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Abstract
The MEMCAD system is a system of CAD/CAE tools which are configured to sup-
port the design, simulation, and analysis of microelectromechanical systems (MEMS).
In version 1.0 of the system, PATRAN is used as the chief modeling tool, whereas in
version 2.0, I-DEAS is used. In this thesis, I designed and implemented a file transla-
tor which translates modeling data from a format supported by I-DEAS to a format
supported by PATRAN. This enables MEMBase, the core of the MEMCAD system
which in version 1.0 reads data from PATRAN, to read data seamlessly from I-DEAS.
The translator was written entirely in C++, with extensive use of stream manipu-
lations. It was designed in such a way that subsequent extension of the translator
would be straightforward.

Thesis Supervisor: Stephen D. Senturia
Title: Barton L. Weller Professor of Electrical Engineering
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Chapter 1

Introduction

This thesis is part of the program undertaken by the MEMCAD group under Professor

Stephen D. Senturia in the Microsystems Technology Laboratories of MIT, which

is referred to as "Application-Driven CAD for Microdynamical Systems" [1]. This

introductory chapter describes the program, what motivates the development of the

Object-oriented File Translator, and the organization of this thesis.

1.1 Application-Driven CAD for Microdynami-

cal Systems

The primary goal of the program is the development of a system of CAD/CAE tools

(MEMCAD) which are configured to support the design, simulation, and analysis of

Microelectromechanical Systems (MEMS) [2].

For the "mechanical" part of electromechanical simulation, MEMCAD uses, when-

ever possible, commercially available finite-element modeling (FEM) and CAD pack-

ages. The focus is the creation of the 3-D model from mask and process specifications

(incorporating material properties, loads, and boundary conditions) and the develop-

ment of new simulation capabilities not routinely available elsewhere. These are to

be assembled into an overall system which is sophisticated in its capabilities, but still

usable by MEMS designers who might not be experts in numerical methods.
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1.1.1 Program Organization

The overall program is organized into four major tasks, as explained below:

1. MEMCAD System

Development of the MEMCAD system, including provision for coupling to ex-

isting technology CAD and mechanical CAD tools, and for accessibility to users.

2. Material Property Test Structures

Design and analysis of material property test structures, and demonstration of

their use to determine material properties in practical MEMS process sequences.

3. Simulation and Analysis

Development of new simulation tools capable of analyzing large mechanical

deformations in the presence of electroquasistatic and fluid-induced forces, with

emphasis on boundary-element methods and accelerated algorithms to reduce

computational costs.

4. Demonstration System

Design, fabrication, and testing of an experimental fluid-metering microdynam-

ical system, including a high-speed microvalve with integrated actuation, a flow

sensor, and an electronic feedback control system.

1.1.2 MEMCAD System

This thesis is part of the MEMCAD System task. The MEMCAD system development

is an evolutionary process. Each successive version will incorporate new capabilities

and/or user enhancements. Each version is installed at MIT and tested first by the

MIT MEMS community (the alpha-test), and then transferred to an off-site beta-test

prior to release.

MEMCAD 2.0 is the second version of MEMCAD. In MEMCAD 2.0, I-DEAS Mas-

ter Series 1 [3] is selected as the core commercial package, replacing both Pro/Engineer

[4] and PATRAN [5] in MEMCAD 1.0. ABAQUS [6] and FASTCAP [7], continue to
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be used in MEMCAD 2.0, for structural analysis and mechanical simulation, and for

electrostatic simulation, respectively. See Figure 1-1 for a block diagram showing the

structure of MEMCAD 2.0.

One of the tasks which remains in order to complete a beta-test version of MEM-

CAD 2.0 is the creation of a translator within MemBase which can read and write

I-DEAS universal files. That translation is the subject of this thesis.

1.2 Purpose of the File Translator

1.2.1 Data Incompatibility

As with the development of many software systems, the development of MEMCAD

2.0 involves the usage of existing (commercial or non-commercial) software packages.

Incompatibility of data file formats between different packages used at the same time

or between different packages used in different versions of the system often creates a

data incompatibility problem. In the case of MEMCAD 2.0, the switching from using

PATRAN as the main solid modeling tool in version 1.0 to using I-DEAS in version

2.0 creates this problem.

1.2.2 Purpose

As described in Section 1.1.2, there is a need within MEMCAD for a translator within

MemBase which can read and write I-DEAS universal files. Previously, in version 1.0,

MemBase read in files from PATRAN, which were in the PATRAN neutral file format.

With the switching to using I-DEAS in version 2.0, there comes the need for MemBase

to be able to read in files from I-DEAS, which are in the universal file format. The

task of the file translator is thus to translate output universal files from I-DEAS into

PATRAN neutral files, so that the old MemBase can read in the same information.

Hence the file translator is called UNV2PNF ("UNV" standing for universal files

and "PNF" standing for PATRAN neutral files, and the "2" in the middle being a

common homonym for "to"), and will be referred to as such in the remaining part of

10



Figure 1-1: Structure of the MEMCAD 2.0 system.

1i

[

-I L

P1

St

I-I

F)

Geometry,
P Hazards

eling,

properties,
ion

anical Simulation



this thesis.

1.3 Organization of Thesis

Chapters 2 and 3 describe the structures of I-DEAS universal files and PATRAN

neutral files respectively. Chapter 4 is a specification of the translation problem at

hand. It specifies the problem in terms of the types of physical models that are being

dealt with, and the syntax and semantics of typical universal files and PATRAN

neutral files being translated. Chapter 5 discusses the design and implementation

issues of UNV2PNF, including a discussion of the extensibility of the translator.

Finally, Chapter 6 presents some summary information about the implementation,

and some suggestions of future work.
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Chapter 2

Universal Files

The universal file is one of the file formats to which I-DEAS can export its model

data. Most of the information concerning universal files in this chapter are taken

from Smart View, the online documentation of I-DEAS [8].

Universal files are plain ASCII files which can be used to store selected informa-

tion from a model file, which is a database where I-DEAS stores the user's work when

he/she gives the SAVE command. They are typically used to interface with user-

written programs or to transfer information between different computer platforms.

They are designed so that they may be easily read and written using user-written

programs. The universal file link is bi-directional; that is, I-DEAS can export univer-

sal files which are then read by user-written programs, and I-DEAS can also import

universal files written by user-written programs.

Here are some reasons for using universal files:

* For small models, a universal file is smaller than a model file.

* The user (who has access to the universal files) has more control over what is

written to the file.

* In case of loss of data in the model file, perhaps due to failure in hardware

storage device, a universal file can serve as a backup to the model file.

13



Figure 2-1: The contents of a dataset.

2.1 Structure of Universal Files

The basic building block of a universal file is a block of information called a dataset. A

universal file is a simple concatenation of a number of datasets. In a typical universal

file that is processed by the file translator of this thesis, there are about 50 datasets.

Each dataset begins and ends with a delimiter line, which is a line containing a

minus sign in column 5 and a "1" in column 6. The remainder of the line is blank.

There are about a thousand different types of datasets in the universal file definition,

each with its own purpose, content and format. For a partial list of dataset types,

see Table 2.1, which lists the numbers and names of some datasets in the Simulation

application of I-DEAS. For a complete list, refer to Smart View [8].

2.1.1 Contents of datasets

Following the beginning delimiter line is the data type record, which is a line contain-

ing a number which is the dataset number. For example, finite element nodes with

double precision storage are written with dataset number 2411.

Following the data type record, the body of the dataset contains data which is

dependent on the dataset type. See Figure 2-1. Each dataset type has its own

specification of the format of the body. It typically divides the body into pieces

called records, each record ending with a newline character.

