8.334: Statistical Mechanics II  Last modified: March 23, 2003

1 Lecture 10: Coulomb gas and Sine-Gordon prob-
lem. Villain duality. Clock models.

1.1 Sine-Gordon problem. RG analysis.

The Sine-Gordon hamiltonian is traditionally written as

H= / (%(8u¢)2 — Acos ﬁqﬁ) d*x (1)

where A\ and 3 are coupling parameters. To connect with previous discussion, one can
rescale ¢ — ¢/f3, and rewrite the hamiltonian as H = [ (%K(@uqz)Z — \cos QNS) d?>x with
K = 1/3%. Classical ground states at zero temperature are given by the cosine minima
¢ =2mn/ps.

The problem (1) arises in many different physical situations. To name just one, let
us consider a solid crystal surface fluctuating in thermodynamic equilibrium. The surface
can be described by a height function h(x), measured with respect to a crystal plane. The
free energy of the surface contains a gradient part that accounts for the effect of surface
roughness, and also a periodic function of height, modelling the tendency of atoms to
form complete layers in each crystal plane. In the simplest model, the periodic function
is taken to be a cosine, which gives

H=[ (%K(aﬂh)Q ~ Xeos(2rhfa) ) s 2)

where K is the surface tension constant scaled by temperature, and a is crystal lattice
period. By a rescaling, h — h/K'/? we obtain the Sine-Gordon problem (1) with the
coupling constant 3 = 27/a K'/2. As a function of temperature, this system exhibits the
so-called roughening transition from a rough state at high temperature, characterized by
large amplitude of height fluctuations, to a smooth state at low temperature, in which
the system is locked in one of the cosine minima.

To explore the effect of fluctuations, one can apply renormalization group the to
problem (1). As always, we split ¢(x) into a fast and a slow part, ¢ = ¢' + d¢, with
Fourier harmonics 0 < & < A" and A" < k < A, respectively. We consider the problem
at small A < 1, with the fluctuations being mostly gaussian, and ask how the amplitude
A varies under the RG transformation. The quadratic part of the SG hamiltonian does
not couple ¢’ and d¢, the coupling arises only from the cosine term. Thus we need to
calculate

g exp (— [ (%(3@)? ~ Xeos f¢! +66) ) ) (3)
At small A\, we can replace this expression by
exp <—/ (%(@qﬁ)z — Mcos (¢ + 5¢)>5¢> d2x> (4)
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The average over d¢ is gaussian:

(cos B(& + 66))ss = %(exp (iB(¢ + 66)))sp + c.0. = %eiﬂ¢’e_ﬂ2(6¢z>/2 tee (5)
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We see that the Sine-Gordon hamiltonian form is preserved,
1
(&) = [ (5000 = Anleos(59))) dPa 7)

with the coupling constant changed to A, = (A//A)7/47 )\,

Now we can ask whether the reduction of coupling by a factor (A’/A)%*/4 is making
it more or less important compared to the gradient term. Since for the fast field d¢ the
gradient 0, is of order A, while for the slow field ¢ it is of order A’, the gradient term is
effectively reduced by (A’/A)?. The ratio of the cosine and gradient term is thus decreases
or grows under RG depending on whether 3?/4r is larger or smaller than 2. At

/4w

B > 8w (8)

the cosine term is suppressed by fluctuations so quickly that it is irrelevant compared to
the gradient term. The system is driven in this case to the gaussian freely fluctuating
field with the hamiltonian % = % [(8,¢)?d*z. On the other hand, for

B3 < 8 (9)

the cosine term grows relative to the gradient term and, no matter how small the starting
value A, at some length scale takes over. The macroscopic state of the system in this case
is locked in one of the cosine minima ¢ = 27n/p.

To put this analysis in the standard RG framework, we have to rescale x = (A/A’)z’ at
each RG step after averaging over d¢. This shifts the reduced cutoff A’ back to A, making
the length unit invariant through the RG. Since the area element and the gradient are
rescaled as d®z = (A/A')*d*z" and 0], = (A'/A)0,, the gaussian part of the hamiltonian is
invariant under RG, while the coupling constant A changes to

N = (AJA)> 5/ ) (10)

In terms of the RG time parameter ¢ = In(A/A’), in the vicinity of the transition point
(3? = 8x, one can put the flow of A in a differential form:

oA =N = A= (P MM _ 1) X = (2 — 3% /47) A6t (11)
which gives
d\ )
o = 2= 5 Am)A (12)



Interestingly, the solution of this differential equation reproduces the recursion relation
(10) for all 3.

Applying these results to the roughening problem (2), described by § = 27/a K'/2,
we obtain a transition at Ka? = 7/2. In the high temperature phase, the fluctuations of
surface height diverge at large distances:

dox _gilex'12 ] kx| dl 1 |x —X/|
h(x) — h(x))?) = S 1 / Eo 13
(160~ b)) =S b= [T = g, (13)
In the low temperature phase, when the system is locked in one of the cosine minima, the
fluctuations ((h(x) — h(x'))?) are finite.

1.2 Coulomb gas representation

We start by pointing out that changing cosine in the Sine-Gordon hamiltonian to another
function with the same period,

FB0) = 3 A (14)

n=—oo

does not affect the transition at 32 = 87 and the two phases. This robustness can be
demonstrated by a simple extension of the above RG analysis. Applied to the problem
with interaction F'([3¢), separately for each term in the Fourier expansion, the RG flow
of couplings )\, is
dM,
dt

We see that the couplings with [n| > 1 are always less relevant than the n =1 coupling.

This observation allows to replace the cosine term by another function, making the
problem more tractable (Villain, 1975). Here it will be convenient to consider the problem
on a lattice,

= (2 — B*n?/4m)\, (15)

1
H= 5 Z (¢x - ¢x’)2 + Z F(B¢X) (16)
|x—x'|=1 X
where oo
e—F(G) — Z ein0+(1ny)n2 (17)

n—=-—oo

with 0 < y < 1. At small y < 1, we have
F#)=—-In (1 + 2y cosf + O(yZ)) = —2ycosf + O(y?) (18)

which means that F(f) is a good replacement for the cosine term when y = A\/2. (More
precisely, since in passing from a continual to a discrete problem we pick up a lattice
plaquette area, the relation is y = \a?/2.)



To see the crucial simplification achieved by altering the Sine-Gordon problem, con-
sider the partition function

Z = Z Zexp (% Z (be - ¢x’)2 + Z (inxﬁ¢x + (ln y)ni)) (19)

{nx} éx |x—x'|=1 X

We note that at fixed integers ny, the problem is gaussian in the field ¢, which can thus
be summed over. This gives

Z=1Zy) exp (—%ﬂz > i (Pxpxr) + > (In y)ni) (20)

{nx} x,x! X
where Z; is the partition function at ny = 0 and

eik-(x—x’) 1 L

<¢X¢X'> = Z 2 = 5

In——
— 2(1 —cosky) +2(1 —cosky) 2w n|x—x’|

(21)

Here the sum over k is taken over the reciprocal lattice period —n/a < k1 < w/a. The
logarithmic form of the pair correlator is obtained for point separation |x —x’| much larger
than lattice constant a.

From this analysis we see that the Sine-Gordon problem is equivalent to the Coulomb
gas problem

! B x — x| 2
Z=> exp|— > nxngln +> (Iny)n; (22)
47 , a
{nx} X#£X x

Here the summation is constrained by charge neutrality, >, nx = 0. This problem is
familiar from the Kosterlitz-Thouless theory (Lecture 9), in which a similar description of
vortices in the XY model was employed. The gas (22) can be in two states, depending on
the coupling strength (3%/4m. At strong coupling, the charges form tightly bound neutral
pairs, so that in the macroscopic limit there are no free charges. At week coupling,
entropic factors dominate, and charges are in the unbound state. Critical coupling can
be determined by the energy of one charge (5%/47)In(L/a) with its entropy 21In(L/a),
which gives transition criterion

B =8r (23)

identical to the prediction of the RG analysis above. The charge-neutral phase at 32 > 87
is thus associated with the gaussian phase of the Sine-Gordon problem, in which cosine
coupling is made irrelevant due to strong fluctuations. The unbound charge phase at
(3% < 8 corresponds to the strong coupling regime of the Sine-Gordon problem, with the
field frozen in cosine minimum.

