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PERTURBATION THEORY 

Given a Hamiltonian 

( ) = H0 + V tH t  ( ) 

where we know the eigenkets for H0 

H0 n = En n 

we often want to calculate changes in the amplitudes of n induced by V t( ) : 

ψ t( ) = ∑cn ( ) nt 
n 

where 

ck ( ) = kψ t( ) =t k U  t, t0 ( )ψ t0 ( ) 

In the interaction picture, we defined 

bk (t) = k ψ I = e+iω kr ck (t) 

which contains all the relevant dynamics. The changes in amplitude can be calculated by solving 

the coupled differential equations: 

∂ −i i t t 
∂t 

bk = 
= ∑e− ωnk t Vkn ( )  bn ( )

n 

For a complex system or a system with many states to be considered, solving these equations isn’t 

practical. 

( )  as:Alternatively, we can choose to work directly with UI (t, t0 ), and we can calculate bk t

bk = k U I (t,t0 )ψ (t0 ) 

where 

I ( τ τU t, t0 ) = exp+ 



− 

= 

i 
∫t

t

0 
VI ( )  d 


 

Now we can truncate the expansion after a few terms. This is perturbation theory, where the 

dynamics under H0  are treated exactly, but the influence of V t( )  on bn  is truncated. This works 

well for small changes in amplitude of the quantum states with small coupling matrix elements 

relative to the energy splittings involved. 
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Transition Probability 

Let’s take the specific case where we have a system prepared in A , and we want to know the 

probability of observing the system in k at time t , due to V t( ) . 

2
Pk ( ) = b t  k ( ) =t k ( )  b t  ( ) I 0 k U t, t A 

b t  τk ( ) = k exp+ 


− 

= 

i 
∫t

t

0 

dτ VI ( )

 A 

t 
= 

ik ∫ A 
= 

− dτ 
t0 

2 

k VI ( )  Aτ 

+ 

 

− 

= 

i 

 ∫t

t

0 

dτ2 ∫t 

τ 

0

2 dτ1 k VI ( )  VI (τ1 ) A + …τ2 

using 

k VI t( )  A = k U0
† V t  ( )( )  U0 A = e−iω Ak t VkA t 

( )  = δkA − 
i 
∫

t
dτ1 e

− iω A kτ 1 VkA τ1bk t ( )  “first order” 
= t0 

2 
+∑ 

 − 

= 

i 
 
 ∫t

t 

0 

dτ 2 ∫
τ 2 dτ1 e− iωmk τ 2 Vkm τ 2 ( )  + …  “second order” 
t0 

( )e−iω Amτ1 VmA τ1
m 

This expression is usually truncated at the appropriate order.  Including only the first integral is 

first-order perturbation theory. 

Note that if ψ 0 is not an eigenstate, we only need to express it as a superposition of eigenstates, 

but remember to convert to ck t( ) = e−ω k t bk (t). 
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Example: First-order Perturbation Theory 

Vibrational excitation on compression of harmonic oscillator. Let’s subject a harmonic oscillator 

to a Gaussian compression pulse, which increases the frequency of the h.o. 

H =	
p2 

+ k t
2m 

( )  
x 
2

2 

A′ = A / 2πσ 

− )2 
( ) = k0 + δk t ( ) = A′ exp 


− 

( t t0 k t  ( )  δk t	
 2σ2 

 

p2 2 − 
= ( ) = 

2m 
+ k0 

x
2 

+ 
A

2 
′x2 

exp 



− 

( t t0 )
2 




H H0 + V t 
���	� 
 

H0 
���� 2σ2 

�	���
 
V t( )  

If the system is in 0 at t0 = −∞ , what is the probability of finding it in n at t = ∞  ? 

for n ≠ 0: bn t( ) = 
−i 

∫
t
dτ Vno ( )  eiω noτ 

= t0 

t∞ 
=

−i 
A n x2 0′ ∫−ω

dτ eiω no τe 
= 

−τ 2 
2σ 2 

En = =Ω0 (n + 1); ωno = nΩ02

b t  2 i A n x 0 − ′ 
= 

t∞ 
dτ eniΩ0τ−τ2 / 2σ2 

n ( ) = ∫−∞ 
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+∞ eax2 + +c dx = 
a 

−π e c− 1 b2 
bx 4 a∫−∞ 

−i
A n  x2 0 e−2n2σ 2 Ω 20 / 4= 

= 

What about matrix element? 

= )2 = 
x2 = 

mω0 
(a + a† = 

mω0 
(aa + a†a + aa† + a†a† ) 

First-order Perturbation Theory won’t allow transitions to n = 1, only n = 0  and n = 2 .  . 

2 2 x 0 = 
= 

mΩ0 

2 

So, 

2 2 2

b2 =
− 2i A e− σ Ω0 

mΩ0 

2 2

P2 = b2 
2 = 

2 A2

2 e
−4σ Ω0 

m2Ω0 

Significant transfer of amplitude occurs when the pulse is short compared to the vibrational period. 

Validity: First order doesn’t allow for feedback and bn can’t change much from its initial value. 

2for P2 ≈ 0 A2 << m2Ω0 

A2 << k0 
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First-Order Perturbation Theory 

A number of important relationships in quantum mechanics that describe rate processes come from 

1st order P.T.  For that, there are a couple of model problems that we want to work through: 

(1) Constant Perturbation 

ψ t0( )  = A . A constant perturbation of amplitude V  is applied to t0 . What is Pk ? 