Between datasets (that is, after the ending delimiter of a certain dataset and

before the beginning delimiter of the next one), the file can contain lines (for example,

14
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Material Database Header
Material Database Dimension
Material Database Unit System
Material Database Property
Material Database Material Type
Material Database Variable
Material Database Material Class
Material Database Material Attribute
Material Database Material Component
Material Database Material Specification
Material Database Material
Material Database Property Table
Model Header
Nodes - Double Precision
Elements
Result type definition
Analysis Data
Laminate Definitions
Trace Lines
Permanent Groups
Sorted results associativity
Thermal Coupling
Temperature Boundary Condition
Heat Load Boundary Condition
Heat Flux Boundary Condition
Thermostat
Initial Temperature
Radiation Request
Solar Heating
Radiative Heat Source
Reverse Sides
Forced Convective Coupling
Free Convective Coupling
Network Pressure Boundary Condition
Network Flow Definition
Merge set
Elimination Set
Locked Element Set
Element Deactivation Set
Tabular Data

Table 2.1: Examples of universal file datasets, chosen from the Simulation
application of I-DEAS.
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Number
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1750
2400
2411
2412
2413
2414
2415
2416
2417
2418
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3014
3015
3016
3017
3018
3019
3020
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comments), which are not part of any dataset.

2.1.2 Examples of dataset format specifications

Here are two examples of specifications of the contents of dataset bodies. These are

two of the dataset types encountered in a typical universal file that is handled by our

translator.

1. Nodes - Double Precision (Universal Dataset Number 2411)

Name: Nodes - Double Precision

Status: Current

Owner: Simulation

Revision Date: 23-OCT-1992

____________________________________________________________________________

Record 1:

Record 2:

FORMAT(4I10)

Field 1 -- node label

Field 2 -- export coordinate system number

Field 3 -- displacement coordinate system number

Field 4 -- color

FORMAT(1P3D25.16)

Fields 1-3 -- node coordinates in the part coordinate

system

Records and 2 are repeated for each node in the model.

Example:

-1

2411

121 1

5.0000000000000000D+00

122 1

6.000000000000000OD+00

-1

1 11

1.0000000000000000D+00

1 11

1.OOOOOOOOOOOOOOOOD+00

0.OOOOOOOOOOOOOOOOD+00

0.OOOOOOOOOOOOOOOOD+00

2. Elements (Universal Dataset Number 2412)

16



Name: Elements

Status: Current

Owner: Simulation

Revision Date: 14-AUG-1992

FORMAT(6I0)

Field 1

Field 2

Field 3

Field 4

Field 5

Field 6

-- element label

-- fe descriptor id

-- physical property table number

-- material property table number

-- color

-- number of nodes on element

Record 2: ***

Record 2: ***

Record 3: ***

FOR NON-BEAM ELEMENTS ***

FORMAT(8I10)

Fields 1-n -- node labels defining element

FOR BEAM ELEMENTS ONLY ***

FORMAT(3I10)

Field 1 -- beam orientation node number

Field 2 -- beam fore-end cross section number

Field 3 -- beam aft-end cross section number

FOR BEAM ELEMENTS ONLY ***

FORMAT(8I1O)

Fields 1-n -- node labels defining element

Records 1 and 2 are repeated for each non-beam element in the model.

Records 1 - 3 are repeated for each beam element in the model.

Example:

-1

2412

1

0

1

2

0

3

3

0

5

6

11

1

2

21

1

4

22

1

6

91

1

1

5380

2 5380

1

3 5380

2

6 5380

7 2

7 2

7 2

7 3

17
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11 18 12

9 95 6 5380 7 8

22 25 29 30 31 26 24 23

14 136 8 0 7 2

53 54

36 116 16 5380 7 20

152 159 168 167 166 158 150 151

154 170 169 153 157 161 173 172

171 160 155 156

-1

2.2 Processing of the Universal File

Processing of the universal file begins by searching for the first delimiter line. Next,

the dataset type line is processed to determine whether or not the reading program

should process this dataset. If the dataset is to be processed, the program reads the

data per the specifications in the remainder of this section of the manual. If the

dataset is not to be processed by the program, the program continues reading until

the next delimiter line indicating the end of the dataset is encountered.

The program next searches forward for the next delimiter indicating the beginning

of the next dataset. Processing of the next dataset continues as above.

This processing continues dataset by dataset until the end-of-file condition is

reached. Note that an end of file condition encountered in the middle of the dataset

does not mean that the dataset is complete. The end of file should always be encoun-

tered while looking for the beginning of the next dataset to process.

2.3 Writing of Universal File by User-written Pro-

gram

Universal files written by I-DEAS generally contain more information than is required

if the file is written outside of I-DEAS in order to import information. For example,

18



files written by the software contain information about the model file being used and

active units. When reading a file, these sections don't need to be present. There is

also information on the file describing things like color definitions, viewport layout

patterns, and light source definitions. In writing a program to import data into I-

DEAS, therefore, any information that does not pertain to the user's application can

be skipped.

19



Chapter 3

PATRAN Neutral Files

The "neutral file" is a key element of the PATRAN "neutral system", which is PA-

TRAN's communication link to computer programs in the outside world [9]. Neu-

tral system information flow is bi-directional; that is, data can be transmitted from

PATRAN's database to the outside and data can be transmitted from outside into

PATRAN's database.

3.1 Structure of Neutral Files

Neutral files are in general shorter than universal files because, as pointed out in Sec-

tion 2.3, universal files generally contain more information than required for transla-

tion. The neutral file may contain any of all of the following models:

* An analysis model

* A geometry model

* A conceptual solid model

Just like a universal file, a neutral file is a concatenation of basic building blocks.

The building block is this case is called a "packet". Each packet contains two or more

"data cards", each data card being essentially a data string terminated by a newline

character. Each packet contains the data for a fundamental unit of the model, such as

20



Summary Packets:

Type Number Packet Description
25 File title
26 Summary Data

Finite Element Model Packets:

Type Number Packet Description
1 Node data
2 Element data
3 Material properties
4 Element properties
5 Coordinate frames
6 Distributed loads

Trimmed Surface Solid Model Packets:

Table 3.1: Partial list of data packet types in PATRAN neutral files.

the coordinates and attributes of a specific node or the definition of a specific finite

element. The basis for the term "neutral" is that the formats of the various data

packets are not formatted for any particular analysis program.

3.2 Data Packet Types in the Neutral File

Analogous to datasets in universal files, data packets in neutral files come in a large

number of varieties. Table 3.1 is a partial list of the types of data packets in neutral

files. For a complete list, the reader should refer to Chapter 29 of the PATRAN Plus

User Manual [9].

21
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3.3 Data Packet Contents and Format

Each data packet contains two or more data cards, the first of which is always a

header card and has a standard format. The rest of the data cards have contents and

format which are dependent on the packet type. In this section, the format of the

header card is described, and two examples of data packet formats are given, to give

a preliminary impression of data packets.

3.3.1 Packet Header

The header card for each data packet can be outlined as in the following table:

Header Card Format ( I2, 818 )

IT ID IV KC N1 N2 N3 N4 N5

IT = Packet Type

ID = Identification number. A "O" ID means not applicable (n/a).

IV = Additional ID. A "O" value means not applicable (n/a).

KC = Card Count (number of data cards after the header)

N1 to N5 Supplemental integer values used and defined as needed.

3.3.2 Examples of Data Packet Format

Chosen as examples here are packet type 25 and packet type 01, which correspond to

Title Card and Node Data respectively.