1.3 Clock models

are described by a hamiltonian
1
H= / <§K(8u9)2 - Cos(p9)> d*x (24)
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with p an integer, and the variable 6 taking values on a circle 0 < 6 < 27w. Because of
the topologically nontrivial order parameter space here we cannot eliminate p or K by a
rescaling.

The models of this form arise as perturbations of the XY model. The case p = 1
simply represents the planar XY magnet in a parallel magnetic field. The XY magnet on
a square or triangular lattice with a weak spin-lattice coupling corresponds to p = 4,6,
respectively. The name “clock models” refers to he ground states in the limit of large A,
looking like a clock dial.

Modifying the cosine interaction in the same way as in the above discussion of the
Sine-Gordon model, we obtain a partition function

1

Z=> 3 exp ( Yo K0k —0x)*+ > (ip nxOx + (In yp)ni)) (25)
{nx} 0x [x—x'|=1 X
with y, = A\y,a?/2. The hamiltonian is formally quadratic and it is now tempting to

integrate over 6’s. To do this, since # lives in a topologically nontrivial space, we have to
introduce vortices,

Ok = Py + Z My tan * (xZ — x2> (26)

sl x] — X
where my is vortex charge. The arctangent is the phase field at the point x of a vortex

with a center at x’. Now we can integrate over the smooth phase function ¢.. Evaluating
gaussian integral, we obtain a partition function of vortices and charges:

Z(K, gpy) = Y Y e (27)

{nx} {mx}
where
2 /
P X —X
H = Ik > nxng ln| - | > (Iny,)ni (28)
X£EX! X
_ /
—mK ) mxmy In x = x| _ > (Iny)m? (29)
x#£x! 'S
o
+ip > mxng tan”" <§2 — x?) (30)
x£x/ 1 */I"l

Here the summation over ny and my is constrained by vortex and charge neutrality,
anx - 07 mex - O‘

The imaginary arctangent coupling defines a phase factor of the states in the partition
function. It can be interpreted as an Aharonov-Bohm phase of charges ny due to 2D
monopoles with magnetic charge p my.

From this representation of the clock problem as two scalar Coulomb gases, we obtain
a duality theorem

2
p
Z(K,yp,y) =2 (Mhyayp> (31)
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This relation is true up to a nonsingular prefactor arising from gaussian integral over
smooth part of the phase field, which does not affect the critical behavior and macroscopic
phases classification.

Now, let us discuss the phases of the clock model. The high temperature disordered
state, associated with the free unbound Kosterlitz-Thouless vortices in the problem (28),
occurs at TK < 2. The low temperature lock-in state with 6 frozen in the cosine minimum,
occurs when the charges in the Coulomb gas are unbound and free, i.e. when p*/47K < 2.
For p large enough, there exist a range of intermediate temperatures,

2
2 <K< p—, (32)
s 8T
such that both the cosine perturbation and vortices are unimportant. The state of the
system is similar to the low temperature state of the XY model, with only gaussian fluc-
tuations of f remaining in this limit, a quasi-long-range order and power law correlations.
The two phase transitions, at K = 2/7 and K = p?/8w, are related by the duality
theorem. Each of the transitions is of Kosterlitz-Thouless type.

This picture holds at p > 4. At p = 4, the two transitions coincide. By analogy with

the Kosterlitz-Thouless theory, one can derive the RG flow equations

dK 1 dy

dy p?
=A%y — K%y, 2 =(2—-7K P =2 - = 33
dt oy P g =GRy ( 47rK>yp (33)

At p = 4, this gives three lines of fixed points, each with its own set of critical exponents.
Schematic phase diagram is shown in the figure.

Ao, L Y

- K

—
_|

s -

Figure 1: Phase diagram for clock models with p = 4 and p = 6. Critical lines and the
region with quasi-long-range order are marked in blue.



1.4 Summarize

e Mapping to a Coulomb gas provides a relation between seemingly different
systems. It is an efficient tool for solving 2D problems.

e The Kosterlitz-Thouless scenario of charge unbinding describes several different
phase transitions: (i) the topological transition in the XY model; (ii) the lock-in
transition in the Sine-Gordon model; (iii) the sequence of phase transitions in the
clock models.



