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Hydrogels in drug delivery

Control of drug release kinetics by hydrogel structure®’

o Release from stable hydrogels is controlled by diffusion of solute through the network
o Diffusion is described by Fick’s second law:

a FC
Ean 1 a Pear
o Recall the solution to Fick’s second law for a semi-infinite slab contacting a perfect sink:
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o Diffusion of drugs through a network is controlled by the mesh size (¢)
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o The mesh size is related to the network swelling Q and the end-to-end distance between cross-links:
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o ...assuming a polymer chain that has 2 carbon-carbon bonds per repeat unit
o derived from random walk chain statistics

=  Where /is the bond length in the polymer backbone

= M, is the molecular weight between cross-links

= My is the molecular weight per repeat unit

= Where C, is the characteristic ratio for the polymer chain
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- Q is the degree of Swe”ing = szollen polymer/Vdry polymer

= Nis the degree of polymerization between cross-links
= The mesh size is related to the diffusion constant of a solute in the network
= Eyring theory of diffusion:

AG” AH™  AS"

Eqn 5 D=Tve ¥ =Tve ¢ *

Where AG* is the activation energy, AH* is activation enthalpy, and AS* is activation entropy
N = translational oscillating frequency of solute molecule (jump rate!)
T = temperature
o k= Boltzman constant
= The ratio of diffusion constant in the gel to that in solution is:
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o Where AS*y is the activation entropy for diffusion in the gel and AS* is the activation entropy
in for diffusion in the solvent

o This assumes the activation enthalpy and oscillation frequencies for diffusion are

approximately the same in the gel and pure solvent (reasonable for dilute and chemically
inert systems)

= The activation entropies are:

Eqn 7 AS*ge =k InP*-klIn Py
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Eqn 8
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Eqn 10

Eqn 11

Eqn 12
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Eqn 14

Egn 15
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o Where P*volume is the probability that a solute-sized volume of free space exists to jump into
o P*opening is the probability that the network has a solute-sized gap to jump through
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o Where ris the size of the solute (drug) and § is the network mesh size
The probability of a volume to jump into is an exponential of the ratio of the solute size to the available
free volume per mole:
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o Where vfree is the specific free volume and v* is the volume of the solute (drug)
o Refs for free volume theory applied here:
= Yasuda et al. Makromol. Chem. 26, 177 (1969)
= Peppas and Reinhart, J. Membrane Sci. 15, 275 (1983)
Now:
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The free volume in a swollen gel is approximately vfree,1 since the free volume contribution from
polymer is extremely low (2.5% even in solid polymers at 25°C)

Vfree,gel = ¢1vfree,1 + ¢2Vfree,2

Therefore:

Vfreeagel ~ ¢1Vfree,1 = (1'¢2)Vfree,1 = (1'1/Q)Vfree,1

o Where Q is the swelling degree = Vgyoiien gel/ Vary gel = 1/02
Therefore:
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Eqn 16 M =e (lié)vmu ’ =g Vel [Q—lj ~e (Qflj
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0 V*/Vgee1 ~ 1 for most polymers, experimentally
=  Therefore:
=
A r 1 Lw-n
Eqn 17 DE(I——je
4
= And thus finally:
=
r .
Eqn 18 D, = Do(l ——Je ©
4
o Insulin: MW — 5900 g/mole; hydrodynamic radius = 16 A
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