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Abstract
Our main objective is to study the analogues of the stable Schubert polynomials
G, H, for the classical Weyl groups Bn and Dn respectively.

Using the nilCoxeter algebra for B, Fomin and Kirillov have shown that G,
is a symmetric function and can be written as an integer combination of Schur P-
functions. Using the Kraskiewicz insertion, we can show that they are actually non-
negative integer combinations of the Schur P-functions.

Next, looking into other properties of the Kragkiewicz insertion, we are able to
give nice descriptions for some G,. Relations between the KraSkiewicz insertion and
Haiman's promotion sequence and shifted mixed insertion are found.

A variation of the Kraskiewicz insertion is found which gives similar results for
the Dn analogues of the stable Schubert polynomials.
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Chapter 1

Introduction

In [3], Edelman and Greene gave an insertion algorithm that presents a bijection

between the reduced words of the symmetric group, S, and the set {(P, Q): P is a

tableau word and Q is a Young tableau}. An analogue for the hyperoctahedral group

B, was developed by Kragkiewicz in [9]. In this thesis, we will explore some of its

properties and applications. One of the applications of this is in the enumeration of

the number of reduced word of a signed permutation. This question first appeared

in a paper by Stanley[14]. For each permutation of S, he constructed a symmetric

function that provided an answer after expressing it in terms of Schur functions. The

Edelman-Greene insertion can be used to show that the coefficients are nonnegative.

It turns out that this function is also a stable Schubert polynomial.

In [9], the Kraskiewicz insertion is used to give a formula for the number of

reduced words of signed permutations. We intend to use the KraSkiewicz insertion to

show that the B, analogue of the stable Schubert polynomials can be expressed as a

nonnegative sum of Schur P-functions. This will be the main goal of Chapter 2. We

will also try to develop analogues for D, the subgroup of signed permutations with

even number of signs in Chapters 3 and 4. In particular, we will answer the question

on the number of reduced words of an element in Dn and also show that the Dn stable

Schubert polynomials can be expressed as nonnegative sums of Schur P-functions.

In this chapter, we will introduce the terminology and definitions that we will

need. Section 1.1 will be a short description of B, and reduced words. Section
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1.2 will cover some basic terminology in the theory of symmetric functions. The

Kragkiewicz insertion is introduced in Section 1.3. We will expand on the paper by

Kragkiewicz. This will spill over into Section 1.4. The notation and terminology there

has been adapted to our purposes.

1.1 The Hyperoctahedral Group

We will spend some time on giving definitions and notations here. First, some basic

facts about Bn. The main reference used is [8]. The hyperoctahedral group is the

finite Coxeter group corresponding to the root system, B. Abusing notation, we

will denote the group by Bn. Consider the n-dimensional vector space over the real

numbers with standard basis {e1, e2, .. e,}. The simple roots are vectors denoted by

ai's satisfying certain properties. We will not state these properties but instead state

explicitly the simple roots. Here, we will depart from the usual notation. We set

a0 = 1

a01 = 2 - E1

a2 = 3 --2

aOn- = n - n-1

The corresponding simple reflections are denoted by si's. Each si is the reflection of

the vector space in the hyperplane perpendicular to ai. They generate the hyper-

octahedral group, Bn. So, every element w E Bn can be expressed as a product of

si's. Any such expression of shortest length is called a reduced word. We will call

this unique shortest length the length of w and denote it by (w). The collection of

reduced words of w is denoted by R(w). When we write a reduced word, we will

often only write the subscripts of the simple reflections. So, S3S2SISoS3S2S3 is written

simply as 3210323. The reduced words of R(w) for a fixed w E Bn are related by the
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Coxeter relations for Bn. They are:

0101 - 1010

ab ba b>a+1
aa+la aa+1 a a 0

An element w of Bn is uniquely determined by its action on i, 1 < i < n. So, we

can write w as a signed permutation, W1W2 ... Wn, where

j if w(ei) = j

jif w(ei) = - s

Then, using the one-line notation, the simple reflections are

so = 12...n

si = 12 ... i-l i + ii+2 ... n for 1 < i< n

When we multiply si's, we do it from the right. The reason is that it facilitates us in

computing an element of Bn from a given word(not necessary reduced). Under this

convention, a simple reflection si acts on 1-line notation by switching the numbers in

positions i and i + 1 if i Z 0 and changing the sign of the first number if i = 0.

Example: To find the element w with the reduced word 21032, we write up the table

as follows:

2

1

0

3

2

1234

1324

3124

3124

3142

3412

Then w = 3412.
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1.2 Tableaux and Symmetric Functions

In this section, we will give a short description of all the necessary definitions and

results that we will need later. Almost all the results are stated without proof. The

proofs can be found in standard texts like [10], [13] and [16]. The reader who is

familiar with the subject can skip this section and refer to it later on to clarify the

notation.

Consider a Young diagram of shape A = (Al, A2,* - , A1), Ai > Ai+l for 1 < i < 1.

We represent it as rows of boxes, the first row of length Al1 on top, the second row of

length A2 below it and so on, justified to the left. For example, if A = (5, 3, 3), the

Young diagram is:

' I

The number of boxes used is denoted by 1A1 = E=, Ai and the number of rows is

denoted by l(A). Each box is identified by its coordinates (i,j) where i is the row

index and j is the column index.

Similarly, we can define a shifted Young diagram to be an arrangement of boxes

of shape = ( 1, A, ..- , Al), Ai > Ai+l for 1 < i < 1. All the rows must have different

lengths. When we represent it as rows of boxes, each subsequent row is indented 1

box to the right. For example, if A = (5, 3, 2), the Young diagram is:

Li ]

Each box is identified by its coordinates in the same manner as the unshifted Young

diagram. So, the shifted Young diagram always lies in the octant {(i, j): 1 < i < j}.

To distinguish the 2 types of Young diagrams, we would sometimes called the first

9
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kind unshifted Young diagrams. A tableau T is a Young diagram with boxes filled

in with numbers. It is called a shifted tableau if we use a shifted Young diagram to

begin with. We collect a few definitions and notations.

Definition 1.1 Let T be a Young diagram, shifted or unshifted.

1. The set of numbers used, counting multiplicity, is called the content of the

tableau and we denote it by con(T).

2. The shape of T is denoted by sh(T).

3. The number of rows in T is denoted by l(T).

4. The ith row of T is denoted by Ti.

5. The reading word of T is rT = TIT_l ... T2T1 where each row is treated as a

sequence of numbers.

Example:

54 3

is a shifted tableau of shape (4, 3), size 7, content (5, 4, 4, 3, 2, 2, 1) and reading word

4235412.

Definition 1.2

1. A tableau T is called a standard Young tableau if

(a) con(T) = {1, 2, .. , sh(T)l }

(b) the numbers in each row is strictly increasing

(c) the numbers in each column is strictly increasing

2. A tableau T is called semistandard if
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(a) the numbers in each row is weakly increasing

(b) the numbers in each column is strictly increasing

Note that there is no condition on con(T) for a semistandard tableau.

There are some standard tableaux which we will come across often. For conve-

nience, we name them below.

Definition 1.3 Let T be a standard Young tableau of shape A.

1. The transpose of T denoted by Tt is the standard Young tableau that is obtained

by reflecting T in the diagonal i = j.

2. T is called row-wise if

T1 = 12 Al

T2 = A1+ A+2 ... A2

T3 = A2 +12 + 2 +2... 3

3. T is called column-wise if Tt is row-wise.

Consider the ring of formal power series with indeterminates x 1, 2,..' over the

field of rational numbers, Q[[x]]. Given a semistandard tableau T, we can associate

with it a monomial in Q[[x]] as follows. Let con(T) = {il, i2 ,... im}. Define

T
X = Xil Xi2 Xim

Let us denote the subalgebra of Q[[x]] consisting of symmetric functions as A. This

is the ring that we are interested in.

Theorem 1.4 Let

ek(z) = Xili2Xi3 ' ' Xik
il<i2< <ik
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hk(x)

Pk(z)

E Xil Xi2Xi3 ... Xik
il i2 <.ik

= X k+ X2 + -x1+ 2-+- 3+.

Then, ek : k = 1, 2, ...}, hk : k = 1, 2, } and Pk : k = 1,2, } are algebra bases

of A.

Definition 1.5 Let A be of unshifted shape. A Schur function of shape A is

SA(X) = Z xT
w

where the sum is over all semistandard Young tableau of shape A.

The Schur functions are symmetric functions.

More importantly,

Theorem 1.6 The Schurfunctions, sx where

a vector space basis of A.

This is not clear from this definition.

A range over all unshifted shapes form

There is a similar definition for shifted shapes. However, we have to deal with

filling the shape with 2 different types of numbers, barred and unbarred, and we

assign a linear order on them as follows:

i<1<2<2<3<..

Definition 1.7 A shifted tableau T filled with barred and unbarred numbers is called

P-semistandard if

1. all the numbers are increasing along each row and each column

2. the unbarred numbers are weakly increasing in each row but strictly increasing

in each column

3. the barred numbers are strictly increasing in each row but weakly increasing in

each column
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4. the numbers in the first box of each row is unbarred

Definition 1.8 Let T be a shifted Young tableau be filled with barred and unbarred

numbers such that

1. all the numbers are increasing along each row and each column

2. the unbarred numbers are weakly increasing in each row but strictly increasing

Zn each column

3. the barred numbers are strictly increasing in each row but weakly increasing in

each column

Then T is called a Q-semistandard Young tableau.

Note that, unlike the P-semistandard Young tableau, there is no restriction on the

number in the first box of each row.

Let the con(T) = {fi, f2,. , f)m }. We associate T with the monomial

T
X = XlfllXlf 2 ..'' Xfml

where Ifil is just the number without the bar.

Definition 1.9 Let A be of shifted shape.

1. Let

PA (x) = T
T

where the sum is over all P-semistandard Young tableau of shape A. P is called a

Schur P-function.

2. Let

Q(X) = E T
T

where the sum is over all Q-semistandard Young tableau of shape A. Q is called a

Schur Q-function.
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It is obvious that

QA = 21(X)Px

where (A) denote the number of rows in A. Just like the Schur functions, they are

symmetric. However, they do not generate the whole algebra of symmetric functions.

Theorem 1.10 Let ,A be the subalgebra of A generated by Pk : k odd }. Then

A- = f(x) E A: f(-x 2, x2, X3, x4, ) = f(x 3, X4," '))

The PA's where A range over all shifted shapes form a vector space basis for A. Sim-

ilarly, the Qx's form a vector space basis for A.

Definition 1.11 Take 2 Young diagrams, S and T of shape A and L respectively.

Suppose T C S. If we remove T from S, the resulting configuration of boxes is called

a skew Young diagram of shape A/p. If we filled in the skew Young diagram with

numbers such that each row and column is increasing, then the resulting tableau is

called a skew Young tableau.

A skew Young diagram is said to be connected if we can always get from 1 box to

another by moving left, right, up or down without leaving the diagram.

There are some special skew shapes that we will mentioned here.

Definition 1.12

1. A horizontal strip is a skew Young diagram where each column can have at most

i box.

2. A vertical strip is a skew Young diagram where each row can have at most 1

box.

3. A rim hook is a skew Young diagram that does not contain a 2 x 2 configuration

of boxes. Equivalently, each top-left to bottom-right diagonal has at most 1 box.

14



Let T be a semistandard Young tableau of unshifted shape A. If we look at all the

boxes in T that have the same entry, they form a horizontal strip since T is strictly

increasing in its columns.

If T is a Q-semistandard Young tableau of shifted shape /t, then all the boxes

in T that have the same barred entry form a vertical strip and those with the same

unbarred entry form a horizontal strip. This is because the barred numbers have to

be strictly increasing in each row and the unbarred numbers are strictly increasing in

each column. If we instead look at all the boxes filled with the entries , 1 for a fixed

1, they form a rim hook. This is because there is no way of filling a configuration of

2 x 2 boxes with 1 or 1 such that it is Q-semistandard.

1.3 Kraskiewicz Insertion

In this section, we will present KraSkiewicz insertion. All the results here can be

found in [9]. The presentation is different from that in [9]. Firstly, we have used so

as the special reflection instead of Sn. So, the numbers that are used in a reduced

word for B, will range from 0 to n - 1. Secondly, our unimodal sequence will be a

sequence of numbers that is initially strictly decreasing, then strictly increasing; that

is

a = al > a2 > ... > ak < ak+l < ... < al

The decreasing part of a is defined to include the minimum, that is

a = al > a2 > ''> ak

The increasing part forms the remainder. We denote it by

at = ak+1 < ak+2 < ... < al

For example, 21056 is a unimodal sequence with decreasing part 210 and increasing

part 56. 2489 is unimodal with decreasing part 2 and increasing part 489. 7521 is
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unimodal with decreasing part 7521 and no increasing part. We note that a unimodal

sequence always has a decreasing part.

Other than these differences, this section and the next are basically an expansion

of the paper [9]. The reader who is familiar with results in [9] can skip the rest of

this chapter but keeping in mind the differences mentioned above.

In what follows, Pi denotes the ith row of the tableau P. Very often, we will abuse

notation and use Pi to denote the sequence of numbers in that row.

Definition 1.13 Let P be a shifted tableau with rows such that

1. 7rp = PIP_-l" P2P1 is a reduced word of w

2. Pi is a unimodal subsequence of maximum length in PIP_l'" Pi+1Pi

Then, P is called a standard decomposition tableau of w and we denote the set of

such tableaux by SDT(w).

This is essentially the same as the definition of a tableau word in [9]. An example of

a standard decomposition tableau is

4 2 3

Note that if P is a standard decomposition tableau, we can create new standard

decomposition tableau by removing the first row of P. Another method is by deleting

the first entry of the last row.

Let w E Bn and a = ala 2 ... am E R(w). The insertion algorithm will give a map

ala2 ... am 4 (P, Q)

We will drop the K from the arrow if the insertion is clear from context. P is called

the insertion tableau and Q is called the recording tableau. It will be shown later that

the insertion tableau is always a standard decomposition tableau.

16



We will have to first construct a sequence of pairs of tableaux

(0, 0) = (p(O), Q(O)), ((1), Q(1)),... (p(m) Q(m)) = (p, Q)

sh(P(i)) = sh(Q(i )) for i = 0, 1, -.. , m. Each tableau P(i) is obtained by inserting ai

into p(i-l). We denote this as

p(i-l) v ai = (i)

Insertion Algorithm:

Input: ai and (P(i-1), Q(i-l)). Output: (P(i), Q(i)).

Step 1: Let a = ai and R = 1st row of p(i-).

Step 2: Insert a into R as follows:

* Case 0: R = 0. If the empty row is the kth row, we write a indented k - 1

boxes away from the left margin. This new tableau is p(i). To get Q(i), we add

i to Q(i-1) so that p(i) and Q(i) have the same shape. Stop.

* Case 1: Ra is unimodal. Append a to R and let p(i) be this new tableau. To

get Q(i), we add i to Q(i-l) so that p(i) and Q(i) have the same shape. Stop.

* Case 2: Ra is not unimodal. Some numbers in the increasing part of R is greater

than a. Let b be the smallest number in Rt bigger than or equal to a.

- Case 2.0: a = 0 and R contains 101 as a subsequence. We leave R un-

changed and go to Step 2 with a = 0 and R equal to the next row.

- Case 2.1.1: b a. We put a in b's position and let c = b.

- Case 2.1.2: b = a. We leave the increasing part, R t unchanged and let

c=a+1.

We insert c into the decreasing part, R, . Let d be the biggest number in R 4

which is smaller than or equal to c. This number always exists because the

minimum of a unimodal sequence is in its decreasing part.

17



- Case 2.1.3: d c. We put c in d's place and let a' = d.

- Case 2.1.4: d = c. We leave RS unchanged and let a' = c - 1.

Step 3: Repeat Step 2 with a = a' and R equal to the next row.

LO

For convenience, we will use the notation,

R - a = a' V R'

to mean that inserting a into row R turns R into R' and gives a' as the number to

be inserted into the next row. Right now, it is not clear to us that P is a standard

decomposition tableau and Q is a shifted standard Young tableau. But, let us try an

example.

Example: Let a = 3121034310 E R(24531).

p(2) = 

P(3) = 1 1 1 2 

In the above, we had only to use the Case 0

the next step, we will have to use the other

the unimodal sequence into decreasing and

Q(1) = W
Q(2) = 1

Q(
3

) = 1 2 1 3

and Case 1 of the insertion algorithm. In

cases. We use the symbol "I" to separate

increasing parts when necessary.

18



P(3) I= 31 2 1

2

31 1

= 3 1 1 1, = p( 4 )

an(1

Q(4) 12

p( 5) =- Q() -
1 4

p( 6) -(6) -
1 4

p(7) =

Q(7) =

312 11 0 13 14

1 2

4

315A6I7
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11 031 4

1

-

1

3

01314

01314

1 5 6 7

20

3

3

4

4

2

1

2

1

2

1

2

1
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= p(8)

Q(8 )

f . _ � I · · ·

I

3
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I
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!
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2

= 4

4

4

1

2

1

3

1

3

1

3

1

3

1

3

1

2

0

o 1 1 4 1

1 1 4 1

= p(9)

and

Q(9)

21

3--

1 4

7-

·

l~~~ .

!

I .

t2- 

I -- l _ ·

·l

14
P(8) 1 I 

3
+-

1 O



P(9) O =

4 3101 4
320

1

IPl2
4

3

8

9

5 61 7

10

1.4 B-Coxeter-Knuth Relations

In the Edelman-Greene insertion, there is a Coxeter-Knuth relation that relates any

reduced word of S, with the reading word of the insertion tableau, P. In the

Kragkiewicz insertion, there is an analogue of this relation on the reduced words

of R(w) which we call the B-Coxeter-Knuth relations. They play an important role

in the insertions. These relations are also given in [9]. We have translated them into

our notation. The reverse of a word, a = ala 2 ... am is defined to be

ar = amam-l ... a2al

In what follows, a < b < c < d.

22
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Definition 1.14 (Elementary B-Coxeter-Knuth Relations)

0101

a b b+ b

b a b+l b

aa+1 ba
a+1 a b a+l

abdc

acdb

adcb

badc

1010

ablbb b + 1

bb+l ab
rv aa+lab

a+ lbaa+1
adbc

acbd

dacb

bdac

We mean to say that if a - b is

B-Coxeter-Knuth relation.

in the list above, then ar - br is also an elementary

Definition 1.15 Let a, b E R(w) for some w E Bn. If a = cxd and b = cyd

where both x and y have length 4 and (x, y) appeared in the list above, we say a is

elementary B-Coxeter-Knuth related to b.

Let e, f E R(w). If there exists a sequence of reduced words e = al, a2,... , ak

f E R(w) such that each pair (ai, ai+i) is elementary B-Coxeter-Knuth related, we

say e and f are B-Coxeter-Knuth related. We denote this as e f.

These relations are refinements of the Coxeter relations for Bn. That is to say, if

a - b, then they are also related by the Coxeter relations for Bn. So, if a is reduced,

then so is b. This set of relations also appeared in [6, Table 3]. There, they were

obtained by considering promotion sequences.

Lemma 1.16 ([9, Lemma 4.7]) Let R be a unimodal reduced word of Bn and a,

0 < a < n such that Ra is also reduced. If

R a = a' R'

23

a+1<b
a+l<b

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

and the reverse of these.



then

Ra a'R'.

Proof: We will imitate all the different cases of insertion by the B-Coxeter-Knuth

relations. We have indicated the elementary relation used in each step where possible.

This is tedious and the reader may skip it.

Case 1: Ra is unimodal. a' = 0 and a'R' = R' = Ra.

Case 2: Ra is not unimodal. Let

R = rl>r2 > . > rk < rk+l < '''< rm

Let rb be the smallest number in R T bigger than or equal to a. We will imitate all

the insertion with B-Coxeter-Knuth relations. In the following, we have underlined

the number that is moved. Suppose a < rm-2 < rm-1l < rm. Then we use (8 r) to get

Ra = T1 r 2 ... rm_3rm_2rmlrma

r T1 · rTm-3Tm-2Tmllarm

We keep applying (8r) until we reach the index b where rb is the smallest number

bigger or equal to a.

Ra 71·... b ... rm_3rm_2armlrm

rl'1 ... rbrb+lrb+2arb+3 rm

'rl *' · ' rbrb+larb+2rb+3 ... rm

Next, we will have to consider the different cases.

Case 2.0: a = 0 and R contains 101 as a subsequence. So, our rk-1 = 1, rk = 0

and rb = 1.

Ra rl ... rk_2101rk+20rk+3 ... rm

rl...rk-2l010rk+2rk+3 ... rm by (4)

r... rk_20101rk+2rk+3 ... rm by (1)

r1 ... Ork_2101rk+2rk+3 ... rm by (4 r)

24



Case 2.1.1: rb a

Ra rl ' rb-2rb-1rbrb+ larb+2 . rm

' r1 ... rb-2rb-lrbarb+l .. ' rm

rl ... rb-2rbrb-larb+l' '... rm

r ... rkrk+lrbrk+2 ... rb-larb+l· ·... rm

by (7)

by (6)

by (6)

Case 2.1.2: rb = a. Since the word is still reduced, rb+l must be a + 1.

Ra - rl · · rb-2rb-la a + 1 arb+2 · · rm

rl . rb-2rb-la + a a + rb+2 ·· rm

rl · · ·... rrk+la + lrk+2... a a + lrb+l ... rm

by (2)

by (6)

Next we have to move the number towards the left through the minimum.

number of cases is many but manageable. It can be verified indeed

Ra a'R'

We omit the details.

Theorem 1.17 ([9, Lemma 4.7]) Let a = ala2 .. am E R(w) , w E Bn and

a (P, Q)

Then, a l 7p

Proof: Let P(i), 1 < i < m be the insertion tableau that is constructed using

ala 2 ... ai. We claim that rp(il)ai - 7rp(i). Let Rj be the jth row of p(i-1) and
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do = ai. Then the insertion gives

By Lemma 1.17, we have

R1 U do = d RI

R 2 d = d2 t R

R 4- dl_- = d o RI

7rp(i-1)a = R ... R2Rdo.R1 .. R 2 dlRM

- dlRI *R2R 1

= rp(i)

Therefore, we have

ala 2 * · am N 7rp(l)a2a3 ... am

7Irp(2) a3 ... am

,. 7Wp(m-1)am

r. 7rp(m)

= 7rp

The next two results are not mentioned in [9].

Theorem 1.18 Let a, b R(w). a - b iff they have the same insertion tableau.

Proof: (=) Let a and b have the same insertion tableau, P. From Theorem 1.17,

a - 7rp b.

(=)The proof for this direction is long and tedious case by case analysis. We leave

it till Appendix B. [
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Corollary 1.19 Let P be a standard decomposition tableau. Then

7rp 4 (P, Q)

Proof: This follows from the previous theorem. El

In Edelman-Greene insertion, if a E Sn is mapped into (P, Q), the length of the

longest increasing subsequence in a is equal to the the length of the 1st row of P.

There is an analogous result in the Kraskiewicz insertion. A unimodal subsequence

of a = ala 2 ... am is a subsequence of the form,

ail > ai > '' > aik < aik+ < * < ail

where i < i2 < < i.

Lemma 1.20 ([9, Lemma 4.8]) Let a, b E R(w) and a b. If c is a unimodal

subsequence of length k in a, then there is a unimodal subsequence d of length k in

b.

Proof: It suffices to show this when a is related to b by an elementary relation.

Clearly, if the elementary relation does not affect the order of the elements in c, then

we can take d = c as a subsequence of b of length k . We list below the cases where

the order of some of the elements in c are changed. It is very long and the reader

can skip it. In the left column, we underline the elements of the elementary relation

that are in c. d is obtained by taking all the elements of c that are not affected by

the elementary relation and combining it with the numbers that are underlined on

the right. The guidelines for choosing the elements on the righthand side is

1. if the subsequence on the lefthand side is decreasing, we try to change the first

element to one which is smaller

2. if it is increasing, we replace the last element by a smaller one.
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(2) ab+l bb+l abb+l b
(3) bab+lb bb+l ab

bab+lb bb+lab

bb+lab bab+lb
bb+lab ba b+lb

(4) aa+lb a aa+lab

aa+lab aa+lba
(5) a+laba+l a+lba a + 1

a+ a ba+l a+lbaa+l
a+lbaa+l a+laba+l1
a+lbaa+l a+laba+l

(6) a bdc a dbc

abdc adbc

adbc abdc

adbc abdc

(7) a c d b acbd

acbd acdb

acbd acdb

acbd acdb

(8) adcb dacb
dacb adcb
dacb adcb
dacb adcb

(9) b a dc b d a c

badc bdac
bdac badec

bdac bade

Lemma 1.21 ([9, Section 4]) Let P SDT(w) and a such that pa is a reduced
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word of length greater than l(w). Let v = wsa. If

P a = P'

then P' E SDT(v).

