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� Lecture ��� Field�theoretic perturbative RG�Wilson�

Fisher �xed point�

Example of a nontrivial �xed point born in a vicinity of a trivial �xed point�
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Two �xed points� u � � and u � u� � k�a�
Eigenvalues� scaling dimension of u� Perturbation theory in small k� From RG 	ow
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one can estimate the sacling dimesnion of u� at the u� �xed point�
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From RG 	ow for u� in the vicinity of u � o known as series in u up to order n one can
predict scaling dimension at the nontrivial �xed point up to O�un��
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��� Coarse�graining� Cummulants� Wick�s theorem�

Landau hamiltonian
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for an n�component �eld �i�x��
Coarse graining in momentum space�
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Z
eiq�x�i�q�d
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with decomposition into �� and �� de�ned using shells in momentum space�
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where � is of order of inverse lattice spacing and the intermediate cuto� �� is related with
the rescaling factor b as �� � ��b�
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To coarse�grain the problem� let us �rst separate the hamiltonian �� into a quadratic
and a quartic part� H � H� 
 U � where
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� ddq
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Now separate the summation over �� and �� in the partition function�

Z � tr�tr�e
�H��������e�U������� � tr�e

�H�����tr�e
�H�����e�U������� ����

� Z���tr�e
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with constant prefactor Z��� � tr�e
�H����� and correction to the hamiltonian �H de�ned

by
�H���� � � lnhe�U�������iH�

����

Here h���iH�
means averaging over gaussian distribution P ���� � e�H������ To compute

�H use cummulant expansion

lnhe�UiH�
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hhUnii ����

hhUii � hUi � hhU�ii � h�U � hUi��i � hhU�ii � h�U � hUi��i � ��� ���

The cummulants� aka irreducible moments� are of interest not only here but in general�
since they are extensive quantities �i�e� scale with system volume�� This is not true for
ordinary moments hUni�

In computing cummulants of U���
��� we can bene�t from gaussian character of the
distribution e�H����� and use the general rule known as Wick�s theorem� For correlators
of Fourier harmonics �i�q of order one� two� three� and four one can show that

h�i�qi � � � h�i�q�i��q��i���q��i � � ����
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�ii���q
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h�i��q��i��q��i��q��i��q�i � h�i��q��i��q�ih�i��q��i��q�i
 h�i��q��i��q�ih�i��q��i��q�i


 h�i��q��i��q�ih�i��q��i��q�i ����

The generalization for an arbitrary correlator h�i��q�����in�qni is as follows� All correlators
with an odd n are zero� while the correlators with even n are given by

h�i��q� ����in�qni �
X

all pair contractions

h����ih����i���h�n���ni ����

de�ned by breaking the n �elds �i��q�� ��� �in�qn into pairs in all possible ways� Each pair
contributes the pair correlator ����� independent of other pairs� The number of terms in
the sum is equal to the number of ways to divide n onjects into pairs� equal to

�n� ���n� ������ � � � n���n���n���� ����

�



��� Perturbative RG

Armed with the Wick�s theorem� we are ready to face the cummulants hhUn���
���iiH�
�

Since our aim is modest � to go to the �rst order in � � � d in the RG� we only need to
know hUi and hhU�ii� By using a brut force approach� or something more re�ned� such as
a graphical representation �Feynman diagrams�� we obtain

hU��� 
 ���iH�
� U���� 
 � 
 �n�G

���
	�	�u

X
jqj�	�

�i�q�i��q ����

where

G
���
	�	� �

X
	��jpj�	

�

� 
Kp�
����

The graphs enumerating various contributions to hUi are shown in Fig�����
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Figure �� Graphs for hUi are shown� The �rst term is u���
��

�� the second and third are

G
���
	�	�u��

� times combinatorial factors� other terms are constants�

The �leg vertex ih represents the interaction ������ The legs� representing �eld �
are joined for the �elds from the same dot product� Averaging is performed by pairing
together fast �elds� using Wick�s theorem� Free ends represent slow �eld� arcs joining
the ends represent pair average of fast �elds� given by Eq������ Graphs with the same
topology are pictured by one diagram� Combinatorial factors are given by the number of
ways to form speci�c graph by pairing fast �elds together�

Tensor summation is performed over indices of the �elds joined by a line or a loop�
thus each line with free ends has a Kronecker delta �ii� associated with it� contracted with
slow �elds at the ends� Each closed loop contributes

P
i �ii � n�

Momentum conservation ��q� 
 ���
 q�� at each vertex� and for pairs of fast �elds in
the average ���� by Wick�s rule� ensure that the sum of all momenta of �elds at free ends
is zero� The momenta in the inner parts of the graphs take values �� � jqj � �� while
the momenta at the ends are constrained by jqj � ���

Similarly� for the second cummulant we have
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plus terms quadratic in � which we will not need� Here
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Figure �� Graphs for hhU�ii are shown� The �rst� second and third graphs contribute to
the u����

��
� term� other graphs represent contributions of ��

� form�

Graphically� these contributions are represented in Fig�����
This gives coarse�grained hamiltonian to the order O�u���
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Here A���q� is obtained from the �� contributions depicted in Fig���� In what follows we
will not need to know their exact form�

From the coarse�grained hamiltonian� we obtain recursion relations�

�K � K � u�A����� ����
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The next step is to rescale momentum�

q � b��q� ����

which shifts �� back to �� and to renormalize �eld�

�� � z� ����

After that the parameters in H change as

K � � b�d��z� �K � � � � b�dz��� � u� � b��dz��u ����

Now let us �x the renormalization factor z so that K � � K� This gives
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To analyze the RG relations� it is conveniant to put them in a di�erential form� We de�ne
the RG �time� parameter as l � ln������ and obtain
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The second equation has the form we anticipated� with the trivial �xed point u � �
loosing stability at d � � and simultaneously a new �xed point u � u� born nearby�

To the �orst order in � � � d� the �xed point is
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Linearizing RG 	ow at the �xed point �u�� ���� obtain eigenvalues
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Nagative yu indicates stability of the new �xed point�
The properties of physical quantities can be analyzed using the relation between ther�

mal eigenvalue yt and scaling of thermodynamical esatblished earlier in the context of real
space RG� For example� the correlation length scaling behavior is 	 � ������� with
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which corrects the mean �eld result 
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For speci�c heat� C � ���� we have
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Compare with experimental values for the Ising �n � ��� XY �n � ��� and Heisenberg
�n � �� cases�
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