Delphine's handy dandy units and formula sheet

Important Quantities and then units.					
x	position	[cm]			
t	time	[sec]			
c(x,t)	concentration	$\left[\frac{\text{mole}}{\text{cm}^3}\right]$			
f	diffusive flux	$\left[\frac{\text{mole}}{\sec\cdot\text{cm}^2}\right]$			
D	diffusivity	$\left[\frac{\mathrm{cm}^2}{\mathrm{sec}}\right]$			
k	partitioning coefficient	[unitless]			
Р	permeability	$\left[\frac{\mathrm{cm}}{\mathrm{sec}}\right]$			
$ au_{ m SS}$	steady state time constant	[sec]			
$ au_{\mathrm{EQ}}$	equilibrium time constant	[sec]			

DIFFUSION

Important Quantities and their units:

General Equations:

$$f(x,t) = -D \frac{\partial}{\partial x} (c(x,t))$$
 Fick's First Law
$$-\frac{\partial}{\partial x} f(x,t) = \frac{\partial}{\partial t} (c(x,t))$$
 Continuity Equation

combine to get:

 $\frac{\partial}{\partial t} (c(x,t)) = D \frac{\partial^2}{\partial x^2} (c(x,t))$ Diffusion Equation

if you have a partition coefficient, k, then stick k with D in the above equations.

2-Compartment Model:

V_1 $c_1(t)$	$\langle d \rangle$	8	$V_2 \\ c_2(t)$	
$P = \frac{kD}{d}$		Membrane Pe	ermeability	
$\boldsymbol{t}_{SS} = \frac{d^2}{\boldsymbol{p}^2 D}$		Steady State	Time Constant	
$\boldsymbol{t}_{EQ} = \frac{1}{AP\left(\frac{1}{V} + \frac{1}{V}\right)}$		Equilibrium 7	Time Constant	
if $t_{SS} \ll t_{EQ}$ (thin membrane) and at steady state then:				

 $\mathbf{f} = P(c^{1}(t) - c^{2}t))$ Fick's Law for membranes