Proof: We will prove this by induction on the number of rows of P. Note that the

induction step is only used in the second case. By Theorem 1.17, rp, E R(v). Let Pi

and Pi' be the rows of P and P' respectively.

Case: P1 F- a = Pla.

This gives

Pi = Pxa

Pi' = Pi for i > 1

Then, Pla is a unimodal sequence of longest length in 7rp, and each subsequent row,

Pi' is a unimodal subsequence of longest length in P... P'. Therefore, P' E SDT(v).

Case: P1 a = a' P.

Let R, R' be the tableaux obtained from deleting the 1st row of P and P' respec-

tively. Clearly, R is a standard decomposition tableau and

R I- a' = R'

Since the number of rows in R is 1 less than that of P, we can apply the induction

hypothesis on R. So R' is a standard decomposition tableau. Now, if we can show

that P, is a unimodal sequence of greatest length in 7rp,, then P' is a standard decom-

position tableau. By Lemma 1.20, the length of the longest unimodal subsequence in

7r, is the same as the length of the longest unimodal subsequence in rpa. It suffices

to show that any unimodal subsequence c = clc2 .. ck of rpa has length less than

jP1 1. If Ck a, then c is in lrp and cl < P11. If Ck = a, note that the last number

d in P1 is greater than a. Let d be the last element in P1 . Then, clc2 ... ck_ld is a

unimodal subsequence in 7rp. Hence, cl < P1 J. O

29



Theorem 1.22 ([9, Section 4]) Let a E R(w). If

a (P, Q)

then P C SDT(w) and Q is a standard shifted Young tableau.

Proof: The insertion algorithm gives

(0, 0) = (p(O), Q(o)), (p(), Q(1)),.., (p(m) Q(m)) = (P, Q)

A tableau of with only 1 box is clearly a standard decomposition tableau, that is

P(1) E SDT(Sa,). By Lemma 1.21,

p(i) E SDT(al Sa2 ... Sai)

Also, we have sh(P(i)) sh(P( i - l)) and sh(P( i)) is a shifted partition. So, Q is a

standard shifted Young tableau. [1

This result is implicit in the definition of the insertion tableau.

Corollary 1.23 Let a - (P, Q) and A1 be the length of the 1st row of P. Then the

length of the longest unimodal subsequence in a is A1.

Proof: This follows easily from Lemma 1.20 and that P is a standard decomposition

tableau. El

This property of Al1 has analogues in the Edelman-Greene insertion and the Robinson-

Schensted insertion(see [3] and [13]). As for A2, the length of the second row of the

insertion tableau, one might think that A1 + A2 is the maximum of the sum of lengths

of two disjoint unimodal sequence in the reduced word a. However, this is not the

case.

Example: The reduced word 650871032343 of the signed permutation 247315968

gets inserted into

8 7 3 0 2 3 4

6 5 0 1 3
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However, the reduced word cannot be divided into two disjoint unimodal subse-

quences.

Lemma 1.24 ([9, Equation 3.2]) Let R be a unimodal reduced word and a be such

that Ra is reduced but not unimodal. If

R t a = a' R'

then

R"r a' = ao R r

Proof: We examine the different cases that could possibly arise. Again, let b be the

smallest number in R t which is bigger than or equal to a, c be the number that is

to be inserted into R. and d be the biggest number in R4$ which is smaller than or

equal to c. Let R. end in e and Rt begin with f. In notation,

C

R a= d d...e f...b... a
R4 Rt

Case: a = 0 and R contain the subsequence 101.

... 1 010=0 _t .. 0 I ...
R R'=R

=X .1 0 O=0. 1 O 1 ...

Rr R r

Case: a = b, c = d. The presence of a + 1 a in R. and a a + 1 in Rt are forced

by the word being reduced. Also, e < a.

a+ o a . . a a+ 
....aa+l...-a=a -.. aa+la+a...e...aa+l...

R; Rt R' =R

Clearly,

Rta=atR
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Case: a = b, c d. There are 2 subcases to consider.

Subcase: d = e.

a+l
-- i

. d f ...aa+1 ...-a= d-t...a+ f...aa+1...
RS Rt R

a+l
== .a+la ..f a l... --

R' r~ R'r t

Subcase: d - e.

a+ 
.. d ... e f .aa+l ... - a 

R; Rt
a±l

= .a+laa...f e 
R r 4.

d=a ...a+la ...f d...
R

dt... a+ 1... e f... aa+ 1...
- - - -

.. a + ... d= a 2 t
R 'r T

Case: a b, c = d. Since Ra is reduced, R4 must contain b b - 1. We have to

look into three subcases depending on the value of a.

Subcase: a = b - 1. Then e < b -1 in order for Ra be reduced.

b 4t~~-~~out
b b - ..e b ... a = b- t ... b b -l... e ... a...

Re Rt R'
b

> a .. e

Rr.
I ...- b-1 b . b- 1 = a - .. b e...e b- b...

R'r Rr

Subcase: e < a < b - 1. Same as above.

Subcase: a < e < b- 1. Then, Rt must start with b.
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;... a
R'-r

R; Rt
b

I e...b-1 b..

Rlr t

- a = b- 1 -.. b b-1 . e a...
R'

- b- 1 = a t ... b e b- 1 bb.
R'

Case: a b, c d.

Subcase: e < a, d.

* . d... e
R,

:= ... a... e

R' r $

b

I '"b" .
Rt

b

R'rt

Subcase: e = d < a.

b

I f R ... b.
Rt

.. a ... f 
Rl 1

a = d ... b f ... a ...
R'

d = a -.. b... f d...
Rr

bR' 

Rl/r T

Subcase: a < e < d. This forces f = b.

.. d d..e
R4

... a
Rr; 

b

Rt
outa=d ..b...eea ...

R'

d = a ... b be e...d ...
R r

e ... b ...

Rlr T

Lemma 1.25 Given (P, Q), let Q' be the standard shifted Young tableau obtained by

removing the largest entry from Q. There exists a unique a, 0 < a < n and a unique

P' E SDT(wsa) such that

P' +- a= P
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and sh(P') = sh(Q').

Proof: Let the largest entry be in the row j and b be the number in the corresponding

box in P. Denote row i of P by Pi. We want to reverse the insertion procedure that

has put b into row j. So, we insert b into Pjr getting Pjr and aj-1. We then insert

aj-1 into PJr-2 and so on. Note that aiPi 1_ is reduced. Suppose ai is empty for some

i. That is to say, the reverse procedure ends at row i.

pr e ail = pr

Consider the tableau R formed by rows i, i + 1, j of P. It is a standard decom-

position tableau. So, the length of the longest unimodal subsequence in R is Pi.

But Pi' is a unimodal subsequence of length IPi + 1. This contradicts Lemma 1.20.

Hence, ai always exists and the insertion goes through to the 1st row of P. If we let

a = a and P' to be the tableau with Pi', 1 < i < j as the first j - 1 rows and Pi, i > j

as the succeeding rows, then P' E SDT(wsa).

To show uniqueness, we observe from Lemma 1.24, that each ai is uniquely deter-

mined. Hence, the lemma holds. o

Theorem 1.26 ([9, Theorem 5.2]) The Kraskiewicz insertion is a bijection be-

tween R(w) and pairs of tableaux (P, Q) where P E SDT(w) and Q is a standard

shifted Young tableau.

Proof: By Theorem 1.22, we know that P E SDT(w) and Q is a standard shifted

Young tableau. For the inverse map, given (P, Q), we will apply Lemma 1.25 repeat-

edly. Let ai be the unique number obtained when the entry removed is i and p(i) be
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the unique tableau obtained there.

a = ala2 am

7rp() a2a3 * am

7 p(2)a3 . am

7rp

= a E R(w)

Then, it's easy to see that the P(i)'s are exactly the tableaux that were obtained

when we apply the Kragkiewicz insertion on a. Hence, the insertion is a bijection as

required. °

A first application of the Kraskiewicz insertion gives us:

Corollary 1.27 ([9, Section 6]) Let w E B,.

IR(w) = E gsh(P)
PESDT(w)

where g is the number of standard shifted Young tableau of shape A.

In the next chapter, we will use this insertion to arrive at some properties of Bn

stable Schubert polynomials.
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Chapter 2

Bn Stable Schubert Polynomials

In this chapter, we will introduce Bn stable Schubert polynomials. The definitions

are similar to those in [4] and [5]. Much work has been done on the stable Schubert

polynomials for the symmetric group S, and we will try to derive the various anal-

ogous results. In the Section 2.1, we will define the B, stable Schubert polynomials

using the nilCoxeter algebra for Bn. In Section 2.2, we will express the Bn stable

Schubert polynomials in terms of Schur P-functions using the Kra§kiewicz insertion.

2.1 The NilCoxeter Algebra

The introduction of nilCoxeter algebra gave a new point of view in the study of

Schubert polynomials. In [5], Fomin and Stanley used it to provide some simple

proofs for alternate description of Schubert polynomials. It is also a starting point to

generalize the Schubert polynomials into the other classical groups. See [4]. This use

of the nilCoxeter algebra has also been independently studied by Stembridge[15].

Following the presentation in [4], we will define the nilCoxeter algebra for Bn.

From there, we will give a generating function for the B, stable Schubert polynomials.

Definition 2.1 Let 1Bn be the nilCoxeter algebra for B,. It is a non-commutative
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algebra generated by uo, ul, ... , Un-_ with the relations:

U2 = 0

UiU j = UjUi

UiUi+lUi = Ui+luiUi+l

UoUlUoUl = U1UOU1UO

i>0
i - il > 1

i>0

The nilCoxeter algebra has a vector space basis of elements of Bn. This is clear since

the last three relations listed above are exactly the Coxeter relations for Bn.

Next consider the polynomial ring Bn3[x]. We state the next result without proof.

Lemma 2.2 ([4, Proposition 4.2]) Let

B(x) = (1 + xu,_-)(1 + xun 2) ... (1 + xu1)(1 + xuo)

(1 + xul) .. . (1 + xun- 2 )(1 + xun-l)

Then,

B(x)B(y) = B(y)B(x)

Definition 2.3 Let t3n[x] denote the polynomial ring with indeterminates x,, 27 - -....

Consider the expansion of the formal power series

B(x)B(x 2 )...= E Gw(x)w
wEBn

The G(x) are called the Bn stable Schubert polynomials.

From Lemma 2.2, it is clear that they

replace x1 by -x 2 , we get

E Gw(-X2, X2, X3, x 4, . )W
wEBn

are symmetric functions. Moreover, if we

= B(-x 2)B(x2)B(x3)B(x4) ...

= B(x3)B(x4)...

E= Gw(X3 , X4, )W
wEBn
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Therefore,

Gw(-,2-X2, X2, X 3, X4 , G(X 3 , X4 , )

Using Theorem 1.10, this gives the next result.

Theorem 2.4 Gw(x) A

We would like to express the G,,'s in terms of the basis {P,} where A is allowed to

range over all shifted shapes. Before we go into that we give an alternate description

following the presentation and notations in [2].

Definition 2.5 Let a = ala2 ... am E R(w). We say that a sequence of positive

integers i = (il, i2 ... , im) is an a-compatible sequence if

1. il < 2 < . < im

2. ij = ij+l = · · · = ik occurs only when aj, aj+l, ' , ak is a unimodal sequence

Denote the set of a-compatible sequence as K(a).

As in Chapter 1, we use (w) to denote the length of w.

Definition 2.6 Let lo(w) denote the number of bars in the 1-line notation of w. Let

l(i) be the number of distinct integers in i.

Note that the number of O's in any reduced word of w is equal to lo(w).

Theorem 2.7 ([4, Equation 6.3], [1, Proposition 3.4])

Gw(z) = : E 21(')-O(w)xiXi2 ... Xim
aeR(w) iK(a)

Proof: First, we look at all the monomials corresponding to a reduced word a =

ala 2 ... am in the expansion of

B(xl)B(x 2 )B(x 3 ) .. .

(1 + XlUn1) ... (1 l(1 + XuI)(1 XlUo)(1 + XlUl) ... (1 + XlUnl)

(1 + X2Un_1 ) ... (1 + X2 U1)(1 + X2 UO)(1 + X2U1 ) ... (1 + X2Un- 1 )

(1 + x3 un-1 ) ... (1 + x3ul)(1 + X3uo)(1 + X3u1) ... (1 + X3Un-1)
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A typical monomial corresponding to Ual Ua2 ''' Uam is obtained as the product

Xil Ual Xi2 Ua2 .Xi im Uam

Clearly, i = (il, i2,i... m) is a weakly increasing sequence. Also, ij = ij+l = = ik

means that ajaj+l ... ak has to be a unimodal sequence. So, i is an a-compatible

sequence. Conversely, any a-compatible sequence gives rise to such a monomial. We

note that for each constant subsequence ij = ij+l = = ik of i with ij-1 < ij

and ik < ik+1, there are at most 2 ways of getting this constant subsequence. If

the corresponding unimodal subsequence ajaj+l ... ak contains 0, then there's only 1

way. If ajaj+l ... ak does not contain 0, then there are 2 ways corresponding to the 2

possible choices of Ua1 where al is the smallest element in ajaj+l 'ak. Hence, we get

Gw(x) = E E 21()- l°()xi1i2 ... xim
aeR(w) ieK(a)

In the next section, we will slowly work towards showing that the Gw's are non-

negative integer combinations of Schur P-functions, PA.

2.2 More Kra kiewicz Insertion

We will begin this section with a study of the behaviour of the Kraskiewicz insertion

with respect to inserting 2 consecutive terms.

Lemma 2.8 Let P SDT(w) and let a, a' with a < a' be 2 numbers such that rpaa'

is a reduced word. Suppose the insertion of a into P ends in box (i, j) and that of a'

ends in box (i', j'). Then i > i' and j < j'.

Proof: Let's consider the insertion of a, a' into a unimodal word R where Raa' is a

reduced word.
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Case 1: Ra is unimodal. Then, Raa' is also unimodal and

R 4 aa' = Raa'

Case 2: Ra is not unimodal but R'a' is. Then,

R 4- aa' = e -tV R'a'

In the next 2 cases, both Ra, R'a' is are not unimodal.

Case 3: R contains the subsequence 101 and a = 0. R'a' is not unimodal. Then,

R -Oa' = 0O R a'

Oe' t R'

Since, Oe'R' is reduced, we must have e' > 0. We note that a' - 0.

Case 4: We do not have both R containing 101 and a = 0 at the same time. Let b

be the smallest number in R bigger than a and S be the subsequence of Rt consisting

of all the numbers after b.

R 4 aa' = R I...bS aa'
Rt

= R ... a S -a'

e .. .c . ..a S a'

Clearly, S is also a subsequence of R't since the insertion of a did not change this part

of R. We remark that after insertion, it is possible for a to end up in R',. However,

this is not going to affect our result. If b' is the smallest number in R' bigger than

or equal to a', then it must be in S. Hence, c' > c. Next, we want to compare e

and e', the numbers that are bumped out after inserting c and c' into R t and R' t
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respectively.

CI

e ct .g S- a/ e...a' = .. a

R' Rt
= e' t ... ...a' ...

Let d' be the biggest number in R' 4 which is smaller or equal to c'. If d' :A c', we

would have e' = d' > e. If d' = c', we would then have e' = c ' - 1 > c > e. So, in

both cases, we have e < e'.

In conclusion, as we look at the insertion of a and a' into P, each time the pair of

numbers bumped out from each row still have the same relative order until we either

reach Case 1 or Case 2. In Case 1, the insertion of a and a' end in the same row.

So, we have (i', j') = (i, j + 1). In Case 2, the insertion of a' ends first. This gives

i > i,j < j'. [

Now, suppose in the previous lemma, we have a > a' instead and let us examine

the possible outcomes of inserting aa' into R.

Case 1: Raa' is unimodal. This is only possible when Raa' is a decreasing sequence

and we get

R r- aa' = Raa'

Case 2: Ra is unimodal but Raa' is not. This can only occur if Ra is unimodal

but not decreasing.

R 4-aa' = Ra a'

= e' g R"

Case 3: Ra is not unimodal but R'a' is. This case is possible only if R' is a

decreasing sequence ending in a.

R aa' = e< R'P- a'

= e ot R'a'
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Case 4: Ra is not unimodal, a' = 0 and R' contains 101.

R 4_aa' = e R a'

=eO R"

Since eOR" is reduced, e > 0.

In the following cases, we will assume that we do not have both R' contains 101

and a' = 0 at the same time. Also, both Ra and R'a' are not unimodal.

Case 5: a lands in R' t after insertion. Using the same notations as before(see

Case 4 of Lemma 2.8).

R aa' = eV . .. ..t a'
R'. R't

= ee' ... Cl ... IR"T
R" 

We have b' < a < c. If a' = b', then c' =a' + 1 < a < c. If a' b', we then have

c' = b' < a < c. So, we always end up with c > c'. Using the same arguments, it can

be shown that e > e'.

Case 6: a lands in R'4 after insertion. This means that a is the smallest number

in R' and e, the number bumped out by a, is the smallest number in R.

R aa' eV .. aIb'. ga'
R' R't

CI

e t .. a a a'..

R'

= ee' Ot- .a' IR"t

R" .

Since all the numbers in R' is bigger than or equal to a, we must have e < a < e'.

We compile the effect of all these different cases in the following lemma.

Lemma 2.9 Let P, a, a', (i, j), (i', j') be as in the previous lemma but with a > a'. If

the insertion at each row is of the cases 2, 4 or 5, we have i < i' and j > j'. If the
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insertion involves Case 1, 2 or 6 at some point, then i > i' and j < j'.

For the next theorem, the definitions of rim hooks, vertical strips and horizontal

strips can be found in Section 1.2.

Theorem 2.10 Let a = ala2 ... am E R(w) and

a (P, Q)

If ajaj+l ... ak, a subsequence of a is unimodal, then in Q, the boxes with the entries

j, j + 1... , k form a rim hook. Moreover, the way the entries appear in the rim hook

is as follows:

1. the entries j, j + 1, I form a vertical strip where 1 is the entry in the leftmost

and lowest box of the rim hook

2. these entries are increasing down the vertical strip

3. the entries + 1,... , k - 1, k form a horizontal strip

4. these entries are increasing from left to right

5. the boxes in the vertical strip is always left of any box in the horizontal strip

which is in the same row

Proof: Let us consider the insertion of a unimodal sequence b = bb 2 ... bm into a

unimodal word R and that Rblb2 ... bm is reduced. Let k be the subscript of the

smallest number in b and for all i, let R(i) be what becomes of R after inserting

bib2 .. bi.

Let us deal with bkbk+1 ... bm first. Let , k < 1 < m be the smallest subscript

such that R(l-1 )bl is unimodal. By Case 1 of Lemma 2.8, we get

R(k - ) 4 bkbk+l ... bm = bbk+1 ... bl 1 - R('-l)blbl+l ... bm

where b < b+ 1 < ... < b_1 follows from Case 3 and Case 4 of Lemma 2.8.
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Now, we deal with bb 2 ... bk. Let j, 1 < j < k be the smallest subscript such that

the insertion of bjbj+l is Case 1, 3 or 6 of Lemma 2.9. We note from Lemma 2.9, that

each bi, j < i < I is smaller than all the numbers in R( i- l). Also, from Lemma 2.9, if

the insertion of bhbh+l for some h, j < h < k is Case 3, then bh+lbh+2 has to be Case

1 since R(h+l) is a decreasing sequence. For the same reason, all subsequent insertion

of pairs of numbers must be Case 1. Hence, the insertion for the pairs of consecutive

terms in bjbj+l ... bk can be divided into these 3 sections with bjbj+l ... bh made up

of Case 6 only, bhbh+l as Case 3 and bh+lbh+2...'' bk) involving Case 1 only.

R (j - l ) bjbj+l ... bk = bb +l... bl t R(h)bh+lbh+2 ... bl

where b < b+l < ... < b'h. Note that it is possible that some of these cases do not

appear in the insertion of bjbj+l ... bk into R.

In the insertion of bb 2 ... bj, we only have Case 2, Case 4 or Case 5 of Lemma

2.9 occuring. For Case 2 of Lemma 2.9, we observe that it can only occur during the

insertion of bb 2. The reason is that if the insertion of bb2 into R is Case 1, 3 or

6, then from above, neither Case 2, Case 4 nor Case 5 of Lemma 2.9 can occur. If

the insertion of bb2 is of Case 4 or Case 5, then the next time that the R(i-l)b i is

unimodal for some i, i > 1 is when bi is smaller than all the numbers in R (i -l) . But

this would lead to Case 1 instead of Case 2.

Hence, in conclusion, for the insertion of b1b2 ... bk, we either have

R - blb2 .. bk = b'b3 .. b t R)bh+lbh+2 ... bk

with b > b > . > b < b+l < < b; or

R 4 2 bjb2 ... bk = 23 . .. bh R(h)bh+lbh+ 2 ... bk

with b > b > > b < b+l <... < b.
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Back to the original problem, let

ala2 .. aj- (P', Q')

and

ala2 ... ak+l - (P", Q")

We then look at the insertion of ajaj+l ... ak into P'. Clearly, the boxes containing

the entries form a skew Young of shape sh(Q")/sh(Q').

From the above analysis, the insertion of ajaj+l ... ak into P' can be divided into

2 sections. Let 1 be such that the insertion of ajaj+1 ... at into P' only involves Cases

2, 4 and 5 of Lemma 2.9. Then, the entries j, j + 1,..., form a vertical strip in Q.

The entries 1+ 1, 1 + 2, , k form a horizontal strip in Q. If some row contains boxes

from both the vertical strip and the horizontal strip, then the box from the vertical

strip appears to the left of all the boxes from the horizontal strip in that row. Because

of this, the boxes containing these entries have to form a rim hook. []

Example: In the example in Chapter 1, the insertion of a = 3121034310 gives the

recording tableau

Q

a contains the unimodal subsequence 21034 and the entries 3,4, 5, 6, 7 appear in a

rim hook in Q.

Now, if when we insert a reduced word a and find a rim hook in the recordiong

tableau Q filled with consecutive numbers, then we would hope to see whether the

corresponding subsequence in a is unimodal. As before, we would have to work out

the details of the insertion.

Lemma 2.11 Let P E SDT(w) and let a, a', a" be three numbers such that the word

7rpaa'a" is reduced. Suppose a < a' and a' > a". Let (i,j), (i',j') and (i",j") be
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the boxes that the respective insertions of a, a' and a" end. Then i > i', j < j' and

iI < i, j' > j".

Proof: As in the proof of Lemma 2.8, we consider the insertion of a, a', a" into a

unimodal word R.

Case 1: Ra is unimodal. Then, Raa' is unimodal but Raa'a" is not.

R - aa'a" = e" t Raa'

Case 2: Ra is not unimodal but R'a' is. Note that R'a' cannot be a decreasing

sequence as R' contains a which is smaller than a'. Then R'a'a" is not unimodal.

This gives

R - aa'a" = ee" Raa'

In the next 2 cases, both Ra and R'a' are not unimodal.

Case 3: a is in R't . This means that when we insert a' into R', a will remain in

R". a may end up in either R" t or R"4. but a' will always be in R" t.

R - aa'a"

R't
= ee' R I..a . a "

R" t
ee'e" ot R m'

The insertion of a'a" will correspond to Case 4 or Case 5 of Lemma 2.9. This gives

e < e' and e' > e".

Case 4: a appears in R'4.

R aa'a" = e ... c ... aR'T - aa"

where c is the number that is bumped into R4 by a. When we next insert a' into R',

we note that a will not be affected since c' > c. Hence, a will be the smallest number
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in R" and a' will end up in R" t.

e -t .. ... a jR' a'a" = ee'- a . a'.. a"
R' R"t R"t

= ee'e" ot R"'

Then, as in the case above, the insertion of a'a" will correspond to Case 4 or Case 5

of Lemma 2.9 and thus, e < e' and e' > e".

