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� Lecture �� Phase transitions� the mean �eld ap�

proach

��� Phase transition types

The degree of ordering in every system is negotiated between interactions that enforce
order and thermal motion acting to enhance disorder� As a result of the competition
between the tendencies to minimize energy and to maximize entropy� many systems can
form two �or more� di�erent macroscopic phases� depending on parameters� such as tem�
perature� pressure� etc� The phases are in equilibrium at certain temperature and pressure
values� usually forming a transition line� Because of di�erent thermodynamic properties
of the phases� away from the transition line one of them is lower in energy than the other
one�

For the phases coexisting in thermodynamic equilibrium� certain conditions must be
satis�ed� Thermodynamic variables such as pressure� chemical potential� etc�� have to
be equal� However� for distinct phases the quantities such as entropy and density are
typically not equal� � they experience a jump at the transition line �thus a �nite latent
heat and volume change�� Such discontinuous transitions are known as phase transitions
of �rst order� or type I transitions�

The canonical example is a liquid�gas transition� Remind of the phase diagram� co�
existence line� Clausius�Clapeyron equation for the slope of this line� the van der Waals
equation of state� and describe the critical point at which the phase transition line termi�
nates�

The characteristic feature here� from the symmetry point of view that we are develop�
ing� is that the two phases are not di�erent in symmetry in any way� Indeed� the liquid
and gas states di�er only by density� but have the same order �rather� disorder	� charac�
teristics� Many other examples of this nature exist� In fact� most of the phase transitions�
especially in material science� metallurgy� chemistry� etc� are of type I�

Brie
y mention binary alloys� a solid state version of the liquid�gas transition� A
lattice gas problem� two kinds of atoms occupying sites of the same lattice at random�
Due to atom interaction� ordering takes place at low temperature� Depending on the
interaction details� the ordering can be di�erent� If� for example� like atoms attract each
other� while unlike atoms repel each other� the system phase separates in the phases rich
in atoms of one particular sort� For more detail see PS�� Problem ��

Besides the transitions in which system state and properties experience a jump� there is
a totally di�erent kind of phase transitions� known as transitions of second order� or type II�
In such transitions� as �rst pointed out by Landau� there is an abrupt symmetry change�
while the state of a system may evolve continuously through the transition� The symme�
try change may occur� e�g� via a small displacement of atoms in a crystal lattice �breaking
lattice periodicity�� ordering of spins in a magnet �breaking the time reversal symmetry��
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Bose condensate formation �breaking the gauge invariance�� etc� More generally� the sec�
ond order transitions are related with some kind spontaneous symmetry breaking� that
takes place below certain temperature�

Let us illustrate the di�erence in symmetry change between the type I and II transi�
tions by an example� Consider a binary alloy with cubic lattice structure� in which like
atoms repel� while unlike atoms attract� When the density of the two atoms is equal�
there are two ground states at T � �� with atoms of each type occupying one of the two
sublattices of the cubic lattice�

a b a b
b a b a
a b a b
b a b a

or

b a b a
a b a b
b a b a
a b a b

���

These states have lower symmetry than the disordered state at high temperature� since
they are not invariant under translation by lattice period� Such a translation maps one
of the two states onto the other one� and reverse� This means that there is an abrupt
symmetry change when an ordering like this takes place� Note that the overall density of
atoms� however� does not change� This is in contrast with the above example of a type I
transition� the phase separation in a binary alloy� where the low temperature phases have
the same symmetry as the high temperature phase� while there is a density jump at the
transition�

Although the quantities like entropy� density� etc� are continuous at the transition
�hence the name �type II��� the abrupt symmetry change leads to a number of very striking
physical phenomena� most notably� divergences and singularities in physical quantities
of a power law form� strong 
uctuations and slow relaxation� the appearance of soft
modes� The physics of these transitions is conceptually extremely rich� and many areas
of physics besides statistical mechanics� have bene�ted from the theory of second order
phase transitions� Which is an excuse for us to spend a fair fraction of the course studying
the properties of such transitions�

� Mean �eld theory

There is a very simple and useful method that starts with a microscopic model and enables
to estimate the temperature at which the transition occurs� and to relate the quantities
below and above the transition� It is highly popular because of broad applicability and
relatively high accuracy� not to mention simplicity�

Let us illustrate it for the Ising ferromagnet model

H � �
�

�

X
r ��r�

J�r � r���r�r� ���

with �r � ��� The exchange interaction J�r � r�� � �� in principle� can be arbitrary�
However� the approximation to be made can be justi�ed rigorously only for exchange
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interaction of large radius� such as

J�r � r�� �
�
U� jr � r�j � R�
�� jr � r�j � R�

with R� � ���

The partition function of the system in magnetic �eld H is

Z � tr exp

�
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�
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r

�r�H

�
A ���

where tr stands for a sum over all spin variables �r � ��
Without the couplings J�r� r�� one would have independent spins� each polarized by

magnetic �eld as

��r� �

P
�r�� �re

�r�HP
�r�� e

�r�H
� tanh��H� ���

But with the couplings the problem becomes more complicated� ���
The central idea of the mean �eld approach is to approximate the interacting problem

