the
computation i.e., the needed element is written just as the processor is context switching
out of the thread that would otherwise be the critical thread, and the processor executes all
the other threads before coming back to the critical one. It is also interesting to note that in
the unprioritized case the incremental decrease in performance due to having an additional
loaded thread per processor decreases with increasing threads. This is because although
each processor may begin with 16 loaded threads (since there are 16 processors, and 256
elements to calculate in the x array, 16 is the maximum number of threads that a processor
can have), this number rapidly decreases as elements of the x array are calculated. Thus
the performance when starting with 16 threads per processor is much the same as when
starting with 14 or 15 threads per processor.

The best performance improvement due to prioritization ranges from 27% for a 20 cycle
latency, to 37% for a 160 cycle latency. Since the application is not bandwidth limited,
decreasing the memory throughput has only a small effect on performance and on the
improvements due to prioritization.

8.2.2 Sparse Triangular Solve

Figures 8.9 through 8.10 show the runtimes of the different versions of the sparse triangular
solve running on different sparse matrices. The effect of the prioritization varies from
a performance improvement of 20% for the adjac25 matrix, to virtually no gain for the

167

CHAPTER 8. CRITICAL PATH SCHEDULING

S 0 -- 0 Urprioritized
0-0 PrloitLzed WINtes
A - A Level Priorfited

400000

350000

300000

250000

200000

150000

100000

50000

0 1 2 3 4 5 6 7 8 9 1011 1213141516
Active Threads

20 cycle latency, low memory throughput

-o-- Upnartried
0--0 Proritzed Writes
A - A Level Priorked

400000

350000

300000

250000

200000

150000

100000

50000

I I I I I I I I I I I I I I I

1 2 3 4 5 6 7 8 9 10111213141516
Active Threads

80 cycle latency, low memory throughput

S O-OUrpdadred
0- -0 PoritIzed Wit.es
A-A Level Prorted

- V~J~

U

400000

350000

300000

250000

200000

150000

100000

50000

400000

350000

300000

250000

200000.

150000O

100000

50000

0

400000

350000

300000

250000

200000

150000

100000

50000

0 1 2 3 4 5 6 7 8 9 10111213141516
Active Threads

160 cycle latency, low memory throughput

O -- Unpr•iored
O - 0 Pdrortlzed Writes
A - A Level Proized

I I I I I I I I I I I I I I

0 1 2 3 4 5 6 7 8 9 10111213141516
Active Threads

20 cycle latency, low memory throughput

S --O Upiorted
0--0 Priorilied Writes
A - A Level Prrinfted

1 2 3 4 5 6 7 8 9 10111213141516
Active Threads

80 cycle latency, low memory throughput

L 0--0p- O Uprrized
0--0 Priorinzed Wiles
A--A Level P•otzed

-

I I II I I I1111111 I

0 1 2 3 4 5 6 7 8 9 10111213141516
Active Threads

160 cycle latency, low memory throughput

Figure 8.8: Performance of the dense triangular solve for different memory latencies and
throughputs.

168

400000

350000

300000

250000

200000

150000

100000

50000

01 2 45 78 10111213141516

~e~r~-f~-tr~-t~-gt~-~-~t\

1111111111111111[J ui

AIJ tj

8.2. RESULTS

bcspwr07, and even a slight decrease in performance for mat6 matrix. This difference is due
to their different sparsity patterns, and is explained below.

Figure 8.9 shows the runtime of the sparse triangular solve using the adjac25 matrix. Pri-
oritization prevents performance from degrading as the number of contexts increases. The
calculation is such that there are only a few of the x array elements that can be calculated
immediately, and towards the end of the computation the matrix becomes quite dense and
the dependency pattern between threads is much the same as for the dense triangular solve.
Thus the dependency chains are quite long, and it is important to correctly schedule the
critical path. For high memory throughput the prioritized version was better than the
unprioritized version by 18% for a 20 cycle latency and high memory throughput, and by
8% for a 160 cycle memory latency. This adjac25 case is also the case in which limiting
the memory bandwidth has the most effect because of the memory contention on certain
modules when many threads are trying to read the same z vector element. Overall runtime
increased by up to 20%. Prioritizing the threads became slightly more important because of
this: the prioritized version was better than the unprioritized version by 20% for a latency
of 20 cycles, and by 14% for a latency of 160 cycles.

Figure 8.10 shows the runtime of the triangular solve using the bcspwr07 matrix, and shows
very little difference between the prioritized and unprioritized cases. The bcspwr07 matrix
is a very sparse matrix, and the dependency chains are very short. For the bcspwr07 matrix
there are 1612 result elements, and the maximum depth is 14. 1096 of the 1612 have a
depth of 3 or less. Only 23 elements have a depth greater or equal to 10. This computation
resembles most a bunch of largely independent threads with limited interdependency. As a
result, this computation benefits the most from the multiple contexts showing performance
improvements all the way up to 8 to 10 contexts for the case of a 160 cycle memory latency.
On the other hand, this problem benefits the least from the detailed prioritization since the
threads are largely independent. The decreased memory bandwidth also has little effect
since memory references are well distributed.

Figure 8.11 shows the runtime of the sparse triangular solve using the mat6 matrix. In this
case the prioritized version in some cases even performs slightly worse than the unprioritized
version. The computation proceeds by first having many short threads run first, and then
tails off towards the end of the computation with a very few long running threads. The
initial threads are short and numerous because the graph is sparse, and many elements of
the x array depend on only a few of the other elements. Only a few threads depend on
many elements, and these are calculated last. Note that having only a few long running
threads is bad because there is not enough threads to effectively tolerate latency. Generally,
the higher the level of an element, the smaller the number of accumulate operations that
have to be done to calculate its value i.e. the level is also a good indicator of the number
of other elements an element depends on. The mat6 matrix has many elements that have
a high level number, and only a few with a low level number. There are a total of 687
elements and a maximum depth of 38. 536 of the elements have a depth of 28 or greater.
Only 42 elements have a depth of 10 or less. Prioritization does not help at the beginning
because most of the running threads are of the same priority. Prioritization does not help

169

CHAPTER 8. CRITICAL PATH SCHEDULING

o -0 Uprdiorted
A - A Level Priorltled

400000

360000

320000

280000

240000

200000

160000

120000

80000

40000

1 2 3 4 5 6 7 8 9 10111213141516
Active Threads

20 cycle latency, high memory throughput

S- - Unprdiorized
A - A Level Pdotized

400000

S360000

S1 2 3 4 5 6 7 8 9 10111213141516
Active Threads

80 cycle latency, high memory throughput

S- 0 UpriorMted
S-A Level Prloffted

2 3 4 5 6 7 8 9 10111213141516
Active Threads

320000i

280000

240000

200000

160000

120000

80000

40000

n

400000

360000

320000

280000

240000

200000

160000

120000

80000

40000

160 cycle latency, high memory throughput

o- O- OUnpriotlted
A-A Level Prldordled

1 2 3 4 5 6 7 8 910111213141516K1
Active Threads

20 cycle latency, low memory throughput

S- •0 Uipriorflted
A -A Level Proritzed

01 2 45 78 10111213141516
0 1 2 3 4 5 6 7 8 9 10111213141516

Active Threads

80 cycle latency, low memory throughput

o - 0 Unplorbfted
A--A Level Ptriled

I 11111I I 111 1
0 1 2 3 4 5 6 7 8 9 10111213141516

Active Threads

160 cycle latency, low memory throughput

Figure 8.9: Performance of the sparse triangular solve using the adjac25 matrix, for different
memory latencies and throughputs.

170

400000

360000

320000

280000

240000

200000

160000

120000

80000

40000

0

400000

360000

320000

280000

240000

200000

160000

120000

80000

40000

U

400000

360000

320000

280000

240000

200000

160000

120000

80000

40000

0

A.

I I - -II I I I I .J I

E-

0

F-

0

8.2. RESULTS

O -- UALe droted
A -A Level Pidxftked

250000

225000

200000

175000

150000

125000

100000

75000

50000

25000

250000

225000

200000

175000

150000

125000

100000

75000

50000

25000

0 0

Active Threads

20 cycle latency, high memory throughput

S- O Urnprltzed
A -A Level PdrtWred

rA

11111 IlIltIllIll
910111213141516

0 1 2 3 4 5 6 7 8 9 10111213141516
Active Threads

20 cycle latency, low memory throughput

- - 0 Uredodtied
A -A Level Prtortfized

250000

225000

200000

175000

150000

125000

100000

75000

- I A I a l I

0 1 2 3 4 5 6 7 8 9 10111213141516
Active Threads

80 cycle latency, high memory throughput

S- Urpidortled
A -A Level Plordred

50000

25000

0

250000

225000

200000

175000

150000
125000

100000
75000

50000

25000

2 3 4 5 6 7 8 9 10111213141516
Active Threads

160 cycle latency, high memory throughput

- o - o UpIN Aled
A -A Level Pdoditzed

1 2 3 4 5 6 7 8 9 1011 1213141516
Active Threads

80 cycle latency, low memory throughput

S o•-o0 Urjfted
A - A Level Pdomfed

1111IlI lI llI l

0 1 2 3 4 5 6 7 8 9 10111213141516
Active Threads

160 cycle latency, low memory throughput

Figure 8.10: Performance of the sparse triangular solve using the bcspwr07 matrix, for
different memory latencies and throughputs.

171

1 2 3 4 5 6 7 8 9 101111111
0 1 2 3 4 5 6 7 8 9 10111213141516

250000

225000

200000

175000

150000

125000

100000

75000

50000

25000

250000
225000

20ULJIJIA

175000

150000

125000

100000

75000

50000
25000o

0 10 1

zt

u I
I I I I I I I I I I I l I I I

CHAPTER 8. CRITICAL PATH SCHEDULING

- o-o urpndi ted
A - A Level Pori~ted

111111111 1 11iill

• 160000

140000

120000

100000

80000

60000

S •-- -s 40000

20000

0 1 2 3 4 5 6 7 8 9 10111213141516
Active Threads

20 cycle latency, high memory throughput

u-- Levelf Pwfredl- A Level Pdorltted

11 1 1 1 l III I I I I I t
0 1 2 3 4 5 6 7 8 9 10111213141516

Active Threads

80 cycle latency, high memory throughput
S - 0 uplornrmzea

S A - A Level Priofted

I IIIII IlIIII III I

0 1 2 3 4 5 6 7 8 9 10111213141516
Active Threads

160 cycle latency, high memory throughput

U

180000

160000

140000

120000

100000

80000

60000

40000

20000

180000

160000

140000

120000

100000

80000

60000

40000

20000

0

O -0 Urpldoritzed
A- A Level Pdortized

01 2 45 78 10111213141516
0 1 2 3 4 5 6 7 8 9 10111213141516

Active Threads

20 cycle latency, low memory throughput
O - o Upftokl ed
A - A Level Pdorlntzed

01 2 4 6 8 10111213141516
0 1 2 3 4 5 6 7 8 9 10111213141516

Active Threads

80 cycle latency, low memory throughput

0

0 - 0 Unpriodnrod7 A- A Level Pdodtized

1111111111 l1lt II
1 2 3 4 5 6 7 8 9 10111213141516

Active Threads

160 cycle latency, low memory throughput

Figure 8.11: Performance of the sparse triangular solve using the mat6 matrix, for different
memory latencies and throughputs.

