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5.74  TIME-DEPENDENT QUANTUM MECHANICS 

 

The time evolution of the state of a system is described by the time-dependent Schrödinger 

equation (TDSE): 

  
i

∂
∂t

ψ r , t( ) = ˆ H ψ r , t( ) 

Most of what you have previously covered is time-independent quantum mechanics, where we 

mean that ˆ H  is assumed to be independent of time:  ˆ H = ˆ H r ( ).   

We then assume a solution of the form: 

  

ψ r , t( )= ϕ r ( )T t( )

i 1
T t( )

∂
∂t

T t( ) =
ˆ H r ( )ϕ r ( )

ϕ r ( )
 

Here the left-hand side is a function of t  only, and the right-hand side is a function of r  only.  

This can only be satisfied if both sides are equal to the same constant, E  

 

 

∴
ˆ H r ( )ϕ r ( )

ϕ r ( )
= E ⇒ ˆ H r ( )ϕ r ( ) = Eϕ r ( )  

 

Second eqn.:   

  
i

1
T t( )

∂T
∂t

= E ⇒
∂
∂t

+
iE 

 
 
 T t( ) = 0 

Solution:       T t( )= Aexp −iEt /( )= Aexp −iωt( )  

 

Time-Independent 
Schrödinger Eqn. 

H is operator corresponding to E 
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So, for a set of eigenvectors ϕn r ( )  with corresponding eigenvalues En , there are a set of 

corresponding eigensolutions to the TDSE. 

 

ψ n r , t( )= anϕn r ( ) exp −iω nt( )   ωn = En /  

 

While the complete wavefunction includes time-dependent terms, the probability density 

 

P = ψ * r , t( )∫ ψ r , t( )dr = ψ r , t( )ψ r , t( )  

 

is independent of time.  Therefore, ϕ r ( ) are called stationary states.   

 

However, more generally a system may be represented as a linear combination of eigenstates:   

ψ r , t( )= cnψ n
n

∑ r , t( ) = cne− iωntϕn r ( )
n

∑  

For such a case, the probability density will oscillate with time:  coherence.   

 

e.g., two eigenstates 

ψ r, t( )= c1ϕ1e
−iω 1t + c2ϕ2e

− iω2 t

p t( ) = ψ *ψ = c1ϕ1
2 + c2ϕ2

2 + c1
*c2ϕ1

*ϕ2e− i ω2 −ω1t( ) + c2
*c1ϕ2

*ϕ1e
+i ω 2 −ω 1( )t

 

 

 

This is a simple example of coherence.  Including momentum (a wavevector) of particle leads to 

a wavepacket.   

probability density oscillates as cos ω2 −ω1( )t  
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TIME EVOLUTION OPERATOR 

More generally, we want to understand how the wavefunction evolves with time.  The TDSE is 

linear in time.  Since the TDSE is deterministic, we will define an operator that describes the 

dynamics of the system:   

ψ t( ) =U t, t0( )ψ t0( ) 

For the time-independent Hamiltonian:   

 
  
∂
∂t

ψ r , t( )+
iH

ψ r , t( )= 0  (1) 

To solve this, we will define an operator   T = exp −iHt /( ), which is a function of an operator.  

A function of an operator is defined through its expansion in a Taylor series:   

 

  

T = exp −iHt[ ] = 1 −
iHt

+
1
2!

iHt 
 

 
 

2

−

= f H( )
 

Multiplying eq. 1 from the left by   T
−1 = exp iHt /( )we have:   

 
  

∂
∂t

exp
iHt 

 
 
 ψ r , t( ) 

  
 
  = 0  

integrating t0 → t : 

 

  

exp iHt 
 

 
 ψ r , t( ) − exp iHt0 

 
 
 ψ r , t0( )= 0

ψ r, t( )= exp
−H t − t0( ) 

  
 
  ψ r, t0( )= U t, t0( )ψ r, t0( )

 

 

For functions of an operator A :      Given a set of eigenvalues and eigenvectors of A , i.e., 

Aϕn = anϕn , you can show by expanding the function as a polynomial that f ˆ A ( )ϕn = f an( )ϕn  
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   ∴ ψ n r , t( ) = e− En t − t0( )/ ψ n r , t0( ) 

or 

 U t, t0( )= e−iω n t− t0( )

n
∑ ϕn ϕn  

  
ωn =

En  

This form is useful when ϕn  are characterized; we’ll develop U t, t0( ) more later.   

 

Time-evolution of a coupled two-level system (2LS) 

It is common to reduce or map problem onto a 2LS.  We then discard remaining degrees of 

freedom, or incorporate them as a heat bath, 0 bathH H H= + .   

