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The purpose of this example is to 

• Work a concrete problem using a wavefunction involving more than one particle, 

•	 Demonstrate how to deal with issues involving identical particles, in particular 
symmetric and antisymmetric wavefunctions, 

• Increase your understanding of the concepts of spin and composite particles, 

•	 Point out that identical particle effects can have a profound influence on the 
results of simple experiments such as Raman scattering, 

•	 Show that early experiments of this sort helped clarify our understanding of the 
composition of the nucleus. 

Earlier in the course we studied the rotational motion of diatomic molecules. We 
used the canonical ensemble to determine the probability that a molecule would be 
in a particular rotational energy level in thermal equilibrium. The new feature of 
that example was the influence of the degeneracy of the energy levels. Recall that the 
rotational energy levels are indexed by the “magnitude”1 of the rotational angular 

¯momentum, l, such that εl = kΘRl(l + 1) where ΘR ≡ h2/2I⊥k is the “rotational 
temperature” of the molecule. If there were only one quantum state associate with 
each energy (no degeneracy) the probability that a given energy level was occupied 
would fall off monotonically with increasing energy. But these states are degenerate: 
there are 2l + 1  different rotational states which have the same energy εl. When this 
is taken into account an interesting effect occurs when T >> ΘR. The occupation of 
the energy levels first increases with increasing energy before it finally begins to fall 
off at high energies. One can see this clearly in the Raman spectrum of the molecule. 
Each line in the spectrum corresponds to the molecule being excited from an l to an 
l + 2  rotational state with a corresponding decrease in the frequency of the scattered 
photon. The intensity of the line is proportional to the probability that the lth energy 
level is occupied. Figure 1 shows the Raman spectrum to be expected under these 
circumstances. 

1Why the quotes? Recall that the eigenvalues of the operator representing the square of the 
angular momentum, � L, are l(l + 1)¯L · � h2. Thus the true magnitude of the angular momentum is 

l(l + 1)h̄. l is more properly an index used to identify the total angular momentum state. However 
it has become commonplace to refer to l as the magnitude of the angular momentum. 
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ROTATIONAL RAMAN SPECTRUM OF A DIATOMIC MOLECULE
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Figure 1 

In this part of the course we have discussed the concept of spin, an intrinsic angular 
momentum associated with elementary particles and, as long as one does not change 
their internal degrees of freedom, composite particles as well. The spin adds another 
independent variable to the wavefunction of the particle in addition to those necessary 
to specify the particle’s spatial state. If there are no cross terms between the spatial 
and spin variables in the Hamiltonian, the energy eigenfunctions can be written as 
a product of a spatial and a spin part: ψtotal(�r, s) =  ψspace(r)ψspin(s). The spin 
most often enters the Hamiltonian through the interaction of its associated magnetic 
moment with an externally applied magnetic field. In such a case if there were no 
applied magnetic field the Hamiltonian would not have any spin contribution and the 
factorization indicated above would be appropriate. 

For a  given value of the “magnitude” of the spin angular momentum, s, there are 
2s + 1  possible values for the component of the spin along any particular direction. 
In the absence of a magnetic field this gives rise to a 2s + 1  fold contribution to the 
degeneracy of the single particle energy eigenstates. If the degeneracy of the spatial 
states alone is d, the total degeneracy of the energy level would be (2s + 1)d since 
any one of the spatial states can be paired with any one of the spin states to form 
a distinct quantum state of the particle. The simplest example is the two-fold spin 
degeneracy of the single particle states we use to describe a non-interacting electron 
gas. 
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Now let us go back to the problem of the rotational motion of diatomic molecules. 
For simplicity we are going to restrict ourselves to homonuclear diatomic molecules. 
Homonuclear refers to the fact that not only are the two atoms in the molecule the 
same, but they are the same isotope of that atom. Using as an example the two stable 
isotopes of hydrogen, H and D, H-H and D-D are homonuclear diatomic molecules, 
H-D is not. 