1. Packet Type 25: Title Card

Header Card Format (12,818)

25 ID IV KC

ID = 0 not/applicable

IV = 0 not/applicable

KC = 1

22



TITLE

TITLE = Identifying title may contain up to 80 characters

Actual example of text:

0 0

meshed file name

2. Packet Type 01: Node Data

Header Card

Data Card 1

Data Card 2

ICF

ICF =

GTYPE =

NDF =

CONFIG =

CID =

PSPSC =

GTYPE

Format (12,818)

Format (3E16.9)

Format (I1, 1A1, 18, 18, I8, 2X, 611)

NDF CONFIG CID

Condensation flag (0 = unreferenced)

Node type

Number of degrees of freedom

Node configuration

Coordinate frame for analysis results

6 permanent single point constraint flags (0 or 1)

Actual example of text:

23

25

default

1 0 0 0 0 0

1 ID IV KC

ID = Node ID

IV = 0 n/a

KC = 2

X Y Z

X = X Cartesian Coordinate of Node

Y = Y Cartesian Coordinate of Node

Z = Z Cartesian Coordinate of Node

PSPC

User Title Card Format (2OA4)



1 1 0 2 0 0 0 0 0

5.333069027E+01 1 445868343E+01 OoOOOOOOOOOE+00
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Chapter 4

Problem Specification

Although there exist a large number of universal file dataset types, the typical univer-

sal files being translated by UNV2PNF contain datasets which are of only a subset of

all the possible dataset types. Moreover, the sequence of datasets in these universal

files follow a similar pattern. This reflects the fact that MEMCAD deals with 3-D

solid models in a certain class of problems. In this chapter the translation problem is

specified in detail. Specifically, we will describe the typical types of 3-D solid models

from which the universal files in question are generated, and we will also look at

the syntax and semantics of typical universal files and related PATRAN neutral files.

In addition, the existing environment in which UNV2PNF is to be developed is de-

scribed, namely, the C++ developing environment and the PNF library. Throughout

the discussion, an example of a 3-D solid model is used to illustrate a typical scenario

of the translation problem.

4.1 3-D Solid Models

The 3-D solid models from which the universal files in question are generated are

typically made up of basic parts like blocks, cylinders, cones, spheres and tubes. An

example is shown in Figure 4-1, which is a single block of length 100, height 50

and depth 20, created using the Master Modeler Task in the Design Application of

I-DEAS.
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Figure 4-1: A simple block, created using the Master Modeler Task in the
Design Application of I-DEAS.

A 3-D solid model is typically divided into a grid of "nodes" and "elements" which

form a model of the real structure. This process is called Finite Element Modeling

(FEM). The resulting elements are then analyzed. This is called Finite Element

Analysis (FEA). A typical 3-D solid model that UNV2PNF encounters contains one

or more finite element models. The following subsections describe the above concepts

in more detail.

4.1.1 Finite Element Modeling and Analysis

Finite Element Analysis (FEA) is a process which predicts deflections and other

effects of stress on a structure. Finite Element Modeling (FEM) divides the structure

into a grid of "elements" which form a model of the real structure [10]. This process

is called "meshing". Each of the elements is a simple shape (such as a square or a

cube) for which the finite element program has information to write the governing

equations in the form of a stiffness matrix. An example of an element is the 8-noded

26



Figure 4-2: An 8-noded Linear Brick element.

Linear Brick, which is shown in Figure 4-2.

The unknowns for each element are the displacements at the "node" points, which

are the points within an element that form the basis of the finite element model.

Nodes also serve as the points at which the elements are connected. The finite element

program will assemble the stiffness matrices for these simple elements together to form

the global stiffness matrix for the entire model. This stiffness matrix is inverted to find

the unknown displacements, given the known forces and boundary conditions. From

the displacements at the nodes, the stresses in each element can then be calculated.

As an example, the block in Figure 4-1 has been meshed into 30 (5 by 3 by 2)

8-noded Linear Brick elements, with a total of 72 distinct nodes, using the Meshing

Task in the Simulation Application of I-DEAS. This is shown in Figure 4-3.

4.1.2 Element Types

There is a large number of element types used in finite element modeling in I-DEAS.

These elements are categorized by family, order, and topology [10]. Family refers to

the characteristics of geometry and displacement that the element models. The most

common families used for typical structural models are: Beam, Plane Stress, Plane

Strain, Axisymmetric Solid, Thin Shell, and Solid. Order refers to the order of the

equations used to interpolate the strain between nodes, such as linear, parabolic, or

cubic. Linear elements have two nodes along each edge, parabolic and higher order

elements have three or more. Some elements have interior nodes in addition to the

nodes along the edges. Topology refers to the general shape of the element, such as

triangular or quadrilateral.
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Figure 4-3: A simple block meshed into 30 8-noded Linear Brick elements,
with 72 distinct nodes, created using the Meshing Task in the Simulation
Application of I-DEAS.

28



Table 4.1: Common element types and their FE descriptor IDs.

In I-DEAS, each element type has a unique identification number called the FE de-

scriptor ID. This is used as a reference to the element type, for example from an

Elements dataset. For a partial list of common element types and their FE descriptor

ID's, see Table 4.1. The complete list can be found in Smart View [8].

Figure 4-4 is a visualization of 3-dimensional elements which belong to the Solid

family and are used frequently in finite element modeling.

4.2 Syntax and Semantics of Universal Files

A universal file generated from a 3-D solid model, together with associated finite ele-

ment models, typically has a specific sequence of datasets which together encapsulate

information about the model file, the materials used, the nodes and elements in all

finite element models, and so on.

As an example, the sequence of datasets of a universal file generated from the

block in Figure 4-1 is listed in Table 4.2. Out of all these datasets, only a fraction

are relevant' in MEMCAD and thus required to be processed in the translation by

UNV2PNF. In their order of appearance, the first one is the Header dataset (151),

which contains the model file name and model file description. Second is the Units

1We use the term "relevant" to refer to information in the universal file which is required for
analysis in MEMCAD and thus needs to be included in the translation.
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FE descriptor ID Element type
81 Axisymmetric Solid: Linear Triangle
84 Axisymmetric Solid: Linear Quadrilateral
82 Axisymmetric Solid: Parabolic Triangle
85 Axisymmetric Solid: Parabolic Quadrilateral
111 Solid: Linear Tetrahedron
112 Solid: Linear Wedge
113 Solid: Parabolic Wedge
115 Solid: Linear Brick
116 Solid: Parabolic Brick
118 Solid: Parabolic Tetrahedron



linear tetrahedron linear wedge linear brick

parabolic tetrahedron parabolic wedge parabolic brick

Figure 4-4: 3-dimensional elements in the Solid family in I-DEAS.

151 164 3211 3202 3212 3212 3212 1700 1703 1705
1710 1712 1101 3209 789 2400 2420 2411 2412 734

Table 4.2: Sequence of datasets of a universal file generated from a simple
block.

dataset (164), which contains information about the units used in the model file. After

a few irrelevant datasets is a group of datasets which contain material information:

datasets 1700, 1703, 1705, 1710 and 1712. Each finite element model is represented

by a group of datasets: 2400, 2420, 2411 and 2412.

Each of these datasets has its own content and format specification dependent on

its dataset number, as described in Section 2.1.1. Refer to Smart View [8] for the

exact specifications.
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25 26 3 4 1 1 .. 2 2 ... 99

Table 4.3: Sequence of data packets of a PATRAN neutral file generated
from a simple block.

4.3 Syntax and Semantics of PATRAN Neutral

Files

Similar to the case of universal files, a PATRAN neutral file representing a 3-D solid

model file has a specific sequence of data packets.