��� by a simpler interacting partition function� Usually this is the point when insight enters
the analysis� In this case� since the interaction radius is large� each spin experiences an
average �eld of many spins� and thus we can replace spin�spin interaction by an interaction

of each spin with an average magnetization of spins around it� ��	 There are many ways
to do it� some of which are illustrated in the homework �PS��� One particularly nice
way is to rewrite the product �r�r� in the partition function ��� as

�r�r� � �M � ��r �M���M � ��r� �M�� ���

where M � ��r�� Expanding this to �rst order in the deviations ��r � �r �M �

M� �M���r �M� �M��r� �M� �O����r�� ���

we approximate the exponent in ��� by

�
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N�JM� � ��JM �H�

X
r
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where J �
P
r� ��r J�r � r��� and N is the total number of sites� The terms ignored in

making this approximation correspond to correlations of the spins� This may be too
drastic and even questionable when interactions are nearest neighbor� For interactions of
large radius� due to a large number of interacting spins and the central limit theorem�
the replacement of a sum of 
uctuating spin variables by its average value is a reasonable
approximation�

This yields an answer for Z�

Z � e�
�

�
N�JM�

�� cosh���JM �H���N � ���
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Figure ��
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and for the free energy per site

F �M� � �T lnZ�N �
�

�
JM� � ��� ln �� cosh���JM �H��� ����

with irrelevant constant subtracted�
We have not yet speci�ed M � The value M is determined by minimizing F �M�� since

the most probable value corresponds to the lowest free energy� Evaluating the derivative
dF�dM and setting it to zero� obtain

M � tanh���JM �H�� ����

Interpretation� the �eld polarizing each spin is enhanced by JM due to a feedback from
other polarized spins� The corresponding contribution� JM � is called the molecular �eld�
In the theory of magnetism it was introduced by Weiss�

There are� in general� several di�erent solutions to Eq������ To decide which of them
should be chosen� it is instructive to consider the system in the absence of external �eld�
For H � � and small M � the free energy Taylor expansion is

F �M� �
�

�
J��� �J�M� �O�M�� ����

Depending on the sign of the M� term� there are two situations� For large T � J � there is
single minimum of F �M� at M � �� At low T � J � the pointM � � is a local maximum�
with two degenerate minimaM � �M�� The system has to choose one of them and then
the �r � ��r symmetry is spontaneously broken� The value Tc � J is the mean �eld
theory result for the critical temperature�
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At �nite H� the function F �M� is asymmetric� the two minima are not degenerate� In
this case� there is no symmetry loss� or bifurcation� upon lowering temperature� The spins
are polarized along H even at high temperature and this polarization gradually increases
as T goes below Tc� An interpretation of the di�erence from H � �� from symmetry
point of view� is that the Hamiltonian in the presence of a �nite H does not possess the
�r � ��r symmetry� Hence no symmetry breaking occurs�

Another example is provided by the Heisenberg model

H � �
�

�

X
r ��r�

J�r � r��Sr � Sr� ����

with Sr unit classical vectors� The partition function of the system in magnetic �eld H

has the form

Z � tr exp
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where tr stands for an integral over the con�guration space �N independent integrals over
unit sphere jSrj � � for N spins��

Introducing the mean polarization M � hSri and repeating the above steps ���� ����
���� we have

F �M� �
�

�
JM� � ��� ln

�Z
exp���JM�H� � S�dS

�
����

with the integral taken over the sphere jSj � �� The integral over dS is

��
Z �

��
e��JM�H�xdx � ��

sinh���JM �H��

��JM �H�
����

Minimizing F �M�� obtain an equation for magnetization�

M � coth���JM �H��� �����JM �H�� ����

Despite looking very di�erent from the above result ���� for the Ising model� this equation
has the same qualitative properties� The equation for critical temperature Tc � �

�
J is

obtained by setting H � � and expanding the right hand side of Eq����� in powers of M �
Comment �� The mean �eld estimate for Tc is almost always an overestimate� This is

because thermal 
uctuations� partly ignored in the derivation� reduce the molecular �eld�
Comment �� The large radius of interaction condition� required for the mean �eld

approach to be accurate� is often replaced within a nearest neighbor interaction model
by a requirement of a large number of neighboring spins� Since in a d�dimensional cubic
lattice the number of nearest neighbors of each site is �d� this is equivalent to taking the
limit of a high space dimension�
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 Summarize

� Type I phase transitions are discontinuous� accompanied by jumps in physical
quantities� such as density or entropy� latent heat and volume change� The symmetry
is typically not changed in such transitions�

� Type II phase transitions are very di�erent� In such transitions� physical quanti�
ties vary continuously� while symmetry changes abruptly� The phase transformation
in a type II transition is described by spontaneous symmetry breaking�

� Mean �eld theory� a very successful approximation technique that captures cor�
rectly all qualitative features of the type I and II transitions� It gives numerically
accurate results for the phase transitions in systems with large interaction radius or
large number of interacting neighbors�
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