OSMOSIS

Important Quantities and their units:

x	position	[m]
t	time	[sec]
$c_i(x,t)$	concentration of solute <i>i</i>	$\left[\frac{\text{mole}}{\text{m}^3}\right]$
$C_{e}(x,t)$	osmolarity	$\left[\frac{\text{osmole}}{\text{m}^3} = \frac{\text{mole}}{\text{m}^3}\right]$
\boldsymbol{r}_m	density	$\left[\frac{kg}{m^3}\right]$
V	volume	[m ³]
Φ	osmotic flux	$\left[\frac{m^3}{\sec \cdot m^2} = \frac{m}{\sec}\right]$
k	hydraulic permeability	$\left[\frac{m^2}{Pa \cdot sec}\right]$
L _v	hydraulic conductivity	$\left[\frac{m}{Pa \cdot sec}\right]$
p	hydraulic pressure	[Pa]
p	osmotic pressure	[Pa]
R	molar gas constant	$8.314 \frac{\mathrm{N} \cdot \mathrm{m}}{\mathrm{mol} \cdot \mathrm{K}}$
Т	temperature	[K]

General Equations:

 $c_{\Sigma} = \sum_{i} n_i c_i$ (where the *i*th solute dissociates into n_i particles) Definition of Osmolarity $\boldsymbol{p}=RTc_{\Sigma}$ van't Hoff's Law $\Phi_{v}(x,t) = -\boldsymbol{k} \frac{\partial}{\partial x} (p - \boldsymbol{p})$ Darcy's Law $-\frac{\partial}{\partial x}(\boldsymbol{r}_{m}\cdot\boldsymbol{\Phi}_{v})=-\frac{\partial}{\partial t}\boldsymbol{r}_{m}$ Continuity equation 2-Compartment Model (water incompressible so always at SS): $V_{I}(t)$ $c_{I}(t)$ $V_2(t)$ A=cross-section area $c_2(t)$ $\Phi_v = -\frac{1}{A} \cdot \frac{d}{dt} V_1$ Definition of volumetric flux $L_v = \frac{\mathbf{k}}{d}$ Hydraulic conductivity $\Phi_{v} = L_{v} ((p_{1} - p_{1}) - (p_{2} - p_{2}))$ Darcy's Law $c_{\Sigma}^{1}(0)V_{1}(0) + c_{\Sigma}^{2}(0)V_{2}(0) = c_{\Sigma}^{1}(t)V_{1}(t) + c_{\Sigma}^{2}(t)V_{2}(t) = c_{\Sigma}^{1}(\infty)V_{1}(\infty) + c_{\Sigma}^{2}(\infty)V_{2}(\infty) \quad \text{conservation of solute } \int \text{closed} V_{\Sigma}(0)V_{1}(0) + c_{\Sigma}^{2}(0)V_{2}(0) = c_{\Sigma}^{1}(t)V_{1}(t) + c_{\Sigma}^{2}(t)V_{2}(t) = c_{\Sigma}^{1}(\infty)V_{1}(\infty) + c_{\Sigma}^{2}(\infty)V_{2}(\infty)$ system $V_1(0) + V_2(0) = V_1(t) + V_2(t) = V_1(\infty) + V_2(\infty)$ conservation of solvent only