Table 4.3 lists the sequence of data packets in a neutral file representing the block

in Figure 4-1. At the beginning are a File title packet (25) and a Summary packet

(26) which contain general information about the model file. After that are a set of

Material properties packets (3) and a set of Element properties packets (4), one for

each of the properties. Node data packets (1) and Element data packets (2) follow,

one for each node or element. At the end is a End of file tag packet (99) which

signifies the end of the neutral file.

Refer to Chapter 29 of the PATRAN Plus User Manual [9] for detailed content

and format specifications of these data packets.

4.4 Development Environment of UNV2PNF

The translation of a universal file into a neutral file essentially involves two stages:

1. reading relevant information from the source universal file and storing the in-

formation in memory using an appropriate representation, and

2. writing the information into the target neutral file.

UNV2PNF deals chiefly with the first stage of this translation process, that is,

the reading of pieces of relevant information from the universal file, storing them in

memory. The second stage, the writing of the information into the neutral file, is
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handled by an existing utility in MEMCAD, the PNF library, which is a collection

of C++ class definitions and functions. Implementing UNV2PNF in C++ codes is

thus a natural choice which facilitates the flow of data between the two stages of the

translation process.

4.5 Extensibility of UNV2PNF

The universal file format has a long and expanding specification; new datasets are

continually under construction and modification. Moreover, the future developments

of MEMCAD might change or extend the translation problem: more datasets might

become relevant, or more element types might need to be handled at a later time.

Hence arises the need for extensibility - UNV2PNF needs to be designed such that

as new datasets or new element types come into play, it is reasonably easy, efficient

and economical for the user or the developer to accommodate these changes.
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Chapter 5

Design and Implementation

UNV2PNF was written entirely in C++ [11], and consists of fourteen classes. See

Appendix A for the purpose and declaration [11] of each class. This chapter describes

the overall strategy in the design of the translator, the translation process and various

implementation issues, and also discusses how extensibility is handled.

5.1 Overall strategy

As mentioned in Section 4.4, UNV2PNF deals chiefly with the first stage of the

translation process, namely, the reading of information from the universal file and

the storing of the information in memory using some appropriate representation.

In object-oriented programming methodology, it is natural to create a class [11] to

encapsulate the information in a universal file. The class Unv is thus created for this

purpose. This is analogous to the class PATRAN-neutralfile in the PNF library,

which encapsulates the information in a PATRAN neutral file.

Since the second stage of the translation process is handled by the PNF li-

brary, information needs to be passed from UNV2PNF to the PNF library. This

is achieved by a member function [11] fillPNF() of Unv which transfers information

from the Unv object to the PATRANmneutral_file object by calling member functions

of PATRANMneutralfile.

The overall strategy is thus to:
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Unv object PATRAN_neutral_file object

fillIPNF()

Jnv ePNF(

universal file PATRAN neutral file

Figure 5-1: Overall strategy in translation.

Step 1: read information from the universal file into a Unv object,

Step 2: transfer the information from the Unv object to a PATRANneutralfile

object, and

Step 3: write the information from the PATRAN.neutral_file object to the PA-

TRAN neutral file.

Step 1 is done by a constructor [11] of Unv. Step 2 is done by the fillPNF()

member function of Unv. Step 3 is done by the writePNF() member function of

PATRANmneutral_file. This is illustrated in Figure 5-1.

The next two sections describe in detail the design and implementation of UNV2PNF,

corresponding the Step 1 and Step 2 above. Step 3 is handled entirely by the PNF

library, and details about the library can be found in MemBase.

The implementation of UNV2PNF consists of fourteen classes. Instead of describ-

ing the classes one by one, we will go through the translation process and describe

each class as it comes into play. We will also highlight special implementation issues

as they become relevant in the discussion.
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5.2 Reading from Universal File

5.2.1 Use of Streams

The reading and manipulation of data from the universal file are implemented using

streams [11]. The stream input/output library is a powerful I/O facility in C++, and

is highly extensible to handle user-defined types.

A file stream is kept in the Unv object and is a link to the universal file. All

information is read through this file stream. The translation process begins with

opening the file through this file stream.

To get a glimpse of how information is read from the universal file into the Unv

object through a stream, consider a simple example. The following is an excerpt from

the format specification of the Elements dataset (universal dataset number 2412):

Record 1: FORMAT(6110)

Field 1 -- element label

Field 2 -- fe descriptor id

Field 3 -- physical property table number

Field 4 -- material property table number

Field 5 -- color

Field 6 -- number of nodes on element

This specifies the format of the first record of the dataset. There are 6 fields in the

record, each being 10 characters long and representing an integer. An actual example

of text is:

1 115 1 1 7 8

The following code segment does the job of reading the information into a Unv

object:
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s >> u.elementID >> u.type >> u.phyPropTableNum >> u.matPropTableNum

>> u.color >> u.numNodes;



where s is a file stream which has been tied to the universal file previously, and

u.elementID, u. type, etc. are members of the Unv object u. The six integers are

read one by one into the six member variables of u.

This is a primitive example of how information from a universal file is read through

a stream. In UNV2PNF, more sophisticated features of streams have been utilized

in the reading of information from universal files, such as operator overloading and

manipulators [11].

5.2.2 Scanning of Datasets

After the universal file is opened through the file stream, a prescanning of the entire

universal file is done to get a count of the total number of datasets in the file. This

count is used to allocate memory for a list of dataset information records, which are

objects of the class Dataset. After the prescanning is done, an actual scanning is

done to get the list of dataset information:

// Counts how many datasets:

numDatasets = 0;

char line[LINE LENGTH];

while (f.getline(line, LINE_LENGTH))

if (strcmp(line, delimiter) == 0) { // if beginning delimiter

while (f.getline(line, LINE_LENGTH), // eats up dataset

strcmp(line, delimiter) != 0)

numDatasets++; }

cout << numDatasets << " datasets found.\n"; lo

// Allocates memory for the dataset list:

datasetList = new Dataset[numDatasets];

// Reads in the dataset infos:

cout << "Scanning over all datasets...\n";

f.clear(); // reset the state of f to good(

f.seekg(0, f.beg);
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for (int i = O; i < numDatasets; i++)

f >> datasetList[i]; 20

The dataset information of each dataset includes its dataset number and location

in the file. This information is used later in selecting and accessing the relevant

datasets directly.

5.2.3 Units

After the above dataset information is read in, the first relevant dataset in the uni-

versal file, namely, the Units dataset (dataset number 164) is read in. There are nine

different types of unit systems used in I-DEAS:

1 - SI: Meter (newton)

2 - BG: Foot (pound f)

3 - MG: Meter (kilogram f)

4 - BA: Foot (poundal)

5 - MM: mm (milli newton)

6 - CM: cm (centi newton)

7 - IN: Inch (pound f)

8 - GM: mm (kilogram f)

9 - US: USERDEFINED

Information about the unit system is necessary to make sure that all quantities are

converted to their proper units before being transfered to the PATRANneutral-file

object. A class Unitsset is created for storing the unit system information.

5.2.4 Materials

The next relevant datasets are a sequence of the Material Database Material datasets

(dataset number 1710), each of which contains information on one material. Each

element in a finite element model points to one material, and hence one of these

Material Database Material datasets.
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The information on a material includes various quantitative properties of the

material being represented, of which only the modulus of elasticity, Poisson's Ratio,

mass density and shear modulus are relevant in the present version of MEMCAD and

need to be included in the translation.

