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1 Lecture 3. Symmetry change at a phase transition.
Landau theory.

1.1 Order parameter. Symmetry classification

Landau theory of type Il phase transitions can be viewed as a generalization of of the
observations made in Lecture 2, when we discussed ordering transitions in a ferromagnet
and binary alloy. This theory is using powerful argument based solely on the symmetry
change in the transition. Suppose one has to describe a continuous phase transiton in
which the symmetry group is reduced from Gg to its subgroup G € Gy, where Gy and G
are the symmetry groups of the disordered and ordered states, respectively.

The ordering is characterized by a function p(x) that changes through the transition.
In a structural transition p(x) can be particle density, in a magnetic transition it is spin
density, and so on. In a disordered state above T, p(x) is invariant under the symmetry
group Gp. Below the transition, this quantity (we call it p;(x)) is invariant only under
the transformations from the subgroup G;. Hence one can, following Landau, write the
difference dp = p; — py in terms of the basis functions (bl(”) of irreducible representations

of the group Gy: ,
op(x) =3 3o (%), (1)

where n labels irreducible representations of G, and ¢ labels the basis functions of each
representation. The prime sign indicates that the unit representation is excluded from
the sum, since it contributes equally to p; and py. At the transition 1" = T, all quantities

™ vanish.

The coefficients CZ(-”) characterize the system in thermodynamic equilibrium below the

transition, and thus their values provide minimum for the thermodynamic potential ®.
In a type II transition just a bit below 7, the values cz(") can be arbitrarily small. Thus

the potential can be expanded in powers of CE"). A number of general features of this

expansion can be understood by noting that, since the function dp is invariant under G,
the coeflicients c§”> transform the same way as the functions gbz(-n). Since the potential is
invariant under coordinate transformations and other symmetry operations from G, each
order of the expansion is given by some invariant polynomials in CE"). Now, each irre-

ducible representation has no linear invariants and just one quadratic invariant, Zi(cgn))Q.

(n)

Therefore the series expansion of ® in ¢; ’ begin with

0=+ AP (T2 + 0P 2)

[

Thermodynamic stability requires A™ (P, T) > 0 for all n above T,. In order to have
broken symmetry, i.e. nonzero c§”’, below T, one of the coefficients A™ (P, T) has to
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change sign at 7 = T,. (Simultaneous sign change of two ot more A™ can take place
only at isolated points of the (P,T') plane.)
Since only one of the representations of G corresponds to thermodynamic instability

of a disordered state, we can discard all the terms in the expansion (2) except the one
(n)

which changes sign at 7. The quantities ¢; * that become nonzero in the ordered state
below 1, are called the order parameter.
Focussing on this representation, from now on we drop the index n, always assuming

that the representation is the one that corresponds to the instability at T,. It is useful to

use the notations
=3¢, ¢=cu (3)
i

with 3; 27 = 1. Let us now consider the higher order terms in the expansion (2):

= Dy(P,T) + AP, T) + S Co(P,T) [P (i) + ¢* Y. Bo(P,T) fP () + O(P) (4)

Here the functions fcg?’), f(§4), ..., are invariant polynomials of order 3, 4, etc. Each sum
over « has as many terms as there are invariants of the required order. These terms
determine the ordering just below the transition, and define the transition type.

To summarize, there are three main ingredients in this phenomenological theory: the
symmetry groups Gy and G above and below the transition, and the representation of Gy
that describes the order parameter properties. Usually, there is no ambiguity in Gg and
G, while some insight or additional experimental input is needed to choose the correct

form of the order parameter (i.e. the relevant representation of Gy).

1.2 Transition type deduced from symmetry.

In a continuous phase transition (type II) the variables ¢; found by minimizing ® should
become small near 7, (as in the prototype case of ®(c) = A(T — T,)c* + Bc*). One can
ask when does the potential (4) has this propoperty. This mathematical question has a
simple answer:' If the transition in a system described by the potential (4) is of type I1,
no cubic invariants are allowed. To prove this statement, one simply has to consider ®(c)
at T' = T,., when A = 0, and note that if C' # 0 there exist other mimima ¢ = ¢* with
O(c*) < @(0).

