8.334: Statistical Mechanics II  Last modified: March 22, 2003

1 Lecture 11: 2D melting mediated by topological
defects. Instantons in nonlinear sigma model.

Recall the standard picture of melting (Lecture 3), describing transition from uniform
liquid state to spatially modulated crystal state
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by density harmonic amplitude order parameter py. Here the wavevectors k define density
waves with the periodicity of a crystal. The Landau free energy, expanded in powers of
Pk, admits cubic invariants, which explains why melting is always a first order transition.

However, a completely different scenario of melting exists in 2D systems, built on an
analogy between vortices in the XY model and dislocations in a 2D crystal. Dislocations
(see Figure) are topological defects in crystals. Indeed, although crystal structure is
perfect and ordered away from a dislocation center, after going around a dislocation and
counting crystal rows one can detect dislocation at an arbitrarily large distance away from
it.

A dislocation, if present, cannot be eliminated by any rearrangement of atoms in a
crystal. To remove dislocation from a crystal, one has to merge it with a dislocation of
opposite sign, so that the two dislocations annihilate each other. (In a finite system, one
can also remove a dislocation by moving it to the boundary.) Because of that, dislocations
are called topological defects, in contrast to other defects (e.g. vacancies, interstitials, etc.
which change crystal properties only locally, and are “invisible” from far away.

The deformation of crystal lattice around a dislocation satisfies
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where b is the so-called Burgers vector of the dislocation. For simple dislocations this
vector is one of the crystal lattice basis vectors. Mathematically, a dislocation with b
being any lattice vector can be constructed, but since the dislocation energy scales with
b? (see below), usually only short length Burgers vectors are realized.

Topological nature of dislocations is best illustrated by the fusion rule: two dislocations
with Burgers vectors by and by from far away look like one dislocation with Burgers vector
b = b; + by. In particular, two dislocations with opposite vectors b and —b together
are equivalent to a dislocation free crystal. A useful exercise is to verify that such a pair
of a dislocation and an anti-dislocation can be eliminated by moving dislocations to each
other and merging them together.

To find the energy of a dislocation, we use the expression for the elastic energy in terms
of the deformation tensor w;; = $(9;u; + d;u;), and rewrite it in terms of the displacement



field:
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with Lame constants A, u. Displacement field distribution around a dislocation is anisotropic,
it has both angular and radial dependence. Thus it would be impossible to guess its form,
as we did for vortices in the XY model. Instead, we shall use a trick and calculate the
dislocation interaction energy directly, using Fourier representation.

We define a quantity w;; = 0u,;/0x;. Using this definition, the energy of a system of
dislocations at x = x,, with Burgers vectors b,, can be written as
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with 2 x 2 antisymmetric tensor €;; and
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Here ¢;(x) is a Lagrange multiplier field enforcing the relation of distortion with Burgers
vectors. We have 0jwj; — 0y w;; = 0 away from dislocation cores, where the displacement
field u; is single-valued.
To minimize energy in w;;, we first move the derivative on ¢;(x), integrating by parts.
We minimize
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which gives
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To minimize in ¢, we rewrite this expression in Fourier components,
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with ¢ = €;;q;, the vector q rotated by m/2. Minimizing this expression in ¢;(g), obtain
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Fourier transforming back to real space, we have
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Finally, after evaluating the integral for K;;(y) and inserting the dislocation density in
the form (5), obtain
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The dominant interaction is logarithmic at large distances.

Possible phases of the system of interacting dislocations can be discussed in the same
way as in our analysis of Coulomb gas in the XY problem. If SK/87 is less than 2, the
entropic effects favor unbound dislocations. On the other hand, for SK /87 larger than
2, the strong interaction leads to dislocations binding in topologically neutral pairs, and
freezing at macroscopic distances.

From symmetry viewpoint, the dislocation-free state at SK > 87 is a periodic crystal
with translational order. The high temperature state, 5K < 8w, due to a finite density
of dislocations does not possess long range translational order. In its symmetry, however,
this state is different from liquid, since it has a six-fold rotational symmetry. (A true
liquid is fully isotropic, its rotational symmetry group is O(2).) Such order is called a
hezatic state. It is similar in it properties to liquid crystal order in a nematic state, in
that there is a preferred direction at every point of the system. The difference is that
there are three equivalent directions at each point of a hexatic phase, at 7/3 angle to each
other, while there is only one direction in nematic.

Renormalization group at the dislocation melting transition point K = 167 can be
constructed as in the XY model (Halperin and Nelson, 1979). The crucial difference
compared to the XY model is that there are three equivalent Burgers vector directions
(six if signs are distinguished). As in the the XY problem, it is sufficient to take into
account only the shortest vectors, which are the triangular lattice basis vectors
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with e; +es+e3 = 0. Fusion rules for these dislocations are less trivial than for the vortices
in the XY problem. We still have that a dislocation pair with equal and opposite Burgers
vectors is topologically neutral at large distances. In addition, however, two dislocations
with, for example, vectors e; and e, collectively form a pair with a net Burgers vector
e, + e; = —e3. Because of that, when we sum over dislocation configurations at short
distances in order to obtain effective interaction at larger distances, dislocation fusion
contributes an additional term to the Kosterlitz-Thouless RG equations:
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with y(l) the dislocation statistical weight, [ = In A/A’ the RG “time,” and ¢, » positive
constants describing interaction screening by neutral pairs, and fusion of non-neutral
pairs. (Here we used dimensionless rigidity K scaled by temperature.)
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The new term changes the RG flow. This affects the temperature dependence of the
correlation length
E(T) x exp(b/|T —T."), v =0.3696... (15)

instead of ¥ = 1/2 in the XY model. The Lame constants p and A drop to zero at the
transition, so that the combination p(X + p)/(X + 2p) has a universal jump of 8771;/a?,
where a is the lattice constant (Burgers vector length).

As the temperature is increased further, the hexatic state should disappear giving rise
to a true liquid. This transition can also be mediated by topological defects, disclinations.
A disclination is a singularity of an orientational order parameter, such that the local crys-
tal axis direction rotates by a multiple of 7/3 going around the disclination center. Then
theory of disclination melting is very similar to that developed for the XY problem. Thus
in this defect mediated melting scenario, instead of one first order transition predicted by
Landau theory, we have two subsequent second order transitions, each being a topological
transition of Kosterlitz-Thouless kind.

The scenario of melting induced by topological defects is very appealing. In real
systems, however, it may or may not be realized depending on relative importance of the
fluctuations caused by topological defects and other thermal fluctuations that can cause
crystal melting via a first order transition. A number of systems, in which melting is
suspected to be topological, have been studied, with no conclusive results so far.

1.1 Instantons

to be discussed after Spring break, on March 31 (7)



