Learnlng 2: 1 Notation

e G = (S, A) a symmetric, 2-player game where

Replicator dynamics &
EVOIUtlonary Sta b|||ty e S is the strategy space;

Road Map o A;j=ui(si,s5) = ua(sj, 8;);

. . . . T .
1. Evolutionarily stable strategies ® z,y € A are mixed strategies; u(z,y) = x* Ay;

2. Replicator dynamics e u(az + (1 — a)y, z) = au(z, z) + (1 — a)u(y, 2).
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Evolution stability

Each player is endowed with a strategy (popula-
tion/mutant strategy).

Does not explain how a population arrives at such
a strategy.

Ask whether a strategy is robust to evolutionary
pressures.

Disregards effects on future actions.

3 ESS

Definition: A (mixed) strategy x is said to be evo-
lutionarily stable iff, given any y # =z, there exists
€y > 0 s.t.

u(z, (1 —e)z +ey) > u(y, (1 — &)z + ey),

for each € in (0, ey].

Fact: z is evolutionarily stable iff, Vy # z,

1. u(z,z) > u(y,z), and

2. u(z,z) = u(y, z) = u(z,y) > u(y,y).

Proof: Define score function

F$(€’y) = u(:c,(l —EZ)ZC—I—E,‘y) _U’(ya(l —€)$—|—€y)
= u(z—y,z)+eu(r—y,y— =)
ESS <= Fi(e,y) > 0 for e € (0, y].




5 Hawk-Dove game

4 ESS vs NE a %

o If z € AESS then (z,z) is NE (z € ANE), % V—C V—Cj (VO)

In fact: (z,x) is proper NE.

2 2
e (z,x) is strict NE = z is ESS by default. % (O’V) (V/ZﬂV/z)

,3)—NE; vy €

e Interior NE may not be ESS. Example: For V. =4, c = 6; z = (
A, y € BR(x).

wIin

u(z —y,y) = (r1 —y1)(2 — 3y1) = %(2 —3y1)?,

so, x is ESS.




6 Rock-Scissors-Paper game

7 ESS in role-playing games

R S P
e Given (S1,52 uy,us), consider symmetric game
R 0,0 1,-1 -1,1 (S, u), where
L1 | 00 | 1-1 ~5=81x 82

— for x = (xl,ﬂvz),y - (y1,y2) €S

P 1,-1 -1,1 0,0

u(z,y) = %[Ul(ml,yz) + up (2, y1)]-

* Unique Nash Equlitsnum (5%, 57), Theorem: x is ESS of (S,u) iff « is a strict NE of

where s* = (— = ).
3, 3, 3 (51752’11/1’“2)-

e s*is not ESS. (u(s* — R, R) = 0).
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Replicator dynamics

Selection mechanism.
pi(t) = #people who plays s; at t.

p(t) = total population at t¢.

zi(t) = 2 a(t) = (21(1), ... @(1))
u(z,x) =Y ; z;u(s;, ).

Replicators are pure strategies

pi = [B+u(s;, z) — 8] p;.

z; = [u(s;, ) — u(z, )] x; = u(s; — x, x)x;.

9 Observations

dt x Tj XL
T
= {u(si,x) — u(sy, x)} —_—h
Zj

o If u becomes u/ = au+b, then Replicator dynam-
ics becomes

z; = au(s; — x, x)x;.




9.1 2 X 2 games

. _ | a1,a1 0,0
Consider (S, A), where A = [ 0.0 . 4 ]
We have
u(si, z) = a;x;;
— T _ 2 2.
u(z,z) = (21, 22)A(z1,22)" = a121 + a175;
u(sy —x,z) = (arx1 — axzo)xs.
and so

&1 = (a1z1 — apx2)T1).

9.2 C(lassification

1. ajap < 0. Then
e 1 —¢ 0 when a1 < 0;

e 1 —¢ 1 when a; > 0.

2. ajap > 0; define A = alc_faz, (A, 1 —A) is NE.
Then,

e x1 = )\ is stable if a1 < 0;

e r1 = ) is unstable if a; > 0.

Compare with ESS.

Examples: Prisoner’s dilemma, Chicken, Coordination
game, Battle of the sexes, ...




10 Rationalizability

o £(t, xq) is the solution to replicator dynamics start-

_ 11 Theorems
Ing at xq.

Theorem: If a pure strategy i is strictly dominated (by Theorem: Every ESS z is an asymptotically stable

y), then limy &(¢, o) = O for any interior zq. steady state of replicator dynamics.

(If the individuals can inherit the mixed strate-
Proof: Define v;(z) = log(z;) — 3 y; log(z;). Then, gies, the converse is also true.)

dvi(z(t)) T

e

i 5 T Theorem: If x is an asymptotically stable steady state
= u(s; —z,z) — Y yju(s; — z,x) of replicator dynamics, and can be reached from an
J interior zq, then (z, ) is a perfect Nash equilibrium.

= u(s; —y,x) < —e<O0.

Hence, v;(&(t, z9)) — —oo, so &;(t, zg) — O.

Theorem: If ¢ is not rationalizable, then lim¢ &;(¢, zg) =
0 for any interior xg.