172

180000

160000

140000

120000

100000

80000

60000

40000

20000

1800UU

160000

140000

120000

100000

80000

60000

40000

20000

l OLuW

160000

140000

120000

100000

80000

60000

40000

20000

,

u

1I

• •*%nltl

-

^ ^'"^"~""'^^^^^

0
I

L

8.2. RESULTS

at the end of the computation because only a few threads are running. Further, because the
prioritized version concentrates on executing some of the short threads, it can hurt latency
tolerance, and can actually perform worse than the unprioritized version.

The problems that arise in the mat6 case are artifacts of how we have defined and prior-
itized threads. Specifically, a given element of the x array is calculated sequentially by a
single thread, and the prioritization does not take into account the number of accumulates
that are required to calculate each element. What is required is to divide the accumulation
operations for certain elements across several threads, so as to increase parallelism towards
the end of the computation and allow better latency tolerance. This requires more compli-
cated code since now a single element is being updated by several threads, but it allows the
multiple contexts to be used more effectively. In the limit, each accumulate operation can
be considered and scheduled independently.

The results of running the sparse triangular solve using these three different matrices il-
lustrates a range of effects of both the number of contexts and the prioritization. For the
adjac25 matrix, the computation can be critical path limited, and it benefits from the hard-
ware prioritization of threads. The bcspwr07 case benefits from multiple contexts, but not
from the prioritization since its task graph is very short and synchronization is minimal.
The mat6 matrix generates a thread pattern that causes prioritization to be ineffective, and
also negatively affects the ability to tolerate latency towards the end of the computation.

8.2.3 Dense LUD

Figure 8.12 shows the running time of the LUD benchmark for a varying number of contexts.
The unprioritized case performs worse because it does not give special treatment to the
threads responsible for generating the next multiplier column. When it spawns threads to
update the submatrix it begins to execute these threads, and they occupy all the contexts.
The critical thread responsible for finding the pivot and the multiplier column is typically
sitting in the thread queue, and waits until a context is free before it executes. This delays
the calculation of the next pivot column to the point that it cannot be completely overlapped
with the update phase. The prioritized version prioritizes the threads in such a way that
generating the next multiplier column is given priority over updating the current submatrix.
As a result, the update threads for the next stage are generated before the current update
stage has completed. Figure 8.13 shows the lifelines for both cases with 1 context per
processor. The unprioritized version shows significant idle periods as the multiplier column
is calculated. In the prioritized case on the other hand, these idle times are reduced. Except
at the very last portion of the calculation when the size of the remaining matrix becomes
very small, the processor with the most work to do, in this case processor 15, is kept busy
most of the time. Thus, we see that the processors are as busy as expected given the
inherent load imbalance of the computation.

For a single context, only software prioritization comes into play. In this case the perfor-

173

CHAPTER 8. CRITICAL PATH SCHEDULING

- O - O UnporWred
O - O Pdrorafed queue, urprtodtred contexts

- A - A Pdiortzed queue, pririNzed contexts

-I I I i i i I I- LI LI LI I I I

3000000

2700000

2400000

2100000

1800000

1500000

1200000

900000

600000

300000

0 12 3456 78
Contexts

20 cycle latency, high memory throughput

- O--O Unphoded I
O - O Prlortlzed queue, unprioritized contexts

- A - A Priortaed queue, priottized contexts

-,

1 2 3 4 56 78
Contexts

80 cycle latency, high memory throughput

- 0- Uproitzed
S-0 Pro rtized queue, ur•protzed contexts

A - A Prrtled queue, prbrzed ontaex- t

I I I I I I I I

Contexts

160 cycle latency, high memory throughput

3000000

2700000

2400000

2100000

1800000

1500000

1200000

900000

600000

300000

o

3000000

2700000

2400000

2100000

1800000

1500000

1200000

900000

600000

300000

U

O - O Uparioltfred
O -0 Prfortzed queue, unproritred contexts
A - A PArirzed queue, proized contaexts

I I I I I I I I

0 12345678
Contexts

20 cycle latency, low memory throughput

- - Urto uried
0 - O Prtordred queue, unprkpirted contexts
A - A Prioraded queue, priored contexts

I-I

1 2 3 4 5 6 7 8
Contexts

80 cycle latency, low memory throughput

- o-o u-pxkUritked
O - O Porlfrtzed queue, unprlonRtied context

S A- A Prioed queue, prioritized contex

I I I I I I I I

Contexts

160 cycle latency, low memory throughput

Figure 8.12: Performance of the 64X64 LUD benchmark for different memory latencies and
throughputs.

174

3000000

2700000

2400000

2100000

1800000

1500000

1200000

900000

600000

300000
6OO0O

.3000000

S2700000
2400000

2100000

1800000

1500000

1200000

900000

600000

300000

3000000

2700000

2400000

2100000

1800000

1500000

1200000

900000

600000

300000

o0

I

0

8.2. RESULTS

mance improvement ranges from 30% for a latency of 20 cycles, to 20% for a latency of 160
cycles. Once there are 4 contexts or more the performance improvement is due to hardware
prioritization since there are rarely any threads in the software queue. A third curve shown
in Figure 8.12 that prioritizes the software queue, but uses round-robin scheduling for the
contexts shows the effect of hardware prioritization. For 1 or 2 contexts the round-robin
scheduling performs approximately the same as the fully prioritized case. However, perfor-
mance becomes similar to the unprioritized case when the number of contexts increases to
4. Hardware prioritization leads to performance improvements ranging from 15% for a 20
cycle latency, to 9% for a 160 cycle latency. Improvements decrease with increasing latency
since more contexts are needed to tolerate latency, and on any given context switch many
contexts will be stalled.

Finally, it is interesting to note the effect of decreased memory controller throughput. Be-
cause at each stage of the computation one column of the row is read by all the processors to
update their columns, the processor owning this row is a bottleneck. Reducing the memory
controller throughput has an effect on performance, with runtimes increasing by about up
to 45% for a latency of 20 cycles, 20% for a latency of 80 cycles, and only 4% for a latency
of 160 cycles. The effect decreases as the latency increases because the increase in latency
due to the memory bottleneck is a smaller percentage of the overall delay. The effect of
prioritization remains approximately the same despite the decreased throughput.

8.2.4 Sparse LUD

Figures 8.14 and 8.15 show the results for the Sparse LUD benchmark for a varying number
of contexts, using the mat6 and adjac25 matrices respectively. The mat6 shows modest 5%
to 16% improvement for 1 to 4 contexts, but the improvement falls of once there are many
contexts. The adjac25 case shows similar improvements of 6% to 15%, but only in the case
that memory throughput is limited. Also, for a single context the prioritized case can be
slightly worse due to worse cache performance, without the benefit of latency tolerance.

The results of this benchmark are rather inconclusive as to the benefits of prioritization.
One of the main reasons for this is that the application is not critical path limited, and there
are lots of threads with the same importance. There are however a couple of interesting
points to note.

The performance improvement due to hardware prioritization falls off as the number of
contexts increases, rather than increasing as has been the case in nearly all previous bench-
marks. There are two factors that contribute to this. First, as the number of contexts
increases, many threads can make progress, and a critical thread is less likely to be stuck in
the software queue not making any progress. Second, because we are only prioritizing the
issue of memory requests to the local memory or to remote memory modules, the prioritiz-
ing becomes ineffective when there are many non-local references and lots of memory and
network traffic. Thus a request sent by a critical thread does not receive special treatment

175

CHAPTER 8. CRITICAL PATH SCHEDULING

UUEUEEEUEEEEE~ .EE...uEIIIIIIm~ImIIlfIIIIII
r0 MEMOEONEonEEE INUUUllllllllUEUIIIIIIIIIII EiisUSEEN SEEN nown II goolimilliimii1111111111111111111011
EEEEEEEEEIE E UEIIIIIIIIIEII1IIIIIIDIEIIEEEIYA

r E Eli·1 EEIIIIIEIIIIIIHIIIflh IIIIlIIUIY
*uomummium El.... uuuniuilmiiniininiiiiiuimiim
E**11mmi EEEE El1fElII1l~lhI~lI
EIEsmn II Ion E EIIIIIIIIIIIIIIIIIIIIIIIIII

onE EEEEHE1 INN I U mil. lmiUigih hiiill iliIIllBiIMENEM 0 1 Io I I I 11 llllllrlllllllllllllIIIIIIIIIIIMN1=INNIS soon 0 1 1111 moll I111111111111WEas 0ES1 I I a I mil I I In 111111111~Illlll
70 80 90 100 110

Time x 10000
120 130

SIdle
Busy

- .ll
I -I II ~~ilnI-m

· E.I II II~u
in.EEIIEI1 Il1lu
: _ IEEEI IEI 11E1

EEEEIIIIUIEI lIIllIl
,EEEEIEEINEI 1111 111
*EEEEEEEEIIIHI 111fl11IIU

EE1IEIIIEII IIIEI IIIlYlE111
EEEEEE.EEIIHN.I111 IIUIINIIIEI

60 70 80 90 100 110
Time x 10000

120 130

SIdle
Busy

Figure 8.13: Processor lifelines for different versions of the LUD benchmark, 16 processors,
1 context per processor. a. Unprioritized. b. Prioritized.

176

15.
14-

13
12'

n

IAA

.,1

.

