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� Lecture ��� �D melting mediated by topological

defects� Instantons in nonlinear sigma model�

Recall the standard picture of melting �Lecture ��� describing transition from uniform
liquid state to spatially modulated crystal state
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by density harmonic amplitude order parameter �k� Here the wavevectors k de�ne density
waves with the periodicity of a crystal� The Landau free energy� expanded in powers of
�k� admits cubic invariants� which explains why melting is always a �rst order transition�

However� a completely di�erent scenario of melting exists in 	D systems� built on an
analogy between vortices in the XY model and dislocations in a 	D crystal� Dislocations
�see Figure� are topological defects in crystals� Indeed� although crystal structure is
perfect and ordered away from a dislocation center� after going around a dislocation and
counting crystal rows one can detect dislocation at an arbitrarily large distance away from
it�

A dislocation� if present� cannot be eliminated by any rearrangement of atoms in a
crystal� To remove dislocation from a crystal� one has to merge it with a dislocation of
opposite sign� so that the two dislocations annihilate each other� �In a �nite system� one
can also remove a dislocation by moving it to the boundary�� Because of that� dislocations
are called topological defects� in contrast to other defects �e�g� vacancies� interstitials� etc�
which change crystal properties only locally� and are 
invisible� from far away�

The deformation of crystal lattice around a dislocation satis�es
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where b is the so�called Burgers vector of the dislocation� For simple dislocations this
vector is one of the crystal lattice basis vectors� Mathematically� a dislocation with b

being any lattice vector can be constructed� but since the dislocation energy scales with
b� �see below�� usually only short length Burgers vectors are realized�

Topological nature of dislocations is best illustrated by the fusion rule two dislocations
with Burgers vectors b� and b� from far away look like one dislocation with Burgers vector
b � b� � b�� In particular� two dislocations with opposite vectors b and �b together
are equivalent to a dislocation free crystal� A useful exercise is to verify that such a pair
of a dislocation and an anti�dislocation can be eliminated by moving dislocations to each
other and merging them together�

To �nd the energy of a dislocation� we use the expression for the elastic energy in terms
of the deformation tensor uij �
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with Lame constants �� �� Displacement �eld distribution around a dislocation is anisotropic�
it has both angular and radial dependence� Thus it would be impossible to guess its form�
as we did for vortices in the XY model� Instead� we shall use a trick and calculate the
dislocation interaction energy directly� using Fourier representation�

We de�ne a quantity wij � �ui��xj� Using this de�nition� the energy of a system of
dislocations at x � xn with Burgers vectors bn can be written as
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with 	� 	 antisymmetric tensor �jj� and
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Here �i�x� is a Lagrange multiplier �eld enforcing the relation of distortion with Burgers
vectors� We have �jwj�i� �j�wji � � away from dislocation cores� where the displacement
�eld ui is single�valued�

To minimize energy in wij� we �rst move the derivative on �i�x�� integrating by parts�
We minimize

�

	
uijw

�

ij � gijwij � gij � �j�j�j��i � uij �
�
�� 	� i � j
� i �� j

���

which gives
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To minimize in �� we rewrite this expression in Fourier components�
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with q�i � �ijqj� the vector q rotated by 	�	� Minimizing this expression in �i�q�� obtain
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Fourier transforming back to real space� we have
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Finally� after evaluating the integral for Kij�y� and inserting the dislocation density in
the form ���� obtain
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The dominant interaction is logarithmic at large distances�
Possible phases of the system of interacting dislocations can be discussed in the same

way as in our analysis of Coulomb gas in the XY problem� If 
K��	 is less than 	� the
entropic e�ects favor unbound dislocations� On the other hand� for 
K��	 larger than
	� the strong interaction leads to dislocations binding in topologically neutral pairs� and
freezing at macroscopic distances�

From symmetry viewpoint� the dislocation�free state at 
K � �	 is a periodic crystal
with translational order� The high temperature state� 
K � �	� due to a �nite density
of dislocations does not possess long range translational order� In its symmetry� however�
this state is di�erent from liquid� since it has a six�fold rotational symmetry� �A true
liquid is fully isotropic� its rotational symmetry group is O�	��� Such order is called a
hexatic state� It is similar in it properties to liquid crystal order in a nematic state� in
that there is a preferred direction at every point of the system� The di�erence is that
there are three equivalent directions at each point of a hexatic phase� at 	�� angle to each
other� while there is only one direction in nematic�

Renormalization group at the dislocation melting transition point 
K � ��	 can be
constructed as in the XY model �Halperin and Nelson� ������ The crucial di�erence
compared to the XY model is that there are three equivalent Burgers vector directions
�six if signs are distinguished�� As in the the XY problem� it is su�cient to take into
account only the shortest vectors� which are the triangular lattice basis vectors
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with e��e��e� � �� Fusion rules for these dislocations are less trivial than for the vortices
in the XY problem� We still have that a dislocation pair with equal and opposite Burgers
vectors is topologically neutral at large distances� In addition� however� two dislocations
with� for example� vectors e� and e� collectively form a pair with a net Burgers vector
e� � e� � �e�� Because of that� when we sum over dislocation con�gurations at short
distances in order to obtain e�ective interaction at larger distances� dislocation fusion
contributes an additional term to the Kosterlitz�Thouless RG equations
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with y�l� the dislocation statistical weight� l � ln���� the RG 
time�� and c��� positive
constants describing interaction screening by neutral pairs� and fusion of non�neutral
pairs� �Here we used dimensionless rigidity K scaled by temperature��
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The new term changes the RG �ow� This a�ects the temperature dependence of the
correlation length
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instead of � � ��	 in the XY model� The Lame constants � and � drop to zero at the
transition� so that the combination ��� � ����� � 	�� has a universal jump of �	Tc�a

��
where a is the lattice constant �Burgers vector length��

As the temperature is increased further� the hexatic state should disappear giving rise
to a true liquid� This transition can also be mediated by topological defects� disclinations�
A disclination is a singularity of an orientational order parameter� such that the local crys�
tal axis direction rotates by a multiple of 	�� going around the disclination center� Then
theory of disclination melting is very similar to that developed for the XY problem� Thus
in this defect mediated melting scenario� instead of one �rst order transition predicted by
Landau theory� we have two subsequent second order transitions� each being a topological
transition of Kosterlitz�Thouless kind�

The scenario of melting induced by topological defects is very appealing� In real
systems� however� it may or may not be realized depending on relative importance of the
�uctuations caused by topological defects and other thermal �uctuations that can cause
crystal melting via a �rst order transition� A number of systems� in which melting is
suspected to be topological� have been studied� with no conclusive results so far�
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to be discussed after Spring break� on March �� ���
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