8.334: Statistical Mechanics IT  Problem Set # 12 Due: 5/5

The Ising model and beyond.

1. Duality in 2D Ising model. There is a special kind of transformations of
statistical problems known as duality relations, that allow to map one problem to another
problem and back. (One familiar example of duality is the relation between the XY
problem and the Coulomb gas considered in Lecture 10.) Transformations of that sort are
usually quite useful. If a duality transformation is discovered, even if it does not allow to
solve the problem, by comparing the problem with its dual one can extract some nontrivial
information. Here, by constructing a duality transformation for 2D Ising model, you will
obtain an exact answer for the transition temperature.

a) Consider Ising model on a square lattice:
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with the sum taken over pairs of nearest neighbors. Since s; = +1, one can rewrite the
Hamiltonian in terms of link variables ¢;; define on the bonds connecting sites i and i as

H = % Y diy +const,  @ig =5 — i (2)
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The variables ¢;; are not independent. Show that they satisfy a constraint 3}, uette @ = 0
for each lattice plaquette.
b) To construct duality transformation, replace the sum tr; in the Ising partition
function by a summation try over all link variables with a constraint for each plaquette
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Thus for each plaquette the constraints [],j,quette 0 (2 @) can be put in the form

tr, exp (m > (2 ¢A)> )

where 1, = £1 are Ising variables on a dual lattice, i.e. at the centers of plaquettes (see
Fig.1).

¢) By inserting the constraint obtained in part b) in the partition function (2) perform
summation over link variables ¢; and obtain a partition function for the dual lattice.
Show that in terms of the variables 7, the partition function has the form of an Ising
model with a new coupling constant J. Derive the Kramers-Wannier relation

sinh(24.J) sinh(28J) =1 (6)



Figure 1: A square lattice with Ising variables s; = £1 at the nodes. Link and plaquette
variables are shown.

Note that if one starts with the Ising problem for n’s and applies the duality transformation
once more, one gets back the initial coupling constant value.

d) Argue that when the system is ordered with respect to variables s; it is disordered
with respect to the dual variables 7y, and vice versa'. Thus the duality transformation
maps the low temperature phase onto the high temperature phase, and back. Use this to
predict the transition temperature.

e) [challenging] Generalize the analysis of parts a)-d) to the anisotropic Ising model
on a square lattice with two different couplings J, and J, in the x and y directions. Derive
the analog of Eq.(6) and use it to determine the transition line in the (J;, J,) plane.

2. Ising model on a triangular lattice.

a) Consider the Ising problem (1) on a triangular lattice, and construct a duality trans-
formation. Show that the dual model is the Ising problem on hexagonal (honeycomb)
lattice with sites at the centers of triangles. Find a relation between critical temperatures
of the Ising problems on the triangular and hexagonal lattices.

In contrast to the square lattice case, the duality transformation alone does not allow
to determine the critical temperature for the triangular Ising problem. For that, one must
use an additional trick described below.

b) Consider a decimation of the hexagonal Ising problem, similar to that used in the
real-space renormalization transformation. Note that the sites of the hexagonal lattice
can be divided into two sublattices A and B, so that each A site is surrounded by three B
sites, and vice versa. Show that a summation over spins on the A sites performed in the

! The dual variables iy are also known as disorder variables, to emphasize that the nonzero expectation
value (n) # 0 is found in the disordered phase, when (n) = 0.



partition function, with spins on the B sites fixed, generates a triangular Ising problem
for the B sites. How is the coupling constant of the this problem related to the coupling
on the hexagonal lattice?

¢) Combine the duality transformation of part a) with the decimation procedure of
part b) to find the critical temperature of the triangular Ising problem.

3. Scaling around us. Look at the list of fundamental constants below and count
how many constants have 1 as the first decimal digit.

Planck constant i = 1.054 x 10~2erg s;

Light speed ¢ = 2.997 x 10%cm/s;

Electron charge e = 4.802 x 10~ %esu;

Gravitational constant G = 6.672 x 10 8cm3 g~ s72;

Fine structure constant o = €?/hc = 7.297 x 10~3;

Avogadro number Ny = 6.022 x 10**mole™";

Boltzmann constant kg = 1.38 x 10~ *%erg/°K;

Universal gas constant R = Nokp = 8.314 x 107erg/(°K mole);

Electron mass m = 9.109 x 10~%8g;

Atomic mass unit 1.660 x 10~24g;

Proton mass M), = 1.672 x 10~ %4g;

Compton wavelength A\, = h/mc = 2.426 x 10~%cm;

Bohr’s radius ag = h%/me? = 5.291 x 10~ Ycm;

“Classical electron radius” 7. = e2/mc? = 2.817 x 10~ 3cm;

1

Hydrogen ionization potential Ry = 2a2m02 =13.605€V;

Rydberg constant Ry, = a/4rag = Reo/hc = 1.097 x 10°cm1;
Bohr magneton up = eh/2mc = 9.273 x 10~ 2terg gs™;

Temperature corresponding to 1eV = 1.16 x 10* °K

The numbers that start with 1 constitute about 1/3 of all constants. The next largest
group are the numbers that start with 2, and so on. If you suspect that it is a coincidence,
or a trick, look up other constants, e.g. masses of elementary particles, etc.

Using the ideas of scaling, explain why the first digits 1, 2, 3, ... 9, do not appear with
equal probabilities. Find the occurrence probabilities p, for different digits and compare
with your observations.