8.2. RESULTS

0 - PUloritked
A -A Priornfed

800000

720000

640000

560000

480000

400000

320000

240000

160000

80000

800000

720000

640000

560000

480000

400000

320000

240000

160000

80000

0 0
0 1 2 3 4 5 6 7 8 9 10111213141516

Active Threads

20 cycle latency, high memory throughput

O--O Urnpdafred
A - A Pdodlfied

800000

720000

640000

560000

480000

400000

320000

240000

160000

80000

0
) 1 2 3 4 5 6 7 8 9 10111213141516

Active Threads

80 cycle latency, high memory throughput

0- 0 Unprdorked
A--A Pd~rlzed

1 2 3 4 5 6 7 8 9 10111213141516
Active Threads

20 cycle latency, low memory throughput

O-O UprtorifizedA - Parted

1 2 3 4 5 6 7 8 9 10111213141516
Active Threads

80 cycle latency, low memory throughput

o-- o Urpordized
A - A Prlofted

800000

720000

640000

560000

480000

400000

320000

240000

160000

80000

11111 liii1111111 U
0 1 2 3 4 5 6 7 8 910111213141516

Active Threads

160 cycle latency, high memory throughput

S 0- Unpdrked
- \ 6A -A Pdoft zed

111111111 II IIII

0 1 2 3 4 5 6 7 8 9 10111213141516
Active Threads

160 cycle latency, low memory throughput

Figure 8.14: Performance of the sparse LUD benchmark using the mat6 matrix, for different
memory latencies and throughputs.

177

I I I I I I I Il I I I I I I I

800000

720000

640000

560000

480000

400000

320000
240000

160000

80000
I,

800000

720000

640000

560000

480000

400000

320000

240000

160000

80000

0

-yl \I w-- - f1 r

IIII''I'I'I'I'I'
0

"^"^

(

-- '--'

-

CHAPTER 8. CRITICAL PATH SCHEDULING

- o-o Unp d tized

- -

L U A !ILA VI_U1LLLA

7000000
6500000
6000000
5500000
5000000
4500000
4000000
3500000
3000000
2500000
2000000
1500000
1000000
500000

0 1 2 3 4 5 6 7 8 9 10111213141516
Active Threads

20 cycle latency, high memory throughput

L- o-o urp
A-A Pdo

K

rzed

7000000
6500000
6000000
5500000
5000000
4500000
4000000
3500000
3000000
2500000
2000000
1500000
100000O
500000

0 1 2 3 4 5 6 7 8 9 10111213141516
Active Threads

20 cycle latency, low memory throughput

0-0 Unprloftzed
A-A PdodIzed

1 1 2 3 4 5 6 7 8 9 10111213141516
Active Threads

80 cycle latency, high memory throughput

0-0 Uonprized
A -A Pdotltlzed

7000000
6500000
6000000
5500000
5000000
4500000
4000000
3500000
3000000
2500000
2000000
1500000
1000000
500000

0

7000000
6500000
6000000
5500000
5000000
4500000
4000000
3500000
3000000
2500000
2000000
1500000
1000000
500000

0

7000000
6500000
6000000
5500000
5000000
4500000
4000000
3500000
3000000
2500000
200000
1500000
1000000
500000

0

7000000
6500000
6000000
5500000
5000000
4500000
4000000
3500000
3000000
2500000
2000000
1500000
1000000
500000

0

- 0-o unprbrid
A - A PdoUzed

1 1 2 3 4 5 6 7 8 910111213141516
Active Threads

80 cycle latency, low memory throughput

0o-0 UnpordNzed

I I 111111111111 1 1I I

0 1 2 3 4 5 6 7 8 9 10111213141516
Active Threads

160 cycle latency, high memory throughput

Figure 8.15: Performance of the sparse LUD
different memory latencies and throughputs.

160 cycle latency, low memory throughput

benchmark using the adjac25 matrix, for

178

I I I I I I I I I

0 1 2 3 4 5 6 7 8 9 10111213141516
Active Threads

~i~--------eg)

13 .

U

rr- __

I I I I I I I I I I I I I I I

1111111111111111

8.3. SUMMARY

in the network nor at the remote memory modules, and can easily be delayed by requests
from less critical threads. The prioritization of messages in the network and the of incom-
ing remote requests represents another level at which prioritization might have a possible
impact, though this is not studied in this thesis.

Another interesting point to note is that the priority is based on a heuristic that does not
take into account data placement and complex cache interactions. In particular, the OSA
representation of the matrix is distributed across the processors without regards to which
processors are going to be using which rows of the matrix. This data structure leads to
many non-local references, and in particular many non-local write operations, which can
have long and unpredictable delays. There are also numerous instances of false sharing. As
a result, one path that has many fewer operations than another path can easily take much
longer to execute that a path with fewer operations just by having better cache performance.
It is clear that in order to correctly assign priorities to threads based on the critical path,
the means of estimating relative path length must be accurate. In particular, it requires
algorithms with well behaved cache behavior and data structures that do not lead to wildly
different thread running times based on bad cache behavior.

8.3 Summary

The results from this chapter show that thread prioritization can have a large impact on
runtime performance for certain problems, with runtime performance improvements ranging
up to 37%. A number of characteristics of the program determine whether prioritization
will have an impact on performance:

* Critical path characteristics: The problem must be critical path limited in order for
prioritization to make a difference. Programs with lots of mostly independent, short
threads, do not benefit much from prioritization.

* Available parallelism: If there is not enough parallelism, then the choice of threads is
reduced, and the prioritization will have no effect. Note that insufficient parallelism
also reduces the ability of multiple contexts to tolerate latency. Insufficient parallelism
is sometimes a product of how the program is expressed, as in the Sparse Triangular
Solve, rather than a lack of parallelism in the problem. This can often be solved with
finer grain partitioning.

* Unpredictable memory reference patterns and execution times: If there are lots of
threads all making remote references, then the effectiveness of prioritization of the
processor pipelines and memory request issuing can be made ineffective by FIFO
queuing in the network and at remote memory modules. Also, if the memory behavior
causes the thread runtime to be very unpredictable, it is hard to assign priorities
correctly to threads and thus the prioritization is less effective.

179

180 CHAPTER 8. CRITICAL PATH SCHEDULING

Finally, system characteristics can, but do not necessarily affect the impact of the prioriti-
zation:

* Long memory latencies: Long memory latencies typically decrease the impact of hard-
ware prioritization because more contexts are needed to tolerate latency, and on any
given context switch less contexts are ready to run.

* Memory throughput: Decreases memory throughput decreases overall performance
for those applications that are bandwidth limited, or for which there is a memory
bottleneck. Prioritization tends to be more important when the application is memory
bandwidth limited.

Chapter 9

Reducing Software Scheduling
Overhead

Thread scheduling overhead is the cost associated with inserting and deleting threads in
scheduling queues, storing and retrieving thread arguments from memory, and allocating
stack space for the thread. Reducing this overhead is important, and can be done by
providing hardware support to do scheduling without software intervention, by minimizing
the movement of data back and forth to memory, and by minimizing scheduling queue
operations.

In this chapter we discuss the use of specialized hardware for reducing the overhead of
scheduling message handlers (a thread scheduled in response to a message), as well as more
general threads. Reducing the overhead of scheduling message handlers is important since
they are often very short, and scheduling overhead can be a significant part of their runtime.
Although specialized hardware works well for scheduling message handlers, it is not appro-
priate for general thread scheduling because it lacks flexibility. However, if the processor
provides support for spawning a thread directly into another available context, it can reduce
software scheduling overhead by avoiding the cost of software queue manipulation.

Section 9.1 discusses message handler scheduling and how hardware support can be used
to reduce scheduling overhead to just a few cycles, provided these message handlers meet
certain requirements that allow them to avoid deadlock. Section 9.2 discusses the more
general requirements of thread scheduling that make software scheduling desirable despite
the extra overhead involved. Finally, section 9.3 illustrates how multiple contexts can be
used to reduce overhead of software scheduling using a radix sort example. Multiple contexts
can reduce scheduling overhead by allowing the processor to avoid the cost of inserting and
deleting threads from the software queue.

181

CHAPTER 9. REDUCING SOFTWARE SCHEDULING OVERHEAD

9.1 Message Handler Scheduling

In order to implement high performance message passing, a parallel processing node must
have a network interface that allows a processor to both send and receive messages efficiently.
For each message received a node must execute a message handler' corresponding to the
type of message being received. A message handler can either directly execute the action
required, or it can create and schedule a separate thread to execute the action at a later
time. Thus each message requires a scheduling decision.

Executing the code directly in the message handler rather than scheduling a separate thread
is preferable as it eliminates much of the overhead associated with creating and scheduling a
thread. Very often the action required is a simple write operation, or a write, an increment,
and a test in the case that the handler is delivering an argument and checking whether all the
arguments have arrived [75, 21]. It is much quicker and more efficient to simply execute the
operations, rather than going through the overhead of scheduling a task to do them - the
cost of scheduling such a task can be many times the cost of doing the operations themselves.
Furthermore, numerous hardware proposals allow very efficient message handling and reduce
the overhead of handling messages to just a few cycles [23, 4, 78, 44]. Unfortunately, there
are a number of situations in which a task may not be able to run to completion quickly.
This can happen if:

1. The handler is a long task which takes many cycles to execute.

2. The handler requires a synchronization action to take place and this takes a long time.
For instance, it has to acquire a lock, and the lock is unavailable.

3. The handler takes an exception that takes a long time to resolve (e.g a TLB miss).

4. The handler needs to use the network resources, and they are unavailable. In the case
of shared memory, a write or read of shared memory can require the network, and
can take a long time due to the required remote communication. In general, the task
may need to send messages and the network output port may be busy.

Long running message handlers can cause network congestion and even network deadlock.
If messages do not run to completion quickly, then messages can get backed up into the
network and severely hurt network as well as overall performance. More seriously, deadlock
may occur if a message handler has to send a message, since the availability of the output
network interface for sending a message usually depends on all the processors continuously
emptying their input network interfaces.

Using software scheduling in conjunction with hardware scheduling can eliminate many of
the disadvantages of hardware scheduling on its own. For instance, the active message

1The message handler is usually in software, but can also be hardwired.

182

9.2. GENERAL THREAD SCHEDULING

system [100] adopts a software convention that says that all handlers must be short and
must run to completion. In particular, if a handler must send out a reply message, then
it must not busy-wait if the outgoing message channel is unavailable. With Optimistic
active messages [103], methods are run directly as handlers rather than going through the
overhead of creating a thread, and if the method is unable to run to completion quickly
then it is aborted and a separate thread is created to do the computation. The code is
compiled specially to detect conditions in which an abort is required.

