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1 Introduction

1.1 Ideas

e repeated interaction, cooperation, social norms

e infinite horizon, uncertain terminal date

e strategic effects of own actions, threats

e punishment, revenge

e detection, monitoring

e reputation, collusion

e *learning




1.2 One-stage Deviation Principle

Theorem: Finite multi-stage game, observed actions.

Profile s is SPE <= for each player ¢ no profitable
one-stage deviation exists.

Proof: Suppose one-stage deviations are not profl]
itable. Suppose a profitable deviation exists for some
player ¢ at some subgame, that is

Fi,t,hY, 85 (8i,5-3) e i (s6:5-4) e
Then t* = maxt’ that §;(h!") # s;(ht"). Obviously
t* > t. One-stage deviation implies (3;,5_;) [, =~
(83,8—4) |+
Define §;(h™) = §;(h7) for all 7 < t*, §;(h") = s;(h")
for all 7 > t*.

Thus, (§ivs—i) ’hT ~; (§Z‘,S_i) |h7’ for all A7.

Repeat for §; (t* |).

Definition: Game is continuous at infinity if for any 1,

sup
h,h, s.t. ht=Rt

ui(h) — ui(h)| — 0 as t — 0.

Example: Discounting + bounded stage payoffs.

Theorem: One-stage deviation principle for games with
continuous payoffs.

Proof: Let £ be the size of improvement. Cut the
end that matters less than £/2. The rest is the finite
game. No improvement possible.

Remark: If payoffs defined differently, e.g. the average
over time, the principle need not to hold.




2 Repeated Games with Observable

Actions
1.3 Examples
2.1 The Model
C D
Prisoner’'s Dilemma c 1,1 —1,2
D 2-1 00 Stage game G: ZI-players, A;—actions, g; : A =
X ie7A; — R—payoffs, A;—probability distributions over
L M R Aj;.
u 0,0 3,4 6,0
M 4,3 0,0 0,0 Repeated game: al! = (al); hO—null history, ht =
D 06 00 55 P g (a3)iez Y,

~
-

(a%al, ... al~1) Ht = (A)

Strategy (pure) s; = (s!), st : H' — A;; (mixed)
o; = (Jg), of - Ht — A,.




Payoffs:

e Discounting: G(9),

o0
u; = Eq(1—6)> 6tg;(ct(hY)) — max.
t=0

e Time-averaging criterion

o 1
IlmTlgf)O E;tzzogi(at(ht)) — max.

e Overtaking criterion

g=1(9%g"..) Zih= (%A1 ..)
T T

if 37,V >T', Y g' <> nh.
t=0 t=0

Observation: If o™ is a Nash eqm in G, then “play o*
(o for each i) for all t” is SPE. If m static equilibria
exist, any combination of them is SPE.

2.2 Folk Theorems

Feasible, individually rational payoffs.
Reservation utility (minimax):

y; = min |max g;(a;, a—;)| .
Define m’ to be a minimax profile.

Observation: In any static Nash eqm or Nash eqm of
repeated game, ¢'s payoff is not lower than vy;.

Proof: Play a;(h?) to maximize Eg;(a;, o_;(ht)), where
o is Nash strategies.

Feasible payoffs (with randomization):

V =ch.{v=g(a), forac A}.




Theorem: (folk theorem) For any v € V, with v; > v;
for all 7, there exists a §* < 1, such that for all 6 €
(6™, 1) there exist Nash eqgm with payoffs v.

Proof: Punish by minimax.

Theorem: (Friedman, Nash-threats) a* is a static
Nash with payoffs e. Then for any v € V, with
v; > e; for all 1 , there exists a 6* < 1, such that
for all 6 € (6*,1) there exist SPE of G(6) with pay[]
offs v.

Proof: Punish by Nash. SPE follows from above obl]
servation.

Theorem: (Aumann, Shapley) Time-average criterion,
then or any v € V, with v; > v, for all 7, there exists
a SPE of G(6) with payoffs v.

Proof: Punish by minimax for a limited time. Long-
Run effects are zero.

Theorem: (Fudenberg, Maskin) Suppose dimV =
#Z. Then for any v € V, with v; > vy; for all 7 ,
there exists a 6* < 1, such that for all 6 € (6% 1)
there exist SPE of G(6) with payoffs v.

Proof: ldea is to reward punishers. Suppose for all
considered v, there exists a, g(a) = v. Since dimV =
#I, IV € V, v; < v} < w; forall 4, and v/(i) € V,
that

/(- / / / / /
V(Z): ('U1+€,---,’UZ‘_1+€,Ui,vi+1+€,...,’01—{—€>.

Suppose a’(i) exist that g(a’(i)) = v/(4).

Phase 1. Play a until realized action is a or differs
from a in > 2 components. If a;- # aj, switch to
Phase 2;.

Phase 2;. Play mJ for N periods as long as realized
action is m/ or differs from m/ in > 2 components.
Switch to Phase 3;. If some k deviates switch to
Phase 2;..




