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� Lecture �� Long�range order� symmetry and soft

modes

��� Long�range order

The notion of long�range order is used to describe the situation when the state of a
macroscopic system has symmetry lower than that of the system Hamiltonian� A system
with a long range order is described by a symmetry group that transforms one state to
another equivalent state� Two di�erent situations are possible regarding this symmetry
group� it can be �i� discrete or �ii� continuous�

A slightly arti�cial but very useful example of a discrete symmetry is an Ising magnet
model� The variables are spins on a lattice� described by �r � ��� The Hamiltonian of
spin interaction is

H � �
�

	

X
r

J�r � r���r�r� ���

where J�r � r�� � 
 is exchange interaction� By convention� each pair of points r� r� is
counted twice in the sum� which accounts for the factor �

�
� At zero temperature� there

are two lowest energy states� ALL spins up� �r � ��� or ALL spins down� �r � ���
Note that the overall sign change �r � ��r leaves the Hamiltonian invariant� while

the two ground states are not invariant� Under a sign change they transform into each
other� In the group theory terminology� the symmetry group of the manifold of �in this
case� just two� states is Z�� consisting of the identity and the sign reversal transformations�

Such a situation is sometimes called spontaneous symmetry breaking� Indeed� think
of someone presented with a choice of choosing a ground state� This choice is perfectly
symmetric� since each of the possible ground states is equivalent to other states� How�
ever� as soon as the choice is made� the situation becomes asymmetric� because the state
symmetry is lower than that of the Hamiltonian� This concept� especially in the cases
when the symmetry group of possible ground states is continuous� has many applications
in the high energy physics� cosmology� hydrodynamics� nonlinear dynamics and� of course�
in condensed matter physics� We hope to explore this a bit more later� in homeworks�
course�related projects or term papers�

��� Soft modes� general theory

In the situation when the symmetry group of di�erent equivalent states is continuous�
Goldstone theorem predicts that there exist soft modes� i�e� one or several branches of
excitations with the energy vanishing in the limit of long wavelength�

�



Consider an example from �eld theory� an ncomponent �eld �i� i � �� ���� n� with the
Hamiltonian

H �
Z �

�

	
��
i �

�

	
�r�i�

� � U�j�j�
�
d�x �	�

Here the potential energy U�j�j� depends only on the vector �i length� but not on its
orientation� The �rst term in Eq��	� is kinetic energy written in terms of momentum
density �i of the �eld �i�

When the potential energy U�j�j� has a minimum at �nite ��� there are in�nitely many
ground states� all with the same energy� They are described by constant �eld j��x�j � ��
with restricted length� but unrestricted direction� They manifold of ground states in this
case is an n� � dimensional sphere�

Perturb near one of these states� The state �i�x� slowly varying in space have energy
which is larger but can be made arbitrarily close to the ground state energy by choosing
su�ciently large wavelength�

Graphically� for a two component �eld� n � 	� the �D plot U vs � looks like a Mexican
hat� with the manifold of ground states being a circle near the hat rim� If the �eld �
orientation is slowly varying in space� with the length j�j �xed� it costs almost no energy�

More quantitative estimate� for �i�x� � ����i � ��i�x� with the transverse pertubation

��i�x� � Ai cosk � x such that Ai�
���
i � 
� the energy density

�H �
Z

�r��i�x���d�x � k�A� ���

Indeed� �U � 
 when k� 
�
Excitations are described by the Hamilton equations of motion�

��i � ��H���i � r��i � �U���i � ��i � �H���i � �i ���

Linearizing them for the excitations of small amplitude j��j � j����j� obtain a wave
equation ���t �r

����i � 
� which gives a linear dispersion relation 	�k� � k�
Alternatively� one can start with the Lagrangean