9.2 General Thread Scheduling

It may be tempting to try and use the hardware message handler scheduling mechanisms as
a more general means to schedule threads. Taking the J-Machine [23] as an example, it is
very efficient for a node to create another thread by sending a message to itself. The message
is automatically sent, enqueued in memory, and scheduled in hardware. The overhead of
creating such a thread in this way is just a few instructions. There are a number of problems
with this approach, including the previously mentioned problems with running code inside
message handlers, as well as the limited scheduling flexibility that can be implemented in
hardware.

The same reasons that prevent all code from being run inside message handlers also prevent
it from being easy to use the message scheduling hardware as a more general scheduler:
threads may take a long time to run, they may require long latency synchronization opera-
tions, they make take an exception, and they may require the use of the network.

Hardware implementations limit the flexibility of the scheduling that can be done. For
instance, whereas it is easy to design a small input queue to deal with some small number
of incoming messages, it is more difficult to design a large queue that is more general and
that will contain all the threads generated in the system. The later requires a general
interface to the processor memory. Another limitation is that only FIFO or LIFO type
scheduling policies are easily implementable. FIFO scheduling is particularly easy since the
threads at the head of the queue can be executed as additional messages arrive at end of the
queue. FIFO and LIFO scheduling is clearly inadequate or non-optimal for many problems.
For instance, any sort of recursive program that schedules threads in FIFO manner will
expand the call tree in breadth first fashion leading to excessive parallelism, and possible
exhaustion of the memory of the machine [41, 45]. On the other hand, LIFO scheduling
leads can unnecessarily restrict parallelism. With both FIFO and LIFO scheduling, critical
threads can sit in the queue while threads at the head of the queue are executed.

As an example of the problems with simple scheduling schemes, consider a Traveling Sales-
man Problem, that finds the optimal tour in which the nodes of a graph with weighted
edges can be traversed. For the purposes of this example we use a simple branch and bound
algorithm. An exhaustive search is done, but the search tree is pruned by not looking at
paths that have a cost that is greater than the best solution found so far. There are two

183

184 CHAPTER 9. REDUCING SOFTWARE SCHEDULING OVERHEAD

b 3000

2500

2000

1500

1000

500

n1

- --- utpmzdtrdr
I

pnuliei I

-ii,
ri

r
r

I \

r r

0 1 2 3 4 5 6 7 8 9 10
Runtime (X 10000 cycles)

Figure 9.1: Number of active threads running an 8-city traveling salesman problem on 64
processors.

major parts to the program. The first part generates the next part of the search space to
visit. New partial paths are created by adding each unvisited node to the current partial
path, with a resulting increase in the partial cost of each tour. If the cost of a partial tour
is higher than the best tour found so far, the path is pruned. Otherwise, a new thread is
generated on a random node to continue the search using the new partial tour. Distributing
threads to random nodes provides a primitive form of load balancing. The second major
part of the program updates the best path found so far, and the bounds variable found on
each of the processors. Whenever a tour is found that has a cost better than the current
bound, the new path is saved, and the new cost bound is propagated to all the processors.
Note that the bound on a processor may be out of date due to a pending update. The
processor may do some extra work because its copy of the bound is stale, but the correct
tour will still be found.

Figure 9.1 shows the runtime and the number of active threads as a function of time for
two different scheduling strategies on a small 8 city problem. For the unprioritized case,
a simple FIFO scheduling strategy is used that does not differentiate between the type of
thread being run. For the prioritized case, threads were prioritized as follows: the threads
that are responsible for propagating and updating the cost bound used for pruning at each
processor have the highest priority, and the threads that are generating the search space
have a priority equal to the number of nodes visited so far in the tour.

Two things are immediately noticeable. First, the runtime of the prioritized version is
roughly half the runtime of the unprioritized version. Second, the maximum number of
active threads, which corresponds to the peak memory utilization of the machine, is roughly
5 times less for the prioritized version than the unprioritized version. The improved runtime
is due to two factors. First, in the prioritized case the processors typically have a more recent

9.3. USING MULTIPLE CONTEXTS

copy of the best cost bound found so far. The thread that updates the cost bound at each
processor is run at top priority and is not sitting in the scheduling queue behind many
other threads. Second, because threads that have visited more nodes have higher priority
than those with fewer nodes, the search tends to proceed in depth first manner, rather than
breadth first, which means that complete tours are found more quickly, bounds on the cost
are found more quickly, and pruning is more effective. The improved memory utilization
is also principally due to the prioritization of the search threads by the number of nodes
visited so far. The computation tends to proceed in more of a depth first manner, resulting
in more efficient memory utilization. It should be noted that the implementation is by no
means ideal. The search thread priority could also take into account the current cost of the
partial tour rather than just the depth. The policy of sending search threads to a random
processor is non-optimal since it often sends work to processors who already have lots of
work, and generates unnecessary network traffic - a more sophisticated load balancing
technique would be helpful. However, this example illustrates the benefits of even fairly
simple prioritization of threads.

The main point is that for general scheduling to be flexible it must be controllable in
software. Simple FIFO and LIFO schemes that are relatively easy to implement in hardware,
are not adequate for general scheduling. At best, hardware features allow certain important
optimizations to take place. For instance, the direct dispatch to message handlers, and direct
execution of code inside message handlers rather than creating and scheduling a thread, is
an important optimization for message handlers that will run quickly and to completion, as
in active messages. Having multiple hardware contexts allows further optimizations which
are discussed in the next section.

9.3 Using Multiple Contexts

For certain types of computations, multiple contexts provide a unique opportunity for gain-
ing most of the benefits of hardware scheduling and software scheduling at once. Having
multiple contexts can allow potentially longer running message handlers to execute without
the risk of deadlock, and without the larger overhead associated with software scheduling.
Specifically, for each message one of the following actions is taken depending on the type of
message:

1. The work is done directly in the handler if the thread is short and is guaranteed to
run to completion.

2. If there is a free context, a thread is spawned directly into this context.

3. If there are no free contexts, a thread is inserted into the software scheduling queue
and is run at a later time.

185

CHAPTER 9. REDUCING SOFTWARE SCHEDULING OVERHEAD

The more contexts are available for message handling, the more often a thread will be able
to avoid option 3, and forego the overhead associated with running the software thread
scheduler.

Two configurations are shown in Figure 9.2 that allow this to be possible. In the first
configuration, each context can directly access the message queue. As long as there is
more than one free context, the message handler can execute immediately without software
queue overhead. Once there is only a single free context, we must be more conservative,
and any thread that will not run quickly and to completion has to be scheduled in the
software scheduling queue. The advantage of this system is that messages can be spawned
to any context with a very small cost. The disadvantage is the complexity associated with
determining when it is safe to execute the thread directly. For instance threads may be
spawned on the node itself such that all the contexts become full, leaving no context to
handle incoming messages. Thus the general scheduler must be aware that one context
must always be available for handling messages.

In the second configuration, a single context handles messages as they arrive and carries
out one of the three actions. One advantage of this is that the context aimed at handling
incoming messages can be specially designed to be extremely efficient. In particular, the
network interface can include a co-processor with a completely separate pipeline, and can
be optimized to handle certain types of messages such as read request messages, or shared
memory protocol messages [44, 75, 60]. The disadvantage is that when the message interface
does decide to spawn a thread to an available context, it must copy arguments to the context
before initiating execution. This is a relatively small cost to pay for the simplified network
interface implementation and message handling optimizations, and this configuration is
likely the more desirable of the two configurations.

9.3.1 Radix Sort Example

The radix sort algorithm sorts an array of integers one digit at a time, starting from the
least-significant digit to the most significant, where a digit is represented by a field of b-bits
digit [20]. One phase of the operation, the scan phase, requires 2b parallel scan operations,
one for each possible digit value. The data structure used is a distributed tree structure,
distributed in a balanced fashion across the nodes so that each node contains a leaf node,
and at most one internal node of the tree. For a single scan operation, messages first flow
up the tree in a combine operation, and then back down the tree to distribute results to
all the processors. For the purposes of the radix sort code, there are dependencies between
the scan operations at the root node: a scan of a given index must wait at the root until
all the previous indices have reached the root of the tree.

Tasks in the scan phase of radix sort are quite short, and consist in doing some small number
of operations and tests, and sending off new messages to parent nodes or children nodes.
The number of instructions for each task going up the tree is about 50 cycles, and for each

186

9.3. USING MULTIPLE CONTEXTS

Context 1 Context 2 Context 3 Context 4

a) I

Input
message
queue

b)

Figure 9.2: Message interface configurations. a. All contexts have equal access to the input
message queue. b. One context has access to the input queue allowing certain message
interface optimizations.

187

CHAPTER 9. REDUCING SOFTWARE SCHEDULING OVERHEAD

S180000

160000

140000

120000

100000

80000

60000

40000

20000

0

o-o unpdrAxzed
o-0 podriolzed

- I I I I I I I I

0 1 2 3 4 5 6 7 8 910111213141516
Conbxts

Figure 9.3: Radix sort scan phase for different numbers of contexts running on 64 processors.
The digit size is six bits, requiring 64 parallel scans.

task going down the tree is about 35 cycles. Although the tasks are short, they do use the
network, and thus these threads can take much longer to execute if the network interface is
unavailable. if the code is implemented directly as a message handler, there is the risk of
deadlock.

The scheduling of threads using multiple contexts is done as follows. A message handler
reads the message from the network interface. If there is an available context, it spawns a
thread directly into this context, otherwise a thread is put into the scheduling queue to be
run at a later time. This corresponds to the message interface configuration of Figure 9.2b.
If the processor had a free context it can spawn the thread directly into the context, and
the cost is just the cycles required to copy the arguments and dispatch to the code. If no
context is available, then the processor puts the thread into the scheduling queue to be run
at a later time. The cost of scheduling a thread is the cost of inserting the thread into a
software queue, including the copying of the arguments, later removing the thread from the
queue, and reading the arguments into the context. On the order of about 50 extra cycles
are required to do this software scheduling, about the same length as the minimum running
time of the tasks themselves.