The atomic nucleus is a composite particle and, as such, it has a spin with some 
magnitude which we will designate as I. I will be an integer if the sum of the number 
of protons and neutrons in the nucleus is even, a half-integer if the nuclear mass 
number is odd. Fortunately, to a high degree of accuracy the nuclear spins interact 
neither with themselves nor with the electrons in the atoms. This has two important 
consequences. First, the nuclear state of the molecule is not changed as it rotates, 
and second, the energy eigenfunctions of the molecule can be factored into spatial 
and spin parts. 

How many different spin states can the molecule have? Although the I for each of 
the two nuclei is the same, each nucleus could be in any one of its 2I + 1  states of 
mI . Thus there are (2I + 1)2 possible nuclear spin states for the molecule. 

“So what’s the big deal?” you may ask. “There is a spin degeneracy and you have 
shown us how to calculate it. The energy eigenfunctions factor so the degeneracy is 
just the product of that due the spatial part, 2l + 1, times that due to the spin part 
2I +1. The scattering of a photon does not change the spin state, so the intensities of 
all the lines in Figure 1 are multiplied by the same factor and the resulting spectrum 
looks identical to what we had before. Why all the fuss?” 

The added complication in the case of homonuclear diatomic molecules — the origin 
of the “fuss” — is that we are dealing with a system containing two identical particles, 
the nuclei. The total wavefunction2 must be symmetric or antisymmetric with respect 
to their interchange: symmetric if I is integer, antisymmetric if I is half-integer. We 
will see below that this requirement causes a correlation between the rotational and 
spin states of the nuclei. The rotational states do not have a common spin degeneracy 
as assumed in the argument in the previous paragraph. 

2ψtotal = ψtotal(rn1 , I
� 
n1 ; rn2 , I

� 
n2 ; re1 , �s1; · · ·  ; re2N , �s2N ). Here n1 and n2 refer to the two nuclei. 

rei and si refer to the position and spin of the ith electron. N is the number of electrons in each 
atom. The 2 nuclei are identical. The 2N electrons are identical. We are focusing on the 2 nuclei. 
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The spatial location of the nuclei is given by the rotational part of the wavefunction 
ψl,ml (r) where r is a vector from the position of one nucleus to that of the other. We 

will indicate the spin contribution to the total nuclear wave function as ψspin(I� 
1, I� 

2). 
Thus 

ψnuclei(�r, I
� 
1, I� 

2) =  ψl,ml (r)ψspin(I� 
1, I� 

2)) 

Note that the energy of the state depends only on l, so there may be a substantial 
degeneracy of the energy levels, and ψnuclei(�r, I

� 
1, I� 

2) must be symmetric or antisym
metric with respect to the interchange of the two nuclei. Note that exchanging the 
positions of the two nuclei causes r to be replaced by −r. Now it happens that all 
angular momentum eigenfunctions with even l are even under such a replacement 
(they are said to have even “parity”) but the angular momentum eigenfunctions with 
odd l change sign under such a replacement (odd parity). Therefore the ψl,ml (r) we 
are using already exhibit by themselves the sought after symmetric or antisymmetric 
behavior. 

Note that the product of two symmetric or two antisymmetric functions will be sym
metric, and the product of a symmetric and antisymmetric function will be antisym
metric. Thus to obtain the proper statistics for the nuclear wavefunction we must find 
spin wavefunctions which are themselves either symmetric or antisymmetric. One way 
of doing this is as follows. First take one of the single spin eigenfunctions of nucleus 1. 
It will be indexed by some value for the z component of the spin mI1 . Now multiply 
it by a single spin eigenfunction of nucleus 2 with the same value of m. The product 
has the form α(1)α(2) and is symmetric with respect to the exchange of nuclei 1 and 