The class Material-set is created to store information from the Material Database

Material dataset. Analogous to the prescanning to get a count of the number of

datasets in Section 5.2.2, a prescanning to get a count of the number of Material

Database Material datasets is done prior to the allocation of memory and the actual

reading of the datasets:

// Counts number of materials and allocates memory:

numMaterials = 0;

for (i = 0; i < numDatasets; i++)

if (datasetList[i].getDatasetNumber() == MATERIALSET NUMBER)

numMaterials++;

materials = new Material set[numMaterials];

// Reads in materials:

int currMat = 0;

for (i = 0; i < numDatasets; i++) 1o

if (datasetList[i].getDatasetNumber() == MATERIAL_SETNUMBER) {

f.seekg(datasetList[i].getBeginPos());

f >> materials[currMat];
cout << "Material found: \t" << materials[currMat].getNumber(

<< '\t' << materials[currMat].getName() << endl;
currMat++;

5.2.5 Finite Element Models

Following the Material Database Material datasets is the reading of the most im-

portant datasets in the universal file: datasets containing information on the finite

element models. Each finite element model corresponds to four consecutive datasets:

1. Model Header (dataset number 2400)
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This contains the name of the finite element model. The class Femrnameset is

created to store this information.

2. Coordinate Systems (dataset number 2420)

This contains the name of the part from which the finite element model is

constructed. The class Partname-set is created to store this information.

3. Nodes - Double Precision (dataset number 2411)

This contains information on all the nodes in the finite element model. The

classes Nodes_set and Unv.node are created to store this information. A Nodes-set

object encapsulates the whole set of nodes in the FEM collectively, while a

Unv node object stores information on only one node. A Nodesset object thus

contains a list of Unvnode objects.

Each node carries the following information:

(a) node label

(b) export coordinate system number

(c) displacement coordinate system number

(d) color

(e) node coordinates in the part coordinate system

Only the node label and node coordinates are relevant and read into each

Unv node object.

Since the body of this dataset does not explicitly contain a count of the nodes

in the dataset, a prescanning of the dataset to get a node count is done prior

to the allocation of memory and the actual reading, as in Section 5.2.2.

4. Elements (dataset number 2412)

This contains information on all the elements in the finite element model.

Analogous to the classes Nodesset and Unvnode, the classes Elements_set
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and Unvelement are created to store this information. A Elements_set ob-

ject encapsulates the whole set of elements in the FEM collectively, while a

Unvelement stores information on only one element. A Elementsset object

thus contains a list of Unvelement objects.

Each element carries the following pieces of information:

(a) element label

(b) fe descriptor

(c) physical property table number

(d) material property table number

(e) color

(f) number of nodes on the element

(g) information on nodes

All of these except physical property table number and color are relevant, though

all of them are read into each Unvelement object. Physical property table

number and color are kept for possible future extension.

As in the case of dataset number 2411, this dataset does not explicitly contain

a count of the elements in the dataset. Hence a prescanning of the dataset to

get a element count is done prior to the allocation of memory and the actual

reading, as in Section 5.2.2.

To encapsulate the relationship between these four datasets, the class Fem is cre-

ated. Each Fem object captures a finite element model and contains pointers to four

objects storing information from the four datasets representing the model.

The following code segment is where the finite element models are read from the

universal file:

fns = new Fem.name set;

pns = new Part_name_set;
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ns = new Nodes_set(fns, pns);

es = new Elements_set(fns, pns);

f.seekg(datasetList[i].getBeginPoso);

f >> (*fns) >> (*pns) >> (*ns) >> (*es);
cout << " FEM found:\tFEM name \"" << fns->getFemName()

<< "\"\n\t\tPart name \"" << pns->getPartName( << "\"\n";
10

connect(ns, es);

addFem(fns, pns, ns, es);

Note that the four datasets are read consecutively into memory using only one

simple and elegant statement, demonstrating the expressive power and flexibility of

stream operations. The function connect (ns, es) links together the Nodesset ns

and the Elements_set es by hashing their pointers to each other. The function

addFem(fns, pns, ns, es) creates a new Fem object and adds it to the existing list

of Fem objects.

5.3 Transfer to PATRANneutral_file Object

Step 2, the transfer of information from the Unv object to a PATRANneutral-file

object (cf. Section 5.1), is done by the fillPNF() member function of Unv, once all

relevant information has been read into the Unv object. It involves three stages: (1)

filling in the nodes, (2) filling in the material properties list, and (3) filling in the

elements and element properties. This section describes important implementation

issues encountered in the process.

5.3.1 Difference in Storage of Nodes and Elements

There is a fundamental difference between the way a universal file stores nodes and

elements and the way a PATRAN neutral file stores them. A universal file organizes

all nodes and elements into FEMs, while a PATRAN neutral file puts all nodes and

elements in the file onto two single lists, and the concept of FEMs only exists by having
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In universal file:

I .

In PATRAN neutral ffle: -" - _

I 2 3 4 5 6 7 8 9 10 1 12 13 14 15 16 17 18 19 20
Nodesr elements) l 
(or elements)

Figure 5-2: Straightening of node IDs.

pointers to element properties on elements - elements within one FEM should point

to the same element property.

This difference has two important consequences:

1. Node IDs (or labels) and element IDs have to be "straightened out" in the

PATRAN neutral file. For example, if in the universal file we have nodes with

IDs 1, 2, ... , 10 in one FEM and also nodes with the same IDs in another

FEM, we need to change the IDs of second set of nodes (to 11, 12, ... , 20, for

example) in order to maintain the uniqueness of each node's ID in the PATRAN

neutral file, since all nodes are put on a single list in the neutral file. This is

illustrated in Figure 5-2.

2. Element properties have to be repeated for two elements having the same ma-

terial property but being in two different FEMs.

This is illustrated in Figure 5-3. Note first that:

* In the universal file, an element points to a material property directly,

while in the neutral file, an element points only to an element property

which in turn points to a material property.
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In universal file:

Material mpl mp2 mp3
properties 

e2 e3 e4 e5
Elements
in FEM1

e6 e7 e8 e9 elO

in FEM2

In PATRAN neutral file:

Material mpl mD2 mp3
properties

el\ ep2
Element
properties .E1 FEM. Each element property

carries an FEM name

1 e2 e3 e4 e5 e6 e7 e8 e9 eO1

Elements

Figure 5-3: Repeating of element properties in neutral file for elements in
different FEMs but having the same material property.
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Figure 5-4: Two partially overlapping blocks of different materials.

*In the neutral file, an element property carries an FEM name, identifying

the FEM the element is in.

The elements el and e6 in the universal file point to the same material, mpl,

though they are in different FEMs. Since all elements in the neutral file are in

a single list, the only distinction we can make between el and e6 in the neutral

file is by pointing them to two different element properties, epl and ep2, both

pointing to mpl but having different FEM names. The classes Pnfelemprop

and Pnf_elemprop_list are created to keep track of these material properties

and element properties.

5.3.2 Shared Nodes

An interesting problem arises when nodes are shared by elements of different materi-

als. An example is shown in Figure 5-4. It shows two rectangular blocks of different

materials partially overlapping. Suppose we mesh both blocks into linear bricks of

equal size such that at the surface where the two blocks touch, there are nodes which

are shared by elements of different materials. The problem which arises is how such

nodes are represented in the universal file and PATRAN neutral file while retaining

the information about the two different materials.
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Table 5.1: Mapping of I-DEAS element type to PNF library element type.

