8.334: Statistical Mechanics II  Problem Set # 7 Due: 4/2

XY model. Topological phase transition.

1. Topological quantities. Consider continuous 2-component unit vector functions n(z) on
a circle 0 < z < 27. For any such function one can count the number of rotations of n upon a
cyclic change of x from 0 to 2. We would like to show that this integer number is a topological
characteristic of the function, i.e. it does not change when the function is deformed in a continuous
way.

This problem can be analyzed using a complex number representation of 2-component unit vec-
tors, z(x) = ny(z) + iny(x), and interpreting the functions as mappings from the unit circle param-
eterized by x to the unit circle |z] = 1 in the complex z plane.

a) Define topological charge as

_L%Z_ld "= dz/d (1)
¢=5— ¢ —dv, z=dz/du.

Mathematically, this quantity is known as the degree of a mapping. Show that ¢ is an integer number.
(Hint: In terms of the phase, z = ¥, what is the meaning of the quantity 2’/z?)

b) For any integer n construct a function z(z) with topological charge ¢ = n.

c¢) Show that ¢ does not change when the function z(z) is replaced by z’(x) such that 2’ is related
to z by a small deformation: |z(x) — 2'(7)| < €, where € is a small positive number (e.g. 1072).

2. Correlation function in the XY model. Consider the XY model on a 2D square lattice:

H=-J > nx)-nx)=-J > cos(bx—bx) (2)

[x—x'|=1 [x—x'|=1
where the angles 0, are defined as in Problem 1, n; + iny, = €, or n; = cosf, ny = sinf. We are
interested in the asymptotic behavior of the pair correlation function

Co(x —y) = (n(x) -n(y)) (3)

at large distances |x —y|.
a) At high temperature 7' > J, the correlation between different phases is weak, and one can
evaluate Cy(x —y) as

<ei(0x—0y)> — <ei(0x_0xl)ei(0xl_axll)."ei(ax(n)_ay)> ~ <ei(0x—0x/)><ei(0x/—0xu)>m<ei(0x(n)—0y)> (4)

where the points x, x”, ..., x™ are taken on the shortest path connecting x and y. Show that the
correlation function, evaluated using (4), does not depend on the path between x and y, and falls
off exponentially with distance.

b) At low temperature T < J, the correlations are strong and the phase difference between
neighboring sites is typically very small. This allows to expand cosine in the hamiltonian (2) and

rewrite it as 1

How= > =J (0 —0u)’ (5)



(we dropped constant term as well as the terms higher order in 6 — 0y). Expanding the XY
hamiltonian in small phase difference is called a spin wave approximation. To evaluate the correlation
function (3), one can perform a gaussian averaging with the distribution e=#%sw,

Find the asymptotic behavior of the correlation function at large distances. (Hint: How does the
hamiltonian (3) look in Fourier representation?)

¢) To characterize quantitatively the difference between the two phases, consider an abelian analog
of Wilson loop used in gauge theories. Define topological charge of a finite domain D as a sum of
topological charges of the plaquettes p within the domain:

1 W0 ;-0 ; )

Q(D) = Z apj) . alpy) = o Z argwfl’nﬂ, wf;,nﬂ —e *h Xy (6)

p; €D n=1,...,4

b, o}, 2, and the argument

with the sum over n taken over four square plaquette corner sites x{, x
function taking values —m < argw < 7.

In the high temperature phase the fluctuations are strong, and typical values of Q(D) grow with
domain size. Show that (Q(D)) = 0 and estimate (Q*(D)) for a large domain of area A. Compare

to the low temperature phase.

3. Vortex confinement. Consider the XY model (2) perturbed by a term Asin®#, which
introduces a weak anisotropy with respect to spin rotation. It is interesting to find out how the
anisotropy changes the phase diagram. Let us study the ground states, vortices, and vortex-vortex
interaction. At low temperature, the problem can be treated in the spin wave approximation:

How= Y. Ly (O — 0x)” + > Asin? Oy (7)
|x—x|=1 X
The perturbation removes the degeneracy due to rotational symmetry: at 7' = 0 there are 2 ground
states, # =0, 7.

a) Consider a spin distribution uniform within two domains: 6(z,y) — 0 at large negative x, and
O(x,y) — 7 at large positive z. To find (x) at the domain interface, make a gradient expansion of
the first term in (7) and, assuming that 6 is a function of x only, look for a variational solution of
the energy functional

1
H = / 57 (A9/dw)? + A sin® 6, (8)

with asymptotic values 0 and 7 at + = +00. Show that the width of the domain wall is of the order
of (J/A)Y/? (which justifies using gradient expansion at small ). Find the surface tension of the wall,
i.e. the energy per unit length.

b) Show that the spin distribution far away from a vortex with ¢ = % ¢ VOdl =1 can be described
by 2 sectors, each being a domain with constant & = 0, w. The sector regions are separated by the
domain walls similar to the one described in part a). The distortion field V@ is nearly zero in the
domains and is mainly concentrated in the walls. Estimate vortex energy in a system of size L.

c¢) Consider a vortex and an anti-vortex a large distance L apart. Describe spin distribution in
the plane. How does the energy of their interaction vary asymptotically at large L7

d) Consider the system (7) at finite temperature. Using the above results for vortex interac-
tion, discuss the possibility of a topological transition due to vortex pairs unbinding and vortices
proliferation.