V(t) V t( ) = θ(t − t0 )V 

 0 t < 0 
=  

V t  ≥ 0 
t0 t 

To first order, we have: 

bk = δkA − 
i 
∫

t
dτ eiω kA (τ − t0 )VkA VkA  independent of time 

= t0 

†
0 k U V U0 

iA = Ve ωkA ( t−t0 ) 

= δkA +
−i VkA ∫

t
dτ eiω kA (τ −t0 ) 

= t0 

= δkA +
−VkA [exp(iω kA(t − t0 ))− 1]Ek − EA 

using ei∅ − 1 = 2iei∅ 2 sin∅ 
2 

= δkA +
−2iVkA e

iω k A (t −t0 )/2 

sin(ωkA (t − t0 )/ 2)
Ek − EA 

For k ≠ A  we have 

2 

Pk = bk 
2 = 

4VkA 
2 sin2 1 

2 ωkA (t − t0 )Ek − EA 

or writing this as we did in lecture 1: 
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V 2 
Pk =

∆2 sin2 (∆t / =) where ∆ =  
Ek 

2 
− El 

Compare this with the exact result: 

V2 

Pk = 
V2 + ∆2 sin2 ( 2 V t / + 2 ∆ =) 

Clearly the P.T. result works for small V. 

The highest probability of transfer from A  to k will be when their energies are the same 

(Ek − EA = 0). 

2 2 2 

Area scales linearly 
with time.( 02 /  t tπ 

klV / = 

)− 

t 

− π= − π= 0 2π= 4π= Ek − El4 2 
− − − −t t0 t t0 t t0 t t0 

Long time limit: The sinc2(x) function narrows rapidly with time giving a delta function: 

2 

tlim Pk ( ) = 
2π VkA δ (Ek − EA )(t − t0)

t→∞  = 
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Time-dependence: 

kl/Vπ= t 

(exact solution for Ek=El ) 

Ek-El ≥ Vkl 

Ek=El 

Pk(t) 

0 
0 

Ek-El >> Vkl 

Time dependence on resonance (∆=0): expand sin x = x − 
x 
3!

3 
+ … 

2
V2  ∆t ∆3 t3 

Pk =
∆2 


 = 

− 
6=3 + …

 

V2 

t2= 2= 



  

 

 


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(2) Harmonic Perturbation 

Interaction of a system with an oscillating perturbation turned on at time t0 = 0.  This 

describes how a light field (monochromatic) induces transitions in a system through dipole 

interactions. 

V t( ) = V cosωt = −µE0 cosωt 

observe 
VkA (t) = VkA cosωt 

V(t) 

τ 

VkA [eiω t + e−iωt ]= 
2 

t0 t 

To first order, we have: 

t 
kAbk = ( )  it −

= 
= I k ψ ∫t0 

dτ VkA ( )τ eiω τ  

−iVkA ∫t

t

0
d e

 τ i(ω +ω)τ − ei(ω −ω)τ = kA kA 

2= 

−VkA 
 ei(ω +ω)t − ei(ωkA +ω)t0 ei(ω −ω)t − ei(ωkA −ω)t0 kA kA 

=  + 2=  ω + ω ωkA − ω kA 

i 
2 

θ1Setting t0 → 0  and using eiθ − =  2ie sin 2 
θ 

kA−iVkA 

 
ei(ω −ω)t / 2 sin (ω − ω) t / 2 + 

ei(ωkA +ω)t / 2 sin (ωkA + ω) t / 2 
kAbk = 

=  ω − ω ωkA + ω kA 

Notice that these terms are only significant when 

ω ≈ ωkA : resonance! 
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 First Term


max at: ω = +ωkA


Ek > EA


Ek = EA + =ω


Absorption 

(resonant term) 
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Second Term


ω = −ωkA


Ek < EA


Ek = EA − =ω


k Stimulated Emission l 

l (anti-resonant term) k 

For the case where only absorption contributes, Ek > EA , we have: 

2 
2 VkAPkA = bk = 

=2 (ω − ω)2 sin2 
 

1
2 (ωkA − ω) t  

kA 

2 2E0 µkA 1or 
= (ω − ω)2 sin2 

 2 (ω − ω) tkA 

kA 

The maximum probability for transfer is on resonance ωkA = ω 

2 2 
kl V / 4=

2 /  tπ 

2 t

kl / 2ω − ω-2 -1 0 1 2 π 
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Limitations of this formula: 

By expanding sin x = x − 
x 
3!

3 
+ …  , we see that on resonance ∆ = ωkA − ω → 0 

lim 2 

t
∆ →  0 

Pk ( )= 
V 
4 
k 

=
A 

2 t 2 

This clearly will not describe long-time behavior: Pk is not > 1.  It will hold for small Pk , so 

2= 
t << 

VkA 
(depletion of 1  neglected in first order P.T.) 

At the same time, we can’t observe the system on too short a time scale. We need the field to 

make several oscillations for it to be a harmonic perturbation. 

1 1 
t > 

ω
≈ 

ωkA 
kl2 /  t π << ω

These relationships imply that 

VkA << =ωkA 