Phase 3;. Play v/(j) forever as long as realized action
is a’(j) or differs from a’(j) in > 2 components. If
bidder k deviates switch to Phase 3;.

Use one-time deviation principle.

Problem: If a’(7) is mixed, the same continuation pay-
off has to be guaranteed for all actions in support.

Theorem: (Abreu, Dutta, Smith) NEU condition in-
stead of dimV = #7.

Definition: NEU (non-equivalent utilities) is satisfied
if for any (4,7), Fc,d € Ry that g;(a) = c + dg;(a)
for all a € A.

Proof: NEU —> 3 [vl, .. ,vf}, such that Vi, j, v} <

J
’UZ'.

Roughly: Substitute v* in place of v/(3).

2.3 Finite Games

Theorem: (Benoit, Krishna) Time-averaging criterion.
Suppose Vi exists static Nash a*(z) with g;(a*(7)) >
v;. Then the set of Nash egm payoffs of the GT
converges as T' — oo to the set of feasible, IR payoffs

of G*°.

Proof: Terminal reward phase. R x I cycle:

([e*(1), ..., a*(I)])*—Nash-eqm path.

Gives strictly more than v; to each i. For large R

the threat of minimaxing over RI periods prevents all
deviations.

Fix € > 0. Exists T', such that payoff over T' — RI
periods approximates v; for all ¢ within . ...




2.4 Varying opponents

2.4.1 Short-Run vs Long-Run players

If Short-Run players move first, “cooperation” is atl]
tainable.

Principle: S-R player(s) plays C, L-R player(s) rel]

sponds C' as long as (C,C) was played in the past.
Otherwise D.

Simultaneous moves: S-R player always plays BR.
1,...,l - L-R players,

l+1,...,I—-S-R players,

B:xl_ A — X§:l+1‘Aj — BR correspondence.

1<
-~

.= min max g;(a;, a_; ]
a6graph(B) a; ’L( 1) ’L) 9

V =c.h. {v = (gi(a))ézl eR! fora € graph(B)} .

Observability of mixed actions is important. Long-
Run players have to be indifferent between the pure
actions they assign positive probabilities.

v; = max
acgraph(B)

min  g;(a;, a_;)| .
as€supp(ar)

Theorem: (Fudenberg, Kreps, Maskin).
Suppose dimV = 1.

For any v € V, with ¥; > v; > v; for all 7, there exists
a 6* < 1, such that for all § € (6%,1) there exist SPE
of G(6) with payoffs v.




2.4.2 Overlapping generations

Players live for T' periods. Every generation has the
same mass.

Actions are observable: work or shirk (IR,static NE).
All work is efficient.

Payoffs are averages over lifetime.

Result (Crémer): Nash egm exists where all except
the oldest work.

Folk theorems: Candori, Smith.

2.4.3 Random matching

What is observable? What is remembered? Public vs
Private information.

Prisoner’'s dilemma: Play C as long as (C,C) was
played. D otherwise.

Supportable as long as ¢ is high enough and some info
about opponent is known.

If only past private outcomes are observable, with N
high enough, “contagion” strategies may not be an
equilibrium.

Reason: Responding C' on D slows contagion.




2.5 Pareto-Perfection 3 Repeated Games with Imperfect

Public Information
Eff(C)={zecC,FycC,y 2 z,y #x}.

Definition: (Bernheim, Peleg, Whinston) Consider G7,
PT is the set of pure-strategy SPE payoffs of GT.
Q' = P, R = Eff(PY).

3.1 The Model

ac A— A(y), y € Y—publicly observable.
For T > 1, QT C PT—the set of pure-strategy ) v P y

perfect equilibrium payoffs enforced by RT-1 et
RT = Eff(QT). my(a) € A(y); m(a)

SPE o is Pareto-Perfect if, Vt and Vh!, continuation ri(a;, y)—payoff to 4, (!) independent of a_;.
payoffs implied by o are in RT 1.

gi(a) = Xy my(a)ri(ai, y).
Example: (Benoit, Krishna) § = 1.

ht = (9, y1,. .., yt~1)—public history.

b1 by b3 by
a; 0,0 2,4 0,0 55,0 ; _ _ _
ay 4,2 0,0 0,0 0,0 zi—private history (past actions).
a3 0,0 0,0 3,3 0,0
as 0,55 0,0 0,0 5,5 Strategy (mixed) o; = (ag), aﬁ - Ht x Zf — A;.




Definition: o; is a public strategy if ai(ht,z;-t =
oi(ht, 28) Vt, ht, 2L, 5L

Observation: Pure-Strategy eqm payoff can be sup-
ported as a payoff of an equilibrium in Public stratel]
gies.

Definition: o is a perfect public equilibrium if for all 7,
o; is a public strategy, and V¢, h, strategies oyt form
Nash egm.