Let’s discuss the time-evolution of a 2LS with a time-independent Hamiltonian.   

Consider a 2LS with two (unperturbed) eigenstates ϕ a  and ϕb  with eigenenergies εa  and εb , 

which are then coupled through an interaction Vab .   

 

H = a εa a + b εb b + a Vab b + b Vba a

=
εa Vab

Vba εb

 
  

 
  

 

 

Since the Hamiltonian is Hermetian, Hij = Hji
*( ), we suggest 

 

* i
ab ba

i
a

i
b

V V Ve

Ve
H

Ve

− φ

− φ

+ φ

= =

 ε
=  

ε 

 

If we define the variables 

 
E =

εa + εb

2

∆ =
εa − εb

2

 

2∆

εbϕb

aεϕa

V ε+

-ε
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Then we can solve for the eigenvalues of the coupled systems:   

ε± = E ± ∆2 + V 2  

 

Because the expressions get messy, we don’t choose to find the eigenvectors for the coupled 

system using this expression.  Rather, we use a substitution where we define: 

 tan 2θ =
V
∆

 V  

   

i

i

1 tan 2 e
H E I

tan 2 e 1

− φ

+ φ

 θ
= + ∆  

θ − 
 

We now find that we can express the eigenvalues as 

 ε± = E ± ∆ sec2θ  

We now want to find the eigenstates of the Hamiltonian, ϕ± ,    H ϕ± = ±ε ϕ±     

where e.g. ϕ+ = ca ϕa + cb ϕb : 

 
i / 2 i / 2

a b

i / 2 i / 2
a b

cos e sin e

sin e cos e

− φ φ
+

− φ φ
−

ψ = θ ϕ + θ ϕ

ϕ = − θ ϕ + θ ϕ
 

Orthonormal complete + orthogonal:  a a b b 1ϕ ϕ + ϕ ϕ =  

Notice that ϕ+  corresponds to ϕa  perturbed by the Vab  interaction.   

 
( )

b

a b

corresponds to

for 0 ;
−

+ −

ϕ ϕ

θ → ϕ → ϕ ϕ → ϕ
 

 

We can schematically represent the energies of these states:   

 

∆ 

2θ 

(0 < θ < π/2)
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∆

ε+

-ε
εb

aε

ε−Ε

 

 

These eigenstates exhibit avoided crossing.   

 

The time-evolution of this system is given by our time-evolution operator.   

 

  

U t, t0( )= ϕ + e− ω+ t − t0( ) ϕ+ + ϕ− e− iω− t− t0( ) ϕ−

ω ± = ε±
 

Now ϕ a  and ϕb  are not the eigenstates—preparing ϕ a  will lead to time-evolution!   

Let’s prepare the system so that it is initially in state ϕa .   

t0 = 0( ) ψ 0( ) = ϕa  

What is the probability that it is found in state ϕb  at time t ? 

 Pba t( ) = ϕb ψ t( )
2

= ϕb U t, t0( )ϕa

2
 

To evaluate this, you need to know the transformation from the ϕa,b  to the ϕ±  basis, 

Sa+ = ϕa ϕ+  

 

This gives:   
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 Pba t( ) =
V 2

V 2 + ∆2 sin2 ΩRt  

where the Rabi Frequency 
  
ΩR =

1
∆2 + V2  

 

ΩR  represents the frequency at which probability amplitude oscillates between ϕ a  and ϕb  states.   

 

0 t = π/ΩR

t

2

2 2

V
V + ∆

( )baP t

 

 

Notice for V → 0 ϕ± → ϕa,b  (the stationary states), and there is no time-dependence.   

For V >> ∆ , then 
  
ΩR =

V
 and P =1 after 

  
t =

π
2ΩR

=
π

2V
.   
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TIME-INDEPENDENT HAMILTONIAN 

There are two types of values that we often calculate:   

Correlation amplitude:  C t( ) = βϕ t( )  

measures the resemblance between the state of your system at time t  and a target state 
β .  The probability amplitude P t( ) = C t( )2

 

 

for a set of eigenstates ϕn  

 

( ) ( ) ( ) ( )
j

n

0

t*
m n

m,n, j

i t*
m n

n

C t t U t, t 0

c m j e j n c

c c e

−ω

− ω

= β ψ = β ψ

=

=

∑

∑

 

 

Expectation values:  A t( ) = ψ t( )Aψ t( )  

 

  

ψ t( ) = e−ωn tcn ϕn =
n
∑ cn ϕn

n
∑

ψ t( ) = e−ω mtcm
* ϕm

m
∑

A t( ) = cm
* cn e−iω nmt ϕm Aϕn

ωnm =
En − Em

ωn − ωmm,n
∑

= cm
* t( )

m,n
∑ cn t( )Amn

 



p. 9 

DENSITY MATRIX 

 