This problem is easily solved by the repeating of element properties described in

Section 5.3.1. As shown in Figure 5-5, the situation is represented in the universal

file as two linear brick elements, e27 and e93, belonging to the upper block and lower

block respectively, and having material properties mpl and mp2 respectively. Each

of them has an associated node which is shared, but since a universal file organizes

nodes into FEMs, this shared node has to appear as two separate nodes, n21 and

n45, in the two FEMs. The result of translation is shown in the lower part of the

figure. In the resulting PATRAN neutral file, note that:

* The shared node appears only once as n21 in the single list of nodes, eliminating

redundancy. e27 and e93 both point to it.

* Two element properties, epl and ep2, are created, one for e27 and one for e93.

They point to mpl and mp2 respectively.

5.3.3 Element Type Mapping

There are a large number of element types in I-DEAS, whereas the PNF library

only makes a distinction among six different types: Bar, Shell, Quad, Tetrahedron,

Wedge and Hex. Hence a (many-to-one) mapping of element types needs to be done.

Table 5.1 shows part of the complete mapping, which is implemented as a static

member [11] array in class Unv.
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I-DEAS element type PNF library element type
81 Shell
82 Shell
84 Quad
85 Quad
111 Tetrahedron
112 Wedge
113 Wedge
115 Hex



In universal file:

'AIMLAN neutral tile:

Figure 5-5: The solution to the problem of shared nodes.
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In PATRAN neutral file:

7 8

4

1

Figure 5-6: Ordering of nodes on a linear brick
PATRAN neutral files.

Table 5.2: Mapping of nodes
TRAN neutral files.

1

in universal files and in

on a linear brick from universal files to PA-

5.3.4 Node Mapping

Universal files and PATRAN neutral files also differ in the ordering of nodes in certain

element types. An example is the linear brick. Figure 5-6 shows the orderings of nodes

on a linear brick in universal files and in PATRAN neutral files. The mapping of nodes

is shown in Table 5.2. Again, this mapping is implemented as a static member array

in class Unv. In the current version of UNV2PNF, node mapping is done for the

element types linear brick and parabolic brick. However, straightforward extension

can be made to other element types.
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5.4 Extensibility

UNV2PNF is "extensible" because it is object-oriented. Specifically, the fact that it is

implemented using an object-oriented programming language like C++ enables new

features to be added to the translator easily. Some possibilities of such extensions

are:

1. New element types

UNV2PNF currently only handles a subset of all possible element types in I-

DEAS. If it is later desirable to handle other types, the following should be

done:

(a) Add a new class in the PNF library representing the corresponding element

type, analogous to Bar, Shell, etc.

(b) Add an entry in the element mapping table elTypeMap in class Unv.

(c) Add a case to the switch statement in fillPNF(), corresponding to the

new PNF class for the new element type.

2. New datasets

Only certain datasets in a universal file are currently relevant. If later devel-

opments of MEMCAD render more information in the universal file relevant,

some of the datasets which are currently ignored must be read. This can be

done by adding a new class in UNV2PNF corresponding to the new dataset,

analogous to Nodes-set, Units-set, etc.
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Chapter 6

Conclusion

In this thesis, a file translator, UNV2PNF, was designed and implemented to bridge

the gap between I-DEAS and MemBase. The gap was caused by a data incompat-

ibility problem due to the switching from PATRAN to I-DEAS. Such data incom-

patibility or format incompatibility often occurs in software systems, particularly to

ones which undergo repeated updates and modifications. Using an object-oriented

language proved to be an effective and powerful approach in the development of such

a file translator, and made extension of the translator easy.

UNV2PNF has been integrated into MemBase and is part of MEMCAD 2.0.

6.1 Summary Information about Implementation

All descriptions of UNV2PNF in this thesis correspond to the latest working version of

UNV2PNF. The source C++ code has a total of 1689 lines, including all function and

class declarations and definitions. This count does not include the top-level main()

function, because UNV2PNF is to be integrated into MemBase as a library.

As an evaluation of the run time of UNV2PNF, it was run on a Sun SPARCstation

IPX running SunOS Release 4.1.3 (GENERIC) UNIX, using several input universal

files with certain statistics and the run times were measured. The results are shown

in Table 6.1.

The run time grows linearly with the number of datasets, number of materials,
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Table 6.1: Run time statistics of UNV2PNF.

total number of nodes and total number of elements, of which the total number of

nodes and total number of elements have the most significant impact on run time.

6.2 Future Work

Future work on the translator can take the directions of:

* extension of some components of the translator, and

* trying different approaches in certain stages or parts in the translation.

Here are some suggestions:

1. Disuse of Streams

Because C++ and C code are often intermixed, C++ stream I/O must some-

times be mixed with the C printf () family of input and output functions [11].

Also, because C functions can be called from C++, some programmers may

prefer to use the more familiar C I/O functions.

Stream output functions have a general advantage over the C standard library

function printf (): the stream functions are type safe and have a common style

for specifying output of objects of built-in and user-defined types. Nevertheless,

the usage of streams in this thesis is limited in terms of its robustness in the

reading of universal files. The current implementation is loose and the content in

input universal files do not need to adhere to exact character locations in order
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File 1 File 2 File 3 File 4 File 5
File size in bytes 37339 33556 72750 64705 115156
Number of datasets 48 42 40 73 52
Number of materials 1 1 1 1 9

Number of FEMs 1 1 1 2 1

Total number of nodes in all FEMs 45 111 127 111 235
Total number of elements in all FEMs 16 12 403 44 96
Run time in seconds 1.2 1.6 3.4 1.9 3.1



to be read in correctly. If such strict adherence is desired, restrictions must be

imposed by modifying the stream functions in the translator. An alternative is

using the C standard library function printf (), which already has provisions

for exact specifications of character locations. This is the way the PNF library

currently handles input and output.

2. Using generic lists

The translators keeps and manipulates various kinds of lists, for example:

· list of nodes in a nodes dataset set

* list of elements in an elements dataset set

* list of nodes on each element

* list of material properties in the universal file

* list of FEM records

Currently in UNV2PNF, most of these lists are implemented as arrays, while the

list of FEM records is implemented as a linked list. To capture the similarities

among all these lists, one might consider creating a generic list class and deriving

all specific lists from this generic list. This is actually what is being done in the

PNF library. However, computational efficiency might be affected in such use

of generic lists and should be taken into consideration if computational speed

is crucial.

3. Extensions

As described in Section 5.4, the object-oriented nature of UNV2PNF results in

its extensibility. For example, new element types or new datasets can be added

to the translator easily. Such and similar extensions can be considered in future

endeavor.
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Appendix A

Classes in UNV2PNF

The implementation of UNV2PNF consists of fourteen classes. This appendix gives

a description of the purpose of each class and the declaration of each class.

A.1 Purpose of Each Class

1. Unv

This is a top level class used to encapsulate all the information which is required

for translation in the universal file. It is analogous to the class PATRANeutralf ile

in the PNF library.

2. Dataset

This stores information about each dataset in the universal file, including its

dataset number, beginning location in the file, and size. These pieces of infor-

mation are used in the actual reading of data from that dataset in the universal

file into an object in memory.

3. Unitsset

This stores information from the Units dataset (dataset number 164), which

is about the unit system being used in the universal file. This information is

necessary to make sure that all quantities are converted to their proper units

before being transferred to the PATRANeutralf ile object.

52



4. Materialset

This stores information from each Material Database Material dataset (dataset

number 1710). Of all the quantitative properties of the material available in

the dataset, only the modulus of elasticity, Poisson's Ratio, mass density and

shear modulus are relevant and are stored.

5. Fen

This encapsulates the relationship between four datasets which together rep-

resent a finite element model: Model Header dataset (dataset number 2400),

Coordinate Systems dataset (dataset number 2420), Nodes - Double Precision

dataset (dataset number 2411), and Elements dataset (dataset number 2412).

