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1 Lecture 6: Real space RG. Blocking, decimation,
bonds-moving.

1.1 Renormalization by decimation. 1D Ising model

There are several ways to implement real space renormalization. The real space RG is a
flexible approach: there is a large freedom in choosing block spins, as well as in making
approximations when the block Hamiltonian is derived. We demostrate the main ideas
in several simple examples. We will work with a minimal set of couplings (one-spin and
two-spin) and ignore more complicated couplings that are typically generated by the RG
procedure. Although the real space RG accuracy can be systematically improved by
enlarging the coupling parameter space, we will not pursue this here!.
Let us consdier a 1D Ising problem

H:—K28i8i+1, K:J/T, Sl::i:l (1)
i
and carry out a decimation in which all the spins on the odd sites ¢« = 2n + 1 are summed

over, and the partition function is re-expressed in terms of the spins on the even sites
i =2n (Fig.1.1).
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Figure 1: Decimation RG for 1D Ising model. The spins on one family of sites are summed
over to obtain an effective Hamiltonian for remaining sites.

Let us transform the partition function:

7 = Z HeK(siSiH — Z H ( Z eK(52n52n+1+52n+152n+2)> (2)

si=x1 1 $2n 1=2n \S2n+1

We factored Z to separate the contributions of the odd sites. To sum over sg, 1 in (2),
we rewrite

efsisiet — cosh K (1 + us;siy1) , u=tanh K (3)
Then,
Z e’ (Sansamtitsomiisanta) — cogh? K Z (1 + usapsons1) (L + usonyiSonsa)  (4)
S2n41 $2n+1
= 2 cosh® K (1 + u?s2,52,12) (5)

'We refer to the article by Th. Niemeijer and J. M. J. van Leeuwen, Phys. Rev. Lett., v.31, p.1411
(1973). This is a classic paper, in which the the numerical power of real space RG and the possibility to
achieve quantitative accuracy was first demonstrated for the Ising model on a 2D triangular lattice.



Thus, up to a rescaling factor 2 cosh? K, the partition function form is reproduced with
u — u?. Going back to K, we have

tanh K’ = tanh® K (6)
which can be rewritten as a recursion relation:

1
K' = 5 In cosh(2K) (7)

The decimated problem describes spins on a lattice with the spacing two times the original
spacing. The interaction is of nearest neighbor form, as before, with the effective (or,
renormalized) interaction constant given by K.

The renormalization procedure can now be repeated many times, giving

1 1
K" = §lncosh(2K’), K" = §lncosh(2K”), (8)

The qualitative picture of the coupling flow defined by the RG transformation (7) is quite
simple: since K’ < K for any finite K > 0, the only two fixed points are K = 0, cc. This
is shown schematically in Fig. 1.1
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Figure 2: RG equation for 1D Ising model analyzed grafically. Coupling flows from large
values to small, indicating a disordered state at arbitrarily low temperature.

The point K = 0 is an attraction point of the RG transformation (K’ = K? for small
K). Physically, small K = J/T corresponds to weak coupling or high temperature. The
other fixed point, K = oo, is unstable. Indeed, at large K the recursion relation (7) takes

the form 102
K:K—%— 9)



and so, even if the starting value of K is large, after several renormalization steps it is
reduced to K ~ 1. Large K = J/T corresponds to strong coupling or low temperature.
The conclusion, therefore, is that at some length scale the coupling strength always be-
comes small, no matter what the microscopic coupling was. Thus there is no long range
order in this system. The fluctuations in D = 1 totally eliminate the phase transtion.
At large length scales, the low temperature state is the same as at high temperature, i.e.
totally disordered.

The absence of phase transition can also be seen from partition function analyticity
in the coupling constant K. The partition function for this problem is easily evaluated
exactly. For that, we introduce link variables defined as & = s;5;41. The Hamiltonian,
written in terms of &;, is a sum of independent terms, one per each link:

One can also note that the original spin variables s; can be expressed through the link

variables as
S; = So H gj (11)
j<i
where sq is the leftmost spin. (We assume that the chain is finite, ¢ = 0,..., N.) This
means that the summation over s; = =1 in the partition function can be replaced by the
summation over § = £1 and sy = £1. This gives

Z=trye "= > ]I ( > eK&) = 2N+ (cosh K)V (12)

so=£1 i \&=+1

Then the free energy per site, ' = —T'In (2 cosh K), is an analitic function, and so all
thermodynamics quantities are also analytic in temperature. This confoirms our conclu-
sion, drawn from the RG flow properties, about the absence of long range order and phase
transition.

Let us discuss the situation at low temperature 7' < .J. In this case, neighboring spins
are exponentially more likely to be aligned than antialigned: p(s; = s;11) ~ e*//Tp(s; #
si+1). Hence, there is a high degree of short-range order and locally the system looks
well ordered. However, at distant points, there is no correlation in spin alignment (no
macroscopic ordering). The correlation length within which the ordering persists can be
estimated roughly as the length scale at which the probability to find antialigned spins is
of order one: & ~ ¢2//T

Another way to estimate the correlation length £ is to use the strong coupling limit of
the RG recursion relation (9). The number of decimation steps after which the coupling

K > 1isreduced to K ~ 1is 5

AT

This defines & = 2" = 2K = ¢2//T the same length scale as above.

n

(13)



1.2 Blocking by moving bonds

In space dimension higher than one, there is usually no possibility to carry out the renor-
malization exactly, like in the above 1D example. Thus various approximations need to
be made. Historically, one of the first successful schemes was proposed by Migdal in his
work on lattice gauge theories, as an attempt to solve quantum chromodynamics on a
lattice. This approach is based on a very simple idea which we describe below and then
apply to the 2D Ising model.

Suppose one wants to carry out the decimation procedure on a 2D square lattice with
couplings along the links. There are two sublattices, even and odd, so a natural thing to
do would be to sum over spins on one of the sublattices and obtain effective couplings
for the remaining spins. One can see that after the first decimation step, in additin to
the nearest neighbor couplings, we generate next nearest neghbor couplings. Thus the
nearest neighbor Hamiltonian does not preserve its form.

We face a dilemma: either neglect the new couplings by setting them to zero after
each RG step, or add more couplings to keep track of. In fact, none of these alternatives
is perfect. Neglecting the next nearest neighbor coupling altogether gives a recursion
relation identical to the one obtained in the 1D Ising model, and thus no phase transition.
Adding new couplings will generate even more couplings at subsequent RG steps, and we
will have to employ some truncation procedure to reign the exploding couplings.

Figure 3: Bond-moving scheme illustrated. The couplings on the bonds shown by dotted
lines are set to zero. At the same time, the couplings on the thick bonds are doubled to
account for the reduction in other couplings.

The bond-moving scheme, in contrast, handles the couplings more gently. The un-
wanted couplings are not discarded, but moved elsewhere, so that the resulting structure
is more amenable to decimation. We start with the anisotropic Ising model with two



different couplings K, and K,. We divide all spins into two groups, according to whether
their row number is even or odd (Fig. 1.2). Our first step is to shift the x couplings from
odd columns to neighboring even colums: Kj 941 — 0, Ky 9; — 2K, o;. After that, the
spins in odd rows can be easily summed over in the partition function. These spins are
coupled only with their neighbors in the y direction, and the decimation is carried in the
same way as in the 1D example. Therefore, the RG transformation has the form

K, = %ln cosh2K,, K, =2K, (14)

x

If this procedure is repeated again and again, K, will decrease, while K, will grow. To
prevent this unphysical anisotropy build up, instead of simply repeating the procedure at
the next step, we interchange the columns and rows. That means that now we shift the
y couplings from odd columns to even, and then decimate by summing over spins in the
odd columns. Then

1
K, =2K,, K= §lncosh 2K, (15)

After that, we keep interchaging rows and columns at every RG step.
Let us focus on the recursion relation for the y couplings. After two RG steps,

K, = Incosh 2K, (16)

The flow defined by this equation can be studied grafically (Fig. 4). Besides the two
familiar fixed points K = 0,00, there apears one more fixed point with finite K = K,.
This fixed point is unstable. For initial coupling strength K < K, the RG flow makes K
even weaker, whereas K > K, grow and flow to the K = oo fixed point, which is now a
stable fixed point.

The interpretation of this behavior is that there are two stable fixed points, K = 0, oo,
correspond to the disordered and ordered states, while the unstable fixed point K = K,
describes the vicinity of the phase transition with 7, = J/K,.

Discuss generalization to higher space dimension. In a cubic lattice of dimension d,
at each RG step, the number of bonds to be moved is 2(d — 1) for each site, with 1D-like
decimation in the remaining direction:

z

1
Kézilncosh2Kx, K,=2K,, K,=2K,,.. (17)

The direction in which the bonds are preserved is changed at each step to maintain cubic
symmetry on average. The fixed point and its qualitative properties are similar to the 2D
case.

Despite being an ad hoc procedure, the bond-moving RG scheme gives surpisingly
good results for a wide range of problems. However, it introduces anisotropy by breaking
the © — y symmetry of the Ising problem. Also, it is hard to modify this approach to
improve the accuracy. Because of that, this approach is usually used only for illustrative
purposes. Many other renormalization schemes have been developed that do not break
symmetries and allow for systematic accuracy control. However, since our purpose here
is mainly to build the intuition about renormalization approach, we will not discuss these
alternative schemes.



Figure 4:
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Figure 5: RG equation for 2D Ising model analyzed grafically. The unstable fixed
point corresponds to the phase transition. Depending on the initial conditions (cou-
pling strength or temperature) the flow takes the system to K = 0 (disordered state) or
to K = oo (ordered state).

1.3 Summarize

e Real space renormalization is an intuitive and simple mathematical procedure,
in which coarse-graining is performed on Hamiltonians defined on a lattice. The
RG transformation is exact in the space of all Hamiltonians containinhg both the
couplings present in the microscopic Hamiltonian and the couplings of more complex
form generated via blocking.

e Different types of ordering correspond to different stable fixed points of the RG
transformation. Each stable fixed point is a point of attraction of the RG flow, with
the limiting Hamiltonian describing the macroscopic properties of a coarse-grained
system.

e Phase transitions correspond to unstable fixed points of the RG transformation.
By varying microscopic parameters, e.g. temperature or coupling strength, one
can change initial conditions of the RG flow. Near an unstable fixed point, a small
change in the initial conditions may correspond to a very large change in macroscopic
behavior, i.e. to a different thermodynamic ordering phase.