2. One can find 2I +1 symmetric two particle spin wavefunctions ψspin(I� 
1, I� 

2) in this 
way. Now make a product of single particle spin states using different values of m for 
each of the two particles. There will be (2I +1)2I/2 possible ways of doing this since 
the order of choice does does not matter. The resulting simple product wavefunction 
would look like α(1)β(2) and would not have the required symmetry. However, by√ 
forming the linear combinations (α(1)β(2) ± α(2)β(1)/ 2 we can generate another 
(2I + 1)I symmetric two particle spin wavefunctions and (2I + 1)I antisymmetric 
two particle spin wavefunctions. Note that we now have a total of (2I + 1)2 differ

ent choices for ψspin(I� 
1, I� 

2), all of which have exchange symmetry. The ratio of the 
number of antisymmetric spin states to the number of symmetric spin states is given 
by the function f (I) =  I/(I + 1). 
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Finally we can determine the actual degeneracy of the rotational energy states of our 
homonuclear diatomic molecule. 

If I is half integer, ψnuclei = ψl,ml ψspin must be antisymmetric. 

• If l is even, ψspin must be antisymmetric. There are (2l + 1)(2I + 1)I states 

• If l is odd, ψspin must be symmetric. There are (2l + 1)(2I + 1)(I + 1) states 

If I is an integer, ψnuclei = ψl,ml ψspin must be symmetric. 

• If l is even, ψspin must be symmetric. There are (2l + 1)(2I + 1)(I + 1) states 

• If l is odd, ψspin must be antisymmetric. There are (2l + 1)(2I + 1)I states 

Note that in either case, integer or half integer I, as one moves from one energy level 
to the next, incrementing l by one each time, the spin contribution to the degeneracy 
alternates between two values whose ratio is given by f (I) =  I/(I + 1). Thus in 
the rotational Raman spectrum of homonuclear diatomic molecules there will be two 
interlaced sets of lines. One set will be weaker than the other by the factor I/(I +1). 

Consider the special case where I = 0. The spin part of the nuclear wavefunction can 
only be symmetric. On the other hand, the entire nuclear wavefunction must also 
be symmetric under the exchange of these two Bosons. Thus the rotational part of 
the nuclear wavefunction must also be symmetric. The rotational states with odd l 
can never be excited. Half of the lines in the Raman spectrum will disappear. The 
spectrum will look like that in Figure 1; however, if one measured the spacing between 
the observed lines it would be 8kΘR/h rather than 4kΘR/h. This is actually the case 
in O2 since the nuclear spin of 16O is zero. 

The most famous case is that of N2 where I = 1  for 14N. Since I is integer the nuclei 
are Bosons and the entire nuclear wave function must be symmetric with respect to 
their exchange. For I = 1  there are 6 symmetric spin states for the two nuclei and 3 
antisymmetric spin states. The rotational ground state (and all other even l states) 
will have a 6 fold spin degeneracy; the next highest energy state (and all others with 
odd l) will be have a 3 fold spin degeneracy. In this case f (I) =  I/(I + 1) = 1/2 
and the line with the smallest shift, which arises from transitions out of the ground 
state, will belong to the set of lines with the greater of the two spin degeneracies. 
The resulting rotational Raman spectrum looks like that in Figure 2. 
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Figure 2 

The alternation in the intensities of the rotational Raman lines in N2 was first observed 
experimentally by Rasetti [F. Rasetti, Proc. Nat. Acad. Am. 15, 411 (1929)]. The 
spectrum was obtained using a mercury arc lamp as a source, a modest spectrometer 
for dispersion, and was recorded on a photographic plate. It had no where near the 
resolution or signal to noise ratio that can be obtained today with laser sources, double 
grating spectrographs, and phototube detectors. None the less, he determined that 
the lines alternated in intensity by a factor of 2. It was Walter Heitler and Gerhard 
Herzberg [W. Heitler, G. Herzberg, Naturwiss. 17, 673 (1929)] who recognized that 
this implied that I = 1  and thus required that the nuclei of nitrogen obey Bose 
statistics. This was puzzling, since it was thought at the time that the nucleus of 
14N contained an odd number of spin 1/2 particles: 14 protons and 7 electrons. The 
problem was only resolved after the discovery of the neutron three years later. 
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