8.334: Statistical Mechanics II  Problem Set # 6 Due: 3/19

Fluctuations in low space dimension.

1. 1D Ising model, correlation length, susceptibility

a) Consider a pair spin correlation function in the 1D Ising model H = Y; Ks;s;41, s; = £1.
This problem can be solved by the transfer matrix method, discussed in recitation, or by the method
of auxiliary link variables &; = s;s;41, discussed in Lecture 6 [Egs.(10,11,12)]. Show that in terms of
the link variables, the correlation function is

<Si13iz> = < H §j>7 i < ly. (1)

11 <j<12

Using the hamiltonian for &’s (Eq.(11), Lec. 6), average the product (1). Comparing to the asymp-
totic formula Cy(z — 2') o< exp(—|z — 2'|/€), determine the correlation length & as a function of
temperature.

b) At distances much larger than & the system is disordered, while at distances less than £ the
spins are strongly correlated. In RG language, for block sizes > ¢ the block spins are effectively
decoupled from each other. (Indeed, renormalized temperature becomes very large at the length
scale &, indicating decoupling.)

Consider spin susceptibility x = dm/dh|,—9. Treating the problem as a system of independent
block spins of size £, each taking values +&, show that x ~ &/T.

c¢) It is interesting to look at the susceptibility in the ¢ variables representation. Start with the
general expression x = d?In Z/dh?|,—o, and write the susceptibility in terms of &. Average over £’s
using the method of part a) and compare the result with the above estimate for independent block
spins.

2. Magnetization and susceptibility of a 2D Heisenberg ferromagnet

a) Use the thermodynamic potential of spin excitations of a 2D Heisenberg ferromagnet at low
temperature (Problem 2, PS#1), and find magnetization m = dln Z/dh as a function of magnetic
field h. Show that the zero temperature value m(0) is reduced by thermal fluctuations so that the
difference dm = m(0) — m(T") diverges logarithmically as h — 0.

b) Relate the divergence found in part a) with the logarithmic divergence from the Mermin and
Wagner theorem. The latter is concerned with transverse magnetization fluctuations, so one has to
connect the depletion of spin polarization along the field with its transverse fluctuations.

c) It is interesting to consider the zero field susceptibility of this system. From RG analysis of the
nonlinear sigma model, we know that the effective coupling becomes very small at some temperature-
dependent length scale £(7"). Use the arguments similar to those in part b) of Problem 1 to estimate
the susceptibility. Does your estimate agree with the above result for m(7") extrapolated to h = 07

3. The sine-Gordon model
Consider a 2D gaussian problem of a scalar field ¢(x) perturbed by a small cos term:

H= [] (3007 + rcos(99)) 2)

Here ) is a coupling constant, and 3 is a dimensionless parameter.



Apply the field-theoretic RG transformation described in Lecture 8 (coarse grain + rescale +
renormalize hamiltonian) to this problem, treating the cos term as a perturbation. On each RG step,
split the field ¢ into the fast and slow component, and average the Hamiltonian' (2) over the fast
fluctuations, assuming them to be described by the quadratic part of (2).

a) Show that the hamiltonian form is preserved upon RG and derive the RG flow equation, first
order in a weak coupling constant:

dA/dt = —f(B) A, t=In(A/A) (3)

Find the function f(f3) and show that, depending on the value of 3, the coupling A either decreases, or
increases. For )\ decreasing, the problem turns into a freely fluctuating gaussian field, corresponding
to a disordered state, whereas for A\ increasing, the fluctuations freeze at a certain length scale
(estimate it), corresponding to the ordered state.

b) Add a perturbation pcos(3'¢) to the problem (2). Show that this perturbation is irrelevant
near the phase transition found in part a) when ' > (.

On the contrary, a perturbation with 5" < [ is relevant. How does it affect the phase transition?

4. Magnetization in the XY problem.

Consider an XY model for planar ferromagnet in a weak in-plane magnetic field. The magneti-
zation is described by a 2-component unit vector n = cos x + sin fy.

a) Show that the hamiltonian, written in terms of the angular variable #, has the form

H = // (%J(@ﬁ)Q — hcos 9) d*x (4)

(here the field h is applied along the x axis). The hamiltonian is formally identical to the sine-Gordon
problem (2), except that in the XY case the variable 6 lives on a circle, not on a line. For the moment,
however, let us ignore this difference.

b) The magnetization induced by the field h is given by m = (cos #). Consider the limit of a weak
field, when thermal fluctuations suppress magnetization. Assume that the temperature is below the
Kosterlitz-Thouless temperature, so that vortices can be excluded from the analysis.

To find the magnetization, go back to the RG analysis of Problem 3 a). At low temperature,
when f(f) < 0 and coupling grows under renormalization, determine the length scale A, at which
the second term of the hamiltonian (4) reaches the first term. Argue that at larger length scales the
fluctuations freeze out and the system becomes ordered. By averaging cosf over the fluctuations
with wavelengths up to A,, find the magnetization as a function of magnetic field.

Tt would be more appropriate to average the exponent e~7t, which is a slightly more difficult task. However, to
the first order in A the result is the same, so averaging the Hamiltonian in this problem is sufficient. The reason for
this, as we discuss later, is that “the first loop RG approximation” is nonzero, and so the transition arises already in

the lowest order of perturbation theory. Wait till PS#7 to see an example of RG based on averaging e~ .



