Learning 2:

Replicator dynamics & Evolutionary stability

Road Map

- 1. Evolutionarily stable strategies
- 2. Replicator dynamics

- 1 Notation
 - G = (S, A) a symmetric, 2-player game where
 - S is the strategy space;
 - $A_{i,j} = u_1(s_i, s_j) = u_2(s_j, s_i);$
 - $x, y \in \Delta$ are mixed strategies; $u(x, y) = x^T A y$;
- u(ax + (1 a)y, z) = au(x, z) + (1 a)u(y, z).

2 Evolution stability

- Each player is endowed with a strategy (population/mutant strategy).
- Does not explain how a population arrives at such a strategy.
- Ask whether a strategy is robust to evolutionary pressures.
- Disregards effects on future actions.

3 ESS

Definition: A (mixed) strategy x is said to be *evo-lutionarily stable* iff, given any $y \neq x$, there exists $\epsilon_y > 0$ s.t.

 $u(x,(1-\varepsilon)x+\varepsilon y) > u(y,(1-\varepsilon)x+\varepsilon y),$ for each ε in $(0,\epsilon_y]$.

Fact: x is evolutionarily stable iff, $\forall y \neq x$,

1. $u(x,x) \ge u(y,x)$, and 2. $u(x,x) = u(y,x) \Longrightarrow u(x,y) > u(y,y)$.

Proof: Define score function

$$\begin{array}{lll} F_x(\varepsilon,y) &=& u(x,(1-\varepsilon)x+\varepsilon y)-u(y,(1-\varepsilon)x+\varepsilon y)\\ &=& u(x-y,x)+\varepsilon u(x-y,y-x).\\ \\ {\sf ESS} &\iff& F_x(\varepsilon,y)>0 \ {\rm for} \ \varepsilon\in(0,\epsilon y]. \end{array}$$

4 ESS vs NE

- If $x \in \Delta^{ESS}$ then (x, x) is NE $(x \in \Delta^{NE})$. In fact: (x, x) is proper NE.
- (x, x) is strict NE $\implies x$ is ESS by default.
- Interior NE may not be ESS.

5 Hawk-Dove game

Example: For V = 4, c = 6; $x = \left(\frac{2}{3}, \frac{1}{3}\right)$ —NE; $\forall y \in \Delta, y \in BR(x)$.

$$u(x - y, y) = (x_1 - y_1)(2 - 3y_1) = \frac{1}{3}(2 - 3y_1)^2,$$

so, x is ESS.

6 Rock-Scissors-Paper game

	R	S	Р
R	0,0	1,-1	-1,1
S	-1,1	0,0	1,-1
Р	1,-1	-1,1	0,0

- Unique Nash Equilibrium (s^*, s^*) , where $s^* = (\frac{1}{3}, \frac{1}{3}, \frac{1}{3})$.
- s^* is not ESS. $(u(s^* R, R) = 0)$.

- 7 ESS in role-playing games
 - Given (S^1, S^2, u_1, u_2) , consider symmetric game (S, u), where

-
$$S = S^1 \times S^2$$
;

- for
$$x = (x_1, x_2), y = (y_1, y_2) \in S$$

 $u(x, y) = \frac{1}{2}[u_1(x_1, y_2) + u_2(x_2, y_1)].$

Theorem: x is ESS of (S, u) iff x is a strict NE of (S^1, S^2, u_1, u_2) .

8 Replicator dynamics

- Selection mechanism.
- $p_i(t) = \#$ people who plays s_i at t.
- p(t) = total population at t.
- $x_i(t) = \frac{p_i(t)}{p(t)}; x(t) = (x_1(t), \dots x_k(t)).$
- $u(x,x) = \sum_i x_i u(s_i,x).$
- Replicators are pure strategies

$$\dot{p}_i = [\beta + u(s_i, x) - \delta] p_i$$

٠

$$\dot{x}_i = [u(s_i, x) - u(x, x)] x_i = u(s_i - x, x) x_i.$$

9 Observations

۲

- $egin{array}{ll} \displaystyle rac{d}{dt} \left[rac{x_i}{x_j}
 ight] &= \displaystyle rac{\dot{x}_i}{x_j} rac{x_i \dot{x}_j}{x_j x_j} \ &= \displaystyle \left[u(s_i,x) u(s_j,x)
 ight] rac{x_i}{x_j}. \end{array}$
- If u becomes u' = au + b, then Replicator dynamics becomes

$$\dot{x}_i = au(s_i - x, x)x_i.$$

9.1 2×2 games

Consider (*S*, *A*), where
$$A = \begin{bmatrix} a_1, a_1 & 0, 0 \\ 0, 0 & a_2, a_2 \end{bmatrix}$$
.

We have

$$u(s_i, x) = a_i x_i;$$

$$u(x, x) = (x_1, x_2) A(x_1, x_2)^T = a_1 x_1^2 + a_1 x_2^2;$$

$$u(s_1 - x, x) = (a_1 x_1 - a_2 x_2) x_2.$$

and so

$$\dot{x}_1 = (a_1 x_1 - a_2 x_2) x_1 x_2.$$

9.2 Classification

- 1. $a_1a_2 < 0$. Then
 - $x_1 \rightarrow_t 0$ when $a_1 < 0$;
 - $x_1 \rightarrow_t 1$ when $a_1 > 0$.
- 2. $a_1a_2>$ 0; define $\lambda=\frac{a_2}{a_1+a_2}$, $(\lambda,1-\lambda)$ is NE. Then,
 - $x_1 = \lambda$ is stable if $a_1 < 0$;
 - $x_1 = \lambda$ is unstable if $a_1 > 0$.

Compare with ESS.

Examples: Prisoner's dilemma, Chicken, Coordination game, Battle of the sexes, ...

10 Rationalizability

 ξ(t, x₀) is the solution to replicator dynamics starting at x₀.

Theorem: If a pure strategy *i* is strictly dominated (by y), then $\lim_t \xi_i(t, x_0) = 0$ for any interior x_0 .

Proof: Define $v_i(x) = \log(x_i) - \sum_j y_j \log(x_j)$. Then,

 $egin{array}{rcl} rac{dv_i(x(t))}{dt}&=&rac{\dot{x}_i}{x_i}-\sum_j y_j rac{\dot{x}_j}{x_j}\ &=&u(s_i-x,x)-\sum_j y_j u(s_j-x,x)\ &=&u(s_i-y,x)\leq -\epsilon < 0. \end{array}$

Hence, $v_i(\xi(t, x_0)) \rightarrow -\infty$, so $\xi_i(t, x_0) \rightarrow 0$.

Theorem: If *i* is not rationalizable, then $\lim_t \xi_i(t, x_0) = 0$ for any interior x_0 .

11 Theorems

Theorem: Every ESS x is an asymptotically stable steady state of replicator dynamics.

(If the individuals can inherit the mixed strategies, the converse is also true.)

Theorem: If x is an asymptotically stable steady state of replicator dynamics, and can be reached from an interior x_0 , then (x, x) is a perfect Nash equilibrium.