For a system described by a wavefunction ( ) ( )n
n

t c t nψ = ∑  we showed 

 
A t( ) = ψ t( )Aψ t( )

= cm
* t( )cn t( ) m A n

n, m
∑  

We will often find it useful to define a density operator 

 

ρ t( )≡ ψ t( ) ψ t( )

= cn t( )cm
* t( ) n

n,m
∑ m

= ρnm t( ) n
n,m
∑ m (by definition)

 

n mρ  are the density matrix elements.  Substituting, we see that 

 
A t( ) = Amnρnm t( )

n,m
∑

= Tr Aρ t( )[ ]
 

 

Trace Properties:  1) cyclic invariance    Tr ABC( )= Tr CAB( ) = Tr BCA( ) 

 2) invariant to unitary transformation    ( ) ( )†Tr S AS Tr A=  

 

Pure vs. Mixed States 

Why would we need the density matrix?  It helps for mixed states.  

1) pure states:  a system characterized by a wavefunction (previous page) 

2) mixed states:  not characterized by single wavefunction 

 > statistical mixtures—ensemble at thermal equilibrium 

 > independently prepared states 

 > no phase relationship between elements of mixture 
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For an ensemble of systems with a probability pk  of occupying quantum state ϕk , with 

pk = 1
k

∑  

 

( ) ( ) ( )

( ) ( ) ( )

( ) ( )

k k k
k

k k k
k

A t p t A t

t p t t

A t Tr A t

= ψ ψ

ρ ≡ ψ ψ

= ρ  

∑

∑  

Properties:   

1) ρ is Hermetian ρnm
* = ρmn  

2) Tr ρ( )=1 Normalization  

3) 
Tr ρ 2( )=1 for pure state

<1 for mixed state
 

 

Let’s look at the density matrix elements for a mixture:   

 

( )

nm k k k
k

k
k n

n
k
n

*k k
k n m

k

*
n m

n m p n m

where c n

c : expansion coefficient for 
eigenstate n of wavefunction k

P c c

c c coefficients for eigenstate averaged over mixture

ρ = ρ = ψ ψ

ϕ =

=

=

∑

∑

∑

 

 

Diagonal elements n = m( )  

 
ρnn = pk Cn

k 2
=

k
∑ cncn

* = pn

probability of finding a system in mixture in state n
 

 POPULATION      ≥ 0( ) 
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Off-Diagonal Elements n ≠ m( ) —complex—have phase factor 

describe the evolution of coherent superpositions.   

 COHERENCES 

 

For an arbitrary state χ , the expectation value of the density matrix: 

 χ ρ χ  

gives the total probability of finding a particle in the pure state χ  within the mixture.   

 

We will sometimes refer to the density matrix at thermal equilibrium ρ0 ( or ρeq), which is 

characterized by thermally distributed populations in the quantum states 

 
nE

nn n
ep

Z

−β

ρ = =  

where Z is the partition function. More generally, the density matrix can be defined as 

 
He

Z

−β

ρ =  

where Z = Tr(e−βH).  For H n = nE n   , 

 
n

H
nm

E
nn

n | e | m

e

−β

−β

ρ =

= δ
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TIME-EVOLUTION OF DENSITY MATRIX 

Follows naturally from definition of ρ  and T.D.S.E. 

 

( )

[ ]

†i iH H H H
t t

t t t t

i iH H

i H,
t

Liouville-Von Neumann Eqn.

∂ − ∂
ψ = ψ ψ = ψ =

∂ ∂

∂ρ ∂ ∂ ∂  = ψ ψ = ψ ψ + ψ ψ  ∂ ∂ ∂ ∂ 

−
= ψ ψ + ψ ψ

∂ρ −
= ρ

∂

 

 

For a time-independent Hamiltonian:   

( ) ( ) ( ) ( )nm t n t m n t t mρ = ρ = ψ ψ  

( ) ( ) ( ) ( ) ( )n 0t t
0 0 0

ni
t U t, t t n e n t−ω −ψ = ψ = ψ∑  

 

( ) ( ) ( ) ( ) ( )

( ) ( )

n 0 m 0

nm 0

i t t i t t
nm 0 0

i t t
nm 0

n m
nm

t e n t t m e

e t

E E

− ω − + ω −

− ω −

ρ = ψ ψ

= ρ

−
ω =

 

Populations:  ( ) ( )nn nm 0t tρ = ρ     time-invariant 

Coherences:  oscillate at energy splitting nmω  