L �
Z �

�

	
���i �

�

	
�r�i�

� � U�j�j�
�
d�x � ���

Linearizing L��� in small perturbation amplitude ��� obtain

L �
Z �

�

	
�� ��i�

� �
�

	
�r��i�

��
�
d�x ���

which yields the same wave equation�
The mode with a �soft� dispersion relation� such that 	�k� � 
 when k � 
� is

called a Goldstone mode� To summarize the discussion of the example �	�� spontaneous
symmetry breaking with a continuous group of ground state transformations �described
also as continuous order parameter degeneracy�� gives rise to Goldstone modes with soft
dispersion relation�

	



It will be crucial for us that the statistical properties of such a system at low enough
temperature are entirely determined by these low energy excitations� They are the ther�
modynamically active degrees of freedom that describe thermal energy excitations and
thermodynamic �uctuations in equilibrium� Typically� by analyzing the system and char�
acterizing the low energy excitations �soft modes�� one can reduce a relatively complicated
problem to a much simpler problem� Moreover� the initial microscopic problem is usually
case�sensitive� while the problem obtained by isolating the low energy modes is usually
more universal� with the basic features determined only by symmetry �and perhaps by
several �material constants���

Comment �� A problem very similar to Eq��	�� with n � 	 and U��� � �
�
g��� � n���

describes a super�uid �see Problem � in PS���� The wavefunction 
 in this homework
problem is complex�valued� Writing it as 
 � �� � i��� see that the only di�erence is the
form of kinetic energy� �

�
���i � i �
�t
�c�c�� The conclusions about low energy excitations�

however� are unchanged�
Comment 	� To see why is it so important for the Goldstone theorem to have a con�

tinuous manifold of degenerate states� consider the form of the energy U��� � �
�
U��

� with
a single minimum at � � 
� Then the ground state is � � 
� Pertubing about it� obtain
an equation with a mass term� ���t �r

� � U����i � 
� which gives a dispersion relation
with a cuto� frequency� 	�k� � �k� � U��

���� No low energy excitations in this case�

��� Di�erent systems� often the same symmetry classes

Now let us consider several other examples of interest for statistical mechanics� To il�
lustrate the generality of the relation between continuous symmetry and soft modes� we
shall consider seemingly distant systems� solid� liquid crystal� ferromagnet� incommensu�
rate crystal�

Elastic modes in solids are described by displacements of atoms in a crystal lattice
relative to equilibrium positions� The hamiltonian of atoms and nuclei is invariant under
spatial translations and Euclidean rotations� The crystal itself� however� is not invariant�
since translating it by a constant vector incommensurate with lattice period gives a geo�
metrically di�erent but physically equivalent crystal� Similarly� spatial rotation changes
the crystal to a di�erent crystal�

The soft modes of a crystal are described by displacement �elds slowly varying in
space� Indeed� constant displacement �eld correponds to an overall translation by a
constant vector� and thus does not change energy� Weakly nonuniform translation will
change energy� but thsi change will be small when the wavelength of spatial modulation
is large� The long wavelength displacements are thus the Goldstone modes in this case�

The Hamiltonian of elastic modes in a crystal is written in terms of gradients of the
displacement �eld ui�x� as�

E�u� �
Z ��

	
u�ii � �u�ij

�
d�x ���

�



with uij � �
�
��iuj � �jui� the deformation tensor and Lame constants �� ��

We stress that the form of the elastic energy can be deduced solely from a symmetry
argument� Indeed� the energy E�u� cannot depend on ui� but only on its gradients �iuj�
since an explicit dependence on u renders the energy noninvariant under uniform spatial
translations ui�x� � ui�x� � ai� where a is a constant vector� Furthermore� to the lowest
order in gradients� the energy has to be quadratic in the tensor �iuj� One might expect
that� since there are ��� � � di�erent components in �iuj� the energy dependence on the
displacement �eld will be complicated� Remarkably� this is not the case� The condition
of rotational symmetry leaves one with three invariants �iuj�iuj� �iuj�jui and �iui�juj�
However� there is no dependence of the energy on the the antisymmetric part �iuj��jui of
the tensor �iuj� since it describes an in�nitesimal rotation which does not change system
energy� Thus there are only two independent terms in the elastic energy ����

The kinetic energy is
R �

�
 �u�id

�x with  the crystal density� The dynamics is described

by the Lagrangean L �
R ��

�
 �u�i �

�
�
u�ii � �u�ij

�
d�x� or �same thing�� by Newton�s equa�

tions
�ui � �E�u���ui ���

One can look for a plane wave solution uj�x� � uje
ik�x�i�t� which gives three coupled

linear equations for the vibration amplitude

	�ui � �kikjuj � �kj �kiuj � kjui� ���

There are three normal modes� one longitudinal with u k k and two transverse� with
u � k� All three have linear dispersion 	 � k� the velocities of the longitudianl and
transverse sound are di�erent� For the longitudinal mode� 	�k� � clk with the velocity

cl �
q

�� � 	���� For the transverse mode� 	�k� � ctk with cl �
q
���

Thermal excitation of long wavelength vibrational modes controls thermodynamical
properties of this system� The elementary excitations associated with the vibrational
modes� also called phonons� are Bose particles� The occupation number of a mode with
wavevector k is given by Planck distribution� nk � ���e���k� � �� with � � ��T � This
means that only modes with su�ciently long wavelength�

	�k� � cl�t�	���� � T ��
�

are thermally excited��
The thermodynamic potential of this system is

� � T
Z

ln��� e��l�k��T �
d�k

�	���
� 	T

Z
ln��� e��t�k��T �

d�k

�	���
����

�This simple form of elastic energy is correct for an isotropic solid� such as a glass or a polycrystal�
In a real crystal� elastic energy has more complicated form� E�u� � �

�

R
�ijkluijukld

�
x with �ijkl an

anisotropic elasticity tensor�
�Unless stated otherwise� we use absolute temperature units with the Boltzmann constant kB � ��

�



Here the integral over k adds up the contributions of modes with di�erent wavelengths�
while the factor 	 accounts for two transverse modes� This expression can be used to
obtain the entropy� speci�c heat� and other thermodynamic quantities�

Liquid crystal
There is a strange state of matter intermediate between liquids and solids� called liquid

crystals� These are �uids with one or another form of orientational order� Microscopi�
cally� they consist of relatively large anisotropic molecules� such as long rods� which have
orientations correlated with each other throughout the entire volume of the liquid crystal�
For a more detailed but still quite general discussion of a nematic state we refer to a very
good book �Physics of liquid crystals�� by de Gennes�

there are many interesting phases of liquid crystals� In the simplest case of a nematic
ordering� the system is translationally invariant� while the rotational invariance is broken�
Average molecule direction is described by a �director� vector �n� The order parameter
is a symmetric traceless tensor Qij � Q�T ��ninj �

�
�
�ij��

The system has rotational degeneracy described by all possible orientations of n�  a
	D sphere with opposite points identi�ed �a projective plane� in topolgical terms�� Thus
the energy cannot depend on n only� The dependence on the gradients partialinj can be
deduced from the rotational invariance of the problem�

The logic is similar to that used above in the discussion of elasticity� The energy of a
liquid crystal in a uniform state with constant n does not depend on the orientation of n
�the ground state degeneracy�� Hence the energy has to depend on the gradients rn�

�i� E�n� must be even in n� as explained above� the states �n� and ��n� are undistin�
guishable 

�ii� No terms linear in n� The only terms of this form invariant under rotation are
divn �ruled out by �i�� and n � curln �changes sign by the transformation �x� y� z� �
��x��y��z�� 

Thus E�n� should be quadratic in r� The simples way to list all possible rotationally
invariant terms of this form is to consider three quatities�

divn� n � curln� n� curln� ��	�

and take a sum of squares� One can show �this is tedious but elementary�� that this
accounts for all possible terms of second order in gradients� Thus the elastic energy of a
liquid crystal is

