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1 Lecture 2. Phase transitions, the mean field ap-
proach

1.1 Phase transition types

The degree of ordering in every system is negotiated between interactions that enforce
order and thermal motion acting to enhance disorder. As a result of the competition
between the tendencies to minimize energy and to maximize entropy, many systems can
form two (or more) different macroscopic phases, depending on parameters, such as tem-
perature, pressure, etc. The phases are in equilibrium at certain temperature and pressure
values, usually forming a transition line. Because of different thermodynamic properties
of the phases, away from the transition line one of them is lower in energy than the other
one.

For the phases coexisting in thermodynamic equilibrium, certain conditions must be
satisfied. Thermodynamic variables such as pressure, chemical potential, etc., have to
be equal. However, for distinct phases the quantities such as entropy and density are
typically not equal, — they experience a jump at the transition line (thus a finite latent
heat and volume change). Such discontinuous transitions are known as phase transitions
of first order, or type I transitions.

The canonical example is a liquid—gas transition. Remind of the phase diagram, co-
existence line, Clausius-Clapeyron equation for the slope of this line, the van der Waals
equation of state, and describe the critical point at which the phase transition line termi-
nates.

The characteristic feature here, from the symmetry point of view that we are develop-
ing, is that the two phases are not different in symmetry in any way. Indeed, the liquid
and gas states differ only by density, but have the same order (rather, disorder!) charac-
teristics. Many other examples of this nature exist. In fact, most of the phase transitions,
especially in material science, metallurgy, chemistry, etc. are of type I.

Briefly mention binary alloys, a solid state version of the liquid—gas transition. A
lattice gas problem: two kinds of atoms occupying sites of the same lattice at random.
Due to atom interaction, ordering takes place at low temperature. Depending on the
interaction details, the ordering can be different. If, for example, like atoms attract each
other, while unlike atoms repel each other, the system phase separates in the phases rich
in atoms of one particular sort. For more detail see PS2, Problem #2.

Besides the transitions in which system state and properties experience a jump, there is
a totally different kind of phase transitions, known as transitions of second order, or type II.
In such transitions, as first pointed out by Landau, there is an abrupt symmetry change,
while the state of a system may evolve continuously through the transition. The symme-
try change may occur, e.g. via a small displacement of atoms in a crystal lattice (breaking
lattice periodicity), ordering of spins in a magnet (breaking the time reversal symmetry),




Bose condensate formation (breaking the gauge invariance), etc. More generally, the sec-
ond order transitions are related with some kind spontaneous symmetry breaking, that
takes place below certain temperature.

Let us illustrate the difference in symmetry change between the type I and II transi-
tions by an example. Consider a binary alloy with cubic lattice structure, in which like
atoms repel, while unlike atoms attract. When the density of the two atoms is equal,
there are two ground states at 7' = 0, with atoms of each type occupying one of the two
sublattices of the cubic lattice:
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These states have lower symmetry than the disordered state at high temperature, since
they are not invariant under translation by lattice period. Such a translation maps one
of the two states onto the other one, and reverse. This means that there is an abrupt
symmetry change when an ordering like this takes place. Note that the overall density of
atoms, however, does not change. This is in contrast with the above example of a type [
transition, the phase separation in a binary alloy, where the low temperature phases have
the same symmetry as the high temperature phase, while there is a density jump at the
transition.

Although the quantities like entropy, density, etc. are continuous at the transition
(hence the name “type II”), the abrupt symmetry change leads to a number of very striking
physical phenomena, most notably, divergences and singularities in physical quantities
of a power law form, strong fluctuations and slow relaxation, the appearance of soft
modes. The physics of these transitions is conceptually extremely rich, and many areas
of physics besides statistical mechanics, have benefited from the theory of second order
phase transitions. Which is an excuse for us to spend a fair fraction of the course studying
the properties of such transitions.

2 Mean field theory

There is a very simple and useful method that starts with a microscopic model and enables
to estimate the temperature at which the transition occurs, and to relate the quantities
below and above the transition. It is highly popular because of broad applicability and
relatively high accuracy, not to mention simplicity.