From here, it is not difficult to see that the insertion of a will end in a lower than

or same row as that of a' and the insertion of a' will end in a strictly higher row than

that of a". This translates to i > i', j < j' and i' < i", j' > j". o

Theorem 2.12 Let a - (P, Q). Let the boxes with entries i, i + 1, ... , k form a rim

hook in Q. Suppose the entries increase down the vertical strip and then along the

horizontal strip from left to right. Then, the corresponding subsequence aiai+ ... ak

is unimodal.

Proof: Suppose aiai+l ... ak is not unimodal. Then there exists j, i < j < k such that

aj-1 < aj and aj > aj+. From the previous lemma, the entries j - 1, j, j + 1 cannot

satisfy the hypothesis of theoerm. This is a contradiction and hence aia i+l ... ak is

unimodal. []

Now, we are ready to prove the major theorem of this whole investigation.

Theorem 2.13 For all w B,,

Gw(x) = E 2l(R)-lo(w)psh(R)(X)
RESDT(w)

Proof: We will, instead, show that

2i°(w)Gw(x)= Z Qsh(R) (x)
RESDT(w)

since Qx = 21(A)Px. Fix w Bn and let m = l(w). To achieve this, we generalize

the idea of a-compatible sequence to include sequences with barred and unbarred
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numbers. Let f = (fl, f2, fm) be a sequence where f j e {i, 1, 2, 2,. .}. This is

called a generalized sequence. We give the barred and unbarred numbers the linear

order,

We say that f is a-compatible if

1. f < f2 < .* fm

2. fj = fj+l = = fk = I occurs only when aj > aj+l > >... ak

3. f = fj+l = '= f = I occurs only when aj < aj+l < . -. < ak

Let K'(a) be the set of all a-compatible generalized sequences. In what follows, i will

always be a sequence of unbarred numbers and f will denote a generalized sequence.

We define

Ifjl = if fj = or fj = l.

and

If = (Iffl, If21, , fml)

We will associate each generalized sequence f, the monomial xlf1 lxlf2l ... xlfml.

Suppose i is a a-compatible sequence, that is i E K(a). We want to find all the

a-compatible generalized sequence f such that If = i. First, suppose ij = ij+l =

ik = 1 is a constant subsequence in i and ij_l < ij and ik < ik+1. Then

ajaj+l ... ak must be a unimodal sequence with, say ah, as the smallest number in it.

Any a-compatible generalized sequence f such that If = i, has to have

fi = fj+1 = = fh = and fh+l = fh+2 = '''= fk = 

or

fj =fj+l = = fh-1l and fh = fh+l = '''= =f=
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Hence, from Theorem 2.7, we get

2°(W)G () = Z 2 1(i)x Xi xi.
aeR(w) ieK(a)

= Z XIfllxlf2l"Xlfml
aER(w) feK'(a)

Now, we will exhibit a bijection ~4 from {(a, f) a R(w),f E K'(a)} to

{(P, T) : P E SDT(w), T a Q-semistandard Young tableau such that sh(T) = sh(P)}.

Step 1: Apply KraSkiewicz insertion to a. Let

a (P, Q)

This P is the standard decomposition tableau we want.

Step 2: Take a Young diagram of the same shape as Q. We fill each box by Ifj I
when the corresponding box in Q has the entry j. Then, the new tableau is weakly

increasing along the columns and rows because

j< k IfjJI fkI

Step 3: For each subsequence fjfj+l ... fk such that Ifji = Ifj+1l = = Ifki = 

with Ifj-1l < IfjI and IfkI < Ifk+ll, we know that ajaj+l ... ak is unimodal. Let ah be

the smallest number in it. Furthermore, from Theorem 2.10, the entries j, j + 1,.. k

form a rim hook in Q. Let g be the entry of the box in the lowest and leftmost box

in the rim hook. So, j < g < k.

1. if fh is unbarred, we add a bar to all the new entries from fj to fg-1

2. if fh is barred, we add a bar to all the new entries from fj to fg

This will give us a Young tableau with barred and unbarred numbers. This will be our

T. Clearly, sh(T) = sh(Q) = sh(P). We will have to show that T is a Q-semistandard

Young tableau.
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From the analysis in Theorem 2.10, we know that the boxes with entries j, j +

1, · , g in Q form a vertical strip and the boxes with entries g, g + 1, · k form a

horizontal strip in Q. So, if we replace them by fj, fj+l,, fk and add bars to

them according to the rule, we see that the vertical strip is filled with I while the

horizontal strip is filled with 1. The box with the entry g in Q can take either I or

I. As remarked earlier, every box in the vertical strip is to the left of any box in

the horizontal strip which is also in the same row. So, this shows that T is weakly

increasing along columns and rows with respect to the linear order on the barred

and unbarred numbers. Also, the unbarred numbers are strictly increasing along the

columns and the barred numbers are strictly increasing in each row. Therefore, T is

a Q-semistandard Young tableau as desired and we set

(a, f) = (P, T)

We have illustrated this procedure with an example at the end of the proof.

For the inverse map, given (P, T), we will first construct Q.

Step 1: Take a Young diagram of the same shape as T. We fill all the boxes with

distinct numbers 1, 2,.-. m as follows:

1. the entries in the Young diagram preserve the order of the entries in T

2. for all the boxes in T with the same barred number, these form a vertical strip

and we fill the corresponding boxes in an increasing order from top to bottom

3. for all the boxes in T with the same unbarred number, these form a horizontal

strip and we fill the corresponding boxes in an increasing order from left to right

This will be our Q. It is clearly a standard shifted Young tableau with the same

shape as P.

Step 2: a is obtained from (P, Q) by the inverse Kragkiewicz insertion. This is

the reduced word that we want.

Step 3: To get f, remove all the bars in T and let i = ili2... im be the content of

this new tableau laid out in weakly increasing order. Fix a number 1, we know that
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in T, all the boxes with the entry 1 or I form a rim hook in T. The corresponding

boxes in Q are filled with consecutive numbers, j, j + 1, , k. Also, they satisfy the

hypothesis in Theorem 2.12. Hence, ajaj+l ... ak is a unimodal sequence with smallest

number, say ah. Now, let (I, J) be the coordinates of the lowest and leftmost boxes

in the rim hook which has entry 1 or 1.

1. If (I, J) has the entry 1, then we add bars to ij, i+ l ,'" ih.

2. If (I, J) has the entry 1, we add bars to ij, ij+l,..., ihl.

This generalized sequence will be our f.

By construction, it is a-compatible. So, - (P, T) = (a, f) and indeed this is the

inverse.

Hence, if we look at the associated monomials for generalized sequence and the

Q-semistandard Young tableau, we see that they have to be equal. This gives

21o(w)Gw(x) = E E XljxlflXf2.. Xlfm
aeR(w) feK'(a)

Z E x T
PESDT(w) sh(T)=sh(P)

= Qsh(P) (x)
PESDT(w)

Therefore,

Gw(X) = 21(R)-lo(w)Psh(R) (z)
RESDT(w)

Note that (R) > lo(w) since every row of R can have at most one 0. This gives

the following corollary.

Corollary 2.14 For all w E B, Gw(x) is a nonnegative integer linear combination

of Schur P-functions.

Example: Let w = 3412. Let (a, f) = (10231023,12233336). f is a-compatible.

We will now construct (P,T) = 4)(a, f) as described in the proof. Applying the

Kraskiewicz on a, we get
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(P, Q) =

We replace each entries i in Q by Ifil and adding bars following the procedures as

described, we get

T= 3

The reader can verify that the -l(p, T) gives back (a, f). With some more work,

it can be shown that SDT(3412) contains only

I 1
2

0

0

1

310233 1 1 0 2 1 3 1

Therefore,

G, (x) = 2( 5,2,l)(X) + P(5 ,3) (X)

In [1, Section 3], an alternate definition of the B stable Schubert polynomial is given.

It is denoted as F,(X). It turns out that their F(X) = 210(w)G,(X).

Next, we would like to give a simple description of GwB where WBn = 12... n in

1-line notation. It is the element of longest length in Bn.

Theorem 2.15 ([9, Corollary 5.3]) Let wBn be the longest element in Bn. Then

SDT(wBn) contains only one standard decomposition tableau of shape (2n - 1, 2n -

3,. -, 3, 1). Hence,

GtWBn = P(2n-1,2n-3,3,1)

Proof: We will prove by induction on n that SDT(wBn) contains only
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-ln-2 ''''''' In -2In -1
rn-2 * -s e s ne 

1 0 1

L
Case: n = 1. This is trivial since WB1 = 1.

Case: n > 1. It is not difficult to show that in any reduced word of WB, there

exists a unimodal subsequence of length 2n - 1. Using the method described in the

example in Section 1 of Chapter 1, we just pick out the simple reflections that affect

the number n when converting the identity permutation to WB. So, the first row of

P has to have length 2n - 1. This means that it can only be

P1= n-l n-2 1 0 1 n-1

If P' is the tableau with the first row removed, 7rp, has to be a reduced word of WB,._l.

By induction, we get

.....*.. in-3n2
*-**- 0 -1r -

r =

1 l01

0

Hence, P is as desired and the formula for G,,B follows easily. []

We would like to note that given any w E Bn, a reduced word a of w can al-

ways be extended into a reduced word of WB. This would mean that any standard

decomposition tableau, P of w with shape A must have A C (2n - 1, 2n - 3, , 3, 1).
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The above theorem can be generalized.

Theorem 2.16 Let w E Bn with w, = fn and v E Bn with vi = Wi, 1 < i < n and

v, = n. Then there is a bijection between SDT(v) and SDT(w). Moreover,

Gw,(x) = 21 (R)-0(v) P(2n-l,sh(R))(x)
RESDT(v)

where (2n - 1, A) = (2n - 1, A1, A2,* )

Proof: As above, we note that given any reduced word in R(w), there exists a uni-

modal subsequence of length 2n - 1. So, for all P E SDT(w), the first row has to

have length 2n- 1 and this gives P1 = n- 1 n- 2 -. I 0 1 .. n- 1. Let T(P) be

the tableau P with its first row deleted. Clearly, 'I(P) is a standard decomposition

tableau of WSn1_Sn_2 ... Slol ... Sn_l = v. Therefore, (P) E SDT(v).

For the inverse, take R E SDT(v) and add n -1 n - 2 ... 101 n-1 on top

of R. Denote this new tableau by P(R). Clearly,

7ry(R) = 7rR2 n -1 2 n- 2 ... 101 ... 2n -1

E R(vSn-lsn-2... SSS1 Sn-1) = R(w)

Furthermore, since any unimodal subsequence of any reduced word in Bn cannot

exceed 2n - 1, the first row is clearly a unimodal sequence of maximal length in

7r,(R). So (P(R) E SDT(w). It is obvious that , = I- 1. Also, we note that

1(4(R)) = I(R) + 1

1o(w) = lo(v) + 

The formula follows easily from here. []

Making use of the bijection, we were able to prove a conjecture of Stembridge([15]).

Corollary 2.17 Let w E Bn be such that

i for i = il, 2,' ik
i otherwise
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where il < i2 < ... < ik Then,

Gw- = P(2ik-1,...,2i2-1,2il-1)

Proof: Since wi = i for all i > ik, we can treat w as an element in Bik. We then

apply the previous theorem to get a bijection between SDT(w) and SDT(v). Next,

we observe that v has the description

v = for i = il, i2, ik-1
vi =

i otherwise

So, we can repeat the procedure and finally get down to a bijection between SDT(w)

and SDT(1) where 1 is the identity element. This shows that SDT(w) contains only

1 tableau with k rows and each row is of the form

ijij -1 ... 1 1 0 1 * ij - ij

Hence,

G () = P(2ikl,...2i2-1,2i1-l) (x)

l
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Chapter 3

Further Properties of the

Kraskiewicz Insertion

In the previous section, we have used the Kraskiewicz insertion to express the B,

stable Schubert polynomials, GW in terms of P). We would like to make use of

further properties of the Kraskiewicz insertion to provide more information on Gw.

A number of these results were conjectured by Stembridge. Some were obtained

independently by Stembridge, Billey and Haiman, Fomin and Kirillov. See [1], [4].

Section 3.1 covers some properties of the insertion tableau. In Section 3.2, we look

at the Kraskiewicz insertion applied on permutations of S,. Section 3.3 associates

the Edelman-Greene insertion with the Kragkiewicz insertion in a surprising manner.

Section 3.4 looks into properties of the recording tableau. Relations with the short

promotion sequence of [6] are established in Section 3.5. Finally, in Section 3.6, we

relate the Kraskiewicz insertion with another insertion algorithm called the shifted

mixed insertion. The shifted mixed insertion first appeared in [7].

3.1 Decreasing Parts

Let a -+ (P, Q) and let sh(P) = (A1, A2, ' , A1). From Chapter 1, we have seen that

Al is the length of the longest unimodal subsequence. In general, it is difficult to give

similar properties for Ai, i 1. However, we are able to say something about the
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decreasing parts of each row of P.

Theorem 3.1 Let P be a standard decomposition tableau and let P4 be the tableau

that is obtained when we delete the increasing parts of each row of P. Then, P 4

is a shifted tableau which is strictly decreasing in each row and in each top-left to

bottom-right diagonal.

Remarks: If we left justify P 4, it becomes an unshifted tableau of shape Az such

that t1 > 2 > and it is strictly decreasing in rows and columns.

Proof: Obviously, the numbers in each row of P is strictly decreasing. For the other

properties, it suffices to show for 2 consecutive rows in P that the decreasing parts

have the properties mentioned above. So, let

R = ala2 ... a ag1+l..ah

R. Rt
S = blb2 .bklbk+l,.bl

be 2 consecutive rows in P with R on top of St

be 2 consecutive rows in P with R on top of S.

We examine the KraSkiewicz insertion of the reduced word SR. It is clear that

g > k since the length of the decreasing part of the first row can never decrease during

the insertion. We will now show by induction on ISj = I that g > k and aj > bj for

all j < k.

Case: ISE = 1. This means that S = b and k = 1. We note that blala2 is not a

unimodal sequence. Hence, al > b and al > a2. This shows that g > k = 1.

Case: IS > 1. Let j < k. Let P' be the standard decomposition tableau that

is obtained when we apply the Kra~kiewicz insertion on bb 2 ... bkbk+l... blal .. aj.

Then

bl C 2 | ° b

P' is a standard decomposition tableau and by induction hypothesis, cj-1 > bj- 1 > bj.

When we next insert aj+l into P', bj gets bumped into the second row and it has
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to be Case 2.1.3 of the insertion algorithm since cj-1 > bj + 1. This means that the

new entry in the jth box in the first row is strictly bigger than bj. This would imply

aj > bj.

Suppose g = k, when we insert ak+l, bk gets bumped into the second row. Again,

by the same argument as above with j replaced by k, this bumping process involves

Case 2.1.3 of the insertion algorithm. But bk is the smallest element in the first row.

This causes the length of the decreasing part of the first row to increase. Hence,

g > k and the entries in P4 have to be strictly decreasing in top-left to bottom-right

diagonals. O

Remarks: Using the above method, it can be shown that al > aj for all j < I + 1.

This means that the entry in box (i, 1) is strictly bigger than entries in boxes (j, k)

where j > i or when j = i, k < Ai+ + 1.

Theorem 3.2 Let a - (P, Q) and let sh(P ) = (u1, 2, A ,u). Then, the longest

strictly decreasing subsequence in a has length I1l.

Proof: First, we will verify that any longest strictly decreasing subsequence in rp has

length ul. Clearly, the decreasing part of the first row achieves this length. Next, we

will show that this length is preserved by the B-Coxeter-Knuth relations.

For the first part, we look at how a strictly decreasing subsequence d is distributed

across the rows of P. It can only pick up at most 1 element in the increasing part

of each row. By Theorem 3.1, P 4 is strictly decreasing in rows and top-left to

bottom-right diagonals. This means that any decreasing subsequence consisting only

of entries in P4 cannot have length more than [pi.

Suppose d contains an entry in the increasing part of some row. We examine this

situation for two consecutive rows SR as in the proof of Theorem 3.1. So, let bj be

in d where j > k. Let bi be the smallest number with i < k such that bi > bj. We

claim that ai+l > bj. If bi does not exist, we note that al > bj.

Let P' be the insertion tableau of bl ... blal ... aj.
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1 2 |* +1 b ... 1 I

b1 b2 o bi J see

In P', bj is in the decreasing part of the first row and must lie to the right of ci since

ci > bi > bj. So, it has to be in some box (1, f) where i < f < g. After inserting

aj+l... ah into P, we eventually have af in box (1, f). This shows that af > bj. Thus,

ai+l > bj. This shows that if d picks up a number in the increasing part of Pj, it can

then take 1 less number from P4. Hence, dI is less than il.

For the second part, we can verify that the length of the longest strictly decreasing

subsequence is preserved by the B-Coxeter-Knuth relations explicitly. This is just

like the proof of Theorem 1.20 in Chapter 1. However, this is tedious. Another

method is to note that the elementary B-Coxeter-Knuth relations are refinements of

the Coxeter-Knuth relations except for the special relation 0101 1010. In [3], we

know that the Coxeter-Knuth relations preserve the length of the greatest decreasing

subsequence. Our special relation 0101 - 1010 also preserves this length. Hence, the

B-Coxeter-Knuth relations preserve this length too. We are done. O

Using what we have achieved so far, we will give an example of Gw that has an

easy description in terms of the Schur P-functions.

Theorem 3.3

G ...2i (x ) = P(nn-l ...,2,1) (X)

Proof: Let w = ... 21. If P SDT(w), then n rows of P each contains a 0.

Therefore, P 1 > n(n - 1)/2. But, (w) = n(n - 1)/2. This forces P = P4 and

l(P) = n. There is only one such P. Thus, SDT(w) contains only
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-2 -
n-2 @000 L1 J

6000

This gives

Gw(x) = P(nn-l,..,2,1)(x)

Theorem 3.4 Let w = w 2 w3 ... Wn and v = w 2 w3 ... wnn be 2 elements of Bn.

Also, let SDT,(w) = {P E SDT(w): P1I = n}. Then, there exists an injection 

from SDTn(w) into SDT(v). Furthermore, if Va E R(v), the length of the longest

unimodal subsequence in a is strictly less than n, then is a bijection.

Proof: Let a R(w). The longest strictly decreasing subsequence in a has to be

n - 1 n - 2... 1 0. This corresponds to a sequence of simple reflections that affect

the number n. So, if P E SDT,(w), by Theorem 3.2,

P1=n-1 n-2...10

Define )(P) to be the tableau obtained by removing the first row of P. It is obvious

that (P) is a standard decomposition tableau and

4(P) E SDT(wsOSl . Sn-1)

= SDT(v)

Clearly, all P E SDTn(w) are determined by (P). So, b is the desired injection.

Suppose Va E R(v) that the length of the longest unimodal subsequence is strictly

less than n. Let P' E SDT(v). Define I(P') by adding n -1 n - 2...1 0 to P'.
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Since the longest unimodal subsequence in P' has length strictly less than n, the

longest unimodal sequence in ry(p') has to be the top row of 4J(P'). Hence, F(P') is

a standard decomposition tableau and

* (P') SDTn(vSn_ ... 1 So0)

= SDT. (w)

Clearly, (4 and · are inverses of each other and therefore ·4 is a bijection between the

2 sets. 0

The following case is interesting. It appears in [1] and it shows that any Schur

P-function can be written as a B, stable Schubert polynomial.

Corollary 3.5 ([1, Proposition 3.14])

Let w = A12 -- XA1 123 · A · .A-, 1...... A where A = (A1, A2,.A-.,A) is a shifted

shape. Then,

G (x) = P ()

Here, k means omitting k.

Proof: We will prove by induction on 1.

Case: 1 = 1. Then, w = XA123... Al... Clearly, SDT(w) contains only

Aj-1 A1-2 *. I 0

Hence, G,(x) = Px(x).

Case: I > 1. It can be shown that SDTn(w) = SDT(w). Then using the previous

theorem, ID is a bijection between SDT(w) and SDT(v) where

v = 2... X 1 123 ... ,X... X1 . ..... 2 · ·

By the induction hypothesis, SDT(v) contains only
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A2-1 A2-2 a* 

e S T1--- c---n o0

Hence, SDT(w) contains only

- 00

s o ..

0 

0·00 0 I

* 0 1
*0000

and

G,(x) = P\(x)

Using the property of the decreasing parts, we arrive at a generalization of Corol-

lary 1.23 on the length of a unimodal subsequence.

Theorem 3.6 Let a = ala2 ... am E R(w). Suppose

a (P, Q)

If am is in box (1, k) in P then the longest unimodal subsequence ending in am has

length k.

Proof: Assuming that am is in box (1, k) in P, we will use induction on k.

Case: k = 1. This forces a = al and the result is trivial.

Case: k > 1. Let the longest unimodal subsequence of a ending in am have

length g. Suppose ailai ... aig_lam is one such subsequence. Then ailai2 ... aig_l is
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a unimodal subsequence ending in aig_1 of longest length. By induction hypothesis,

when we apply the Kragkiewicz insertion on ala 2 ... aig_, aig_1 is the entry in box

(1, - 1).

If aig_ < am, when we continue the insertion with aig_l+l ... am, the entry in

(1, g - 1) will be replaced by smaller numbers unless (1, g - 1) joins the decreasing

part of the first row. In either case, k > g.

If aig_ > am, this means that aiai 2 '--aig_1 is a decreasing sequence. Let P' be

the insertion tableau of ala2 ... aml-. By Theorem 3.2, this means that P I > g-1.

This in turn would mean that k > g.

Now, let the entry in box (1, k- 1) of P be b. We examine the insertion of

ala 2 ... b. By induction hypothesis, the longest unimodal subsequence of a ending

in b has length k - 1. Pick such a subsequence ajlaj ... ajk 2b. If b < am, we can

append am and get a unimodal subsequence ending in am. This shows that g > k. If

b > am, this means that

jPI > k IPI > k-1

By Theorem 3.2, aa 2... am contains a strictly decreasing subsequence of length

k- 1. Clearly, by appending am to it, we would get a unimodal subsequence of length

k. This implies g > k.

Combining the above two inequalities on g and k, we get g = k as desired. O

3.2 The Symmetric Group

The symmetric group Sn can be considered as a subgroup of Bn generated by si, i > 0.

In 1-line notation, S, is just the subgroup of signed permutations with no signs.

Hence, we can both apply the Edelman-Greene insertion and the Kra§kiewicz inser-

tion on any reduced words of elements in S,. We wish to explore the connections

between these two insertions. Through them, we hope to relate the stable Schubert

polynomials for S and Bn. We will assume that the reader is familiar with the
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Edelman-Greene insertion. A description can be found in [3]. We will also assume all

the results about the Edelman-Greene insertion that are used here. To distinguish the

tableaux obtained by Edelman-Greene insertion and that by Kragkiewicz insertion,

we will denote the insertion tableau of the Edelman-Greene insertion by P and the

recording tableau by Q. So,

a E(P, Q)

represents the Edelman-Greene insertion of a and

a 4 (P,Q)

represents the Kraskiewicz insertion. The set of tableaux P that is obtained from the

Edelman-Greene insertion of all reduced words of w e S, is denoted by SDTs(w).

We will use F (x) to denote the S, stable Schubert polynomial for w c S. This

is denoted as G,(x) in [5]. We will follow the definition in that paper.

Theorem 3.7

F (z) = E sh(p)(x)
PESDTs(w)

For all w E S, since lo(w) = O, we can describe the G, directly in terms of

generalized sequences; that is

Gw(x)= E XfiXmlflI* .. Xlfm 
aER(w) fEK'(a)

Now we need to introduce the superfication operation. The superfication of a

Schur function is defined as follows:

s8A(X/X) = WYSx(X, Y) Iy=

Here, s(x, y) is the Schur function in two set of variables. wy acts on the y variables

only and it is an involution on A defined by

wyek(y) = hk(y)
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The superfication is then extended to any symmetric function by linearity. The

following alternate description of sx(x/x) is very useful.

Theorem 3.8

sA (X/) = EXT
T

where the sum is over all Q-semistandard Young tableau.

The reader can refer to [16, Section 2.7] for more details. Also, it is not difficult to

show using this description that

SAt(x/x) = sx(x/x)

where At is the transpose of A.

We will also need some results about the Edelman-Greene insertion.

Theorem 3.9 ([3, Lemma 6.28]) Let a e R(w) for some w E S,. Let aj, aj+l be

2 consecutive elements in a. We apply the Edelman-Greene insertion on a.

