8.334: Statistical Mechanics II Problem Set # 5 Due: 3/12/03

Fluctuations. Scaling. Gaussian statistics.

1. The fluctuation region width.

Thermodynamic fluctuations control the behavior near the critical point. However, the size of the
temperature interval, in which fluctuations are large, depends on microscopic details, and in some
cases can be quite narrow. In Lecture 5 we discussed the mean field theory validity criterion, and
used it to estimate the critical region. It is interesting to look a bit closer at several examples.

a) For the Ising ferromagnet in space dimension d = 3, described by the mean field theory
developed in Problem 1, PS#2 (see also Lecture 2), estimate the width of the temperature interval
near critical point, 7 = (T, — T) /1., where the contribution of fluctuations to the thermodynamic
quantities is dominant.

b) Consider a weakly interacting Bose gas (space dimension d = 3) with density n, particle mass
m, and a short-range interparticle interaction

Ulr—1')=gi(r—1'), g=4nh’a/m (1)

The interaction is called weak, when atom scattering length a, related to the interaction constant
by' Eq.(1, is much less then the interparticle distance, a < n='/3.

In this weakly nonideal gas, the Bose-Einstein condensation transition temperature 7, is accu-
rately described by the ideal Bose gas theory. The mean field energy for the condensate amplitude
) can be written in the form of Eq.(1), PS#1, with n being the temperature-dependent condensate
density of an ideal gas. Estimate the fluctuation region 7, for this system, using the parameters for
magnetically trapped Rubidium from the experiment in JILA: n ~ 10" c¢m™3, a ~ 100 ap, where
ap = 0.5 x 1078 cm is Bohr’s radius.

2. A relation between scaling dimensions of a field and an operator.

Consider an RG transformation of a hamiltonian near critical point, H = Hy + 0H, where the
hamiltonian H, is invariant under renormalization, R(Hy) = Ho, and 0H is a perturbation. Suppose
that 0H is of the form

oH = / h(x)p(x)d%z (2)

where ¢(x) is some density-type variable associated with the system (e.g. spin density, energy, charge
or current density, etc.) and h is a field conjugate to ¢. Suppose also that ¢ is a scaling variable.
This means that the RG transforms the ¢ into itself,

¢'(x) =b79(x), x' =x/b, (3)

i.e. the perturbation 61 o< [ @(x)d%x is an eigenvector of the RG transformation linearized at the
fixed point H,.
a) Show that the scaling dimensions of ¢ and h are related as

Yn +ys =d (4)

!This corresponds to the low energy limit of particle scattering. Although the real interaction between atoms is
certainly not short-ranged, at low energy it can be effectively replaced by a d—function pseudopotential expressed in
terms of the scattering length by Eq.(1 — this is discussed in more detail, e.g., in “Statistical Mechanics,” by Parthia.




b) For the Ising model, by choosing ¢ and h to be spin density and magnetic field, and using
Eq.(4), derive the RG equation for the pair spin correlation function (Eq.(17), Lecture 7) and the
scaling form (Eq.(21), Lecture 7).

¢) How can one use the result (4), with properly chosen ¢ and h, to obtain the scaling equation
for the free energy (Egs.(5,6), Lecture 7)7

3. Gaussian statistics.
Prove the basic facts about gaussian statistics of one variable, many variables, and fields (Eqs.(5,6,7,8),
Lecture 8).

4. RG for quadratic hamiltonians.
a) Apply the field-theoretic RG transformation described in Lecture 8 (coarse grain + rescale +
renormalize hamiltonian) to a gaussian field problem with a quadratic hamiltonian

H=[ %K(8u¢)2ddx (5)

Show that, depending on the dimensionality d, the rigidity constant K grows or decreases upon RG
transformation, with the critical dimension d = 2.

b) Consider thermal fluctuations of the variable d¢2 = ¢(x1) — ¢(x2). Show that the distribution
is gaussian and relate its variance to the correlator

(00%,) = ((d(x1) — 6(x2))°) (6)

¢) How does the quantity (6) depend on the points 1 and 2 separation at |x; — xy| — 007