It does so by keeping pointers to the four objects which store information from

the four datasets above respectively.

6. Femmname.set

This stores information from the Model Header dataset (dataset number 2400),

which is simply the name of the finite element model.

7. Part-name.set

This stores information from the Coordinate Systems dataset (dataset number

2420), which is the name of the part from which the finite element model is

constructed.

8. Nameset

This is a base class from which Femnameset and Partnameset are derived.

9. Nodes-set

This stores information from the Nodes - Double Precision dataset (dataset

number 2411), which includes the number of nodes in the dataset and the

actual information on all the nodes, which are stored as a list of Unv.node

objects. It also contains pointers to the other three objects in the finite element
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model sequence: an Femrnameset object, an Part-nameset object, and an

Elementsset object.

10. Unv.node

This stores information about each node, which includes the node ID and the

3-D coordinates of the node's location.

11. Elementsset

This stores information from the Elements dataset (dataset number 2412),

which includes the number of elements in the dataset and the actual infor-

mation on all the elements, which are stored as a list of Unv_element objects.

It also contains pointers to the other three objects in the finite element model

sequence: an Femrnameset object, an Part-nameset object, and an Nodesset

object.

12. Unv_element

This stores information about each element, which includes the element ID,

type, physical property table number, material property table number, color,

number of nodes and ID's of the nodes associated with the element. Of all

these data, physical property table number and color are not included in the

translation but are kept for possible future extension.

13. Pnf_elem_prop, Pnfelemproplist

These two classes keep track of the material properties and element properties

created to fill the PATRAN-neutralfile object. They aid in the checking of

whether a new element property needs to be created for each element encoun-

tered in the universal file.
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A.2 Declaration of Each Class

Included in this section are the declarations of all fourteen classes. Note that in

certain classes some member functions are defined in the class declaration, in which

case it is inline [11].
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1. Unv

/*
* unv.h
* Unv class declaration header file
* King Chung Yu, Microsystems Technology Laboratories, MIT
*1

#ifndef UNV_H
#define UNV_H

10

#include <fstream.h>
#include "dataset.h"
#include "materialset .h"
#include "nodesset.h"
#include "elementsset .h"
#include "fem.h"
#include "femnameset. h"
#include "partnameset.h"
#include "unitsset.h"
#include " /f s/blofeld/b/Memcad2/pnf _server/PNF. h" 20

#define LINE LENGTH 81
#define MAXFILENAMELENGTH 80
#define UNDEFINED -1
#define UNITS_SETNUMBER 164
#define MATERIAL_SETNUMBER 1710
#define FEM_NAMESETNUMBER 2400
#define PART_NAMESETNUMBER 2420
#define NODES_SETNUMBER 2411
#define ELEMENTS_SETNUMBER 2412 30

class Unv 

struct DatasetInfo {
int datasetNumber;
streampos beginPos;
streampos bodySize;

40

static int initialized;
static int elTypeMap[200];
static int nodeMapLB[8]; // node mapping for linear bricks
static int nodeMapPB[20]; // node mapping for parabolic bricks

char filename[MAX_FILENAME_LENGTH];
ifstream f;

int numDatasets;
Dataset* datasetList; 50

int numMaterials;
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Materialset* materials;

int
int
int
Fem*
Fem*

totalNumNodes;
totalNumElements;
numFem;

femlistHead;
femlistTail;

60

Units-set units;

void init();
void addFem(Fem nameset* femNameSet, Partnameset* partNameSet,

Nodes set* nodesSet, Elements_set* elementsSet);
Unv_node* findNode(NodeID nodeID);

public: 70

static char delimiter[7];

Unv(const char *inFilename);
~Unv(;
void displayDatasetList();
void displayUnits() cout << units; }
void displayFemList();
void fillPNF(PATRAN_neutral_file* inPNF);

};

#endif
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2. Dataset

* dataset.h
* Dataset class declaration header file

King Chung Yu, Microsystems Technology Laboratories, MIT

#ifndef DATASET H
#define DATASET H

#include <iostream.h>
#include <fstream.h>

class Dataset {

int datasetNumber;
streampos beginPos;
streampos bodySize;

20

public:

int getDatasetNumber( { return datasetNumber; }
int getBeginPos( { return beginPos; }
int getBodySize( { return bodySize; }
ostream& info(ostream& s);

friend ifstream& operator>>(ifstream& s, Dataset& d);

30

ifstream& operator>>(ifstream& s, Dataset& d);

#endif
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3. Unitsset

/*
* units set.h
* Units_set class declaration header file
* King Chung Yu, Microsystems Technology Laboratories, MIT
*/

#ifndef UNITS_SET_H
#define UNITS SETH

10

#include <iostream.h>

class Unitsset {

public:

int unitsCode;
/*

1 - SI: Meter (newton) 20

2 - BG: Foot (pound f)
3 - MG: Meter (kilogram f)
4 - BA: Foot (poundal)
5 - MM: mm (milli newton)
6 - CM: cm (centi newton)
7 - IN: Inch (pound f)
8 - GM: mm (kilogram f)
9- US: USER-DEFINED
*1

30

/ * Unit factors for converting universal file units to SI.
* To convert from universal file units to SI divide by the
* appropriate factor listed below.
*l

double length;
double force;
double temperature;
double temperatureOffset;

40

istream& operator>>(istream& s, Unitsset& ns);
ostream& operator<<(ostream& s, Unitsset& ns);

#endif
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4. Materialset

/,
* materialset. h
* Material set class declaration header file
* King Chung Yu, Microsystems Technology Laboratories, MIT
*l

#ifndef MATERIAL SET H
#define MATERIAL_SET H

10

#include <iostream.h>
#include <iomanip.h>

// "CONSTANT" type (as determined in Record 38) properties:
struct Property {

int propertyVersionNumber;
char dimensionName[40];
char unitName[40];
double propertyValue; 20

};

class Material_set {

int materialNumber;
char materialName[80];
int numMaterialVariables;
int numMaterialProperties;
int numReferenceEntities; 30

Property modulusOfElasticity;
Property poissonsRatio;
Property massDensity;
Property shearModulus;

void readMaterialVariables(istream& s);
void readMaterialProperties(istream& s);

public: 40

Material set();
int getNumber() ( return materialNumber; }
char* getName() { return materialName; 
friend istream& operator>>(istream& s, Material_set& ns);
friend ostream& operator<<(ostream& s, Materialset& ns);

double getModulusOfElasticity()
{ return modulusOfElasticity.propertyValue; )

double getPoissonsRatio() 50
{ return poissonsRatio.propertyValue; )

double getMassDensity()
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{ return massDensity.propertyValue; }
double getShearModulus()

{ return shearModulus.propertyValue; }

istrea& operator>>(istream& s, Material-set& ns);
ostream& operator>(iostream& s, Material-set& ns);

60

#endif
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5. Fem

* fem.h
* Fern class declaration header file
* King Chung Yu, Microsystems Technology Laboratories, MIT
,1

#ifndef FEMH
#define FEMH

10

~#include "nodesset. h"

#include "elementsset.h"

#include "femnameset.hl"
# include "partnameset.hl"

typedef long Fem ID;

class Fem {

FemID femID;
Femrnname set* femNameSet;
Part_name_set* partNameSet;
Nodes_set* nodesSet;
Elementsset* elementsSet;
Fem* next;

public:

Fem(Fem ID femID, Fem name set* femNameSet, Partname set* partNameSet,
Nodes set* nodesSet, Elements_set* elementsSet, Fem* next);