1. If aj > aj+1 , then the insertion of aj+l will end in a strictly lower row than that

of aj

2. If aj < aj+l, the insertion of aj+l will end in a higher row or the same row as

that of aj.

The reader is asked to refer to [3] for a proof. The next result is known to Stembridge.

It also appears in [4, Corollary 8.1] and [1, Proposition 3.17]. We give a direct

combinatorial proof.

Theorem 3.10 Let w e S,, then

G.(x) = F,(x/x)

Proof: We will use the tableau description of the superfication of a Schur function.

We will also need the Edelman-Greene insertion to give a bijection, between the
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{(a,f) : a e R(w), f E K'(a)} and {(P,T) : P e SDTs(w),T is a Q-semistandard

Young tableau, sh(T) = sh(P)}.

Let w E S, and a E R(w). Given (a, f) where f is an a-compatible generalized

sequence, we apply the Edelman-Greene insertion on a to get

aE ( Q)

Construct a Young diagram with the same shape as Q and fill each box with fj when

the corresponding box in Q has entry j. This will be our T and we let 4I(a, f)

(P, T).

We claim that T is Q-semistandard. Clearly, T is weakly increasing in both

columns and rows since

j < k fj < fk

Suppose fj = fj+ l = = fk = 1. Then ajaj+l ... ak is a decreasing sequence. By

Theorem 3.9, their insertion will end in different rows and in Q, the boxes with entries

j, j + 1, , k will form a vertical strip. This shows that T is row strict with respect

to barred numbers. Similarly, let fj = fj+l = ' = fk = 1. Then, ajaj+1 ... ak is an

increasing sequence. By Theorem 3.9, the boxes with the entries j, j + 1, , k form

a horizontal strip in Q. So, T is Q-semistandard.

Now given (, T), we first construct Q by taking a Young diagram with shape

same as T and filling each box with consecutive numbers starting from I in the

following manner:

1. the entries preserve the order of the numbers in T

2. when more than 1 box in T has the same barred number, we fill these boxes

consecutively from top to bottom

3. when more than 1 box in T has the same unbarred number, we fill the boxes

consecutively from left to right

The description is unambiguous as the boxes with the same barred number must

form a vertical strip and those that contain the same unbarred number must form a
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horizontal strip. This new tableau is a standard Young tableau and we denote it as

Q. Now, applying the inverse Edelman-Greene insertion, we have

(PQ) E- a

where a E R(w). Let f be the content of T laid out in weakly increasing order.

Then, define I (P, T) = (a, f).

We have to show that f is a-compatible. Let fj = fj+l = ' - fk = 1. In T,

these entries are in a vertical strip and in Q the corresponding entries j, j + 1,-.. k

are also in a vertical strip with j in the top box and j + 1 in the second box and so

on. So, by Theorem 3.9 the corresponding subsequence ajaj+l · · ak has to be strictly

decreasing.

Similarly, if fj = fj+l = fk = 1. The same argument would show that

ajaj+l... ak is a strictly increasing sequence. Hence, f is indeed a-compatible.

Clearly, and IF are inverses of each other and con(T) = f. So,

G,(X) = E z xlfllxlf2 Xlfml
aeR(w) feK'(a)

PESDTs(w) sh(T)=sh(P)

= F(x/x)

Next, we are going to present an application of results in the S, stable Schubert

polynomials into B, stable Schubert polynomials. In [10], some focus is given to an-

swering the question when S, stable Schubert polynomials F, is also a Schur function.

We state the following result without proof. Given a permutation, w E S, we can

define its inversion table, (w) to be the set {(i,j): i < j, wi > wj}. Next, let r(w)

to be sequence of numbers, (r, r 2, '. , rn-1) where rk is the number of (i, j) I(w)

such that i = k. If we rearrange r(w) into a decreasing sequence, we call it the shape

of w and denote it by (w).
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Theorem 3.11 ([14, Theorem 4.1]) Let w E S,.

F.(z) = s5(x)

for some normal shape A iff w is 2143-avoiding. Furthermore,

f(w) = A

Conversely, given any Schur function, sA, there is a 2143-avoiding permutation w

such that

F,(z) = SA(x)

Please see [11, 1.27] and [14, Theorem 4.1] for a proof of this result. Combining this

result and Theorem 3.10, we get

Fw(x)

= G ,(x)

= SAx(z/x/X)

= A (X)

= (X/ X)

E Qsh(R) (X)
RESDT(w)

This gives us an alternate proof of the result:

Corollary 3.12 ([16, Section 7.3]) sx(X/x) can always be expressed as a nonneg-

ative integer combination of Q,.

3.3 More Edelman-Greene Insertion

In the previous section, we have shown a connection between the Edelman-Greene

insertion and the Kragkiewicz insertion. In this section, we will show another. Let

ws denote the longest element of Sn which is n n - 1 ... 2 1 in 1-line notation. We

need the standard decomposition tableau, U of the signed permutation ... 321. As

have been shown earlier in Theorem 3.3, SDT(h... 321) contains only
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n-lln-21 ... 

n-2* 00 000@

Let

7U 4 (U, V)

It is easy to verify that V is column-wise.

Definition 3.13 Let Q be a shifted Young tableau and S be a shifted Young tableau

that is contained in Q. By this we mean that all the entries in S also appear in the

same boxes in Q. Then, we define Q - S to be the skew shifted Young tableau that is

obtained by deleting all the boxes in Q that are also in S.

Theorem 3.14 Let a = ala2 ... am be a reduced word of w in S, and let

a E (, g)

Suppose the Kragkiewicz insertion of a into (U, V) gives (P, Q). Then,

1. P4 =U

2. The increasing parts of each row of P form an unshifted tableau, denoted by

P'. If we add i - 1 to each box in the ith row of Pt~, we get P.

3. If we and subtract n(n - 1)/2 from every box in Q - V, we get Q.

Proof: First, we note that

7rua E R( ... 21 w)

= R(n-wl+l n-w 2 +1...n- n+l1)
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So, the Kraskiewicz insertion makes sense. We will use induction on m, length of the

word a, to prove the theorem.

Case: m = 1. In the Kragkiewicz insertion, a is appended to the first row of U

and the result is trivial.

Case: m > 1. Let (P', Q') be the shifted tableaux that are obtained from the

Kragkiewicz insertion of ala2 .. aml and let (P', Q') be the unshifted tableaux that

are obtained from the Edelman-Greene insertion of ala 2 ... am-l. By the induction

hypothesis, (P', Q') and (P', Q') are related as described above. Now compare the

Edelman-Greene insertion of am into P' and the KraSkiewicz insertion of am into P'.

Let us denote the entries in P' by bi,j and sh(P') = A. Beginning with the first row,

let us look at the possible cases.

Subcase: am gets appended to P~. In this case, am also gets appended to the first

row of P' under Kragkiewicz insertion.

Subcase: P does not contain any number equal to am. Then, for the Edelman-

Greene insertion, we get

bl , l bl,2 ... bl,j ... bl,X1 l am

bij bllbl,2 ... am .. bl,

where bl,j is the smallest element bigger than am. Now, in the Kraskiewicz insertion,

we find

n - n- 2 ... 1 lOb,lbl,2 ...blj ...bl,x P- am

n - n - 2... 1 0 b1lb1,2 ·' ·am .bl,,xl

blj - 1 t n - 1 n - 2... 1 Olbllbl,2 .. am'. bl,,xl

Subcase: P contains a number same as am. For the Edelman-Greene insertion,

bllbl,2... bl,j ... bl,AXl am

am + 1 t bl,lbl, 2 ... b,j ... bl,A
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where bl,j = am. The KraSkiewicz insertion will give

n- n-21 Obllbl,2 ''blj... b l,xl am
am+ 1

n- - n-2... 1 bllb, 2 ... bl,j ... bl, bl,j b,

= am t n- 1 n-2 1 Olbl,lbl,2 .am' bl, l

So the number to be inserted into P is always 1 less than the number to be

inserted into P2. Pit = P1 and P1 $ is unchanged. By repeating the process, we see

that P4 = U remains unchanged and the two different insertions of am will end up

in the same row such that P and P have the same shape. This means that Q - V

is just Q with all its entries increased by n(n - 1)/2. But as the insertion gets to a

lower row, the difference between the numbers to be inserted into the next row under

the Edelman-Greene insertion and under Kragkiewicz insertion gets bigger. This will

result in that the entries in Pi are i- 1 more than the corresponding entries in (Pfr)i

as stated in the theorem. [O

This theorem allows us to apply results about the Edelman-Greene insertion

into the Kragkiewicz insertion. For starters, we are able to prove a conjecture by

Stembridge([15]). This has also been proved by Billey and Haiman in [1, Equation

(3.15)].

Theorem 3.15 Let w S. Denote Fv as the element of Bn obtained from w by

putting a bar over all wi. There exists a bijection q) from SDTs(wsw) to SDT(w).

Furthermore,

G,(x) E Pa,+sh(P)(X)
PESDTs(wsw)

where 6n = (n, n -1, - , 2, 1).

Proof: We will now describe a map I from SDT(tD) to SDTs(wsw). Let P C SDT(ti).

Then any reduced word of ?v must contain n O's. By Theorem 3.1, P4, has to be the

tableau, U. This means that P E SDT(f) is uniquely determined by the increasing

parts of every row and they form an unshifted tableau Pt. Let (P) be the unshifted

tableau that is obtained by adding i - 1 to each box in the ith row of P . From
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the description, it is not obvious that @(P) E SDTs(wsw). Let Q be the standard

Young tableau such that

1. sh(Q) = sh(P)

2. Q contains V and the other boxes have their entries row-wise

Then, by using the inverse Kragkiewicz insertion,

(P, Q) - 7ua

a is reduced and does not contain any 0.

a E R(n...21 )

= R(n-w1+l n-w 2 +1.n - w+l1)
= R(wsw)

By Theorem 3.14, the Edelman-Greene insertion tableau of a is (P). So, (P) 

SDTs(wsw).

Conversely, let P E SDTs(wsw). We define a map ' : SDTs(wsw) -+ SDT(¢).

We first subtract i- 1 from each box in the ith row of P. Then, we append this to

U to get the shifted tableau ((P). Again from Theorem 3.14, /(P) is the standard

decomposition tableau that is obtained by the Kraskiewicz insertion of 7ruvrp. So,

(P) SDT(v).
Clearly, (I and I are inverses of each other. Furthermore, sh('(P)) = 6 + sh(P)

and 10(w) = I((P)) = n. Hence, we get

G, (x) = E P" +sh(P) )
PESDTs(WBW)

Example: Consider the permutation w = 21453. Then w = 21453 and wsw = 45213.

SDTs(45213) contains only
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1 2 14

2 3

Therefore, SDT(21453) contains only

4I3

3

0 2

1

1

2

2

1

1

1

4]

0.
0

0

The reader can verify that

Gu,-(x) = P(8,6,,2, )(X)

3.4 The Recording Tableau

In this section, we will explore the properties about the recording tableau of the

Kragkiewicz insertion. There is an operation called the evacuation which can be

applied on a standard shifted Young tableau. This operation is studied in detail in [6]

and in [7]. We will show how this relates to the recording tableau of the Kraskiewicz

insertion. The main results are Theorem 3.24 and Corollary 3.28.

For a start, we would like to characterize the recording tableaux of 7rp where P is

a standard decomposition tableau. But first, some definitions and notations.

Definition 3.16 Let Q be a shifted Young tableau. Denote by Qlj the shifted Young

tableau that is obtained from Q by deleting all the boxes that have entries strictly

bigger than j.

Recall from Section 1.2, the definition a rim hook.
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Lemma 3.17 Let P e SDT(w) and

lP 4 (P, Q)

with sh(P) = (A1, A2, .. , A1). Then for all i > 1,

1. sh(QlAi+i+l+-.+Al) = (Ai, Ai+l, ' ' ', A 1)

2. Q+Ai++...+A - QlXi++...+lx is a connected rim hook with the entries increasing

down the vertical part of the rim hook and then across the horizontal part

Proof: Use induction on 1.

Case: 1= 1. Obvious.

Case: 1 > 1. Let P' be the standard decomposition tableau obtained from P by

deleting the first row, P1. Clearly,

7rp = 7rp P1

and

7rp, 4 (P', Q')

where sh(P') = (A2, A3 ,''', Al1) and Q' = Qlx2+x3+...A1. Since, 1(P') = I(P)- 1, by the

induction hypothesis, for i > 1,

sh(Q;Xi+Ai+l+...+,) = sh(Qli+i+l+...+,)

= (Ai, Ai+, * *, Al)

and Q'J l+i++.-.+A - Q'IAXi+L+.--+X = QlAi+++.+l - QiXi+l+-...+x is a connected rim

hook with the entries increasing down the vertical part of the rim hook and then

across the horizontal part. Now, it remains to show that Q - Q' is a rim hook with

the desired property. Note that

sh(Q-Q') = A/(A2, A3, ,Al)

= {(i,j) :1 < i < 1, A i + i j < Ai + i - 1}
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Note that the first box in row i of Q - Q' is (i, Ai+l + i) and the last box in row i + 1

is (i + 1, Ai+, + i). Hence, Q - Q' is a connected rim hook. Now P1 is a unimodal

sequence and by Theorem 2.12, the corresponding entries A1 + A2 +. · · + A-1 + 1, A1 +

\2 + · · + A1-1 + 2, ·., A1 + A2 + * + A1 in Q has to form a rim hook and they increase

down the vertical part and then across the horizontal part of the rim hook. O

Given a E R(w), we know that ar e R(w- 1 ). We would like to see how the

Kragkiewicz insertion of these two words are related with respect to the recording

tableaux. The following lemma provides a nice description for the recording tableau

of (p) r .

Lemma 3.18 Let P E SDT(w), w E B,. Let

7rp 4 (P, Q)

(7p))r 4 (R,S)

Then, S is row-wise. Furthermore, sh(P) = sh(Q) = sh(R) = sh(S).

Proof: We will do this by induction on I = (P).

Case: 1 = 1. This is obvious.

Case: 1 > 1. Let sh(P) = A. Let us denote row j of P by Pj. Abusing notation,

we will also use Pj to denote the reduced word made up of numbers in Pj. So,

rp = P1P_- ' " . P2P1

(7rp)r = Prp:r... ir

Let us apply the Kragkiewicz insertion on (rp)r but let us restrict ourselves to the

changes in the first row. Since Pl is a unimodal sequence of longest length in (p)r,

none of the numbers in P2rP... P[ are appended onto the first row.

0 P1 Pp = p 1 p2.. PTp

= A2 . Al t R1

where Ai is the sequence of numbers that are bumped out when Pr is inserted and
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RI is the first row of R. From Theorem 2.12, each Ai is a unimodal sequence. Let

Al . . A3A2 - (U, V)

We claim that ru = Al ... AA. That is to say that A,... A3A2 is the reduced word

of a standard decomposition tableau. To show this, we claim that for all i > 1, A, is

a unimodal subsequence of maximum length in A ... Ar. Suppose this is not so. Let

Al ... A r - (U', V')

and let ru = Uk. Ul. lull > IAil and Uk.-- Ul - A A. If we compare the

Kraskiewicz insertions, again restricting ourselves to the first row,

04 RrArAr A Rr A A r.... .r

PIand . pi X

and
Uk Uk_ _ U R T T

_1 = 1 Uk Uk_ 1 ..· U

= WkWk-1 . W1 X

where Wll = lUll > Pil. This shows that the resulting insertion tableaux are dif-

ferent. But R1U' U, - R* A ... A. This is a contradiction. Hence, AiAl_ A2

is the reading word of some standard decomposition tableau. So, by the induction

hypothesis,

A 2A3 ... Al - (R', S')

where R' = R - R1 and S' is a row-wise standard Young tableau and sh(S') = sh(V).

Hence, indeed S is row-wise and sh(Q) = sh(S). O

Since the Kraskiewicz insertion is a bijection, From the above two lemmas and using

the fact that the Kraskiewicz insertion is a bijection, we conclude that:

Theorem 3.19 Let a E R(w).

1. a is the reading word of a standard decomposition tableau, P E SDT(w) iff

the recording tableau corresponding to a satisfies the properties described in
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Lemm 3.17.

2. ar is the reading word of a standard decomposition tableau, P E SDT(w-1 ) iff

the recording tableau corresponding to a is row-wise.

Theorem 3.20 Let a C R(w). Suppose

a 
ar K

(P, Q)

(R,S)

Then,

sh(Q) = sh(S)

Proof:

7rp a =: (rp) r ar

Hence, from the previous lemma, sh(P) = sh(R). Therefore, sh(Q) = sh(P) =

sh(R) = sh(S) °

We know that the map given by a -+ ar is a bijection between R(w) and R(w -1 )

for all w in Bn. This induces a bijection between SDT(w) and SDT(w -1 ) which leads

naturally to the next result.

Corollary 3.21 Let w G Bn. Then

G,(x) = G,-l(x)

Proof: Define I : SDT(w) -+ SDT(w-1) by letting *(P) be the insertion tableau of

(Tp)r . This is a bijection since

MTr(p)

= (7'(p) ) r

~r (P)

I 7rp

From Theorem 3.20, sh(I(P)) = sh(P). Hence,

Gw(x) = z 21(P)-l°(w)Psh(R) (x)
ReSDT(w)

77



2 O1((R))-lo(w) Psh((R))(x)
RESDT(w)

G,-l (x)

This corollary can be proved using the bijection of the reduced words themselves

and noting that Gw(x) is symmetric. The reader can refer to [1, Corollary 3.5] for

this alternate method.

The next lemma is long but crucial. It shows how the shape of the recording

tableau changes when we remove a number from the beginning of the insertion.

Lemma 3.22 Let a E R(w) and

ala2 am-lam (P, Q)
ala2 ... aml (P',Q')

a2 *.am-lam (R,S)

a2'-am-1 (R',S')

Then,

sh(P') C sh(P)
U U

sh(R') C sh(R)

Furthermore, let (p, q) = sh(P) -sh(P') and (p', q') = sh(P') - sh(R'). Then sh(R) 

sh(P') iff sh(P) - sh(R') = {(p, q), (p', q')} is not connected.

Proof: Clearly, sh(P') C sh(P) and sh(R') c sh(R). Let

amam-l.a2al aa (U,V)
amam-l a2 (U', V')

From Theorem 3.20,

sh(R) = sh(U') c sh(U) = sh(P)
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This gives one inclusion and we can get the other inclusion by the same method.

Next, we will prove the last statement.

(=) By the inclusion of shapes, sh(R) $: sh(P') forces

sh(P) - sh(R) = (p', q')

Since (p, q) and (p', q') are corner boxes of sh(P), they cannot be connected.

(=) We will begin with some simplifications. Without loss of generality, we can

assume p < p'. Since all the insertion tableaux are not changed when we replace

a 2 a3 ... aml by TRI, we can assume that a 2a 3 . . aml = 7rR = RR_ 1 -... R2R1. We

then have
alRIR_ ... RIR am (P, Q)

alR'Rl_...R RR - (P', Q')

RIRi'" R'Ram 4 (R, S)

RtRt_ ... RR (R', S')

Compare the insertion tableaux P' and R'. Note that

p' > 1

Pfl = IR I

since RI is a unimodal subsequence of longest length in alRRl_ 1 ... RR 1 . Next we

proceed to use induction on p.

Case: p = 1. So, IP1 = IPf + 1 which implies that Plam is unimodal. Therefore,

P1=Pam = Ram =R1

IR1l = Il l +l

sh(R) sh(P')

Case: p > 1. So, IP1 = IPfi which implies that Pam is not unimodal. Therefore,

P1 P- am = am W P
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Now, R = Pi and R 1 is also obtained from RI by inserting am. Hence, R 1 = P1. We

then have

alR1Rl_ 1 R2am

alRIR._l R R2

I I-1 2 ImRR_l ... R2am

'II_ R'

( ~)

4 (1, 0)K -4 (f , 

where P, P', R, R' are standard decomposition tableaux obtained from the corre-

sponding tableaux by deleting the first row. Since sh(P) - sh(R') is not connected,

by induction hypothesis,

sh(P')

=> sh(P')

: sh(R)

#= sh(R)

Next, we will follow some notation in [13, Section 3.11]

evacuation. First, we define the delta operator, A.

Definition 3.23 Let Q be a standard shifted Young tableau.

resulting tableau after applying the following operations:

to define the notion of

Define A(Q) to be the

1. remove the entry 1 from Q

2. apply jeu de taquin into this box

3. deduct 1 from each of the remaining boxes

This is essentially the same as [13, Definition 3.11.1]. Note that here, we are applying

A on shifted Young tableaux. In the notation of [7], A (Q) is the tableau that is

obtained by subtracting 1 from every box in Q(1 -+ oo).

Theorem 3.24 Let a = ala2 ... am E R(w) and suppose

·. am

. am

4
-4

(P, Q)

(R, S)

Then,

s= A(Q)
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Proof: Induct on m.

Case: m = 1. Trivial.

Case: m > 1. Let
ala2 ... am-_ (P',Q')

a2 * . am-1 (R', S')

Let (p, q) = sh(Q) - sh(Q') and (p', q') = sh(Q') - sh(S'). This is the same as the

setup is Lemma 3.22. By induction hypothesis, A(Q') = S'. Note that Q' = Qlm-1

and S' = Sim-2.

Subcase: sh(S) = sh(Q'). So, box (p', q') holds the entry m- 1 in S and box (p, q)

holds the entry m in Q. From Lemma 3.22, (p, q), (p', q')} are connected. When we

apply A on Q, the jeu de taquin process can be split into two parts. The first part

consists of jeu de taquin moves inside Qlm-. It is the same as the jeu de taquin moves

when we compute LA(Qmi). Therefore, the box (p',q') is vacated. The second part

slides the entry of box (p, q) into (p', q'). It is not difficult to see then that A (Q) = S.

Subcase: sh(S) # sh(Q'). Box (p, q) holds the entry m- 1 in S and box (p, q)

holds the entry m in Q. From Lemma 3.22, {(p, q), (p', q')} are not connected. Using

the same reasoning as above, we see that when we apply A on Q, the jeu de taquin

process vacates box (p', q') and does not affect box (p, q). Hence A(Q) = S. []

Example: Consider the reduced word 241230 of the signed permutation 32514. The

Kraskiewicz insertion of 241230 gives

1 2 41

3 6 5)
and the insertion applied on 41230 gives

The reader can check that the second recording tableau can be obtained by applying

A on the previous recording tableau.
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We take a detour here for an application of A. In Section 3.2, we have shown a re-

lation between the Edelman-Greene insertion of w where w E Sn and the Kraskiewicz

insertion of w. Making use of the previous result, we present a connection between the

recording tableaux of the Edelman-Greene insertion and the Kragkiewicz insertion.

Recall that any unshifted Young tableau can be considered as a shifted tableau.

Theorem 3.25 Let w E Sn and a E R(w). Suppose

a X (P, Q)
a (P,Q)

Then Q is jeu de taquin equivalent to Q.

Proof: Recall in Theorem 3.14, we considered the Kragkiewicz insertion of the reduced

word 7rua of i · 21w where

n-2 L g J 0

U= 0*--

is the only standard decomposition tableau of h... 21. Let

7rua 4 (P', Q')

Then, we know that Q' contains V where V is the standard Young tableau labelled

column-wise and sh(V) = sh(U) = (n, ... , 2, 1). Also, Q can be obtained from Q'

by deleting V and subtracting n(n - 1)/2 from every remaining box. Now, applying

Theorem 3.24 to get rid of 7rn from the insertion, we find that

Q = n(n-l)/2(Q)
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This is equivalent to applying jeu de taquin to convert Q into a normal shifted shape.

Hence, Q is jeu de taquin equivalent to Q. L

Now, we define evacuation.

Definition 3.26 Let Q be a standard shifted Young tableau with IQI = m. We define

ev(Q) to be a shifted Young tableau of the same shape and box (i, j) has entry m-k+ 1

if sh(Ak(Q)) and sh(Ak-l(Q)) differ in box (i, j).

Again, this is essentially the same as [13, Definition 3.11.1] but we are using it on

shifted Young tableaux instead.

[7, Section 8] contains an alternate definition of ev(Q) and more information on

other properties of evacuation. We state a simple lemma without proof.

Lemma 3.27 Let Q be a standard shifted Young tableau of size m. Then

ev(A(Q)) = ev(Q)Iml

This evacuation enables us to give a refinement of Theorem 3.20.

