3.091 Fall Term 2002 Homework Quiz #8A solution outline

(a) Sketch the variation of molar volume with temperature ($V_{molar} vs T$) for pure silica (SiO₂) cooled at a rate sufficient to promote glass formation. Label the normal melting point, T_{mp} , and the glass transition temperature, T_g .

(b) By referring to what is happening at the molecular level explain how the glass transition temperature changes upon the addition of magnesia (MgO) to a silicate melt. Assume that the comparison is made at a fixed cooling rate.

MgO dissociates to form Mg^{2+} and O^{2-} . The O^{2-} attacks bridging oxygen (-O-) in the silicate network to produce terminal oxygens (⁻O-) according to

 $O^{2-} + -O_{-} = 2^{-}O_{-}$ (chain scission reaction)

This shortens the chains, reduces viscosity, and facilitates molecular rearrangement. Thus, for a given cooling rate, the glass transition temperature of the MgO-modified melt will be lower than that of pure silica.