-Fem();
void setNext(Fem* next) { Fem::next = next; }
Fem_ID getFemID( { return femID; }
char* getFemName( { return femNameSet->getFemName(; }
char* getPartName( { return partNameSet->getPartName(; }
Nodesset* getNodesSet( { return nodesSet; }
Elementsset* getElementsSet( { return elementsSet; )
Fem* getNext() { return next; }
void printInfo();
void printNodesSummary( { nodesSet->printSummary(); }
void printElementsSummary( { elementsSet->printSummary(); }
void printNodes() { nodesSet->printNodes(); 
void printElements() { elementsSet->printElements(; }

};

20

30

40

#endif
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6. Fem-mameset

1*
* fem name_set.h
* Femrnname_set derived class declaration header file
* King Chung u, Microsystems Technology Laboratories, MIT

#ifndef FEM NAMESETH
#define FEM NAME SET H

10

#include "nameset.h"

class Fem_nameset : public Name_set (

public:

inline char* getFemName( { return getName(); )

20

#endif
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7. Part-nameset

/*
* partname set.h
* Partname_set derived class declaration header file
* King Chung Yu, Microsystems Technology Laboratories, MIT

#ifndef PARTNAME_SET_H
#define PART_NAME_SET_H

10

#include "nameset.h"

class Part_name_set: public Name_set {

public:

char* getPartName( { return getName(); }

20

#endif
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8. Name_set

* name_set.h
* Name_set base class declaration header file
* King Chung Yu, Microsystems Technology Laboratories, MIT

#ifndef NAME SET H
#define NAME SET H

10

#include <iostream.h>

#define NAME LENGTH 80

class Name set {

char name[NAME LENGTH];

public: 20

char* getName() { return name; )

friend istream& operator>>(istream& s, Name-set& ns);

3;

istream& operator>>(istream& s, Name-set& ns);

#endif 30
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9. Nodesset

/*
* nodesset.h
* Nodes_set class declaration header file
* King Chung Yu, Microsystems Technology Laboratories, MIT
1

#ifndef NODESSETH
#define NODES SETH

10

#include "element sset. h"
#include "unvnode.h"

#define FEM_NAMELENGTH 80
#define PARTNAME_LENGTH 80

class Nodes set {

class Femrn_nameset* femNameSet;
class Part name_set* partNameSet;
class Elementsset* elementslink;
int numNodes;
Unvnode* nodelist;

public:

Nodes-set();
Nodes_set(Fem_name_set* femNameSet, Partnameset* partNameSet);
'Nodes_set() { deleteO node_list; 
void printSummary();
void printNodes();
int getNumberOfNodes() ( return numNodes; )
Unvnode* getNode(int index) { return node list+index; }
Unvnode* getNode(NodeID nodeID);
void printNode(int index) { cout << node_list[index]; )
void offsetIDs(Node_ID offset);
NodeID getMaxNodeID();

friend istreamn& operator>>(istream& s, Nodes_set& ns);
friend void connect(Nodes_set* ns, Elements_set* es);

1;

istream& operator>>(istream& s, Nodes_set& ns);

#endif
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10. Unvsnode

* unv node.h
* Unvnode class declaration header file
* King Chung Yu, Microsystems Technology Laboratories, MIT

#ifndef UNV NODE H
#define UNV NODE H

10

typedef long Node ID;

class Unv_node {

Node_ID nodeID;
double x;
double y;
double z; 20

public:

Node-ID getID( { return nodeID; }
double getx( { return x; )
double gety() { return y; )
double getz( { return z; )
void offsetID(Node ID offset) { nodeID += offset; }

friend ostream& operator<<(ostream& s, Unvnode& u); 30

friend istream& operator>>(istream& s, Unv node& u);

ostream& operator<<(ostream& s, Unv_node& u);
istream& operator>>(istream& s, Unvnode& u);

#endif
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11. Elementsset

/*
* elements.set.h
* Elements-set class declaration header file
* King Chung Yu, Microsystems Technology Laboratories, MIT
*l

#ifndef ELEMENTSSETH
#define ELEMENTSSET_H

#include "nodesset.h"
#include "unvelement.h"

#define FEM_NAMELENGTH 80
#define PART NAMELENGTH 80

class Elementsset {

class Femname 
class Part nameJ
class Nodesset*
int
Unv element*

set* femNameSet;
set* partNameSet;

nodeslink;
numElements;

element-list;

public:

Elements set();
Elementsset(Femname set* femNameSet, Partname-set* partNameSet);
~Elementsset() { delete D element-list; }
void printSummary();
void printElements();
int getNumberOfElements() { return numElements; }
Unvelement* getElement(int index) { return element_list+index; }
void offsetIDs(NodeID nodesoffset, ElementID elements-offset);
Element_ID getMaxElementID();

friend istream& operator>>(istream& s, Elementsset& es);
friend void connect(Nodes_set* ns, Elements_set* es);

40

istream& operator>>(istream& s, Elements_set& es);

#endif
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12. Unv_element

/*
* unvelement.h
* Unv_element class declaration header file
* King Chung Yu, Microsystems Technology Laboratories, MIT
*1

#ifndef UNVELEMENTH
#define UNVELEMENTH

10

#include "unvnode. h"

typedef long Element_ID;

class Unv_element 

Element-ID elementID;
int type; 20

int phyPropTableNum;
int matPropTableNum;
int color;
int numNodes;
Node_ID* nodes;

public:

Unv_element() ( nodes = NULL; )
~Unvelement() { delete d nodes; } 30

Element-ID getID() ( return elementID; }
int getType() ( return type; }
int getMatPropTableNum() { return matPropTableNum; )
int getNumNodes() return numNodes; }
NodeID getNthNodeID(int n) { return nodes[n]; )
void offsetID(Element_ID offset) { elementID += offset; )
void offsetNthNodeID(int n, NodeID offset) nodes[n] += offset; )

friend ostream& operator<<(ostream& s, Unv_element& u);
friend istream& operator>>(istream& s, Unv element& u); 40

;ostream& operator< < (ostream& s, Unv

ostream& operator>>(iostream& s, Unvelement& u);

istrea& operator>>(istream& s, UnvNelement& u);

#endif UNVELEMENTH
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13. Pnfelemprop

/
* pnf elemprop.h
* Pnf elemprop class declaration header file
* King Chung Yu, Microsystems Technology Laboratories, MIT
*1

#ifndef PNFELEM PROP_H
#define PNF_ELEMPROP H

10

#include " /fs/blofeld/b/Memcad2/pnfserver/member .h"
#include "/fs/blofeld/b/Memcad2/pnf server/elementProp.h"

struct Pnf elem_prop: public Member {

long pnfElemPropID;
ElementProperties* pnfElemPropObject;
/ * unvMatProplD is represented as PNF ID in base class Member */

20

Pnfelemprop(long inPnfElemPropID, ElementProperties* inPnfElemPropObject,
long inUnvMatPropID);

};endif

#endif
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14. Pnf_elem_proplist

* pnfelemprop_list.h
* Pnf elemprop_list class declaration header file
* King Chung Yu, Microsystems Technology Laboratories, MIT
1/

#ifndef PNFELEMPROPLIST_H
#define PNF_ELEMPROPLISTH

#include " /f s/blofeld/b/Memcad2/pnf server/list. h"
#include "pnfelemprop. h"

class Pnf elemproplist : public List {

public:

Pnf elemprop* getItemWithMP(long inUnvMatPropID)
{ return (Pnf_elemprop *) getMemberWithID(inUnvMatPropID); } 20

#endif
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