Corollary 3.28 Let a E R(w) and

a - (P, Q)

ar 4 (R,S)

Then,

S = ev(Q)

Proof: Let a = ala2 ... am. We use induction on m.

Case: m = 1. Trivial.

Case: m > 1. Consider the Kragkiewicz insertion of the reduced word a2a3 ... am.

From Lemma 3.24,

a2 a3 ... am (P', AQ)
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Let (p, q) = sh(Q) -sh(AQ). By definition, box (p, q) in ev(Q) has entry m. Applying

the induction hypothesis on a2 a3 . .am, we get

amam-l' ... a3a2 (R, S')

where S' = ev(A(Q)) = ev(Q)mI, 1. The last equality is from the previous lemma.

Now,

R = R' - al

This shows that

SIm-1 = S = ev(Q)lm- 1

From Theorem 3.20, sh(S) = sh(Q) and sh(S') = sh(Q'). This means

m in S is in the box (p, q) and hence S = ev(Q).

Example: Let a = 214203. It is a reduced word of w = 32514.

Kraskiewicz insertion on a gives

that the entry

Applying the
Applying the

21

and on ar = 302412, it gives

1 2 3

5 6 )

a r is a reduced word of w- 1 = 42153. It can be verified that the recording tableau can

be obtained from each other by applying the evacuation operator. We have hoped

that there is a similar operation on the insertion tableau. However, we have failed to

find one.
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3.5 Promotion Sequence

In [6, Theorem 5.12], the short promotion sequence of a shifted tableau is used to

give a bijection between reduced words of WB, the longest element in Bn and standard

shifted Young tableau of shape (2n - 1, 2n - 3, ... , 3, 1). The same method gives a

bijection between reduced words of wS, the longest element of Sn and standard Young

tableau of shape (n - 1,n - 2,- -., 1). In [3, Theorem 7.18], it is shown that the

Edelman-Greene insertion on R(ws) is the inverse operation of the short promotion

sequence. The proof is involved but an easier proof has since been found by Fomin

and Greene. In this section, we will give a proof that shows that the KraSkiewicz

insertion applied on R(WB) is the inverse operation of the promotion for the standard

shifted Young tableau of shape (2n - 1, 2n - 3,.. , 3, 1).

Lemma 3.29 Let N = n2 and a = ala 2 ... aNlaN E R(wB). If ao is a number such

that aoala2 ... aN-l E R(wB), then

ao = aN

Proof:

aoala2 · aaN-1 = WB

::~ al WB aW N = WB

ao = WBaNWB

= aN

The definition of the promotion operator is in [6, Section 4] and the definition for

the short promotion sequence is in [6, Section 5]. We will restate these definitions

here but we will restrict ourselves to the case of standard shifted Young tableau of

shape (2n- 1 2n- 3,..., 3, 1).

Definition 3.30 Let N = n2. Given T a standard shifted Young tableau of shape

(2n - 1, 2n - 3, ... ,3, 1), we define the promotion operator, p(T) as follows:

1. delete the largest entry in T
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2. apply jeu de taquin into that box

3. put 0 into the box (1, 1)

4. add 1 to every box

Give the last box (i, 2n - 2i + 1) of each row i, the label n - i. Then, the short

promotion sequence (T) = (rl, r2,..., rN) is the sequence of numbers where ri is the

label of the box with the largest entry in the tableau pN-i(T).

The promotion operation is almost the inverse of the A operation. If we take p(T)

and apply the A operation on it, we get

A(p(T)) = TIN-1

Note that the largest entry of any standard shifted Young tableau has to be in the

last box of some row. Hence, ri is well defined. Note also that the entry in box

(i, 2n - 2i + 1) of the standard decomposition tableau of WB is n - i which is the label

we assigned.

Let us consider the Kraskiewicz insertion of reduced words of WB only. Since

SDT(wB) contains only 1 tableau P, we can define a map I from R(w) to the set of

standard shifted Young tableaux of shape (2n - 1, 2n - 3,... , 3, 1) by letting

4!(a) = Q

where Q is the recording tableau obtained when we apply the insertion on a. We

claim that jP and TI are inverses of each other.

Theorem 3.31 Let a R(WB) and a -+ (P, Q) Then,

P(Q) = a

Proof: Let a = ala2 ... aN

ala2 ... aN-laN (P, Q)
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From Lemma 3.29, aNala2 ... aN-1 C R(WB). SO,

aNala2 ... aN-l 4 (P, S)

But, from Theorem 3.24, the recording tableau for ala 2 aN-1 is

QIN_1 = A(S)

From the previous remarks,

A(p(Q)) = QIN-1 = A(S)

and since sh(Q) = sh(S),

p(Q) = S

This shows that the promotion operator, p acting on Q corresponds to moving the

last number in the reduced word a to the first position.

The largest entry N in Q is obtained when we insert aN. Suppose it is in box

(i, 2n - 2i + 1) of Q. If we observe the insertion procedure of aN, we note that the

first i-1 rows are of the form, n-j n -j-1 .. 101 ... n-j-1 n-j where

1 < j < i. So, each time the number to be inserted into the next row remains aN.

This shows that aN = n - i which is the label of the box (i, 2n- 2i + 1). Hence,

rN = aN

We can then repeat the procedure on aNala2 ... aNl-1 to show that rN-1 = aN-1 and

so on. Therefore,

Pl(Q) = a

All this can be revised to show that corresponding case for the Edelman-Greene

insertion on reduced words of ws and the short promotion sequence. We will not
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provide the details here but just mentioned that there are analogues of Lemma 3.24

and Lemma 3.29 for the Edelman-Greene insertion.

3.6 Shifted Mixed Insertion

Haiman introduced mixed insertion and its shifted analogue in [7]. Its relation to the

Worley-Sagan insertion (see [13], [16]) was explored in detail there. In this section, we

will show that the Kragkiewicz insertion is closely related to shifted mixed insertion.

The shifted mixed insertion is an algorithm that maps a permutation a of Sn into

pairs of tableaux, (T, T') where T is a P-semistandard shifted tableau with distinct

numbers and T' is a standard shifted Young tableau of the same shape. Let us denote

the set of such T by T,,. For details, please see [7, Definition 6.7]. We denote it as

a B!:E (T, T')

We now look at the Kragkiewicz insertion on reduced words that are made up

of the numbers 1, 2,... , n and each of them appearing only once. In this way, we

can treat the Kraskiewicz insertion as an insertion algorithm on S. Let us call this

the restricted Kragkiewicz insertion. By Theorem 1.26, the restricted Kragkiewicz

insertion gives a bijection between S, and pairs of tableaux (P, Q) where P is a

standard decomposition tableau with distinct entries and Q is a standard shifted

Young tableau. Denote by P, the set of such standard decomposition tableaux.

Theorem 3.32 Let a E Sn and

a - (P, Q)

a md (T, T')

Then Q = T'.

Proof: First, we make use of [7, Theorem 6.10]. It states that T' is the Worley-Sagan

insertion tableau for a - 1. In [7, Corollary 6.3], it is shown that this is the same as
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applying shifted jeu de taquin on the diagonal tableau with reading word the same

as a -1. We intend to show that Q is obtained in this manner.

To do this, we will make use of the short promotion sequence P. Let N = n2 - n.

Let b = a - 1 and c be the sequence such that ci = N + bi. Let Q' be a standard

shifted Young tableau of shape (2n - 1, 2n - 3,... , 3, 1) such that the reading word

of the last top-right to bottom-left diagonal is c. This diagonal consists of boxes with

coordinates (i, 2n - 2i + 1) filled with entry c,-i+l.

The short promotion sequence of Q' is

P(Q') = r1r2 rN+,rN+2... rN+n

By definition of the short promotion sequence,

rcni+l = ni
rN+bi = rc = i- 1

:= rN+i = ai -1

By Theorem 3.31,

j(Q') = rlr2..rN+rNrN+2 .. rN+n (P', Q')

where P' is the unique standard decomposition tableau of SDT(wB). By Lemma 3.24,

rN+rN+2 ... rN+n (R, S)

where S = AN(Q'). But this is equivalent to applying shifted jeu de taquin on the

last diagonal with the box (i, 2n - 2i + 1) filled with bn-i+l. Therefore,

S = T'

Since rN+1 ... rN+n is basically a shifted by 1 and the steps in the Kraskiewicz inser-
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tion for both are the same, we can conclude that

Q = S = T'

For the restricted Kragkiewicz insertion, since all the numbers are distinct, we

avoid the special cases of the insertion algorithm that involves repeated numbers.

Correspondingly, the B-Coxeter-Knuth relations reduces to(a < b < c < d):

Definition 3.33 (Elementary Restricted B-Coxeter-Knuth Relations)

abdc

acdb

adcb

badc

, adbc

. acbd

dacb

- bdac

(1)

(2)

(3)

(4)

and their reverses.

This is the same as the list in [6, Corollary 3.2]. Thus we have arrived at analogues

of Knuth relations for shifted mixed insertion. Since the standard decomposition

tableaux are representatives of the restricted B-Coxeter-Knuth relations, this gives

Theorem 3.34 There exists a shape preserving bijection, 'P from Tn to Pn. Further-

more, if a E S the respective insertions map

a 
a mixed

(P, Q)

(T,Q)

Then, ~(T) = P.

Next, we can interpret properties of the restricted Kra§kiewicz insertion in the context

of shifted mixed insertion and vice versa.

Theorem 3.35 Let a Sn and

a (P, Q)
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and let

a- ' -X (R, S)

denote the Worley-Sagan insertion of a-l. Then, Q = R and S is the shifted mixed

insertion tableau of a.

A description of the Worley-Sagan insertion can be found in [16] or [12, Section 3].

This theorem is just a rehash of [7, Theorem 6.10].

Theorem 3.36 Let a E S, and suppose

a -mn (T, T')

where sh(T) = A. Then Al is the length of the longest unimodal sequence in a.

This theorem can be generalized to give interpretations to Ai where i > 1. We quote

a result from [12].

Theorem 3.37 ([12, Corollary 5.2]) Let a E Sn. Suppose that the shape of the

Worley-Sagan insertion tableau is A = (A1, A2,. , A1), then for k < 1 the maximum

length of a strictly k-decreasing subsequence in ara is

1 +A2+ + + k +
2

A strictly k-decreasing subsequence of ara is a union of k disjoint strictly decreasing

subsequences of ara.

Let b be a strictly decreasing subsequence in ara. It is made up of distinct

numbers in a. If we look at these numbers in a, they appear in a decreasing manner

starting from the right towards the left and then from left to right. Conversely, any

set of numbers in a that can be obtained in this manner can be written as a strictly

decreasing subsequence of ara.

For example, if a = 52314 then ara = 4132552314. Let b = 4321. It is a strictly

decreasing subsequence of ara and it appears in a in a decreasing manner from right

to left and left to right.
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Now, let c = a-1 . If we look at the sequence of inverse images of numbers of b,

they appear as a unimodal subsequence in c. Conversely, a unimodal subsequence

in c gives rise to such a b in a. Using the previous example, a-l = 42351. The

subsequence corresponding to b is 4235.

Making use of this and Theorem 3.35 and noting that the shape of the insertion

tableau and recording tableau are always the same, we can reinterpret the Theorem

3.37 in terms of k-unimodal subsequence.

Definition 3.38 Let d be a sequence of distinct numbers. A k-unimodal subsequence

is a union of k unimodal subsequences of d. Any number can appear in at most 2 of

the unimodal subsequences and any pair of unimodal subsequences can only have at

most 1 number in common.

Corollary 3.39 Let a C Sn. If

a $ (P,Q)

where sh(P) = A = (A1, A2 ,. , A), then for k < 1, the maximum length of a k-

unimodal subsequence is

A1 + A2 + + Ak + ( )
2

This result is also true if we replace the Kragkiewicz insertion by the shifted mixed

insertion.

Example: Take the permutation a = 57286431. Under the Kragkiewicz insertion, it

maps to the tableau

)8J6
7

4X

2

5

1 11

The shape is (5, 2,1). {728, 86431} is a 2-unimodal subsequence of a of length 8.

{526, 728, 86431} is a 3-unimodal subsequence of length 11. The reader can verify

that these subsequences attain the maximun length.
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Remarks: It would be nice if the definition of a k-unimodal subsequence can be

altered to disjoint unimodal subsequence and change the maximum length to Al +

A2 + -- + Ak. Unfortunately, this is not possible. For example, the permutation

b = 57628431 also maps to the same tableau above but there exists a 2-unimodal

subsequence {7628, 5431} which have distinct numbers.
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Chapter 4

Analogues for Dn

In this chapter, we aim to find Dn analogues of all the results obtained so far for Bn.

In Section 4.1, we will give the definitions and some results about the reduced words

of D. An analogue of the Kragkiewicz insertion algorithm is described in Section

4.2. It turns out that this D-Kragkiewicz insertion does not apply on the reduced

words directly. The D-Coxeter-Knuth relations will be introduced in Section 4.3.

Most of the results of the D-Kragkiewicz insertion are proven here. In Section 4.4, we

introduce the Dn stable Schubert polynomials and using the D-Krabkiewicz insertion,

we are able to show that they can be expressed as nonnegative integer combinations

of Schur P-functions.

4.1 Dn

Consider a standard basis {el, e2,..., en} for a vector space of dimension n over the

real numbers. The simple roots for Dn are

CO = E1 + 2

O/1 - 2 - E1

0a2 = 3 -- 2

an-1 En -En-1
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Let si denote the simple reflection in the hyperplane perpendicular to aoi. These

generate the Weyl group of the root system which we denote by Dn as well. In what

follows, we will just write the subscripts of the reflections. The simple reflections

satisfy the Coxeter relations for Dn. They are

01 - 10

020 - 202

ab '- ba b>a+ 1, (a, b) (0, 2)

aa+la a+laa+1 a 0

Dn is a subgroup of Bn and we can represent its elements as signed permutations

with even number of signs. Under this notation,

so = 2134... n

si = 12 ... i-1 i+ 1i i i+2...n for 1 < l < n

Let w E D,, we can express it as a product of si's. Those of shortest length are

called reduced words. This shortest length is called the length of w and denoted by

ID(W). We will use RD(w) to denote the set of all reduced words of w. However, we

will drop the subscript D if there is no confusion with S or Bn.

There is an automorphism on the group Dn that switches so and sl.

so if i = 1

r(i) = Si if i = O

si otherwise

It is not difficult to show that

r(W) = -lwv

where v - 1 = v = 123... h in 1-line notation. Note that v is an element of Bn but not

D when n is even.
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Let w = Lw2 ... wn E Dn. We write wi to mean

k if wi = k

k ifwi = k

With some more work, we can show that

Lemma 4.1

W1W2 '' " Wn W1 1 and 1 is not barred in w

r(w) = tilW2 ... 1... wn Wl 1 and 1 is barred in w

w otherwise

In particular, (w) = w iff wl = 1 or 1.

We can also turn F into a map on reduced words by simply letting (a) be the

reduced word that is obtained by turning all the 's in a into O's and O's into l's.

The motivation behind these results on F is that the D-KraSkiewicz insertion that we

will introduce in the next section treats the simple reflections so and s equally. To

further demonstrate this point, we need to introduce flattened words.

Definition 4.2 Let a = ala2 ... am be a reduced word in Dn. Convert all the O's

that appear in a to 1 's and denote this new word by d. We call a a flattened word.

Denote the set of flattened words of w by (w).

Under this new scheme, a flattened word will only contain positive integers and can

never have three consecutive l's. This idea of flattened words first appeared in [6]

but in another form called winnowed words. Later, it was independently used by

Billey and Haiman(see [1]) in their investigations for D analogues of stable Schubert

polynomials.

Let a be a reduced word of w. We can treat the flattened word as a word of

some permutation v of S. But in this case, need not be reduced. It is not difficult

to show that v is just the signed permutation w without the bars.
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Example: 2041 is a reduced word of 13254. 2141 is the corresponding flattened

word. It is also a word, but not reduced, for 13254.

Obviously, more than one reduced word can be flattened into the same flattened

word. Also, they need not be reduced words of the same signed permutation.

Definition 4.3 Let c be a flattened word. Define N(c, w) to be the number of reduced

words a E R(w) such that a = c.

Lemma 4.4 Let c be a flattened word of w of length m and cm = 1. There exist

a, b E R(w) such that a = b = c, am = 0 and bm = 1 iff c factors into de, e Z 0,

where the permutation v of Sn corresponding to e is such that

V1 = 1

Proof: (=a) Let us calculate the 1-line notation of w- from the reduced words ar and

br using the method described in Section 1.3. Examine the symbol 1 closely. am = 0

causes the symbol 1 to have a bar and bm = 1 lets the symbol be without a bar.

Since eventually we should get the same 1-line notation, at some point, the 2 reduced

words would give the symbol 1 the same parity. But, for this to happen, the symbol

1 must arrive at the first position. Hence, we can factor c into de and where the

permutation v corresponding to e has the property

V
I- - 1v-l =

X V1 = 1

(=) Let a R(w) such that a = c. Suppose am = 0. Then we can write a as fg

where f = d and = e. From Lemma 4.1, r(g) represents the same permutation as

g. This means that b = f (g) is a reduced word of w that ends in 1 and b = c. 

Theorem 4.5 Let c be a flattened word and w E Dn such that N(c, w) is non-zero.

Then, N(c, w) is a power of 2. Furthermore, it does not depend on the choice of w.

Proof: We will use induction on the length m of c.
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Case: m = 1. If N(c, w) is non-zero, it can only take the value 1.

Case: m > 1. Let c' = c1c2 ... cm-1.

Subcase: cm : 1. Then

N(c, w) = N(c', ws,, )

Hence, by induction hypothesis, N(c, w) is a power of 2. Furthermore, N(c, w) is

independant of w since N(c', wscm) is independant of WScm.

Subcase: Cm = 1. If there is a factorization of c into de where e $ 0 and the

permutation v corresponding to e has the property

V1 = l

then by Lemma 4.4, for any w such that N(c, w) 0, w has reduced words a and b

such that

&=b=c and am=O,bm=l

By induction hypothesis, N(c', wso) = N(c', wsi) is a power of 2. So,

N(c, w) = N(c', wso) + N(c', wsl) = 2N(c', wsO)

is also a power of 2.

If c does not factor in such a manner then for any w such that N(c, w) 0, all

reduced words a E R(w) such that a = c, must all end with am = 0 or all end with

am = 1. Without loss of generality, assume am = 0. Then N(c, w) = N(c', wso)

is a power of 2. Note that the calculations depend only on c. Hence N(c, w) is

independant of w. C

We will now write N(c) instead of N(c, w) since the number is independent of w as

long as it is non-zero.
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Remarks: In [1, Proposition 3.7], an explicit formula for N(c) is given.

N(c) = 2m-k+1

where m is the number of l's in c and k is the number of distinct values of s,, ... scj (1)

for 0 < j < (w). This can be proved using the previous theorem.

4.2 D-Kraskiewicz Insertion

In this section, we will give a definition of unimodal sequences for reduced words and

flattened words. They differ slightly from the definition of unimodal sequences for

reduced words in Bn. Then we will describe the insertion algorithm.

Definition 4.6 A sequence of nonnegative integers a = ala2 .. am is said to be

unimodal if for some j < m

1. al > a2 > ... > aj-1

2. aj < aj+l < ... < am

3. aj_ > aj or aj_1 = O, aj = 1

The decreasing part of the unimodal sequence is defined to be

a- ala2 .. .aj

The increasing part is defined to be

at= aj+laj+2 ... am

Let c = c lc2 ... cm be a flattened word. It is said to be unimodal if

1. C1 > C2 > ' > Cj-1

2. j < cj+1 < ' - < cm
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3. cj- 1 > cj or cj-1 = cj = 1

The decreasing part of the unimodal flattened word is defined by

c4= cl c2 ... Cj

The increasing part is defined by

Ct= C+lCj+2''' Cm

The definition of a unimodal reduced word for Bn and Dn are the same. However,

the definition for the decreasing part is different. For example, 2013 is a unimodal

reduced word. When considered as a reduced word of the signed permutation 3142

in Bn, the decreasing part is 20. When considered as a reduced word of the signed

permutation 1342 in D,, the decreasing part is 201.

Here are some examples of unimodal flattened words. 5431127 is unimodal with

decreasing part 54311 and increasing part 27. It is a flattened word of 16234587. 1245

is unimodal with decreasing part 1 and increasing part 245. It is a flattened word for

both 231564 and 231564.

Definition 4.7 Let P be a tableau with 1 rows such that

1. 7rp = PIP_ 1 ... P2P1 is a flattened word of w

2. Pi is a unimodal subsequence of maximum length in PIP-l'" Pi+1Pi

Then, P is called a standard decomposition tableau of w and we denote the set of

such tableaux by SDTD(w).

For convenience, we will write SDT(w) in place of SDTD(w) when no confusion arises.

Let a be a flattened word. Now, we will describe the D-Kragkiewicz insertion.

First we construct a sequence of pairs of tableaux

(0, 0) = (p(O), Q(o)), (p(1), Q(1)), ., (p(m), Q(m)) = (, Q)
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with sh(P(i)) = sh(Q(i)). We obtain (p(i), Q(i)) from (P(i-1), Q(i-)) using the algo-

rithm shown below.

Insertion Algorithm:

Input: ai and (p(i-1), Q(i-l)). Output: (P(i), Q(i)).

Step 1: Let a = ai and R = 1st row of p(i-1).

Step 2: Insert a into R as follows:

* Case 0: R = 0. If the empty row is the kth row, we write a indented k - 1

boxes away from the left margin. This new tableau is p(i). For Q(i), we add i

to Q(i-1) so that P(i) and Q(i) have the same shape. Stop.

* Case 1: Ra is unimodal. Append a to R and let p(i) be this new tableau. To

get Q(i), we add i to Q(i-1) so that p(i) and Q(i) have the same shape. Stop.

* Case 2: Ra is not unimodal. Let b be the smallest number in Rt bigger than

or equal to a.

- Case 2.0.1: a = 1 and R contains 2112. Leave R unchanged and go to

Step 2 with a = 1 and R equal to the next row.

- Case 2.0.2: a = 1 and R contains 212. Change the last 2 into a 1 and go

to Step 2 with a = 1 and R equal to the next row.

- Case 2.0.3: a = 1 and R contains 112 but not 2112. Change the first 1

into a 2 and go to Step 2 with a = 1 and R equal to the next row.

- Case 2.1.1: b : a. We put a in b's position and let c = b.

- Case 2.1.2: b = a. We leave Rt unchanged and let c = a + 1.

We insert c into Rt. Let d be the biggest number in R4 which is smaller than

or equal to c. If this number is 1 and there are two 's in RS, we let d be the

left 1.

- Case 2.1.3: d 4 c. We put c in d's place and let a' = d.

- Case 2.1.4: d = c. We leave RS unchanged and let a' = c - 1.

101



Step 3: Repeat Step 2 with a = a' and R equal to the next row.

We will denote this insertion operation given above by:

p(i-l) ai = p(i)

The D-KraSkiewicz insertion associates a with the

we denote this operation by

last pair of tableaux (P, Q) and

a - (P, Q)

As in B, we will call P the insertion tableau and Q the recording tableau. We will

omit the D - K above the arrow if it no confusion arises.

Example: Let a = 3021202 E R(1243). Then a = 3121212.

p(3)= 131

P(3) v- 1

Q( 4 )

3212
p(5) 

1

Q(
3

) = I 1 2 1 3 1

13 1 1 

1

1-~F

= p(4)

Q(5) = 1 2 3 5
4
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p( 5) =

Q(6) =

2 1 
1

3 2 1 1

11

1
2

4

3

6

32112
1 1 Q(7) = 1 2 3 5 7

The reader can verify that p(7) is a standard decomposition tableau for 1243. We will

prove in the next section that the insertion tableau is always a standard decomposition

tableau.

4.3 D-Coxeter-Knuth Relations

As in the Bn case, the D-KraSkiewicz insertion can be imitated by certain relations.

We call them the D-Coxeter-Knuth relations. However, they are not relations between

reduced words but relations between flattened words. In the table below, a < b <

c < d or 1 = a = b < c < d unless otherwise stated.
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Definition 4.8 (Elementary D-Coxeter-Knuth Relations)

1121

a b b+ b

b a b + b

aa + 1 ba
a+1 aba+1

abdc

acdb

adcb

badc

1212

ab + 1 bb + 1
bb+1 ab

. aa+lab
a+l baa+1
adbc

acbd

dacb

bdac

and their reverses.