Figure 9.3 shows the results for an increasing number of contexts, and different scheduling
schemes. For this problem FIFO scheduling achieves the best results. The prioritized version
of the code attempts to ensure that the scans finish in order so as to avoid synchronization
faults at the root, but this is already achieved by doing FIFO scheduling, and at a reduced
scheduling cost. What is more interesting in this case is the performance increase that
occurs as the number of contexts increases. Note that in this benchmark this is not due
to any latency tolerance effects since shared memory is not simulated, but rather is due
to avoided software scheduling costs. The software scheduling costs involved are important

188

nrr~rr~n

9.4. SUMMARY

because the cost of scheduling is close to the cost of the task themselves. If each task was
much longer, than the cost of scheduling it in software would be less significant. In the
example shown, when there are sufficient contexts to avoid ever having to put a thread in
the software queue, the multiple contexts lead to an 18% increase in performance in the
unprioritized case, and a 34% increase in performance for the higher overhead prioritized
case.

It is interesting to note that for this example, the runtime does not decrease uniformly with
increasing contexts. For example, the runtime with 4 contexts is higher than the runtime
with 2 or 3 contexts. This is because when the number of contexts changes, the thread
generation pattern changes: some nodes may receive more messages faster, causing them
to have to put more threads into their thread queue, leading to both higher scheduling
overhead and imbalance in the amount of work each node has to do. Having sufficient
contexts for all nodes to avoid using their software queue eliminates the problem.

9.3.2 General Problem Characteristics

In general, using multiple contexts in the scheduling of arriving messages will help per-
formance when the tasks being scheduled are fairly small so that the scheduling overhead
would be a substantial portion of their execution time, but have characteristics that make
them risky to execute as active messages because of the risk of deadlock, or the possibility of
backing up the network. In the case of the radix sort example, the tasks created are sending
out messages into a network that is congested, and deadlock may result if the messages are
sent directly from the message handlers. Furthermore, the handling of incoming messages
is done faster if the message handlers can simply hand off the thread to a waiting context
to execute, rather than execute it itself. This type of thread pattern occurs in many global
type operations, such as scan, accumulate, broadcast, and barriers.

Finally, it is best if the number of threads on each processor remains below the number
of contexts. This is because the contexts act as a thread cache, and as long as there are
less threads than contexts, the processor never has to do insert or remove threads from a
software queue.

9.4 Summary

This chapter briefly discusses issues related to hardware scheduling of messages and threads,
and how multiple contexts can be used in certain situations to help eliminate overhead
associated with the software scheduling of threads. In general, hardware scheduling does
not allow the flexibility that is required for general thread scheduling. FIFO and LIFO
scheduling policies that are easy to implement in hardware are generally not optimal for
general thread scheduling and can lead to such problems as excessive memory utilization,

189

190 CHAPTER 9. REDUCING SOFTWARE SCHEDULING OVERHEAD

and poor performance because critical threads are not given priority. For threads that
are generally short but may be risky to execute directly as a message handler due to the
possibility of long execution time or network resource requirements, using multiple contexts
can improve performance by allowing threads to be spawned into separate contexts. Doing
this eliminates most of the overhead incurred if the thread is put into a software scheduling
queue, while making the thread safe to run since its execution has been decoupled from the
handling of incoming messages.

Chapter 10

Conclusion

10.1 Summary

Multiple-context processors tolerate latency by rapidly switching between different threads
of execution when a long latency operation takes place. This allows the processor to perform
useful work in what would otherwise be idle cycles, thus increasing processor utilization
and decreasing application runtime. Tolerating latency using a multiple-context processor
requires a number of different scheduling decisions. First, we must decide which threads
are loaded in contexts and eligible to execute instructions, and which are unloaded and
waiting in a software scheduling queue. Second, we must decide which thread to execute
next on each context switch. This thesis shows that both decisions are important for good
performance.

Previous work on multiple-context processors considers round-robin context scheduling and
uses processor utilization as a performance metric. This work has identified a number of
factors that limit the performance of multiple-context processors, including network effects,
and cache interference between multiple working sets. Other important performance limit-
ing factors include the effect on critical path execution time, the effect of spin-waiting, and
the effect of limited memory bandwidth. The naive sharing of processor resources among
the threads due to round-robin scheduling is one of the main causes of the performance
limiting problems associated with multiple-context processors.

In this thesis we propose thread prioritization as general scheduling mechanism that allows
the user to easily and dynamically specify the preferred order in which threads should be
executed, thus allocating processor resources more intelligently. we show that it is important
to consider the effects that multiple contexts have not only on processor utilization, but
also on the critical path. We show that thread prioritization is useful in addressing some of
the limitations of multiple-context processors, including bad spin-waiting effects, negative
cache interference effects, and critical path runtime effects.

191

CHAPTER 10. CONCLUSION

The principal results of the thesis include the following:

* Analytical models: We develop analytical models that show how multiple contexts
affect both processor utilization and the execution of the critical path of an appli-
cation. Both processor utilization and critical path can affect overall performance.
The models consider the effect of cache performance, network latency, spin-waiting
synchronization, and limited memory and network bandwidth. Processor utilization
suffers when there are too few contexts, but also when there are too many causing
cache effects to become important. Having many contexts can lengthen the critical
path execution time because a critical thread is delayed while other threads execute.
Both spin-waiting and limited bandwidth reduce the effectiveness of multiple contexts.

* Thread prioritization: We present thread prioritization as a general thread schedul-
ing mechanism which can help solve many of the problems associated with multiple-
context processor thread scheduling. Thread prioritization is a temporal scheduling
mechanism which helps decide when threads should run. Software prioritization al-
lows us to decide which threads should be loaded and which should remain unloaded.
Hardware prioritization allows us to choose a loaded thread on any given context
switch. Hardware implementations can do context selection in a single cycle. Soft-
ware implementations are more difficult to implement efficiently and can make the
cost of thread selection unacceptably high.

* Scheduling for good synchronization performance: We show that thread prior-
itization can be used to substantially improve the performance of synchronization that
uses spin-waiting. For simple synthetic benchmarks such as Test-and-Test_and-Set,
barrier synchronization, and queue locks, runtime performance improvement range
from 10% to 91% using 16 contexts.

* Scheduling for good cache performance: We present a number of techniques
that improve the cache performance of multiple-context processors. Data sharing
involves closely coordinating the threads running in each context so that they share
common data in the cache. Favored thread execution uses thread prioritization to
dynamically allow only the minimum number of contexts required to tolerate latency
to be running. Cache performance improves because the scheduling minimizes the
number of working sets in the cache. Runtime improvements range up to 50% for
bandwidth limited applications using 16 contexts.

* Scheduling for good critical path performance: We show how thread prioriti-
zation can help schedule threads based on the critical path. If the problem is critical
path limited then prioritization can have a large impact, 37% for one benchmark us-
ing 16 contexts. If the problem is not critical path limited, or there is not sufficient
parallelism to keep the multiple contexts busy, prioritization will have little effect.

* Using multiple contexts to reduce software scheduling overhead: We show
how in certain situations multiple contexts can be used to eliminate software schedul-
ing overhead associated with safely scheduling threads in response to incoming mes-
sages.

192

10.2. FUTURE WORK

These results show that by carefully controlling the allocation of processor resources to the
different threads, including pipeline resources, bandwidth resources, and cache resources,
some of the deficiencies of multiple-context processors can be overcome, thus making them
an even more effective latency tolerance and performance enhancing mechanism.

10.2 Future Work

As in any PhD Thesis, answering interesting questions raises a host of related questions.
A number of directions that should be explored include the effect of prioritization on a
more extensive set of applications, automating the thread prioritization process, exploring
other uses of thread prioritization including ways in which it could be used by the operating
system, and determining how different latency tolerance techniques can be used together to
offer the best possible latency tolerance.

10.2.1 Applications

Most of the applications in this thesis are micro-benchmarks that are either synthetic in
nature, or represent a computationally intensive kernel of a real application. Each one is
carefully chosen to have characteristics that illustrate a specific type of scheduling problem
in as much isolation as possible, while at the same time representing characteristics that are
found in real programs. Doing this allows us to see how effectively our thread scheduling
techniques and mechanisms deal with specific scheduling problems.

Complete applications present a combination of interacting effects that may not arise in
small kernels or synthetic benchmarks and that it is important to understand. A number
of these effects were observed in some of our larger benchmarks such as LUD, and sparse
LUD. Improving the performance of complete applications lends weight to the conclusion
that the mechanisms are indeed generally useful. A variety of benchmarks have gained
popularity over the past few years, in particular the Splash benchmarks from Stanford [87],
and it would be useful to port and modify these benchmarks for a multithreaded prioritized
system.

10.2.2 Automated Thread Prioritizing

Tools to automatically assign priorities to threads, rather than have the user specify the
priority with program annotations and library calls, would be very useful. In many cases
this type of prioritization is easy to do. In the case that the program can be represented as
a static DAG, a compiler can easily use heuristics to assign static priorities to the threads.
Similarly, it is straightforward to automate some of the techniques used to improve cache

193

CHAPTER 10. CONCLUSION

performance in parallel loop code. Priorities can easily be assigned automatically to achieve
good cache performance using favored thread execution. The general problem of prioritizing
threads in an arbitrary program is more difficult.

10.2.3 Other Uses of Thread Prioritization

This thesis presented and evaluated thread prioritization as a temporal scheduling mecha-
nism used to decide when a thread should run on a single processor. However, many other
potential uses of thread prioritization are possible. The priorities could be used to make
certain thread placement decisions. For instance, a load balancer might use the priorities
to decide which threads to migrate. The load balancer may decide to migrate lower priority
threads so that higher priority threads would not be delayed by the migration overhead.
In this context the priority might be an indication of the importance of the thread to the
critical path, or may be an indicator of the affinity of the thread for a given processor.

It is also possible that the thread prioritization could be used by the operating system.
If space sharing is used, threads from a given application may have to be moved off one
node and on to another. The priority can help make decisions about how threads should
be redistributed across the processors, and how the schedule should be reorganized on the
remaining processors. Further, the multiple contexts and thread prioritization could be
used to run operating system tasks in parallel with user code running other tasks, or even
to have multiple user tasks running at the same time at different priorities. Further study
is needed to determine how prioritization might help operating system scheduling.