Let us illustrate it for the Ising ferromagnet model

1
H=—2> J(r—r)oom (2)
2 r#r!

with 0, = £1. The exchange interaction J(r — r') > 0, in principle, can be arbitrary.
However, the approximation to be made can be justified rigorously only for exchange



interaction of large radius, such as

! .
J(r—r’):{OU’ I:_Z,Iig’ with R> 1 (3)

The partition function of the system in magnetic field H is

Z = tr exp (%ﬁ > J(r—r"orom + ZarﬁH) (4)
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where tr stands for a sum over all spin variables o, = =+.
Without the couplings J(r — ') one would have independent spins, each polarized by
magnetic field as
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But with the couplings the problem becomes more complicated. Z—(

The central idea of the mean field approach is to approximate the interacting problem
(4) by a simpler interacting partition function. Usually this is the point when insight enters
the analysis. In this case, since the interaction radius is large, each spin experiences an
average field of many spins, and thus we can replace spin—spin interaction by an interaction
of each spin with an average magnetization of spins around it. Z—) There are many ways
to do it, some of which are illustrated in the homework (PS#2). One particularly nice
way is to rewrite the product 0,0, in the partition function (4) as

oro = (M + (0, — M))(M + (0, — M)) (6)
where M = (0,). Expanding this to first order in the deviations do, = o, — M,
M? + M((0, — M) + M(0 — M) + O(607), (7)
we approximate the exponent in (4) by
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where J = 3./, J(r — '), and N is the total number of sites. The terms ignored in
making this approximation correspond to correlations of the spins. This may be too
drastic and even questionable when interactions are nearest neighbor. For interactions of
large radius, due to a large number of interacting spins and the central limit theorem,
the replacement of a sum of fluctuating spin variables by its average value is a reasonable
approximation.

This yields an answer for Z,

Z = e~ aNBIM 9 cosh(B(JM + H))Y | (9)



Figure 1:
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and for the free energy per site
1
F(M)=-TInZ/N = 5JM2 — B In[2cosh(B(JM + H))] (10)

with irrelevant constant subtracted.

We have not yet specified M. The value M is determined by minimizing F'(M), since
the most probable value corresponds to the lowest free energy. Evaluating the derivative
dF/dM and setting it to zero, obtain

M = tanh(3(JM + H)) (11)

Interpretation: the field polarizing each spin is enhanced by JM due to a feedback from
other polarized spins. The corresponding contribution, JM, is called the molecular field.
In the theory of magnetism it was introduced by Weiss.

There are, in general, several different solutions to Eq.(11). To decide which of them
should be chosen, it is instructive to consider the system in the absence of external field.
For H = 0 and small M, the free energy Taylor expansion is

F(M) = %J(l — BI)M? + O(MY) (12)

Depending on the sign of the M? term, there are two situations. For large T' > .J, there is
single minimum of F(M) at M = 0. At low T" < J, the point M = 0 is a local maximum,
with two degenerate minima M = +Mj,. The system has to choose one of them and then
the 0, — —o, symmetry is spontaneously broken. The value 7, = J is the mean field
theory result for the critical temperature.



At finite H, the function F'(M) is asymmetric, the two minima are not degenerate. In
this case, there is no symmetry loss, or bifurcation, upon lowering temperature. The spins
are polarized along H even at high temperature and this polarization gradually increases
as 1" goes below T.. An interpretation of the difference from H = 0, from symmetry
point of view, is that the Hamiltonian in the presence of a finite H does not possess the
0, — —o, symmetry. Hence no symmetry breaking occurs.

Another example is provided by the Heisenberg model
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with S, unit classical vectors. The partition function of the system in magnetic field H

has the form

1
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where tr stands for an integral over the configuration space (N independent integrals over
unit sphere [S,| =1 for N spins).
Introducing the mean polarization M = (S,) and repeating the above steps (6), (7),

(8), we have

F(M) = %JMQ 5l [/ exp(B(JM + H) - S)ds} (15)

with the integral taken over the sphere |S| = 1. The integral over dS is

sinh(3(JM + H))

1
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Minimizing F'(M), obtain an equation for magnetization:
M = coth(B(JM + H)) — 1/(B(JM + H)) (17)

Despite looking very different from the above result (11) for the Ising model, this equation
has the same qualitative properties. The equation for critical temperature 71, = %J is
obtained by setting H = 0 and expanding the right hand side of Eq.(17) in powers of M.

Comment 1: The mean field estimate for 7, is almost always an overestimate. This is
because thermal fluctuations, partly ignored in the derivation, reduce the molecular field.

Comment 2: The large radius of interaction condition, required for the mean field
approach to be accurate, is often replaced within a nearest neighbor interaction model
by a requirement of a large number of neighboring spins. Since in a d-dimensional cubic
lattice the number of nearest neighbors of each site is 2d, this is equivalent to taking the
limit of a high space dimension.



3 Summarize

e Type I phase transitions are discontinuous, accompanied by jumps in physical
quantities, such as density or entropy, latent heat and volume change. The symmetry
is typically not changed in such transitions.

e Type II phase transitions are very different. In such transitions, physical quanti-
ties vary continuously, while symmetry changes abruptly. The phase transformation
in a type II transition is described by spontaneous symmetry breaking.

e Mean field theory: a very successful approximation technique that captures cor-
rectly all qualitative features of the type I and II transitions. It gives numerically
accurate results for the phase transitions in systems with large interaction radius or
large number of interacting neighbors.