Definition 4.9 Let a, b be 2 flattened words for some w D. If a = cxd and

b = cyd where both x and y have length 4 and (x, y) appeared in the list above, we

say a is elementary D-Coxeter-Knuth related to b.

Let e, f E R(w). If there exist e = a, a 2, - , ak = f E PR(w) such that each

pair (ai, ai+l) is elementary D-Coxeter-Knuth related, we say e and f are D-Coxeter-
DKnuth related. We denote this as e N- f.

This set of relations appeared in [6, Table 5]

if no ambiguity arises. As mentioned earlier,

relations between flattened words. But, we can

words in the following sense.

as Cl-relations. We will write e f

the D-Coxeter-Knuth relations are

translate these relations to reduced

Theorem 4.10 Let a E R(w). Suppose c is a flattened word such that c . Then,

there exists b E R(w) such that

b=c

Proof: It suffices to check this when c and differ by an elementary D-Coxeter-Knuth

relation. The result is clear for the D-Coxeter-Knuth relations (2) to (9). For (1), we
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exhibit the table

Each pair of entries in each row are related by the Coxeter relations for Dn. [1

We now proceed to give analogues of lemmas and theorems and Section 1.4. This

will eventually lead us to the proof that the D-Kra§kiewicz insertion is a bijection

between flattened words and pairs of tableaux.

Lemma 4.11 Let R be a unimodal flattened word and a, 0 < a < n such that Ra is

also flattened. If

R 1 a =a' t R'

then

Ra " a'R'

Proof: The proof is similar to the Bn case. We imitate the insertion by D-Knuth-

Coxeter relations. However, we will only do this for the special Cases 2.0.1, 2.0.2,

2.0.3. The reader can refer to Theorem 1.16 for the other cases. Let R = rlr 2 .. . rm

where R4= rl ... rk, k < m.

Case 2.0.1: a = 1 and R contains 2112.

Ra = rl...rk_ 32112... rm

rl... rk_3 rk2112r+21 rm by (8r)'s

rl. rk_32 1121rk+2. rm by (4)

r 1... rk_32 1 212rk+2... rm by (1)

r1... rk31 2 112rk+2. rm by (1r )

rl... rk3 2112 rk+2... rm by (4r)

1rl ... rk3 211 2 rk+2... rm by (8)'s

= a'R'

105

1121 1212

0121 0212

1021 0212

0120 1202

1020 1202



Case 2.0.2: a = 1 and R contains 212.

Ra = rl ... rk-3212 rk+2 ... rml

rl... rk-3 2 121rk+2...rm

rl...rk_31211rk+2...rm by (r)

rl 1... r3211rk+1 ... rm by (4r)

lrl ... rk-32 11rk+l ... Trm

= a'R'

Case 2.0.3: a = 1 and R contains 112 but not 2112.

Ra = rl...rk-311 2rk+2... rml

rl ... rk_31121rk+2...rm

rl... rk_312 12 rk+2- - rm by (1)

~ lrl . rk321 2 rk+l ... rm

= a'R'

Theorem 4.12 Let a E R(w) and a D- (p, Q). Then a 7 rp.

Proof: This uses the previous lemma and we omit the proof as it is exactly the same

in Bn case. [1

The above theorem together with Theorem 4.10 shows that there is a reduced word

a of w such that a = 7rp.

Lemma 4.13 Let a, b E R?(w) and a b. If c is a unimodal subsequence of length

k in a, then there is a unimodal subsequence d of length k in b.

Proof: The proof is the same as the Bn case. We will just check the special D-Coxeter-

Knuth relations.
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The explanation for the table is the same as that in the proof of Theorem 1.20. I

Theorem 4.14 Let a E R(w). If

a -4 (P, Q)

then P E STD(w) and Q is a standard shifted Young tableau.

Proof: The proof is essentially the same as the proof for the Kraskiewicz insertion.

Corollary 4.15 Let a E R(w). Let a - (P, Q) and A1 be the length of P1 . Then

the lengths of the longest unimodal subsequences in a and a are both A1.

Proof: This follows from Lemma 4.13, Theorem 4.14 and that a unimodal subsequence

of a corresponds to a unimodal subsequence of a in the obvious way. [

Lemma 4.16 Let R be a unimodal flattened word and a, 0 < a < n be such that Ra

is flattened but not unimodal. If

R a-=a' ot RR 4-a=a -

then
r a'a out r

R ' a = a +- R'

Proof: The proof is the same as that for the Bn case except for the special insertions

which we will verify below.

Case 2.0.1: a = 1 and R contains 2112.

* 2112 ... 1

R
. 2112. 1

Rr

= 1 ot ... 2112...
R = R'

= 1 ... 2112...

Rr
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Case 2.0.2: a = 1 and R contains 212.

.. 212... P 1
R

=> ...112 ... 1

Rlr

Case 2.0.3: a = 1 and R contains 112.

-112..· - 1
R

=,> ... 212... ( 1
Rtr

= 1 .. 212 ..
R'

= 1 ... 211...
Rr* 112 1~~~ou= ~ ~ ~ 1

Lemma 4.17 Given (P, Q), P e SDT(w) and Q a standard shifted Young tableau,

let Q' be the standard shifted Young tableau obtained by removing the largest entry

from Q. There exists a unique a > 0 and a unique standard decomposition tableau P'

such that

P' - a = P

and sh(P') = sh(Q').

Proof: Let 1(w) = m. Suppose m is in box (j, k) of Q. Let e be the entry of box (j, k)

in P. As in the proof of Theorem 1.25, we want to reverse the insertion procedure.

We insert e into Pr-1 to get Pj- 1 and aj_-1. We then insert ajl into Pj-2 and so on.

Suppose ai is empty for some i. That is to say, the insertion ends with

Pir ai+l = Pir

Consider the tableau R formed by rows i, i + 1, ... , j of P. It is a standard decom-

position tableau and lrR PjP, ... P' So, the length of the longest unimodal sub-

sequence is Pil. But Pi' is a unimodal subsequence of length Pil + 1 in PjPj'_ ... P'.

This contradicts Lemma 4.13. Hence, ai always exists. Let a = al and P' to be the

tableau with Pi', 1 < i < j as the first j - 1 rows and Pi, i > j as the succeeding rows.
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By Lemma 4.16, the insertion step at each row is invertible and we get

P' - a = P

Furthermore, each ai is uniquely determined. Hence, a and P' are unique. Next, we

have to show that rp, is a flattened word. From Lemma 4.11,

rp, a - 7rp

By Theorem 4.10, 3b = blb2 ... bm E R(w) such that

b= =p,a

Let b' = bb2 ... bin-_. Then, rp, = b and b' E R(wsbm). Hence, rp, is a flattened

word and P' is a standard decomposition tableau. [o

Theorem 4.18 The D-Kragkiewicz insertion is a bijection between PR(w) and pairs

of tableaux (P, Q) where P E SDT(w) and Q is a standard shifted Young tableau.

Proof: The proof is the same as that for the Bn case. It makes use of Theorem 4.14

and Lemma 4.17. o

Example: For the signed permutation 2314, /(2314) = {1211,2121}. Under the

D-KraSkiewicz insertion, 1211 maps to

C 21 1 1 2 4

1 3

and 2121 maps to

2 1 1 1 2 3

Remarks: The D-Kraskiewicz insertion has a few differences from the Kraskiewicz

insertion.
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1. It does not apply on reduced words but on flattened words.

2. There exists w, v such that SDTD(v) = SDTD(w).

3. It is not a bijection between the set UweDnR(W) and pairs of tableaux.

Example: (321) = {121} = R(321). Actually, we can say more about when

R(w) = R(v).

Theorem 4.19 Let v, w E D, v w. w = r(v) iff R(w) = R(v).

Proof: (=,) w = r(v) implies that there is a bijection between R(v) and R(w). If

a R(v), the bijection is given by changing all the 's in a into O's and all the O's

into l's. Let this new reduced word be b. Clearly, a = b. Therefore, R(w) = R(v).

(4=) We will use induction on (w) = I(v) = m.

Case: m = 1. Trivial.

Case: m > 1.

Subcase: If ]c E R(w) such that Cm $ 1, then we know that

R(WScm) = {c' : C'Cm E R(w)} = R(vs,,)

and by induction hypothesis,

WSCm = r(VScm) = r(V)Scm

w = r(v)

Subcase: All flattened words of w and v end in 1. This means that l(wsi) > (w)

for all i > 1. In other words, we can always switch adjacent symbols, other than the

first pair, in w and increase its length. So, w = wlw 2 ... w has to be in the form:

There exists k < n such that

1. wi are barred for all 1 < i < k and w2 1 > w31 >... > wk

2. wi are unbarred for all i > k and Wk+1 < Wk+2 < ... < W,
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This goes for v too.

Let c E R(w). Treat c as a word of some permutation u of S,. Clearly, both w

and v differ from u by placement of the bars. That is wiI = IviI = ui for all 1 < i < n.

Let uj be the smallest number in u2u3 ... u. Then from above,

2 > U3 >... > Uj < Uj+l < ... < Un

It is not difficult to see that there are exactly two possible signed permutations of Dn

that have the prescribed form. Without loss of generality, let

i >j

2 <i<j
ij

Since there must be even number of bars in w and v, wl and vl must have opposite

parity.

If ul 1, then uj = 1. By Lemma 4.1, F(v) = w. If ul = 1, then uj = 2. It can

be shown that in this case (w) I1(v). But this is not possible and we are done. O

Corollary 4.20 Let v, w E Dnn. w = F(v) if SDT(v) = SDT(w).

Proof: This follows from SDT(v) = SDT(w) iff (v) = R(w).

The next two theorems are analogues of Theorem 2.10 and

proofs are basically the same as those of their analogues. That

are long and tedious. We omit them.

EO

Theorem 2.12. Their

also means that they

Theorem 4.21 Let c = c 1 2 ... Cm E fR(w) and

c -+ (P, Q)

If cici+1 ... Ck, a subsequence of c is unimodal, then the boxes in Q with the entries

i, i + 1, , k form a rim hook. Moreover, the way the entries appear in the rim hooks

111

Ui

21i = U
Ui



is as follows:

1. the entries i, i + 1, .. , j form a vertical strip where j is the entry in the leftmost

and lowest box of the rim hook

2. these entries are increasing down the vertical strip

3. the entries j + 1,, k - 1, k form a horizontal strip

4. these entries are increasing from left to right

Theorem 4.22 Let c -+ (P, Q). Let the boxes with entries i, i + 1..., k form a rim

hook in Q. Furthermore, the entries increases down a vertical strip and then along a

horizontal strip from left to right. Then, the corresponding subsequence, cici+l ... ck

is a unimodal sequence.

4.4 The NilCoxeter Algebra for Dn

Definition 4.23 Let Dn be the nilCoxeter algebra for Dn. It is a non-commutative

algebra generated by uo, Ul, ... , un- with the relations:

U2 = O i>O

UOU1 = U1UO

UOu2 uo = U2UoU2

UiUi+lUi = Ui+lUiui+l i > 0

uiuj = ujui j > i+ 1, and (i,j) (0,2)

The first relation shows that the nilCoxeter algebra is spanned by reduced words of

Dn. All the relations except the first listed above are exactly the Coxeter relations

for reduced words of Dn. Hence, the nilCoxeter algebra has a vector space basis of

elements of Dn.

Let x be an indeterminate and let

D(x) = (1 + XUn_l)(l + XUn_2) ... (1 + xu 2)(1 + XU1)( + XUo)

(1 + xu2)(1 + xu 3) ... (1 + XUn-1)
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Lemma 4.24

1. (1 + xui)- = - xUi

2. (1 + zuo)(1 + xul) = (1 + Ul)(1 + uo)

3. D(x)D(y) = D(y)D(x)

4. D(-x)D(x) = 1

Proof: We will only prove (3). The rest are obvious. We need a result on the nil-

Coxeter algebra, A,- 1 for the root system An_1. It is the subalgebra of D generated

by u1 , u2 .. , un-1. The subalgebra generated by uo, u2 ,... u_ 1 is also isomorphic to

An- 1. We quote this result without proof.

Lemma 4.25 ([5, Lemma 2.1])

Let

Ai(x) = (1 + xun-1 )(1 + XUn-2) ... (1 + xui+l)(1 + xui)

then

Ai(x)Ai(y) = Ai(y)Ai(x)

From (1), it is easy to see that

Ai(x) - 1 = (1 - xui)(1 - xui+l) ... (1 - XUn-1)

Lemma 4.26 ([5, Lemma 4.1]) Let Ai(x) = Ai(-x)- = 1+ xu)( + xu)(xui+l) ... (1 +

xun_l). Then

Ai(x)Ai(y) = Ai(y)Ai(x)
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Now,

D(x)D(y)

= A2(x)(1 + l)(l + xuo)A2(x)A2(y)(l + yuo)(l + yul)A2(y)

= A2(x)(1 + xul)A 2(y)(1 + yuo)(1 + Xuo)A2(x)(1 + yul)A 2(Y)

= A2(y)(1 + yul)A 2(x)(1 + XUl)(1 - yul)(1 + yuo)(1 + xuo)

(1 - xul)(1 + yu1)A 2(y)(1 + xul)A 2(x)

= A2(y)(1 + yul)A2(x)(1 + XUo)(1 + yuo)A 2(y)(1 + xul)A2(x)

= A2(y)(1 + yul)(1 + yuo)A2(y)A 2(x)(1 + xUo)(1 + xul)A 2(x)-D(y)D(x)

Definition 4.27 Let Dn[x] be the polynomial ring in the indeterminates xl, x2,

Consider the following expansion

D(xl)D(x2)...= H,(z)w
wEDn

H, are called the Dn stable Schubert polynomials.

Like the G,'s, from Lemma 4.24 it can be shown that the Ht,'s are symmetric

functions and furthermore,

Theorem 4.28 Hw(x) c A

In [1, Equation (3.10)], the Ew(X) defined there is exactly the same as our HJ,(x).

We are interested whether H, 's are linear combinations of P, with nonnegative integer

coefficients.

Definition 4.29 Let a = aa 2 ... am E R(w). We say that a sequence of positive

integers i = (il, i2,... , im) is an a-compatible sequence if

1. il < i2 < ' < im

2. ij = ij+l = ... = ik occurs only when ajaj+l ... ak is a unimodal sequence and

does not contain 01.
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Denote the set of a-compatible sequence as K(a).

Consider an a-compatible sequence i. Suppose ij = ij+l = . = ik is a constant

subsequence of i such that ij-1 < ij,ik < ik+l. We give it a weight of 2 if the

corresponding subsequence ajaj+l ... ak does not contain 0 or 1. Let W(a, i) be the

product of all these weights. W(a, i) is a power of 2. This will lead us to a description

of H (x) in terms of a-compatible sequences.

Theorem 4.30

H,(x)= - W(a,i)xilxi 2 z im
aeR(w) iK(a)

Proof: Same as the proof of Theorem 2.7. 0]

For the rest of this chapter, we will show that Hw can be written as a nonnegative

integer combination of Schur P-functions. The proof is more complicated than the Bn

analogue. We have divided the proof into Lemma 4.33 and Lemma 4.34. Lemma 4.33

gives a bijection between Q-semistandard shifted tableaux and generalized sequences

that are compatible flattened words. This bijection is almost the same as the bijec-

tion described in the proof of Theorem 2.13. Lemma 4.34 relates the a-compatible

sequences to these a-generalized sequences. The definitions are given below. We also

need the following result on N(c). From Theorem 4.5, we know that N(c) is a power

of 2 and it depends only on c. In particular, if P E SDT(w), N(irp) is a power of 2.

For convenience, we write N(P) instead of N(7rp). The next lemma relates N(c) to

N(P). Let 11(c) denote the number of l's in c and 11(P) denote the number of l's in

P.

Lemma 4.31 Let P E SDT(w). For all c E R?(w) such that c - (P, Q), then

2 1 (C) 2 11 (P)

N(c) N(P)

Proof: Since all the flattened words of w that map to the same insertion tableau

are related by D-Coxeter-Knuth relations, it suffices to prove when b and c are two

flattened words related by an elementary D-Coxeter-Knuth relation.
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Case: (1) 1121 - 1212. Let b = d1121e and c = d1212e. We will pair up reduced

words of w that flattened to b. Then we give a bijection between these pairs and

reduced words that flattened to c. Let b = d1121e and c = d1212e. The bijection is

given by

(xO120y, x1020y) ++ x1202y

(xO121y, x1021y) X4 x0212y

where x = d and / = e. Since 11(b) = l(c) + 1

21l(b) 2h(c)+l

N(b) 2N(c)

N(c)

Case: (2)-(9). The number of 's in b and c are the same. So, Il(b) = Il(c). The

bijection is straightforward. Hence,

2 1(b) 2 11(C)

N(b) N(c)

Definition 4.32 Let c be a flattened word of length m and f a generalized sequence

of the same length as c. We say that f is c-compatible if

1. fl < f2 < ... fm

2. f = fj+l =' *= fk = j C cj+1 > . > Ck

3. fj = fj+l =-- = fk = I = cj < cj+l < .. < Ck

Denote the set of all c-compatible sequences by K(c).

This definition of generalized sequences that are compatible with c is the same as the

definition of the generalized sequences used in the proof of Theorem 2.13.
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Lemma 4.33 Let P C SDT(w).

E E Xlfl Xf 2 ... XIfml = Qsh(P) ()
c7rP fek(C)

Proof: Let PI = m. We will exhibit a bijection (I from (c, f) : c n 7rp, f E K(c)}

to {T: Q-semistandard Young tableau, sh(T) = sh(P)}.

Step 1: Apply D-Kraskiewicz insertion to c. We will get

c -(P, Q)

Step 2: Take a Young diagram of the same shape as Q. We fill each box by fjl

when the corresponding box in Q has the entry j. Then, the new tableau is weakly

increasing along the columns and rows since

j < k = Ifjl < Ifkl

Step 3: For each constant subsequence, fjfj+l ... fk such that Ifil = Ifj+1 = 

Ifk = I with Ifj-1 < Ifil and IfkI < Ifk+1l, we know that cjcj+l... Ck is unimodal.

Let h, j < h < k be the index of the smallest number in j j+l ... Ck and if there are

two 's in CjCj+l ... Ck, let h be the index of the left 1.

Furthermore, from Theorem 4.21, the entries j, j + 1,.. k form a rim hook in Q.

Let g be the entry of the box in the lowest row and leftmost column among all the

boxes in the rim hook.

1. if fh is unbarred, we add a bar to all the new entries from fj to fg-1

2. if fh is barred, we add a bar to all the new entries from fj to fg

This will give us a Young tableau with barred and unbarred numbers. This will be

our T. Clearly, sh(T) = sh(Q) = sh(P). With the exact same reasoning as in the

proof of Theorem 2.13, it can be shown that T is a Q-semistandard Young tableau.

Let

· (c, f) = T
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Given T, we now construct the inverse map -

Step 1: Take a Young diagram of the same shape as T. We fill all the boxes with

distinct numbers 1, 2, m as follows:

1. the entries in the Young diagram preserve the order of the entries in T.

2. for all the boxes in T with the same barred number, these form a vertical strip

and we fill the corresponding boxes in an increasing order from top to bottom.

3. for all the boxes in T with the same unbarred number, these form a horizontal

strip and we fill the corresponding boxes in an increasing order from left to

right.

This will be our Q. It is clearly a standard shifted Young tableau with the same

shape as P.

Step 2: Apply the inverse D-KraSkiewicz insertion on (P, Q), we will get c.

Step 3: To get f, remove all the bars in T and let i = i2 im be all the content

of this new tableau laid out in weakly increasing order. Fix a number 1, we know that

in T, all the boxes with the entry 1 or 1 form a rim hook in T. The corresponding

boxes in Q are filled with consecutive numbers, j, j + 1,.-, k. Also, they satisfy the

hypothesis in Theorem 4.22. Hence, CjCj+l ... ck is a unimodal sequence. Let h be

the index of the smallest number in cj cj+1 ... Ck or the index of the left 1 if there are

two 's in cjcjl ... Ck. Now, let (I, J) be the coordinates of the lowest and leftmost

boxes in the rim hook which has entry or 1.

1. If (I. J) has the entry 1, then we add bars to ij, ij+l, i h.

2. If (I, J) has the entry 1, we add bars to ij, ij+l, , ih-1.

This generalized sequence will be our f. By construction, it is c-compatible. So,

( -1 (T) = (c, f). Thus

E E XflXlf 2I* .. Xif: Z XT
C7rp fEk(c) sh(T)=sh(P)

Qsh(P) (Z)
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Before we state and prove Lemma 4.34, we look at an example to demonstrate

the difficulties involved and give some insights to the construction of the maps that

are described in the proof.

Example: Consider the signed permutation w = 1234.

R(1234) = {01, 10}, R(1234) = {11}

Below is a partial list of 10-compatible sequences, 01-compatible sequences and 11-

compatible generalized sequences.

10 01 11

11 22... 11 11 22 22...

12 23... 12 23... 2 12 12 12 23 23 23 23...

13 24... 13 24... 13 131313 24 24 24 24...

This table shows that there is a possible two to one map from 11-compatible general-

ized sequences to 10-compatible sequences and 01-compatible sequences that covers

each compatible sequence. Indeed this is essentially what we are going to do in the

next lemma, albeit with some modifications. Denote the number of pairs of consecu-

tive 's in c by I11(c) and those in P by 111(P).

Lemma 4.34 Let c E R(w) be a given flattened word.

N(c) E W(ai)Xi =
a:d=c ieK(a) f ek(C)

Proof: Consider a, b E R(w) and a = b = c. Let Ck = Ck+1 = 1, then akak+l = 01 or

10. Suppose whenever this occurs, akak+l = bkbk+l. By Definition 4.29,

K(a) = K(b)
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Conversely, if a, b E R(w) are such that K(a) = K(b) and a = b, then whenever the

pair 01 or 10 occurs in a, it also appears in b in the same positions.

Also, it is easy to see that for a fixed a, the number of reduced words b such that

akak+l = bkbk+l whenever ck = ck+l = 1 is

N(c)
2"ll (C)

Let us define a new operation on reduced words of w to reflect the significance of

01, 10 appearing in a reduced word. Given a e R(w), define & by changing all the

O's into 's except when they appear in 01 or 10. We call a a partially flattened word.

Define K(&) = K(a) and W(d, i) = W(a, i). Now, let L(c) be the set of sequences

where d is obtained from c as follows:

Whenever Ck = Ck+1 = 1, let

dk = 0, dk+l = 1 or dk = 1, dk+l = 0

Clearly, L(c) = {&: = c}. Hence,

E E W(a,i)xilXi2 ... im 2 11C) E E W(d,i)Xili2 ... Xim
a:a=c ieK(a) dEL(c iK(d)

Now, we have to verify that for a fixed flattened word c

E xIfllxf2i ... xlfm = 211(c)-11(C) Z E W(d, i)xilXi 2 ... Xim

f Ek(C) dEL(C) iK(d)

This can be done by defining a map taking f E K(c) to (d, i) where i E K(d) and

d e L(c). Let i = Ifl.

Let Ifil = Ifj+ll = - = Ifkl = be a constant subsequence and Ifj-ll < I <

Ifk+ll. We know that cj cj+l ... Ck is unimodal.

1. If cj cj+l ... ck does not contain 1 or 11, then we let djdj+l ... dk = cjcj+l ... ck.

In this case, there are two choices for fjfj+l ... fk. This will be accounted by
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the weight of 2 assigned to i j ij +l ... ik in W(d, i)

2. If cjcj+l * * Ck contains 11, say Ch = Ch+1 = 1, then we let dh = 1, dh+l = 0 and

for g,j < g < h,h + 1 < g < k, dg = c9 There are 2 choices for fjfj +l ' fk.

3. If cj-1 = cj = 1, we consider two subcases.

(a) If fj-1 is barred, let dj_-1 = 1, dj = 0. There are 2 choices for fjfj+l ... fk.

(b) If fj_- is unbarred, we let dj- 1 = O,dj = 1. There are 2 choices for

fjfj+l ... fk

4. If cjcj+l .. ck contains a 1 which is not next to another 1, we let djdj+l ... dk =

cjcj+l ... Ck. We have 2 choices for fjfj+l ... fk.

Using the above procedures, we define (f) = (d, i). It can be verified that i is

d-compatible.