10.2.4 Combining Latency Tolerance Strategies

Multithreading is only one method of tolerating latency. Others include prefetching and re-
laxed memory consistency models. Gupta el. al. showed that allowing multiple outstanding
references per thread helps the performance of both prefetching and multithreading [37].
In particular in the context of multithreading it allows longer run lengths between context
switches and it allows more memory bandwidth resources to be devoted to a single thread.
This reduces the number of contexts required to tolerate latency, and improves single thread
performance. Gupta's study also showed that using both prefetching and multithreading
at the same time can in fact hurt performance if done naively. It is clear however that both
prefetching and multithreading have the potential to be complementary: multithreading
can do a good job of tolerating synchronization latencies and irregular memory reference
patterns, whereas prefetching can do a good job in tolerating regular reference patterns. De-
termining the optimal combination of latency tolerance techniques for any given application
remains an open problem.

194

10.3. EPILOGUE 195

10.3 Epilogue

Although commercial microprocessor developers have not yet embraced the concept of hav-
ing multiple hardware contexts, there are ever more compelling reasons for them to seriously
think about the benefits multiple contexts provide: tolerating long latencies, providing more
instructions to keep multiple functional units and long pipelines busy, and supporting fast
interrupts and fast multiprocessor network interfaces. Studying the impact of multiple
contexts on computer architecture, on application performance, on compilers, and on sys-
tem software will continue to demonstrate these benefits, and lead to the acceptance of
multiple-context processors as a commercially viable approach to enhancing performance.

Appendix A

A Fast Multi-Way Comparator

To choose a context to execute based on priorities, a multiple-context processor must com-
pare the priorities of all the contexts and find out which are the highest priority ready
threads. This appendix presents the schematic design of a circuit that compares C, N-
bit priorities using carry-select techniques. This is faster than the simpler C-way ripple
comparator presented in Section 4.1.

Figures A.1 through A.4 show the design of the circuit. Figure A.1 shows a bit-slice of
a ripple-compare circuit that compares two priorities. If the two priorities are equal then
both outputs, CoO and Col, are 1. Otherwise the output corresponding to the higher
priority thread is 1, and the other is 0. Cascading N single-bit comparators forms an N-bit
comparator.

The delay of a ripple comparator grows linearly with the number of bits and it is desirable
to use carry-select techniques [107] to reduce delay when N becomes large. We use the
COMPARE/SELECT circuit of Figure A.2 in our carry-select comparator. This circuit
takes as input an F-bit wide field of each priority, as well as the results CiO, and Cil,
from the comparison of the higher order bits of the two priorities. If the comparison of the
higher order bits has already determined the larger priority then this result goes directly to
the output, otherwise the result of comparing the next F-bits of the priorities goes to the
output. This circuit also outputs the F-bits of the larger priority so that this larger priority
can be used in additional comparisons. Figure A.3 shows a 16 bit comparator using three
carry-select stages, of length 5, 5, and 6. This increases speed because the fields of the
priority are compared in parallel in each of the three stages, and the result selected based
on these results. To first order, the carry 16-bit carry-select comparator has about half the
delay of a ripple comparator, based on counting the logic levels that the signals have to
propagate through.

The circuit of Figure A.4 compares priorities from 4 contexts. It has an output for each
context, CoO through Co3, and an output is a 1 if the corresponding context has the highest

196

197

Figure A.1: Bit-slice of a ripple-compare circuit. Cascading N bit-slices forms an N-bit
RIPPLE-COMPARE circuit.

priority. The first level of comparators compares PO with P1, and P2 with P3. The second
level then compares the highest priorities from the first level. For more than 4 contexts the
structure is easily generalizable to a tree of comparators. If C is the number of contexts,
we need log2C levels of comparators. Note that the second level comparator does not
have to wait until the first level of comparators has completed, but can immediately begin
comparing the high order bits as they become available.

00

o1

APPENDIX A. A FAST MULTI-WAY COMPARATOR

PO

CiO

Cii

F F

-lCi0 N-BIT Co
RIPPLE-

Cil COMPARE Co

0

1

\0 1,
2X1 MUX /

Ft

Figure A.2: F-bit COMPARE/SELECT circuit used in the carry-select comparator.

PO[15..11] P1[15..11] PO[10..6] P1[10..6] P0[5..0] P1[5..0]

5 6 6

5-BIT CoO CiO 6-BIT CoO
OMPARE/ COMPARE/
SELECT Col Cil SELECT Col

5-BIT
COMPARI

SELECT

5. 6

Figure A.3: 16-bit carry-select COMPARATOR circuit using 3 COMPARE/SELECT com-
parators of length 5, 5, and 6.

5--

Ci0

Cil
L__

198

PO[15..0] P1[15..0]

16-B
COMI

P2[15..0] P3[115..0]

HIGHEST PRIORITY CoO Col Co2 Co3

Figure A.4: 4-priority comparison circuit.

199

CiO

-T Cil

Bibliography

[1] Anant Agarwal. Limits on Interconnection Network Performance. IEEE Transactions
on Parallel and Distributed Systems, 2(4):398-412, October 1991.

[2] Anant Agarwal. Performance Tradeoffs in Multithreaded Processors. IEEE Transac-
tions on Parallel and Distributed Systems, October 1992.

[3] Anant Agarwal and Mathews Cherian. Adaptive Backoff Synchronization Techniques.
In Proceedings of the 16th Annual International Symposium on Computer Architec-
ture, pages 396-406. ACM, June 1989.

[4] Anant Agarwal et al. The MIT Alewife Machine: A Large-Scale Distributed-Memory
Multiprocessor. In Scalable Shared Memory Multiprocessors. Kluwer Academic Pub-
lishers, 1991.

[5] Anant Agarwal, Beng-Hong Lim, David Kranz, and John Kubiatowicz. APRIL: A
Processor Architecture for Multiprocessing. In Proceedings of the 17th Annual Inter-
national Symposium on Computer Architecture, pages 104-114. ACM, 1990.

[6] Robert Alverson, David Callahan, Daniel Cummings, Brian Koblenz, Allan Porter-
field, and Burton Smith. The Tera Computer System. In Proceedings of the Interna-
tional Conference on Supercomputing, pages 1-6, June 1990.

[7] Robert Alverson, David Callahan, Brian Koblenz, and Burton Smith. Exploiting
Heterogeneous Parallelism on a Multi-Threaded Multi-Processor. In Proceedings of
the International Conference on Supercomputing, June 1992.

[8] Thomas E. Anderson. The Performance of Spin Lock Alternatives for Shared-Memory
Multiprocessors. IEEE Transactions on Parallel and Distributed Systems, 1(1):6-16,
January 1990.

[9] Arvind and David E. Culler. Managing Resources in a Parallel Machine. In Proceed-
ings of IFIP TC-10 Working Conference on Fifth Generation Computer Architecture.
North-Holland Publishing Company, July 1985.

[10] Jean-Loup Baer and Tien-Fu Chen. An Effective On-Chip Preloading Scheme To
Reduce Data Access Penalty. In Proceedings of Supercomputing '91, pages 176-186,
November 1991.

200

BIBLIOGRAPHY

[11] Robert D. Blumofe. Managing Storage for Multithreaded Computations. Technical
Report MIT/LCS/TR-552, Laboratory for Computer Science, Massachusetts Institute
of Technology, Cambridge, MA, 1992.

[12] Robert D. Blumofe and Charles E. Leiserson. Scheduling Multithreaded Computations
by Work Stealing. In Proceedings of the 35th Annual Symposium on Foundations of
Computer Science (FOCS '94), pages 356-368, Santa Fe, New Mexico, November
1994.

[13] Bob Boothe and Abhiram Ranade. Improved Multithreading Techniques for Hiding
Communication Latency in Multiprocessors. In Proceedings of the 19th Annual Inter-
national Symposium on Computer Architecture, pages 214-223, Gold Coast, Australia,
May 1992. ACM.

[14] Richard P. Brent. The Parallel Evaluation of General Arithmetic Expressions. Journal
of the ACM, 21(2):201-206, April 1974.

[15] Eric A. Brewer, Chrysanthos N. Dellarocas, et al. Proteus: A High-Performance
Parallel-Architecture Simulator. Technical Report MIT/LCS/TR-516, Laboratory
for Computer Science, Massachusetts Institute of Technology, September 1991.

[16] David Callahan, Ken Kennedy, and Allan Porterfield. Software Prefetching. In Pro-
ceedings of the Fourth International Conference on Architectural Support for Program-
ming Languages and Operating Systems, pages 40-52. ACM, April 1991.

[17] Thomas L. Casavant and Jon G. Kuhl. A Taxonomy of Scheduling in General-
Purpose Distributed Computing Systems. IEEE Transactions on Software Engineer-
ing, 14(2):141-154, February 1988.

[18] David L. Chaiken. Cache Coherence Protocols for Large-Scale Multiprocessors. Tech-
nical Report MIT/LCS/TR-489, Massachusetts Institute of Technology, Cambridge,
MA 02139, September 1990.

[19] Frederic T. Chong, Shamik D. Sharma, Eric A. Brewer, and Joel Saltz. Multiprocessor
Runtime Support for Irregular DAGs. In Toward Teraflop Computing and New Grand
Challenge Applications. Nova Science Publishers, Inc., 1995. To appear.

[20] T.H. Cormen, C.E. Leiserson, and R.L. Rivest. Introduction to Algorithms. MIT
Press and McGraw-Hill, Cambridge, MA, 1990.

[21] David E. Culler, Anurag Sah, Klaus Erik Schauser, Thorsten von Eicken, and John
Wawrzynek. Fine-grain Parallelism with Minimal Hardware Support: A Compiler-
Controlled Threaded Abstract Machine. In Proceedings of the Fourth International
Conference on Architectural Support for Programming Languages and Operating Sys-
tems, pages 164-175. ACM, April 1991.

[22] William J. Dally. Performance Analysis of k-ary n-cube Interconnection Networks.
IEEE Transactions on Computers, 39(6), June 1990.

201

BIBLIOGRAPHY

[23] William J. Dally, J.A. Stuart Fiske, John S. Keen, Richard A. Lethin, Michael D.
Noakes, Peter R. Nuth, Roy E. Davison, and Gregory A. Fyler. The Message-Driven
Processor: A Multicomputer Processing Node with Efficient Mechanisms. IEEE Mi-
cro, 12(2):23-39, April 1992.

[24] William J. Dally and Charles L. Seitz. Deadlock-Free Message Routing in Multipro-
cessor Interconnection Networks. IEEE Transactions on Computers, C-36(5):547-53,
May 1987.

[25] Chrysanthos N. Dellarocas. A High-Performance Retargetable Simulator for Paral-
lel Architecctures. Technical Report MIT/LCS/TR-505, Laboratory for Computer
Science, Massachusetts Institute of Technology, June 1991.

[26] Murphy Devarakonda and Arup Mukherjee. Issues in Implementation of Cache Affin-
ity Scheduling. In Proceedings Winter 1993 USENIX Conference, pages 345-357,
January 1992.

[27] Michel Dubois, Christoph Scheurich, and Faye Briggs. Memory Access Buffering in
Multiprocessors. In Proceedings of the 13th International Symposium on Computer
Architecture, pages 432-442, June 1986.

[28] Ian S. Duff, Roger G. Grimes, and John G. Lewis. User's Guide for the Harwell-Boeing
Sparse Matrix Collection. Technical Report TR/PA/92/86, CERFACS, Toulouse,
France, october 1992.

[29] Geoffrey Fox et al. Solving Problems on Concurrent Computers. Prentice Hall, 1988.

[30] M. Garey and D. Johnson. Computers and Intractability. W. H. Freeman and Com-
pany, 1979.

[31] Apostolos Gerasoulis and Tao Yang. A Comparison of Clustering Heuristics for
Scheduling Directed Acyclic Graphs on Multiprocessors. Journal of Parallel and Dis-
tributed Computing, 16:276-291, 1992.

[32] Kourosh Gharachorloo, Anoop Gupta, and John Hennessy. Performance Evaluation
of Memory Consistency Models for Shared-Memory Multiprocessors. In Proceedings
of the Fourth International Conference on Architectural Support for Programming
Languages and Operating Systems, pages 245-257. ACM, April 1991.

[33] Kourosh Gharachorloo, Daniel Lenoski, James Laudon, Phillip Gibbons, Anoop
Gupta, and John Hennessy. Memory Consistency and Event Ordering in Scalable
Shared-Memory Multiprocessors. In Proceedings of the 17th International Symposium
on Computer Architecture, pages 15-26, May 1990.

[34] James R. Goodman, Mary K. Vernon, and Philip J. Woest. Efficient Synchronization
Primitives for Large-Scale Cache-Coherent Multiprocessors. In Proceedings of the
Third International Conference on Architectural Support for Programming Languages
and Operating Systems, pages 64-75. ACM, April 1989.

202

BIBLIOGRAPHY

[35] Edward H. Gornish, Elana D. Granston, and Veidenbaum Alexander V. Compiler-
directed Data Prefetching in Multiprocessors with Memory Hierarchies. In Interna-
tional Conference on Supercomputing, pages 354-368, June 1990.

[36] Gary Graunke and Thakkar Shreekant. Synchronization Algorithms for Shared-
Memory Multiprocessors. Computer, 23(6):60-69, June 1990.

[37] Anoop Gupta, John Hennessy, Kourosh Gharachorloo, Todd Mowry, and Wolf-
Dietrich Weber. Comparative Evaluation of Latency Tolerating Techniques. In
Proceedings of the 18th Annual International Symposium on Computer Architecture,
pages 254-263. ACM, May 1991.

[38] Linley Gwennap. 620 Fills Out PowerPC Product Line. Microprocessor Report, 8(14),
October 1994.

[39] Linley Gwennap. UltraSparc Unleashes SPARC Performance. Microprocessor Report,
8(13), October 1994.

[40] Linley Gwennap. Intel's P6 Uses Decoupled Superscalar Design. Microprocessor
Report, 9(2), February 1995.

[41] Robert H. Halstead. Multilisp: A Language for Concurrent Symbolic Computation.
ACM Transactions on Programming Languages and Systems, 7(4):501-538, October
1985.

[42] Robert H. Halstead and Tetsuya Fujita. MASA: A Multithreaded Processor Archi-
tecture for Parallel Symbolic Computing. In 15th Annual Symposium on Computer
Architecture, pages 443-451. IEEE Computer Society, May 1988.

[43] John L. Hennessey and Norman P. Jouppi. Computer Technology and Architecture:
An Evolving Interaction. Computer, 24(9):18-29, September 1991.

[44] Dana S. Henry and Christopher F. Joerg. A Tightly-Coupled Processor-Network
Interface. In Fifth International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS V), pages 111-122. ACM, October 1992.

[45] Waldemar Horwat. Concurrent Smalltalk on the Message-Driven Processor. Technical
Report 1321, Artificial Intelligence Laboratory, Massachusetts Institute of Technology,
Cambridge, MA, September 1991.

[46] Kirk L. Johnson. The Impact of Communication Locality on Large-Scale Multiproces-
sor Performance. In Proceedings of the 19th International Symposium on Computer
Architecture, pages 393-402, Queensland, Australia, may 1992. ACM.

[47] Norman P. Jouppi. Improving Direct-Mapped Cache Performance by the Addition
of a Small Fully-Associative Cache and Prefetch Buffers. In Proceedings of the 17th
Annual International Symposium on Computer Architecture, pages 364-373. ACM,
May 1990.

203

BIBLIOGRAPHY

[48] Anna R. Karlin, Kai Li, Mark S. Manasse, and Susan Owicki. Empirical Studies of
Competitive Spinning for A Shared-Memory Multiprocessor. In Proceedings of the
Thirteenth ACM Symposium on Operating System Principles, pages 41-55, 1991.

[49] A. H. Karp. Programming for Parallelism. Computer, 20(5):43-57, May 1987.

[50] Stephen W. Keckler and William J. Dally. Processor Coupling: Integrating Compile
Time and Runtime Scheduling for Parallelism. In Proceedings of the 19th International
Symposium on Computer Architecture, pages 202-213, Queensland, Australia, May
1992. ACM.

[51] Alexander C. Klaiber and Henry M. Levy. An Architecture for Software-Controlled
Data Prefetching. In Proceedings of the 18th Annual International Symposium on
Computer Architecture, pages 43-53. ACM, May 1991.

[52] Kathleen Knobe, Joan D. Lukas, and William J. Dally. Dynamic Alignment on Dis-
tributed Memory Systems. In Proceedings of the Third Workshop on Compilers for
Parallel Computers, number TR 92-8, pages 394-404. ACPC, July 1992.

[53] Kathleen Knobe, Joan D. Lukas, and Guy L. Steele, Jr. Data Optimization: Allo-
cation of Arrays to Reduce Communication on SIMD Machines. Journal of Parallel
and Distributed Computing, 8:102-118, 1990.

[54] David Kranz, Kirk Johnson, Anant Agarwal, John Kubiatowicz, and Beng-Hong Lim.
Integrating Message-Passing and Shared-Memory: Early Experience. In Proceedings
of the Fourth ACM SIGPLAN Symposium on Principles and Practices of Parallel
Programming, pages 54-63, San Diego, May 1993.

[55] David Kranz, Beng-Hong Lim, and Anant Agarwal. Low-Cost Support for Fine-Grain
Synchronization in Multiprocessors. Technical Report MIT/LCS/TR-470, Laboratory
for Computer Science, Massachusetts Institute of Technology, Cambridge MA, June
1992.

[56] David Kroft. Lockup-Free Instruction Fetch/Prefetch Organization. In Proceedings
of the 8th Annual International Symposium on Computer Architecture, pages 81-97,
1981.

[57] John Kubiatowicz, David Chaiken, and Anant Agarwal. Closing the Window of Vul-
nerability in Multiphase Memory Transactions. In Fifth International Conference on
Architectural Support for Programming Languages and Operating Systems (ASPLOS
V). ACM, October 1992.

[58] John D. Kubiatowicz. Closing the Window of Vulnerability in Multiphase Memory
Transactions: The Alewife Transaction Store. Technical Report MIT/LCS/TR-594,
Massachusetts Institute of Technology, Laboratory for Computer Science, Cambridge
MA, February 1993.

[59] Kiyoshi Kurihara, David Chaiken, and Anant Agarwal. Latency Tolerance in Large-
Scale Multiprocessors. In International Symposium on Shared Memory Multiprocess-
ing, pages 91-101, 1991.

204

BIBLIOGRAPHY

[60] Jeffrey Kuskin, David Ofelt, Mark Heinrich, John Heinlein, Richard Simoni, et al.
The Stanford FLASH Multiprocessor. In Proc. 21st International Symposium on
Computer Architecture, pages 302-313. IEEE, April 1994.

[61] Monica Lam, Edward E. Rothberg, and Michael E. Wolf. The Cache Performance and
Optimization of Blocked Algorithms. In Proceedings of the Fourth International Con-
ference on Architectural Support for Programming Languages and Operating Systems,
pages 318-328, 1988.

[62] Leslie Lamport. How to Make a Multiprocessor Computer That Correctly Executes
Multiprocess Programs. IEEE Transactions on Computers, c-28(9):690-691, Septem-
ber 1979.

[63] James Laudon, Anoop Gupta, and Mark Horowitz. Architectural and Implementation
Tradeoffs in the Design of Multiple Context Processors. Technical Report CSL-TR-
92-523, Computer Systems Laboratory, Stanford University, CA 94305, May 1992.

[64] James Laudon, Anoop Gupta, and Mark Horowitz. Interleaving: A Multithreading
Technique Targeting Multiprocessors and Workstations. In Proceedings of the Sixth
International Conference on Architectural Support for Programming Languages and
Operating Systems, pages 308-318. ACM, October 1994.

[65] Roland L. Lee, Pen-Chung Yew, and Duncan H. Lawrie. Data Prefetching in Shared
Memory Multiprocessors. In Proceedings of the 1987 International Conference on
Parallel Processing, pages 28-31, August 1987.

[66] Samuel J. Leffler, Marshall Kirk McKusick, Michael J. Karels, and John S. Quater-
man. The Design and Implementation of 4.3BSD UNIX Operating System. Addison
Wesley, 1990.

[67] Beng-Hong Lim and Anant Agarwal. Waiting Algorithms for Synchronization in
Large-Scale Multiprocessors. ACM Transactions on Computer Systems, 11(3):253-
294, August 1993.

[68] Steven Lucco. A Dynamic Scheduling Method for Irregular Parallel Programs. In
Proceedings of the SIGPLAN '92 Conference on Programming Language Design and
Implementation, pages 200-211, June 1992.

[69] Evangelos P. Markatos and Thomas J. LeBlanc. Load Balancing vs. Locality Man-
agement in Shared-Memory Multiprocessors. Technical Report 399, The University
of Rochester Computer Science Department, October 1991.