This simple but very basic observation allows to predict which symmetry changes can
take place as a type II transition, and which cannot. One has to look for cubic invariants
of the order parameter representation that describes the transition and if they exist, the
transition is guaranteed to be type [, whereas if there are no cubic invariants, the transition
is most likely of type II. There are powerful goup theoretic methods for searching for cubic
invariants. Mathematically speaking, this is a question of whether the tensor cube of the
representation invloved in the transition, when split into irrreducible components, contains

!The absence of cubic invariants is a necessary condition. Another necessary condition is that the 4th
order terms in (4) are positive and can stabilize the ordered phase at small c.



a unit representation. To find out, one can compute the sum ng = 3, x*(g), where x(g)
are representation characters. This sum gives the dimension of the invariant subspace in
the tensor cube, and therefore, if it is zero, there no cubic invariants, while if it is nonzero,
there are ns invariants.

Although this general methodology is quite helpful in analyzing some complex situations?,
in simple cases the absence or presence of cubic invariants can be figured out by a direct
inspection. Two examples illustrating this approach are provided by ferromagnetic phase
transition in a spin system and by crystallization of a liquid into a solid.

In a ferromagnetic transition, the order parametr is magnetization m, a scalar in the
Ising model, or a vector in the Heisenberg model. The disordered state is time-reversal
invariant: the transformation m — —m leaves Hamiltonian invariant, and thus it is part
of the symmetry group Gy. Therefore, there are no cubic invariants and Landau free
energy in this case has the form

®(m) = A(P,T)m* + B(P, T)m*, A(P,T)=a(T —T,) near T, (5)

with a > 0, B > 0. Thus the ferromagnetic transition is second order.

In crystallization transition, ordering is described by the appearance of a density
modulation dp(x) in a uniform liquid state. Choosing the order parameter to be the
amplitude Jp;, of density harmonics in the crystal phase, dp(x) = ¥4 dpre™™ one can
write the thermodynamic potential as

®(6p) = D A(k)opdp-r + Y Bk, k')Spdprdp i1 + O(8p") (6)
k k k'

Here the cubic terms arize from the series expansion of ® in density variations in a liquid.
Note that they are not eliminated by any symmetry of the liquid phase hamiltonian. To
see how the cubic terms affect the transition, we need to analyze the relations between
different harmonics.

Let us first discuss quadratic terms. In a simple model, the function A(k) is isotropic
(due to rotational invariance of liquid state) and has a single minimum in |k| = ky. For
example A(k) = A; + Ax(|k| — ko)®. Suppose that, as a function of temperature, the
minimal value of A(k) becomes negative (i.e. A; + As < 0). As soon as this happens,
all harmonics with |k| ~ k¢ become unstable. Which combination of harmonics gives the
lower energy is decided by the 4th and higher order terms, but without going into this
discussion, let us assume that there is a star of vectors k; that defines the density har-
monics in the ordered state. The symmetry of the set of vectors k; reflects the symmetry
of the crystal state

It is very often the case that some of the vectors from the star added together give
another vector from the same star. Simple examples: ordering of a 2D liquid in a triangular
crystal lattice, with the hexagonal star of harmonics k;, or face-centered cubic ordering

2The group theory is especially useful in solids, where there are 240 different space groups even before
the magnetic ordering is taken into account. To understand how these symmetries can be broken at a
phase transition, and which transition types are possible, often requires using heavy group-theretic tools.



in 3D (the star is defined by a tetrahedron, 6 vectors pointing along the edges plus their
opposites). In fact, it has been shown by Landau that for any crystal symmetry, one can
find triplets of harmonics that contribute to the cubic term. As a result, on very general
symmetry grounds, crystrallization is a first order transition. This analysis shows that,
despite symmetry being spontaneously broken in crystallization, the transition is of type
[, i.e. discontinuous.