E�n� �
�

	

Z �
K��divn�� �K��n � curln�� �K��n� curln��

�
d�x ����

The constants K����� account for the energy cost of conformations with nonzero divn�
n�curln and n�curln� They are known as the splay� twist and bend modulus� respectively�

The dynamics is of relaxational form� �n � ���E�n���n� Two relaxational soft modes
with complex disperion relation 	 � ik��

Thermal excitations are fully described by the elastic energy ����� To analyze thermal
excitations� one can consider a weakly modulated state� n�x� � n��� � �n�x� with �n

�see� Landau � Lifshits� Statistical Physics� Part I� x ��	

�



transverse to n����� Plugging this into ���� and expanding to the lowest nonvanishing
order in �n�x�� one obtains energy of the form E��n� � �

�

R
K�r�n��� �This expression is

schematic� in fact K is a tensor with some dependence on n����� but this is good enough for
the moment�� Expanding �n�x� in Fourier harmonics� �n�x� �

R
�nke

ik�xd���	���� obtain

E��n� �
�

	

Z
K�k � �nk��d���	��� ����

Using the equipartition theorem� one can estimate thermal �uctuations in each mode
j�nkj� � T�Kk� and consider thermodynamics of the system pretty much like for vibra�
tional modes above� �To be discussed later in more detail��

Heisenberg ferromagnet� Magnetism arises due to exchange interaction of electron
spins� Typically� the spins involved in magnetic ordering come from the electrons lo�
calized on crystal lattice sites� so that one can ignore orbital electron dynamics and focus
on the spins and their interactions� The simplest model describing ferromagnetism� known
as the Heisenberg model� involves Pauli spin operators� H � ��

�

P
r ��r� J�r � r�� !sr � !sr��

where !sr � ��� ��� �� and J�r � r�� � 
 is spin exchange interaction�
Instead of this full quantum Hamiltonian we shall consider a classical Heisenberg model

H � �
�

	

X
r ��r�

J�r � r��Sr � Sr� ����

Here Sr is a unit vector describing average spin polarization in the system at the point
r� This model describes a large spin limit of the quantum problem� The classical and
quantum models have identical symmetry properties� the same set of low energy modes�
and hence the same thermodynamical properties�

The Hamiltonian ���� is invariant under spin rotations� This is a bit more tricky than
in previous examples� since this is not a physical space rotation� but rather a rotation in an
�internal space�� The ground state is described by uniform magnetization with arbitrary
orientation� Thus there are in�nitely many ground states� and we have the same sort of
continuous degeneracy as before�

To �nd the enrgy of the soft modes� we consider a weakly inhomogeneous spin �eld
Sr � S��� � �Sr� plug it in the energy ���� and expand in �S� This calculation is most
easily carried out by rewriting Eq����� as

H �
�

�

X
r ��r�

J�r � r�� �Sr � Sr��� �
�

�

X
r ��r�

J�r � r�� ��Sr � �Sr��� ����

�we used that S�
r � � and added a constant term

P
r J�
�S�

r�� As long as J�r � r�� falls
rapidly� the points r and r� are close� and for slowly varying �eld con�guration one can
expand Sr � Sr� � �rk � r�k�rkS � O��r� r����� This gives

E�S� �
�

	

X
r

Jkk��rkSj��rk�Sj� �
�

	

Z
r
J��rS��d�r ����

with Jkk� � �
�

P
r J�r�rkrk�� J� � �

�

P
r J�r�r�� Ther last expression in Eq������ rotationally

invariant under independent spin and space rotations� applies to su�ciently symmetric

�



situations� such as spins in a cubic lattice with exchange interaction being a function of
distance only� when Jkk� � J��kk��

This example illustartes how a classical �eld description emerges from a microscopic
model� We start from functions of a dicrete variable� spins on a lattice� with interaction
J�r � r�� that typically takes place on short length scale� jr � r�j or the order of lattice
spacing� By considering slowly varying perturbation �eld con�gurations which locally look
like one of �continuously degenerate� ground states� we arrive at a macroscopic description
involving functions Sr of a continuous variable r 	 R� with an e�ective Hamiltonian �����
It is characteristic for the situations with continuous symmetry of the order parameter
that the Hamiltonian is written in terms of gradients�

Alternatively� one can derive ���� using Fourier representation� We expand Sr �R
Ske

ik�rd�k��	���� and rewrite ���� as

E�S� �
�

	

Z
J�k�Sk � S�k

d�k

�	���
����

where J�k� is a Fourier transform of J�r�� Note that since the spins sit on lattice sites�
the Fourier transform is de�ned as for functions of a discrete variable� Because of that�
the integral over k in Eq����� runs not over the entire k space but only over a domain
���a � ki � ��a with a the lattice period�

Expanding Eq����� in �S� we obtain

E��S� �
�

	

Z
�J�k�� J�
�� �Sk � �S�k

d�k

�	���
����

For long wavelength spin waves� we can expand J�k� � J�
� � J�k
� � O�k��� Keeping

only the term J�k
� and going back to the real space� we have �

�

R
J��r�S��d�r� However�

since the background state is constant� rS��� � 
� this can be brought to the form

E�S� �
�

	

Z
J��rS��d�r �	
�

This expression gives the energy of a weakly inhomogeneous spin�polarized state�
Let us comment on the analogy with the liquid crystal energy ����� There seems to be

a similarity� since the order parametr in both cases is a unit vector� The crucial di�erence
is that in the liquid crystal case this vector de�nes orientation in the real physical space�
while in the magnet problem it is a vector in the inner spin space� This results in a
di�erent form of the energy� a single term in �	
� versus three independent terms in
����� Indeed� the only exprssion quadratic in the graduients rS and invariant under
independent real and spin rotations is ��iSj�

�� which is precisely the energy density �	
��
The analysis of thermodynamics is quite analogous to the liquid crystal case �see also

the homework problem 	� PS���� We shall come back to the problem �	
� again later�
Incommensurate crystals is an example of even more exotic symmetry�
Density modulation with incommensurate periods� In �D case� say�

n�x� � A cos�k�x� � B cos�k�x � �� �	��

�



Invariance of the system energy with respect to changes of the phase � by an overall
constant� The low energy states are described by slowly varying phase ��x� in Eq��	���
The energy is given by a gradient expansion of the form

E��� �
�

	

Z
K��x���dx �		�

These soft modes are called �phasons�� since they describe phase �uctuations�
Phyasically� they correspond to one density wave sliding freely relative to the other

one�
Talk about mercury chains in the material Hg���AsF�� the �alchemist gold��

��� Now� let us summarize


 Emerging classical �elds� The macroscopic description of systems with broken
symmetry is provided by a classical �eld� one or several functions in Euclidean space�
This description is usually quite simple� while the microscopic origin of the ordering
can be rather complicated�


 Universality� Many systems seemingly very difrerent microscopically have the
same or very similar description in the macroscopic limit� Di�erent universality
classes di�er mainly by the symmetry of the ordering and �usually in a less important
way� by interactions�


 Goldstone modes� In the case of spontaneously broken continuous symmetry� the
low energy excitations are described by weakly inhomogeneous order paramer �eld�
The �uctuations of these modes govern the thermodynamic properties�


 The phenomenolgical and microscopic approaches� The form of the energy
describing slowly varying �elds can be deduced on the basis of symmetry by listing
all possible invariants in the gradient expansion and carefully analyzing symme�
try requirements� The constants in such phenomenolgical hamiltonians should be
calculated from a microscopic approach� The relation of this energy functional to
the microscopic Hamiltonian can be simple� as in the case of lattice vibrations and
Heisenberg ferromagnet model� or very complicated� as in the case of liquid crystals
or incommensurate crystals�

�


