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Hydrogels in drug delivery


Control of drug release kinetics by hydrogel structure6,7


o Release from stable hydrogels is controlled by diffusion of solute through the network 
o Diffusion is described by Fick’s second law: 

∂C ∂ 2C
Eqn 1 

∂t 
= Dgel ∂x 2 

o Recall the solution to Fick’s second law for a semi-infinite slab contacting a perfect sink: 

Eqn 2 
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o	 Diffusion of drugs through a network is controlled by the mesh size (ζ) 
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o The mesh size is related to the network swelling Q and the end-to-end distance between cross-links: 

(<r0
2>)1/2=Nc

1/2a 
statistical segment length 

Number of segments 
between cross-links 

Eqn 3 	 r0
2 1/ 2  2M c 

1/ 2 

C1/ 2l( )  =

 

M 0 
 n 

o …assuming a polymer chain that has 2 carbon-carbon bonds per repeat unit 
o	 derived from random walk chain statistics 

� Where l is the bond length in the polymer backbone 
�  Mc is the molecular weight between cross-links 
�  M0 is the molecular weight per repeat unit 
� Where Cn is the characteristic ratio for the polymer chain 

( )2 1/ 2 

Eqn 4 ξ = 
r0

1/ 3 = Q1/ 3 ( )r0
2 1/ 2 

= Cn 
1/ 2Q1/ 3N1/ 2l

φ2,s 

� Q is the degree of swelling = Vswollen polymer/Vdry polymer
� N is the degree of polymerization between cross-links 

� The mesh size is related to the diffusion constant of a solute in the network 
� Eyring theory of diffusion: 

−
∆G* 

−
∆H * ∆S* 

Eqn 5 D = Tνe kT = Tνe kT e k 

o Where ∆G* is the activation energy, ∆H* is activation enthalpy, and ∆S* is activation entropy 
o N = translational oscillating frequency of solute molecule (jump rate!) 
o T = temperature 
o k = Boltzman constant 

� The ratio of diffusion constant in the gel to that in solution is: 

*∆Sgel 

kˆEqn 6 D = 
Dgel = 

e 
∆S0

*D0 e k 

o	 Where ∆S*gel is the activation entropy for diffusion in the gel and ∆S*0 is the activation entropy 
in for diffusion in the solvent 

o	 This assumes the activation enthalpy and oscillation frequencies for diffusion are 
approximately the same in the gel and pure solvent (reasonable for dilute and chemically 
inert systems)

� The activation entropies are: 

Eqn 7 ∆S*gel = k ln P* - k ln P0 
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Eqn 8 ∆S*0 = k ln P*0 – k ln P0 

* * * 

Eqn 9 D = 
Pgel = 

Pgel ,openingPgel,volumeˆ 
* *P0 P0,volume 

o Where P*volume is the probability that a solute-sized volume of free space exists to jump into 
o P*opening is the probability that the network has a solute-sized gap to jump through 

P*gel,opening 

drug 

r 

drug 

P*gel,volume 

* ξ − r
Eqn 10 Pgel,opening = 

ξ
= 1− 

r 
ξ 

o Where r is the size of the solute (drug) and ξ is the network mesh size 
�	 The probability of a volume to jump into is an exponential of the ratio of the solute size to the available 

free volume per mole: 

v* 
− 

*Eqn 11 Pgel,volume ~ e v free,gel 

v* 
− 

*Eqn 12 P0,volume ~ e v free,1 

o Where vfree is the specific free volume and v* is the volume of the solute (drug) 
o	 Refs for free volume theory applied here: 

� Yasuda et al. Makromol. Chem. 26, 177 (1969)
� Peppas and Reinhart, J. Membrane Sci. 15, 275 (1983)

� Now: 

* 
 v* v*  

Eqn 13 
Pgel,volume = e 

−

 v free,gel 

− 
v free,1 

 

*P0,volume 

�	 The free volume in a swollen gel is approximately vfree,1 since the free volume contribution from 
polymer is extremely low (2.5% even in solid polymers at 25°C) 

Eqn 14 vfree,gel = φ1vfree,1 + φ2vfree,2 

� Therefore: 

Eqn 15 vfree,gel ~ φ1vfree,1 = (1-φ2)vfree,1 = (1-1/Q)vfree,1 

o Where Q is the swelling degree = Vswollen gel/Vdry gel = 1/φ2 
� Therefore: 
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Eqn 16 
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o v*/vfree,1 ~ 1 for most polymers, experimentally
� Therefore: 

   
 −1	  

ˆEqn 17 D ≅

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
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� And thus finally: 

   
 −1	  

 

Eqn 18 Dgel ≅ D0
1− 

r 

e(Q−1)

ξ 

o Insulin: MW – 5900 g/mole; hydrodynamic radius = 16 Å 
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