[70] Evangelos P. Markatos and Thomas J. LeBlanc. Using Processor Affinity in Loop
Scheduling on Shared-Memory Multiprocessors. In Proceedings of Supercomputing
'92, pages 104-113, November 1992.

[71] J. M. Mellor-Crummey and M. L. Scott. Algorithms for Scalable Synchronization
on Shared-Memory Multiprocessors. Technical Report 342, University of Rochester,
Computer Science, Rochester NY, April 1990.

205

BIBLIOGRAPHY

[72] Eric Mohr, David Kranz, and Robert H. Jr. Halstead. Performance Tradeoffs in Multi-
threaded Processors. Technical Report MIT/LCS/TR-449, Laboratory for Computer
Science, Massachusetts Institute of Technology, Cambridge MA, June 1991.

[73] Todd Mowry and Anoop Gupta. Tolerating Latency Through Software Controlled
Prefetching in Shared Memory Multiprocessors. Journal of Parallel and Distributed
Computing, 12:87-106, 1991.

[74] Shashank S. Nemawarkar, R. Govindarajan, Guang R. Gao, and Vinod K. Agarwal.
Performance Analysis of Multithreaded Multiprocessors using an Integrated System
Model. Technical Report ACAPS Technical Memo 84-1, McGill University, July 1994.

[75) Rishiyur S. Nikhil, Gregory M. Papadopoulos, and Arvind. *T: A Multithreaded Mas-
sively Parallel Architecture. Computation Structures Group Memo 325-1, Laboratory
for Computer Science, Massachusetts Institute of Technology, November 1991.

[76] Michael D. Noakes, Deborah A. Wallach, and William J. Dally. The J-Machine Mul-
ticomputer: An Architectural Evaluation. In Proceedings of the 20th International
Symposium on Computer Architecture, pages 224-235, San Diego, California, May
1993. IEEE.

[77] Peter R. Nuth and William J. Dally. A Mechanism for Efficient Context Switching. In
Proceedings of the International Conference on Computer Design: VLSI in Computers
& Processors, pages 301-304. IEEE, October 1991.

[78] Gregory M. Papadopoulos and David E. Culler. Monsoon: an Explicit Token-Store
Architecture. In The 17th Annual International Symposium on Computer Architec-
ture, pages 82-91. IEEE, 1990.

[79] Constantine D. Polychronopoulos and David J. Kuck. Guided Self-Scheduling: A
Practical Scheduling Scheme for Parallel Supercomputers. IEEE Transactions on
Computers, C-36(12):1425-1439, December 1987.

[80] Edward Rothberg, Jaswinder Pal Singh, and Anoop Gupta. Working Sets, Cache
Sizes, and Node Granularity Issues for Large-Scale Multiprocessors. In Proceedings
of the 20th Annual International Symposium on Computer Architecture, pages 14-25,
San Diego, May 1993. ACM.

[81] Rafael H. Saavedra-Barrera, David E. Culler, and Thorsten von Eicken. Analysis of
Multithreaded Architectures for Parallel Computing. In ACM Symposium on Parallel
Algorithms and Architecture, pages 169-178. ACM, July 1990.

[82] Joel H. Saltz, Ravi Mirchandaney, and Kay Crowley. Run-Time Parallelization and
Scheduling of Loops. IEEE Transactions on Computers, 40(5):603-612, May 1991.

[83] Vivek Sarkar. Partitioning and Scheduling Parallel Programs for Execution on Mul-
tiprocessors. Technical Report CSL-TR-87-328, Stanford University, April 1987.

[84] C. Scheurich and M Dubois. Lockup-Free Caches in High-Performance Multiproces-
sors. Journal of Parallel and Distributed Computing, (11):25-36, 1991.

206

BIBLIOGRAPHY

[85] Charles W. Selvidge. Compilation-based Prefetching for Memory Latency Toler-
ance. Technical Report MIT/LCS/TR-547, Laboratory for Computer Science, Mas-
sachusetts Institute of Technology, September 1992.

[86] Lui Sha, Ragunathan Rajkumar, and John P. Lehoczky. Priority Inheritance Proto-
cols: An Approach to Real-Time Synchronization. IEEE Transactions on Computers,
39(9):1175-1185, September 1990.

[87] Jasinder Pal Singh, Wolf-Dietrich Weber, and Anoop Gupta. SPLASH: Stanford
Parallel Applications for Shared-Memory. Technical Report CSL-TR-91-469, Stanford
University, April 1991.

[88] Burton J. Smith. Architecture and applications of the HEP multiprocessor computer
system. In SPIE Vol. 298 Real-Time Signal Processing IV, pages 241-248. Denelcor,
Inc., Aurora, CO, 1981.

[89] James E. Smith. Decoupled Access/Execute Computer Architectures. In Proceedings
of the 9th Computer Architecture Symposium, pages 112-119, 1982.

[90] Mark S. Squillante and Edward D. Lazowska. Using Processor-Cache Affinity In-
formation in Shared-Memory Multiprocessor Scheduling. Technical Report 89-06-01,
Department of Computer Science and Engineering, University of Washington, May
1990.

[91] Mark S. Squillante and Randolph D. Nelson. Analysis of Task Migration in Shared-
Memory Multiprocessor Scheduling. In ACM Signmetrics Conference on Measurement
and Modelling of Computer Systems, pages 143-155, 1991.

[92] Per Stenstrom, Fredrik Dahlgren, and Lars Lubdberg. A Lockup-free Multiproces-
sor Cache Design. In Proceedings of the 1991 International Conference on Parallel
Processing, pages 161-165, 1991.

[93] Przybylski Steven. DRAMs For New Memory Systems (Part 3). Microprocessor
Report, 7(4):22-26, March 1993.

[94] Ricardo Telichevesky. A Numerical Engine for Distributed Sparse Matrices. PhD
Thesis, Massachusetts Institute of Technology, Cambridge MA, January 1994.

[95] Radhika Thekkah and Susan J Eggers. The Effectiveness of Multiple Hardware Con-
texts. In Proceedings of the Sixth International Conference on Architectural Support
for Programming Languages and Operating Systems, pages 328-337. ACM, October
1994.

[96] Radhika Thekkath and Susan J. Eggers. Impact of Sharing-Based Thread Placement
on Multithreaded Architectures. In Proceedings of the 21st Annual International
Symposium on Computer Architecture, pages 176-186, Chicago, Illinois, April 1994.
ACM.

207

BIBLIOGRAPHY

[97] Josep Torrellas, Andrew Tucker, and Anoop Gupta. Evaluating the Performance of
Cache-Affinity Scheduling in Shared-Memory Multiprocessors. Journal of Parallel
and Distributed Computing, 24(2):139-151, 1995.

[98] Andrew Tucker and Anoop Gupta. Process Control and Scheduling Issues for Multi-
programmed Shared-Memory Multiprocessors. In Proceedings of the 12th ACM Sym-
posium on Operating Systems Principles, pages 159-166, 1989.

[99] Ten H. Tzen and Lionel M. Ni. Trapezoid Self-Scheduling: A Practical Schedul-
ing Scheme for Parallel Compilers. IEEE Transactions on Parallel and Distributed
Systems, pages 87-98, January 1993.

[100] Thorsten von Eicken, David Culler, Seth Goldstein, and Klaus Schauser. Active Mes-
sages: A Mechanism for Integrated Communication and Computation. In Proceedings
of 19th Annual International Symposium on Computer Architecture, pages 256-266.
IEEE, 1992.

[101] Carl A. Waldspurger and William E. Weihl. Register Relocation: Flexible Contexts
for Multithreading. In Proceedings of the 20th Annual International Symposium on
Computer Architecture, pages 120-130, San Diego, May 1993. ACM.

[102] Carl A. Waldspurger and William E. Weihl. Lottery Scheduling: Flexible
Proportional-Share Resource Management. In Proceedings of the First Symposium
on Operating System Design and Implementation, November 1994.

[103] Deborah A. Wallach, Wilson C. Hsieh, Kirk L. Johnson, M. Frans Kaashoek, and
William E. Weihl. Optimistic Active Messages: A Mechanism for Scheduling Com-
munication with Computation. In Proceedings of the 5th Symposium on Principles
and Practice of Parallel Programming, 1995. To appear.

[104] Yung-Terng Wang and Robert J. T. Morris. Load Sharing in Distributed Systems.
IEEE Transactions on Computers, C-34(3):204-217, March 1985.

[105] Wolf-Dietrich Weber and Anoop Gupta. Exploring the benefits of multiple hard-
ware contexts in a multiprocessor architecture: preliminary results. In Proceedings of
the 16th Annual International Symposium on Computer Architecture, pages 273-280,
Jerusalem, Israel, May 1989. ACM.

[106] Michael Weiss, C. Robert Morgan, and Zhixi Fang. Dynamic Scheduling and Memory
Management for Parallel Programs. In Proceedings of the 1988 International Confer-
ence on Parallel Processing, Volume II Software, pages 161-165, 1988.

[107] Neil Weste and Kamran Eshraghian. Principles of CMOS VLSI Design. Addison-
Wesley, 1985.

[108] Marc H. Willebeek-LeMair and Anthony P. Reeves. Strategies for Dynamic Load Bal-
ancing on Highly Parallel Computers. IEEE Transactions on Parallel and Distributed
Systems, 4(9):979-993, September 1993.

208

BIBLIOGRAPHY 209

[109] Michael E. Wolf and Monica S. Lam. A Data Locality Optimizing Algorithm. In
Proceedings of the SIGPLAN '91 Conference on Programming Language Design and
Implementation, pages 30-44, June 1991.

[110] Donald Yeung and Anant Agarwal. Experience with Fine-Grain Synchronization in
MIMD Machines for Preconditioned Conjugate Gradient. In Principles and Practices
of Parallel Programming, 1993, pages 187-197, San Diego, CA, May 1993. IEEE. Also
as MIT/LCS-TM 479, October 1992.

[111] Pen-Chung Yew, Nian-Feng Tzeng, and Duncan H. Lawrie. Distributing Hot-Spot
Addressing in Large-Scale Multiprocessors. IEEE Transactions on Computers, C-
36(4):388-395, April 1987.

[112] John Zahorjan, Edward D. Lazowska, and Derek L. Eager. The Effect of Scheduling
Discipline on Spin Overhead in Shared Memory Parallel Systems. IEEE Transactions
on Parallel and Distributed Systems, 2(2):180-198, April 1991.