For a fixed (d, i), we see that there are W(d, i)21i(c)- l 1(C) choices of f E K(c)

that map to (d, i). Hence,

E XJfllfXlf2l ·.. XlfI =- 2 11 (C)-111(C)
fek(c)

E E W(d, i)ili2... Xim
dEL(C iEK(d)

Therefore, for a fixed flattened word c

E W(a,i)xixi2 ... im =
c ieK(a)

E Xlfllxlf2 l ... Xlfml
f k(c)

[]

Combining all the results together, we get

Theorem 4.35 For all w D,

Hw(x) = E 21(R)->l)(R)N(R)Psh(R)(x)
RESDT(w)

and Hw is a nonnegative integer linear combination of Schur P-functions.
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Proof:

H(zx) = E W(a, i)xilxi2 zim
RESDT(w) C7TrR a=C iEK(a)

N(c)
A, Z 1N(c) Z XjfiIxf2 1 ... f

RESDT(w) CrrR f Ek(c)
N(R)

E 2 l1(R) Qsh(R)(X)
RESDT(w)

N(R) 2 '(R)

= 2,I) PPh(R) (Z)
RESDT(w)

The first line is a modification of Theorem 4.30 by splitting the sum according to the

standard decomposition tableaux of w. The second equality is from Lemma 4.34. the

third from Lemma 4.31 and Lemma 4.33. The last equality is a simple application of

turning the Schur Q-functions into Schur P-functions.

From Theorem 4.5, N(R) is a power of 2 and

N(R) > 2 111(R)

and

111(R) + 1(R) > 11 l(R) + 11(R) - 111(R) = 11(R)

This implies that

21(R)-tl(R)N(R)

is a nonnegative integer power of 2. Hence, Hw is a nonnegative integer linear com-

bination of Schur P-functions. O

Example: 1342 E D4.

R(1342) = {2301,2310,2031,2130,2103,2013}

R(1342) = {2311,2131,2113}
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SDT(1342) =

{

131:1l2 121111131

The reader can verify that

H(342) (X) = 2P(3,1)(x) + P(4)(x)

By comparing the coefficients of the monomial x1x2 ... Xm in this expansion of

Hw(x), we immediately arrive at

Corollary 4.36 The number of reduced words of w is

N(R)2 1(R) h(R)

Z~ ii~2 11 (R) )
RESDT(w)

where gX is the number of standard shifted Young tableau of shape A.

A similar result can be obtained for flattened words.

Corollary 4.37 The number of flattened words of w is

RESDT(w)

21(R)-1i (R) 9 sh(R)

123
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Chapter 5

Properties of the D-Kraskiewicz

Insertion

In this chapter, we will describe some properties of the D-Kraskiewicz insertion.

They are analogues of properties of the Kragkiewicz insertion. We will state some

of the results without proof since most of them are basically the same except for

some special cases that can be verified easily. Section 5.1 covers some bijections, one

of which relates to the automorphism F. We will describe some properties of the

insertion tableau in Section 5.2. Section 5.3 looks into relations with the Edelman-

Greene insertion. Section 5.4 covers the properties of the recording tableau and the

short promotion sequence.

5.1 Some Bijections

Recall from the previous chapter that there is an automorphism r that changes 1

to 0 and 0 to 1 in a reduced word. It gives a bijection from R(w) to R(v-lwv)

where v = 123 ... f. Abusing notations, we write (w) instead of v-lwv. Clearly,

/P(w) = R(r(w)). This leads us to conclude that:

Theorem 5.1 SDT(w) = SDT(r(w)) and H~,(x) = Hr(w)(x).
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Next, we will look into the signed permutations with when wn = ni. In what follows,

we will use the notation:
k

Theorem 5.2 Let w = wlw2 ... wn-l

and SDT(v) where v = vwlw2 . . .wnn.

if wi = k

if wi = k

There exists a bijection between SDT(w)

H(x) N(R) 21(R)
Hw(R) = ED. 211(R) P(2n-2,sh(R))(x)

RESDT(v)

where (2n- 2, A) = (2n- 2, A1, 2 ,...) 

Proof: Given any a R(w), we try to find the longest unimodal subsequence in a.

This is given by the simple reflections that affect the symbol n. Clearly, this has to be

n-1 n-2 ... 2112 .. *n-1. Let P C SDT(w). Then P1 = n-1 n-2 ...2112 .. n-1.
Deleting the first row gives a new standard decomposition tableau of the signed

permutation v. Denote this operation by ). Clearly, 1' is reversible and gives a

bijection between SDT(w) and SDT(v). Moreover,

I(D(P))

11 ()(P))

N(,(P))

sh(I-l (R))

Therefore,

H () = E
RESDT(v)

= (P)- 1

= 1(P) - 2
N(P)

2

= (2n - 2, sh(R))

N(R) 21(R)
211(R) P(2n-2,sh(R)) (x)

By repeated applications of the above result, we immediately get the following:

Corollary 5.3 Let WD denote the longest word in Dn.

123 -**n
WD = ___

123..-.

if n is odd

if n is even
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Then

HwD( ) = P2.-2,2n-4,-,4,2)(X)

Proof: Using the previous theorem, we can show that SDT(wD) contains just one

tableau, P where the ith row Pi is n - i n - i - 1 ... 2112... n - i. Furthermore,

N(P)21(P)
211(P)

Hence

H D (X) = P(2n-2,2n-4,,4,2) (X)

We can generalize this result to

Corollary 5.4 Let i, i2,' , ik be a sequence of numbers such that 1 < i < i2 <

·. < ik < n. Let

12 . 1.. il. 2 ...... Zk if k is even

[ 12... i... i2 ...... ik . if k is odd

Then,

H(x) = P(2ik-2,,2i2-2,2il-2) ()

5.2 Descreasing Parts

Recall from the previous chapter, a flattened word is said to be unimodal if it is

strictly decreasing and then strictly increasing but allowing for two 's in the middle.

Let us call a sequence, c = ClC2 ... Cm 1-weakly decreasing if

1. C1 > C2 > ... > Cm-2 > Cm-1 > Cm or

2. C1 > C2 > ..''' > Cm-2 > Cm-1 = Cm = 1.

Using almost the same method, we get an analogue of Theorem 3.1.
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Theorem 5.5 Let P be a standard decomposition tableau and let P be the tableau

that is obtained when we delete the increasing parts of each row of P. Then, P 

is a shifted tableau which is 1-weakly decreasing in each row and in each top-left to

bottom-right diagonal.

With some extra work, we can conclude a similar result where the condition 1-weakly

decreasing is replaced by strictly decreasing.

Theorem 5.6 Let P E SDT(w). Let T denote the tableau obtained from P by

removing a 1 from a row if it contains two 1 's. Then, T is a shifted tableau which is

strictly decreasing in rows and top-left to bottom-right diagonals.

Theorem 5.7 Let c -4 (P, Q) and let sh(PJ ) = (l 1, 2,* ,1i). Then, the longest

1-weakly decreasing subsequence in c has length i1.

Proof: It can be verified that the elementary D-Coxeter-Knuth relations preserves

the length of the longest decreasing 1-weakly decreasing subsequence. We will only

do this for the special elementary D-Coxeter-Knuth relations.

1121 2121

1211 2121

Next, we can show that any 1-weakly decreasing subsequence d of P must have

length less than ,/1. The argument is basically the same as in the proof of Theorem

3.2. o

Using the above results we can give analogues of Theorem 3.4.

Theorem 5.8 Let w, v E Dn where either

W = W2W3'''Wn, V = 2 W3 ... nn

or

w = nw2w3 · Wn, V = W2W3 · 'Wnn
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Let SDTn_l(w) = {P E SDT(w): IP1 = n - 1}. Then, there exists an injection I

from SDT,,_(w) into SDT(v). Furthermore, if Va E (v), the length of the longest

unimodal in is strictly less than n - 1, then is a bijection between SDTn,_(w)

and SDT(v).

Proof: We omit the proof here. It is almost the same as its Bn analogue. Lo

Using induction and the above bijection, we can get the analogue of Theorem 3.3.

Corollary 5.9 Let

nn- 1-

nn - 1.

inn- 1..21
nn - 1...21

I 21 

if n is even
.. 21

if n is odd

Then

H,(x)= P(n-lv v2l)(X)

Proof: Let w be the signed

contains only

permutation above. It suffices to prove that SDT(w)

n-2 ····n-l*-

This is an easy application of induction and the previous theorem. We omit the

details. []

The next result is an analogue of Corollary 3.5.
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Corollary 5.10 ([1, Proposition 3.13]) Let

X 1 X 2 ... A1123 A * Atl- ......-A 1 Al ... if l is even
U)= --- . ..

l 1 2 * . At123 -At ' Al-, ...... Al-- if I is odd

where A = (A1, A2, , Al) is a shifted shape. Then,

Hw(x) = Pa(x)

Here, k means omitting k.

Proof: The argument is a slight generalization of the proof in the previous corollary.

We omit the details. D

This corollary shows that any Schur P-function has a description as a Dn stable

Schubert polynomial.

5.3 The Symmetric Group and Edelman-Greene

Insertion

Just as S,, is a subgroup of Bn, we can consider Sn as a subgroup of Dn. If w E Sn, all

reduced words a do not contain the symbol 0. Clearly, RS(w) = RB(w) = RD(W) =

/(w). Here, the subscripts denote the reduced words of w in the various Coxeter

groups. This means that the flattened words are the reduced words themselves and

N(P) = 1. Furthermore, when we apply the D-Kragkiewicz insertion on these words,

all the special cases involving two 's are avoided. This shows that the insertion

procedure is exactly the same as the Kra§kiewicz insertion. If we denote the set of

standard decomposition tableau obtained by the Kraskiewicz insertion as SDTB(w)

and that by the D-Kragkiewicz insertion by SDTD(w), we find that SDTB(w) =

SDTD(w). We formulate some of the results in the next theorem.
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Theorem 5.11 Let w E S. Then SDTD(w) = SDTB(w) and

Hw(z) = Z 21(R)-I(R)Psh(R)(x)
RESDTB(w)

Furthermore, if wl = 1,

H,(z) = Gw(x) = Fw(x/x)

Proof: The first formula for Hw is a consequence of the discussion above. As for the

second statement, wl = 1 implies that 11(a) = 0 for any reduced word a of w. So

this means that the Hw = Gw and the other equality is from Theorem 3.10. E]

The second statement appears as part of Proposition 3.17 in [1]. The homomorphism

$b defined there is exactly superfication.

Now using the previous theorem and Theorem 3.25, we get

Theorem 5.12 Let w C S and c e R(w). Suppose

c m (P,Q)

C + (PI Q)

Then Q is jeu de taquin equivalent to Q.

Let w E Sn and ws = n... 321. In Bn, we have shown that the Edelman-Greene

insertion of wsw is related to the Kragkiewicz insertion of zD. In Dn, to get a similar

result, we have to define D in a suitable manner. Denote by twD the element of Dn

obtained from w by putting a bar over all wi when n is even and all wi except the

symbol 1 when n is odd. Also, we need the following result.

Lemma 5.13 Let w Sn. If P E SDT(fv), then P contains the tableau
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n-ln-2 * o

n-2 Lii 
S...

Proof: We will use induction on n.

Case: n= 1. Trivial.

Case: n > 1. Let a E R(w). The simple reflections that affect the symbol n will

yield a decreasing subsequence n - 1 n - 2 ... 21. In particular, if P E SDT(w), 7rp

must contain this subsequence. Hence, P1 . = n - 1 ... 21 or n - 1... 211. Suppose

P1 = n -1 n-2 · · 21ala2 · · ak. Let P' be the standard decomposition tableau that

is obtained by removing the P1. We now have to split into the case when n is even

and when n is odd.

Subcase: is even. Let v = wsak ... slsos 2 sn_l. Then v, = n and v is

unbarred. Clearly, P' E SDT(v). Treat v as a signed permutation in Dn- 1. Consider

1(v). From Theorem 5.1, P' E SDT(r(v)) as well. Now, (v) = u for some u e Sn- 1.

Hence, by induction hypothesis P' must contain

0 000
0 000

OSSO

Subcase: n is odd. Consider the signed permutation (w). From Lemma 4.1,

we know that the first number in (w) is unbarred. From Theorem 5.1, P E r(w).

Now, let v = r(w)sak- salss 2os...Sn_. As before, v, = n but v is barred. Also,
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P' E SDT(v). If we consider v to be a signed permutation of D,_, then it is easy

to see that v = for some u E S 1. Hence, by induction hypothesis, P' contains

the tableau as in the even case. Therefore, P must contain the tableau shown in the

theorem. O

Theorem 5.14 Let w E S,. There exists a bijection 1Ž from SDTs(wsw) to SDT(w)

where ws = n n - 1 ... 321. Furthermore,

H,(x) = Z P-+sh(P) (X)
PESDTs (wsw)

where n-_1 = (n - 1, n - 2,... 2, 1).

Proof: Using the previous lemma, we can imitate

bijection · between SDTs(wsw) and SDTD(D).

but again, we observe that the Edelman-Greene

Kra§kiewicz insertion. Next, we note that

/((I(P)) = n- 1

11 (((P)) = n- 

N(4)(P)) = 211(P)

sh(D(P)) = 6n-I

the proof of Theorem 5.14 to show a

We omit the details of the bijection

insertion appears as part of the D-

+ 11(P)

sh(P)

Hence,

H,(x) = E Pn_-1 +sh(P) (X)
PESDTs(wsw)

]

This theorem has also been independently proved in [1, Equation (3.16)]

5.4 Recording Tableau and Promotion Sequence

In this section, we give analogues of results of Section 3.4. The proofs are omitted

because they are basically the same as those in that section.
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Lemma 5.15 Let P E SDT(w) and

rp)' - (R, s)

Then S is row-wise and sh(P) = sh(R) = sh(S).

Theorem 5.16 Let c E R(w) and c -+ (P, Q) and cr - (R, S) Then,

sh(Q) = sh(S)

Proof: Follows easily from the previous lemma. E

Corollary 5.17 Let w E D. Then

H.(x) = H- (x)

Proof: There is an obvious bijection from R(w) to R(w-l) given by reversing the

reduced words. This induces a bijection on (w) and R(w-) and also a bijection be-

tween SDT(w) and SDT(w-'). From Theorem 5.16, this bijection is shape-preserving.

Furthermore, from Lemma 4.31,

N(P) N(R)
211(P) - 21(R)

since rp 7ir and keeping in mind that N(c) = N(cr) for any flattened word c.

Therefore,

H.- (x) = HW(x)

Recall the definition of the delta operator, A in Definition 3.23. Given a standard

shifted Young tableau Q, A(Q) is obtained by deleting the entry 1 and then applying

jeu de taquin to fill in this empty box and finally changing all the entries accordingly

to get a standard shifted Young tableau again.
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Theorem 5.18 Let c = C1c 2 ... Cm E R(w) and

C1C2 ... Cm -+ (P, Q)

C2 . . Cm - (R, S)

Then,

S = (Q)

From here, we recall the definition of evacuation. From Definition 3.26, ev(Q)

encodes the shapes of successive applications of delta operator on Q. This enables us

to refine Theorem 5.16.

Corollary 5.19 Let c E lA(w) and

c - (P Q)

Cr - (R,S)

Then,

S = ev(Q)

For the rest of the section, we aim to give an analogue of Theorem 3.31.

analogue of Lemma 3.29 is:

The

Lemma 5.20 Let N = n2 -n and a = aa 2 ... aN_laN R(wD) and ao be a number

such that aoal a2 . aNl-1 c R(wD). When n is even,

ao = aN

and when n is odd,

a0 =

aN

0

1

if aN > 1

if aN = 1

if aN = 0
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Proof:

aoala2* · aN-1 = WD

=X aowDaN = WD

-4-r ao = WDaNWD

Using this formula, it is an easy verification of the result. O

When we translate this result to flattened words of WD, we get:

Lemma 5.21 Let N = n2 - n and c = CLC2 ... CN-1CN E R(WD). If co is a number

such that COClC2 ... CN-1 E i(WD), then co = CN.

Recall Definition 3.30. We have to alter the definition of the short promotion

sequence slightly but the basics are still the same.

Definition 5.22 Let N = n2 - n. Given T a standard shifted Young tableau of shape

(2n - 2, 2n - 4, .4, 2), we define the promotion operator acting on T as follows:

1. delete the largest entry in T

2. apply jeu de taquin into that box

3. put 0 into the box (1, 1)

4. add 1 to every box

Give the last box (i, 2n - 2i), of each row i, the label n - i. Then, the short promotion

sequence P1 (T) = (rl, r2 , . , rN) is the sequence of numbers where ri is the label of the

box with the largest entry in the tableau pN-i(T).

With this new definition, it was shown in [6, Theorem 5.16] that P gives a bijection

between standard shifted Young tableau of shape (2n- 2, 2n - 4,.. · 4, 2) and flattened

words of wD. Note that the labels given to box (i, 2n - 2i) is exactly the entry of the

same box in P, the unique standard decomposition tableau of wD.

With slight changes in the proof, we get the analogue of Theorem 3.31.

Theorem 5.23 Let c E R(WD). If c -+ (P, Q), then p(Q) = c.
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Appendix A

Open Problems

We will list a few open questions that lead from here.

1. There is a theory on projective representations of S,. The relation between

the Schur P-function and irreducible projective representations mirror that of the

relation between the Schur functions and irreducible representations for S. This

means that the Bn and Dn stable Schubert polynomials correspond to some projective

representations. What are these?

2. In the theory of stable Schubert polynomials, there is a nice characterization on

those that are themselves Schur functions. Is there a corresponding characterization

in the B and D analogues?

3. Is there a connection between the Kragkiewicz insertion and shifted mixed

insertion. On one hand, can we describe an analogue of the shifted mixed insertion for

reduced words of Bn and Dn? On the other hand, is there a generalized Kragkiewicz

insertion that applies onto sequence of numbers that allow repetition? Also, we still

seek a nicer interpretation of the shape of the insertion tableau in terms of unimodal

subsequences.

4. How would these stable Schubert polynomials be helpful in the search for

Schubert polynomials analogues for B and D?

5. Is there something similar to the stable Schubert polynomials out there for

the exceptional Coxeter groups or for any Coxeter group?
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Appendix B

Proof of Theorem 1.18

Recall the table of elementary B-Coxeter-Knuth relations:

Elementary B-Coxeter-Knuth Relations

0101

ab(b + 1)b

ba(b + )b

a(a + 1)ba

(a + 1)ab(a + 1)

abdc

acdb

adcb

badc

' 1010

a(b + )b(b + 1)

,. b(b+l1)ab

. a(a + 1)ab

. (a + 1)ba(a + 1)

adbc

acbd

dacb

bdac

(1)

(2)

(3)

a+ <b (4)

a+l <b (5)

(6)

(7)

(8)

(9)

and the reverse of these. Here a < b < c < d unless otherwise stated.

We intend to prove the more difficult direction of Theorem 1.18:

Theorem B.1 Let a, b E R(w). If a - b then they have the same insertion tableau.

Some simplifications of the proof:

1. It suffices to show this when a and b differ by an elementary B-Coxeter-Knuth

relation.
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2. Also, we can use induction on (w) to reduce to the case where a and b differ

in the last 4 letters. This means that we can write a = cd and b = ce where

d - e is one of the elementary B-Coxeter-Knuth relation listed above.

3. Let R be the insertion tableau of c. Since c - lrR, by induction, we can replace

c by TrR.

4. Again, using induction, we can reduced to the case where R consists of only one

row and c = 7FR is just a unimodal sequence. Now, we just have to prove:

Proposition B.2 Let d, e be two sequences of length 4 that are elementary B-

Coxeter-Knuth related. Let R be a unimodal sequence such that Rd is reduced.

Suppose

R4d = f R'

R -e = g R"

Then R' = R" and f g.

5. We can assume that when we insert d or e into R, all the numbers cause

bumpings.

To explain this last simplification, consider the following situation of inserting the

number a into R which does not cause bumping:

R a = Ra

We make some changes to R as follows: Take two large numbers x < y which are

bigger than a and all the numbers in R. Replace R by xRy. Then the previous

insertion becomes:

xRy a = x ot yRa

When we delete x and y, we get back the original result. This means that we can

turn every insertion into one that causes bumping.
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So, suppose we have proved Proposition B.2 whenever If = Ig = 4. Consider

the insertion when either If l or g19 < 4.

R d = f R'

R e =gt g R

Note that IR'[ = IR"I since by Corollory 1.23, IR'l and R" I are the lengths of the

longest unimodal subsequences in Rd and Re respectively and by Lemma 1.20, these

lengths are invariant under B-Coxeter-Knuth relations. This also means that Ifl =

191.

Now, extend R on both sides with sequences x and y of suitable large numbers

and apply the insertions again.

xRy4 -d = f' zR'

xRy 4 e = 9' ~ wR"

By our assuption, zR' = wR" and f' - g'. Since z and w contain the large numbers

that have been attached to R, deleting them would yield R' = R".

Clearly, f' contains f as a subsequence and g' contains g as a subsequence too.

If f' = g', then it is easy to see that f = g. If f' g', we note that they have to be

one of the elementary relations (3) - (9) or their reverses. A quick check will show

that deleting the largest number in any of these elementary relations will yield two

equal subsequences. Hence again, f = g.

Proof of Proposition B.2

Now, we will do a case by case checking of the various elementary relations. Through

out the rest of this proof, we will assume that all the unimodal sequences are reduced

words and the numbers that are to be inserted preserve this property. We will use

"I" to split R into decreasing and increasing parts. To simplify some notation, we

introduce the following terminology.

1. If during an insertion, the length of the decreasing part increases, we say that a

hijack has occured. The number that is moved from the increasing part to the
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decreasing part is said to be hijacked.

2. If 0 is to be inserted into a unimodal sequence that contains the subsequence

101, we will call this a zero insertion. This is Case 2.0 of the Kraskiewicz

insertion algorithm described in Section 1.3.

Case: (1) d = 0101, e = 1010.

Since RO101 has to be reduced, we can divide this case into four subcases.

Subcase: R= .21012-...

.. 21012... ,e_ 0101

.. 21012... 1010

= 0101 t

= 1010 o

*·.21012··

*· 21012..

Subcase: R = ... e1012 ,e > 2.

*..e1012 ...- 0101

... e1012 ... - 1010

= 0101o 

= 1010 -

... e2101...

... e2101 ..

In the previous two

Subcase: R=

subcases, f and g are exactly the sequences appearing as (1).

· 1 2cd... and 1 is the smallest number in R.

...12cd ... -0101 =

...12cd ... - 1010 =

1 < c' < d' and lc'Od' lc'd'O by (8)r.

Subcase: R =...elfg..,1 < e < f

.. efg ... -0101 

... efg ... -1010

1 t ... 20cd. I 101

lc' t ... c*... 01d*... 01

lc'Od't **... d .. 101...

i V ... 21cd ... - 010

lc' t .... l0d .. 10

1cd'O ot . . .d . . 101 . .

< g and e is the smallest number in R.

= f"g"Oh" ... elO1 ...

= f"g"h"O . . . elO11 ...

140



f/" < g < h" and f"g"Oh" f"g"h"O by (4) or (8)r.

Case: (2) d = ab(b + l)b, e = a(b

In the next three subcases, we consider

0212.

Subcase: R = .. e10123 7 ,e > 2.

*- 10123..

·. 10123··

42- 0121

4- 0212

+ )b(b + 1).

the particular situation when d = 0121, e =

= 0120 t .. 32123 .·

= 0102 t ... 32123 ..

0120 0102 by (4).

Subcase: R = ... e210123-., e > 3.

.* 210123·.

... 210123...

42_ 0121

o- 0212

= 0121 *·.**320123...

= 0212t .. 320123 ..

0121 0212 by (2).

Subcase: R= ... 3210123--.

.* 3210123...

·.. 3210123·..

g4T 0121

o 0212

= 0121 t ..*3210123...

= 0212 -t ... 3210123...

0121 - 0212 by (2).

After dealing with this particular case, we let d and e be other sequences of the form

ab(b + 1)b and a(b + )b(b + 1) respectively. In the next three subcases, the results

are still true when inserting a = 0 is a zero insertion. We just have to observe that

a" = 0 and at every step, a' and a are actually one number.
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.. (b + )b ... (b + 1)(b + 2) ... - ab(b + )b

= a"' Ot...(b+l)b... a' a (b+l)(b + 2) .. . b(b +l)b

= a"b( + )b t * ... (b + 2)(b + 1) ... a' .a ... b(b + 1)...