Another case, where on pure symmetry grounds one can reject type Il transition, is
formation of liquid crystals (see homework problem 5, PS#2)

1.3 Thermodynanmic quantities

Let briefly list the results derived for the type II transition with a scalar order parameter,
such as the Ising model or a binary alloy. For concretenens, we discuss transition in a
magnetic system with free energy of the form

® = —arm? +bm* +mh, 1= (T.-1T)/T, (7)

where h is the magnetic field. More generally, the field that couples linearly to the order
parametr is called ordering field.
At h = 0, the order parameter equlibrium value is

[0, at 7 <0 g
m {(61,7'/213)1/2 at 7 >0 (8)

From that, the free energy is 0 at 7 < 0, and F' o« —7% at 7 > 0. The specific heat
Cy = —T(0°F/0T?) (9)
has a jump at the transition. The zero field susceptibility
x=(0M/0h)y <™ at T <0 (10)

These results illustrate that thermodynamic quantities have singularities at the type Il
transition point. The specific form of temperature dependence at singularity can be
modified by the effects of fluctuations, if those are strong.

1.4 Isomorphic phase transitions.

Another useful consequence of the symmetry approach is that it allows to identify isomor-
phic phase transitions in which the symmetry change is the same. Isomorphic transitions
may take place in very different systems, and despite that, they have the same macroscopic
charactersitics. Such transitions are saiud to belong to the same universality class.

One example, discussed already in Lecture 2, is the relation between the Ising phase
transition, the liquid-gas critical point, and the binary alloy. In all three cases, the ordering
is describes by a scalar order parameter. The symmetry is exact in the case of the Ising



problem (m — —m), and in the case of a binary alloy (a <> b), but only approximate
near the liquid-gas critical point (however, it becomes exacvt asymptotically right at this
point). For convenience, we list analogous quantities in a table:

System de- || Curie point of a | Liquid- Critical point of a bi-

scribed by Ising || ferromagnet gas critical point of a | nary mixture

model one component liquid

Density-like Magnetization M = | Density Concentration x =

variable —(0®/0H)r p=—(0P/ou)r —(Ouy /Ou*)r

Field-like Magnetic field H = | Chemical po- | The difference of the

variable —(0OF/0uy)r tential 4 = F 4+ PV = | chemical potentials of
[0(pF)/0p|r the components, p* =

pe — pu = (0F/0x)r
Thermodynamic || F(T,M) = ® + Mh, | pF(T,p) = —P +pu , | F(T,2) = 1 + p*z |

potential for the || dF = —SdT + hdM d(pF) = —pSdT+udp | dF = —SdT + p*dx
density variable

Thermodynamic | ®(T,h) = F — Mh , | —=P(T,p) , —dP =|m(T,pu*)=F — p*z ,
potential for the || d® = —SdT"— Mdh pSdT — pdp dpy = —=Sd1" — xdp*
field variable

Order parameter || M (p—pe)/pe T — T,

¢

Ordering field || £ (1 — plpe, 1))/ Te (W — 1 (pe; 1)) /T
Susceptibility (OM/0h)y (Te/pe)(Op/Op)r Te(0x/Op")r
(96/0h)r

Specific heat Cy

Cy = -T(0*F/0T?)

pC’V = —T(82PF/8T2)V

Cy = —T(0°pF/0T?),

1.5 Summarize

e Symmetry change determines many qualitative features of a phase transition,
such as its type (I or II) and universality class.

e Spontaneous symmetry breaking occurs discontinuously, via a type [ transition,
when the free energy expansion in powers of order parametr contains cubic terms.

e Fluctuations are not accounted for in the Landau theory. Many conclusions, in-
cluding the predicted temperature dependence of thermodynamic quantities, hold
only when fluctuations are small.