· (b+ )b... (b + )(b+ 2)... P- a(b+ )b(b + 1)

a" o ... (b+ )b... a' .. a .. (b+ 1)(b+ 2) P. (b + )b(b + 1)

= a"(b + )b(b + 1) .(b+ 2)(b+1) ... ' -a ... b(b+ 1)...

a" < b and a"b(b + 1)b - a"(b + 1)b(b + 1) by (2).

Subcase: R = (b + 1)(b + 2) ... but R. does not contain (b + 1)b.

·.. (b + l)(b + 2) g ab(b + 1)b

= a"b" t b+ I a' ... a -...b(b+ 2) ... (b + 1)b

: a"b"(b+1) ... b+2 ... a' a ... b(b + 1) ... b

= a"b"(b+ l)d" - (b + 2)(b+ 1) ... a'... a ... b(b+ 1)...

(b-+ 1)(b-+ 2)... a(b+ 1)b(b + 1)

= a"b" .b + 2 ... a' ...a...(b + 1)(b + 2)... b(b + l)

= a"b"d" o-t*(b +2)(b + ) ... a' ... a ... b(b + 2) ... e-- b + 1

= a"b"d"(b + 1) ..t (b + 2)(b + 1) ... a' ... a .. b(b+ 1)...

a" < b" < b + 1, d" < b + 1 and a"b"(b + 1)d" - a"b"d"(b + 1) by (4), (7) or (8)r.

Subcase: R does not contain b(b + 1).

R - ab(b + l)b

lb"" ot ... ... b ... a... b(b+ 1) ... 4 b

a"b"c"d" ut .. .c'. .b + 1 . .a' a . .b(b + 1) ...

R 4 a(b + )b(b + 1)

a"b"l - b' .... bl....a.. b+ 1... + b(b + 1)
a"b"d" ... b' ... b+ ... a'. a...b ... b + 

a"b"d"c" Ot . . . c'l . . . b + . a ' . . . a . .. b (b + 1) . . .
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a" < b" < c", d" < b" < c" and a"b"c"d" -, a"b"d"c" by (4), (7) or (8)r.

For the following subcases, the zero insertion does not arise. That is we can

assume a $: 0 or if a = 0 that R does not contain the subsequence 101.

Subcase: R = . a"la'....

R - ab(b + 1)b

= a" °... a'a... a b(b+ )b

= a"a' Vt... balb .- (b + )b

= a"a'b' ..t c'alb(b + 1) ... b

= a"a'b'a t ... c'(b + )blb + 1 ...

R 4 a(b + 1)b(b + 1)

= a" Ot a'al ... (b + )b(b+ 1)

= a"a' - ... b'alb + I ... b(b + 1)

= a"a'a t ... b'(b + )bl . b+ 1

= a"a'ab' ... c'(b + )blb + 1...

a" < a' < b', a < a' < b' and a"a'b'a , a"a'ab' by (4), (7) or (8)r.

Subcase: R = ... a"ela'... ,e < a.

R 4 ab(b + 1)b

= a" t .a'ela.. 4 b(b + )b

= a"a't .. b'ela ... b ... (b+ 1)b

= a"a'b' o-... c'ea ... b(b + 1)... b

= a"a'b'e t ... c'(b + )a ... b(b + 1)...

R - a(b + 1)b(b + 1)

= a" o-t . .a'eja ... (b + )b(b + 1)

= aa' t...b'ela ... b+l - .. P-b(b+l)

= a"a'e t ... b'(b + 1)a... b ... b+ 1

= a"a'eb' W ... c'(b+ 1)al ... b(b+ 1)...

a" < a' < b', e < a" and a"a'b'e - a"a'eb' by (7) or (8 )r.
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Case: (2)r d = b(b + l)ba, e = (b + 1)b(b + 1)a

Let us take care of the particular situation d = 2120, e = 1210.

Subcase:
.. 210 ... 2120

= b" .t *.. b' 2102... 12 0

= b" t *... b' .2101 .. 20

= b"lc"0 V-t c' ... b'... 21012...

·.. 210- .. 1210

= b" t * **b'. .2101. P- 210

= b"c" t ... c' ... b' ... 2101.. 10

= b"c"10 -t .* * * b' ... 21012...

1 < b" < c" and b"lc"O -, b"c"10 by (6)r.

Next, we want to deal with the subcases where there is a zero insertion. This can

only occur when a = 0.

Subcase: R= ... (b+ )b ... 101 ... (b+ 1)(b+ 2) -..

*. (b + 1)b... 101... (b + 1)(b + 2)... -b(b + 1)bO
= b(b + )bO t ... (b + 2)(b + 1) ... 101 ... b(b + 1) ...

.. (b + 1)b... 101 ..- (b + 1)(b + 2)... P- (b + )b(b + 1)0

= (b + )b(b + 1)0 -t .. (b + 2)(b + 1) ... 101 b(b + 1).-

Subcase: R = .. 101 ... (b+ 1)(b + 2) ... but Rt does not contain (b + 1)b.

.. 101 ... (b + 1)(b + 2)... - b(b + )bO
= b"c"(b + 1)0 O ... (b + 2)(b + 1) ... 101 ... b(b + 1)...

.. 101 ... (b + 1)(b + 2) ... - (b + 1)b(b + 1)0
= b"(b + )c"O Ot .. (b + 2)(b + 1) ... 101 ... b(b + 1).-.
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Subcase: R contains 101 but not (b + 1)(b + 2).

* o101i-- 41 b(b + )bO

- b"a"c" . .. b' .. .b + 1 .. 101 O1...b(b + 1)...
.. 101 ~2_ P (b + 1)b(b + 1)0

= b"c"a" Ot . b . .. b + 1-.. 101 .- b(b + 1)..

In the next few subcases, the zero insertion does not arise.

Subcase: R =... b'c' , b' > b + 1.

*.. b'c'. · · - b(b + )ba

b t ... b' . . .blc'. - (b + l)ba

b"c" t ... c'...b' . bl(b + 1) ...- ba

= bllc"llb t ... c . . b'... (b + 1)bl. a

= b"c"ba" t .a'. .. c'. b' ... (b + )ba ...

*· Ib'c' . (b + )b(b + )a

= b" -t ... b' .. b + llc'.. - b(b + 1)a

b"c" out ***... c' b'... (b+ )b ... (b + 1)a

b"c"a" -t ... a' .. .c' ... b' (b + l)b(b + 1) ... a

= b"c"a"b -t .. a' ... c' ... b' ... (b + 1)ba ...

b" < c" < a", b < c" < a" and b"c"ba" b"c"a"b by (4), (7) or (8 )r.
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(b + 1)(b + 2) ... - b(b + 1)ba

b" ·* 1 a (b + )blb + 2 - P- (b + )ba

= b"(b+ 1) .(bb + 2)blb + .. (2) ba

= b"(b + )b V ... (b + 2)(b + )bl .. a

= b"(b + )ba/" t .. a' . (b + 2)(b + )ba ...

S.u I(b + 1)(b + 2)... u (b + )b(b + )a

= b" ... (b + 2)(b + I)b + 2 b(b + l)a

b"(b + 1) .. ( . (b + 2)(b + )bl ... - (b + 1)a

: b"(b + )a" ot ... a' ... (b + 2)(b + 1 )blb + 1 . a

= b"(b + )a"b t... a'... (b + 2)(b + )bla...

b" < b + 1 < a" and b"(b + )ba" b"(b + )a"b by (4), (7) or (8)".

Subcase: R = : (b + )b... (b + )(b + 2).....

(b + )b... (b + )(b + 2)... b(b + )ba
= b(b+ 1)ba" -t ... (b+2)(b + 1)... a... a ... b(b+ 1)...

.(b + l)b ... (b + l)(b + 2)... - (b + )b(b + l)a

= (b+l)b(b+l)a" t (b + 2)(b + ) .. a'.. a ... b(b+1).

a" < b and b(b + )ba" - (b + )b(b + )a" by (2)r

Subcase: R = - (b + )(b + 2)... but R does not contain (b + )b.

· (b + )(b + 2) ... 4 b(b + )ba

= b" ... b+1 ... b(b+2) ...- (b+l )ba

b"(b + )c"a" t ... (b + 2)(b + 1)... a' a ... b(b + 1)...

· (b + )(b + 2)... - (b + )b(b + )a

= b" ... b + 2 ... (b + )(b + 2) ... b(b + )a

b"c"'(b+l)a" + .. (b+ 2)(b+1) .a' ... a ... b(b + 1)...

aIf < c" < < b + and b"(b + )c"a" bc"(b + )a" by (6)r.
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Subcase: Rt does not contain (b + 1)(b + 2).

R n b(b + )ba

= b"c" o-t ... c' .* b' b(b + 1) ...- ba

= b"c"d"a" t .. c'l ... b' . . b + 1... a' . . .a ... b(b + 1) ...

R 4 (b + 1)b(b + 1)a

= b"t-...b'... I...b+1 ... - b(b+l)a

= b"d" ... b'...b+1 ...... b (b+ I)a

-b"d"c" t ... cl ... b, ... b + 1 ...I... b(b + 1) ...t a
= b"d"c"a" t ... c'. b' .. b + 1... a' . .. a ... b(b+ 1) ...

a" < d"< < b c" and b"c"d"a" b"d"c"a" by (6)r.

We will now give a more unified approach to the remaining elementary B-Coxeter-

Knuth relations (3) - (9) and their reverses.

Observe that in all these relations d and e differ only by switching two adjacent

numbers x and y. Moreover, x < y - 1. This leads us to examine the insertions of xy

and yx into a unimodal sequence S in detail. Through out the rest of this, we will

assume that < y - 1.

We already have some results about inserting xy and yx from Section 2.2. We

will built on this. From the proof of Lemma 2.8, by re-examining the cases where

two numbers are bumped out, we conclude that:

Lemma B.3 Let x < y and suppose

S xy = x" -S' y
= x,y,, tS/,

then x" < y" and during S' 4- y, no hijack occurs.

Proof: We only need to show that no hijack occurs during the insertion S' 4- y.

Case: S - x is a zero insertion. In this case, S' contains the subsequence 101 and

during S' 4- y, no hijack occurs.
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Case: S - x is not a zero insertion and x is in S'. Now, x is the smallest number

in S' and

SI = ... x'... xi ...

When we insert y into S', it bumps some number z to the right of x. Clearly, z > x'

and when it is inserted into S'. it bumps x' or some number to the left. Therefore,

x is left untouched and no hijack occurs.

Case: x is in S't. Note that x' is in S'. and x' > x. As in the case above, during

S' - y, y bumps some number z to the right of x. So, z > x' and the same argument

applies. O

Next, we need to find out how inserting xy relates to inserting yx. To do this, we

divide the investigation into two big parts, depending on whether S - x is a zero

insertion.

Suppose S - x is a zero insertion. Then S contains the subsequence 101 and

x = 0. Let

S y o . . ..

S

where y', y" are the numbers that are bumped out of S , S respectively. Recall

from Section 1.3 that y' = y + 1 when the increasing part of S contains y(y + 1)

and otherwise y' is the smallest number in S which is bigger than y. Similarly,

y" = y'- 1 if St contains y'(y'- 1).

So, comparing the insertions of Oy and yO into S, we have

s Oy = 0OtS 4y

= Oy"I S'

S yO = y"-tS'C-O

The outcome of S P- yO depend on whether S' contains the subsequence 101.

Lemma B.4 Let x, y, S, S' be as above.
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S gr Oy

S - yO

= Oy"// t S/

= y"O t S'

where y" > 0.

2. If S' does not contain 101, then when we insert yOvu and Oyvu into S where

u < v < y, we get

S 4- Oyvu

S 4r yOvu

= 0101 tS"

= 1010 o- S"

Proof: If S' contains 101, then S' D 0 = 0 V S' and the result follows.

If S' does not contain 101, then y" = 1 and

So,

S 4- Oyvu = 01 ... y'011 .l. 4 vu

= 010 -". y'v'l..-v ... -v u
= 0101 ... y'v'u' .. u...V...

S ~4 yOvu = 1 ... y O1... OVU

= 10t ... y'lI ... vu

= 101 ...--y'v'O.... .. U

= 1010 t .-.. 'v'u ...V...

O

Suppose S - x is not a zero insertion. Let

S "ix

S ~4r y

// out

- X t- - ... x ...
= y -...y...y ...

where x', y' are the numbers that are bumped out of St by x, y respectively and x", y"

are the numbers that are bumped out of St by x', y' respectively.
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There are several different outcomes. We have divided these into six lemmas.

Lemma B.5 If x < y - 1,x' < y'- 1, x" < y" -1 and provided that during the

insertion S - y, x' is not hijacked, then

S 4P- xy

S r! yX

= Xy OLt S'I

= y"x" - S

where x" < y".

Proof: It suffices to see that

S= -··y " ·. x" ·. x' · y ' ·...

and verify the insertions. o

Lemma B.6 Suppose x < y - 1, x' < y' - 1, x" = y" and suppose also that during

the insertion S - y, x' is not hijacked. Then, when we insert xyv into S or yxv into

S where x < v < y, we get

S ~P XYv

S tly Xv
= X XV" S

= X IV -- SI

where v" < x" < x'.

Proof: As in the proof of the previous lemma, we find that

Swhere v" When we insert yv and yv into , we get

where v" < x". When we insert xyv and yxv into S, we get

x ot ... v . . . X. y
= .. X * *- *... P-* V
= XXV - .**yV ... ... V ...
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S f yxv = X" yv . .. x . ..y xv
= IIVI ot I I * X

= xV" o .*Y .y' .x. . . . V 

= XV X -y ' ' '... J.... v '...

as desired. [l

Lemma B.7 If x < y-1, ' < y' - 1, x" = y" - 1 and if during the insertion S - y,

x' is not hijacked, then x' = x" + 1. Furthermore, when we insert xyv into S or yxv

into S where x < v < y,

S - xyv = (x'-l)x'(x'- 1) S'

S 4_ yxv = x'('- 1)x' t S'.

Proof: In order that x" = y" - 1, S must contain (x" + 1)x". Since x' must bump

x", we are forced to have x' = x" + 1 and

S =... '(x'- 1) .. x' * y' ...

So, applying the insertions,

S 4 xyv = X -1l ... x'(x') - y' yv

= (x - 1)x' . -y'(x'- .1)..x...y... - v
= (x'- )x'(x'- ) t... yv 'V X...V ... 

S - yxv = x t ... y(x' - ... x' y . xv

= x'(x'- ) *-..y' x x*.y.. * v
= X'(x'- 1)x' YV ... X ... V ... . ..

Lemma B.8 If x < y - 1, x' = y' and y not hijacked when R - y, then x" = y".

Furthermore, when we insert xyv into S or yxv into S where x < v < y, we get

S xyv = x"v"w" OS'

S yxv = x"w"v" t S'
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where w" < x" < v"

Proof: It can be shown that

S=.X ...x v' ...

with x' < v'. Next,

S Xyv = Xot .x'**X.v XV'.. .- yv-XV"W tt e-t ' . . y. . x v. Y ..

S4~- yxv = x V...x' ... y... X- ..
S yX = w "t .X ". ..'y . . XV

=- /w/ .. WX .. y* XV- * * Y V

= X-W// w . * VI' * y . .. XV .. .

where w" < x" < v". L[

The previous lemmas dealt with the cases when some number is not hijacked. The

next two are when some number is hijacked.

Lemma B.9 If x < y- 1, x' < y'- 1 and during S 4- y, x' is hijacked, then x" = y".

Furthermore, when we insert xyvu or yxvu into S where x < v < y, u < v < y, and

inserting u does not involve the special insertion, we get

S xyvu = "x'xw S'

S - yxvu = x"'wx S't

where x < x' < w and x" < x' < w.

Proof: In order that x' be hijacked when we insert y into S, we need
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S P' .,,

S 41 yxvu

= x" O, * ... y'Xw ...y . * y vu

=- xiIX o .. YW ..x .w ... y... U
= x qx t *' y'v'w . * * * V * * y * * * ~L L

-= x"W OI2t ... yv'vu1 ..] .v. .. y...

= x/ o.y''. IW ... y. . - xvu

= x/"x' ...y'wX ... y... - vu
= xI"x/W O iVXJ...i ... v ... y V,

= xIx'WX V. yVVUl ... v... y...

[

Lemma B.10 If x < y- 1, x' = y' and if during S - y, y is hijacked, then x" = y".

Furthermore, when we insert xyvu or yxvu into S where x < v < y, u < v < y and

inserting u does not involve the special insertion, we get

S 4- xyvu

S 4- yXVU

= x"w"xv" S'

= x"w"v"x S'

where x" < w" < v",x < w" < v".

Proof: During S - y, y is hijacked. Since x < y, during the insertion of x into S, x

is also hijacked. There are two possible scenarios. Either x is smaller than all other

numbers in S, so that

S=o... x"i o Ix' w...

or the smallest number in S is bumped out during S - x which means

S = ... x"lx'w...
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For the first case.

S4ThXyv = X ".'w X' X"|W .. VU

= xiiii 'L..w. .. x'... xly... V

x"W'xv -l. . W... ... I.'. ..VU'
11 YJZI II t . .. -. * W * * X l* ** *-

S -yxvu =Lt x * X YW XvU

= XrW" W ... X .... yxlV - Vu

= XIIWIIv . V W... X ... yxIv... n u

XIlllll t * V...*W.. W . .yv 1l ...

For the second case, the results are the exactly the same except that

S' = ... W... ..' yvUI -

We are now ready to apply these lemmas.

Case: (4), (7) and (8)r

Let d = uvxy and e = uvyx be related by (4), (7) or (8)r. These relations share

the inequalities u < v < y and x < v < y.

R 4 uv = u"v" 2_' '
S

v appears in S and v' appears in S. From Lemma B.3, u" < v" < y" and no hijack

occurs when we insert y into S.

If S - x is a zero insertion, then from Lemma B.4(1), f = u"v"()y",g = u"v"y"O

and they are related by (4), (7) or (8)r.

If S P4 x is not a zero insertion, we find x < v < y, x < v' < y' and x" < v" < y".

This fits the hypothesis of Lemma B.5. So, f = u"v" x"y" and g = u"v"y"x" where

u" < V" < y" and x" < v" < y". Clearly, this is an elementary relation of type (4), (7)
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or (8)r.

Case: (3), (5), (6), (9) and (9)r. Let d = uxyv and e = uyxv. We observe that

in all these relations, u < y and x < v < y. Let S be the resulting sequence after

inserting u into R. From Lemma B.3, no hijack occurs when we insert y into S since

u < y . So, if S -_ x is not a zero insertion, we can apply Lemmas B.5, B.6,B.7 and

B.8 to cover all the possible scenarios. The sequences that are bumped out in each

case are:

* From Lemma B.5, u"x"y"v"/ u"y"x"v" by (3), (5), (6), (9) or (9 )r as u" < y"

and x" < v" < y".

* From Lemma B.6, u"x"x'v" u"x"v"x' by (4), (7) or (8 )r since u" < x" < x'

and v" < x" < x'.

* From Lema B.7, u"x'(x' - 1) x' u"(x' - 1)x'(x' - 1) by (2) since u" < x' - 1.

* From Lemma B.8, u"x"v"w" u"x"w"v" by (4), (7) or (8 )r as u" < x" and

W < < ".

If S 4 x is a zero insertion, then from Lemma B.4(1), f = u"Oy"v" and g =

Case: (6)r d = cdba, e = cbda.

We return to the case by case analysis. We first deal with those that contains a

zero insertion.

Subcase: d = cdbO, e = cbdO, b > 1

*. 101 ... cdbO

- c"d"b"O -t .. d' . . .c' . . .b' . .101. . .b . .. c . . .d . . .

.. 101... cbdO

-= c"b"d"O .t ..d' ..c' ...b' ..101...b...c...d...
0 < b" < c" < d" and c"d"b"O c"b"d"O by (6) r.

155



Subcase: d = cdlO, e = cldO

*. lOb'0.- 4_ cdlO

= c"d"b"O t . *d'. -c'.. b'.- 101 ... c...d..

.- lOb' .. . cldO

= c"b"d"O t .. d' .. c' ...b'.-- 101 ...c .. d..

0 < b" < c" < d" and c"d"b"O , c"b"d"O by (6 )r.

In the next few subcases, c is hijacked when it is inserted.

Subcase:

b" < c" < c' < b' and

Subcase:

R 4- cdba

= C ... c' ... cl - dba

= c"c' ogt ... d' cl... d P ba

= c"c'b" -. . .d'b' ...cbl ... d . a

= c"c'b"b' gt ... d'a'... cba... d...

R ~4 cbda

= CC' ... b' cbl ... da

= c"c'b' O-t .. d' ..cbl ... d... a

= c"c'b'b" t ... d'a'.. *cba... d...

c"c'b"b' c"c'b'b" by (8 )r.

R 4T cdba

= C" t -.. c' ... cl dba

= c"d" t... d'... c'... cl ... d... ba

= c"d"b"t ... d' ... b' ... cbl ... d ... a

= c"d"b"a" V2t ... d... a' ...b' c' c b a d

R 4T cbda

= l - V c"b" -... b' c' .cbl ... da

= c"b"d" -t .. d'- .b'.. c'.. cbl... d... P- a

= c"b"d"a" t ... d' ... a' ... b' ...c' ... cba...d
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c" < b" < a" < d" and c"d"b"a" - c"b"d"a" by (6).

Subcase:
R - cdba

= c"b" Ot ... d' ... c'. cl ... d ... ba

= c"b"a" V-t ... d'b'. .cbl . .d 4 . . a

c"b"a"b' ?t -.. d'a' . .c' . cba ... d...

R 4 cbda

= c"b" ... b' ... c' ... cbl... da

= c"b"b' t .. d' ... c' ...cb...d.. a

= c"b"b'a" t ... d'a' .. . c'. cba ... d ...

c" < a" < b" < b' and c"b"a"b' c"b"b'a" by (7).

Subcase:

·.. c'(c' - 1)... 4 cdba

C/-1 .. C(c - 1) ,. cl ... dba

(c - 1)c -- ... d'( - 1) ... cl d. ba

= (c- 1)c'(c'- 1) -... d'b' ... cbl ... d .. - a

(c'- )c'(c'- )b' ... d'a' ... c' ... cba d.
... c'(c' - 1) ... cbda

(c'- 1)c' ... b'(c'- 1) ... cb ... da

(C (c- 1)c'b' t ... d'(c ' - 1) ... cbl ... d ... a

= (c'- 1)c'b'(c'- 1) ... d'a'. c' . . . cba .. d...

b' > c' and (c' - )c'(c' - 1)b' - (c' - l)c'b'(c' - 1) by (4).

Subcase: c appears in the increasing part after insertion.

It can be verified that b' < c' < d' and b" < c" < d". We can apply Lemma B.5

and f = c"d"b"a", g = c"b"d"a" where a" < d". So, f g by (3), (5), (6), (6 )r, (9) or

(9) r

Case: (4)r, (7)r, (8)
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Now, d = xyvu, e = yxvu where x < v < y and u < v. We let S = R. If S 4- x is

not a zero insertion, the various situations that can arise are covered by Lemmas B.5,

B.6,B.7, B.8, B.9 and B.10.

* From Lemma B.5, f = x/"y"v"u and g = yx"v"u ". By inspection, we observe

that x" < v" < y" and u" < v". Therefore, f - g by (4 )r, (7 )r or (8).

· From Lemma B.6, f = x"x'v"u"It and g = x"v"x'u". Since v" < x" < x' and

u"/ < v", f - g by (3), (5), (6), (6)r, (9) or (9)r.

* From Lemma B.7, x'(x' - )x'u" (x' - 1)x'(x' - 1)u" by (2 )r as u" < x'.

* From Lemma B.8, x"v"w"u" - x"w"v"u" by (3), (5), (6), (6 )r ., (9) or (9 )r since

w" < r" < v" and u" < v".

* From Lemma B.9, x"x'xw - x"x'wx by (4), (7) or (8 )r

* From Lemma B.10, x"w"/xv" v x"w"v"x by (4), (7) or (8 )r

If S _ x is a zero insertion, then from Lemma B.4, we either have

* f = Oy"v"lu", g - y"Ov"u" where u" < v" < y". So, f g by (4)r or (8) or

* f = 0101,g = 1010.

This ends the proof of Theorem 1.18.
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