Repeated games: 14.126

Sergei Izmalkov, Muhamet Yildiz MIT

1 Introduction

1.1 Ideas

- repeated interaction, cooperation, social norms
- infinite horizon, uncertain terminal date
- strategic effects of own actions, threats
- punishment, revenge
- detection, monitoring
- reputation, collusion
- *learning

1.2 One-stage Deviation Principle

Theorem: Finite multi-stage game, observed actions.

Profile s is SPE \iff for each player i no profitable one-stage deviation exists.

Proof: Suppose one-stage deviations are not profitable. Suppose a profitable deviation exists for some player i at some subgame, that is

 $\exists i, t, h^t, \hat{s}_i \quad (\hat{s}_i, \mathbf{s}_{-i}) \mid_{h^t} \succ_i (s_i, \mathbf{s}_{-i}) \mid_{h^t}.$ Then $t^* = \max t'$ that $\hat{s}_i(h^{t^*}) \neq s_i(h^{t^*})$. Obviously $t^* > t$. One-stage deviation implies $(\hat{s}_i, \mathbf{s}_{-i}) \mid_{h^{t^*}} \approx_i (s_i, \mathbf{s}_{-i}) \mid_{h^{t^*}}.$

Define $\tilde{s}_i(h^{\tau}) = \hat{s}_i(h^{\tau})$ for all $\tau < t^*$, $\tilde{s}_i(h^{\tau}) = s_i(h^{\tau})$ for all $\tau \ge t^*$.

Thus, $(\hat{s}_i, \mathbf{s}_{-i})|_{h^{\tau}} \approx_i (\tilde{s}_i, \mathbf{s}_{-i})|_{h^{\tau}}$ for all h^{τ} .

Repeat for \tilde{s}_i ($t^* \downarrow$).

Definition: Game is *continuous at infinity* if for any *i*,

$$\sup_{h, ilde{h}, ext{ s.t. } h^t = ilde{h}^t} \left| u_i(h) - u_i(ilde{h})
ight| o 0$$
 as $t o 0$

Example: Discounting + bounded stage payoffs.

Theorem: One-stage deviation principle for games with continuous payoffs.

Proof: Let ε be the size of improvement. Cut the end that matters less than $\varepsilon/2$. The rest is the finite game. No improvement possible.

Remark: If payoffs defined differently, e.g. the average over time, the principle need not to hold.

1.3 Examples

Prisoner's Dilemma			C 1 D 2	1, 1 2, -1	D -1,2 0,0
		L	М	R	
	U	0,0	3,4	6,0	
	Μ	4,3	0,0	0,0	
	D	0,6	0,0	5,5	

2 Repeated Games with Observable Actions

2.1 The Model

Stage game $G: \mathcal{I}$ -players, A_i -actions, $g_i : A = \times_{i \in \mathcal{I}} A_i \rightarrow \mathbb{R}$ -payoffs, \mathcal{A}_i -probability distributions over A_i .

Repeated game: $\mathbf{a}^t \equiv (a_i^t)_{i \in \mathcal{I}}$, h^0 -null history, $h^t = (\mathbf{a}^0, \mathbf{a}^1, \dots, \mathbf{a}^{t-1})$, $H^t = (A)^t$.

Strategy (pure) $s_i \equiv (s_i^t)$, $s_i^t : H^t \to A_i$; (mixed) $\sigma_i \equiv (\sigma_i^t)$, $\sigma_i^t : H^t \to A_i$. Payoffs:

• Discounting: $G(\delta)$,

$$u_i = E_{oldsymbol{\sigma}}(1-\delta)\sum_{t=0}^\infty \delta^t g_i(\sigma^t(h^t)) o \mathsf{max}$$

• Time-averaging criterion

$$\lim \inf_{T \to \infty} E \frac{1}{T} \sum_{t=0}^{T} g_i(\sigma^t(h^t)) \to \max$$

• Overtaking criterion

$$egin{aligned} g &= (g^0,g^1,\ldots) \precsim_i h = (h^0,h^1,\ldots) \ ext{if } \exists T', orall T > T', \quad \sum_{t=0}^T g^t \leq \sum_{t=0}^T h^t. \end{aligned}$$

Observation: If α^* is a Nash eqm in G, then "play α^* $(\alpha_i^* \text{ for each } i)$ for all t" is SPE. If m static equilibria exist, any combination of them is SPE.

2.2 Folk Theorems

Feasible, individually rational payoffs.

Reservation utility (minimax):

$$\underline{\mathbf{v}}_i = \min_{\alpha_{-i}} \left[\max_{\alpha_i} g_i(\alpha_i, \alpha_{-i}) \right].$$

Define \mathbf{m}^i to be a minimax profile.

Observation: In any static Nash eqm or Nash eqm of repeated game, *i*'s payoff is not lower than \underline{v}_i .

Proof: Play $a_i(h^t)$ to maximize $Eg_i(a_i, \sigma_{-i}(h^t))$, where σ is Nash strategies.

Feasible payoffs (with randomization):

$$V = \mathsf{c.h.} \{ \mathbf{v} = g(\mathbf{a}), \text{ for } \mathbf{a} \in A \}.$$

Theorem: (folk theorem) For any $\mathbf{v} \in V$, with $v_i > \underline{v}_i$ for all i, there exists a $\delta^* < 1$, such that for all $\delta \in (\delta^*, 1)$ there exist Nash eqm with payoffs \mathbf{v} .

Proof: Punish by minimax.

Theorem: (Friedman, Nash-threats) α^* is a static Nash with payoffs e. Then for any $\mathbf{v} \in V$, with $v_i > e_i$ for all i, there exists a $\delta^* < 1$, such that for all $\delta \in (\delta^*, 1)$ there exist SPE of $G(\delta)$ with payoffs \mathbf{v} .

Proof: Punish by Nash. SPE follows from above observation.

Theorem: (Aumann, Shapley) Time-average criterion, then or any $\mathbf{v} \in V$, with $v_i > \underline{v}_i$ for all i, there exists a SPE of $G(\delta)$ with payoffs \mathbf{v} .

Proof: Punish by minimax for a limited time. Long-Run effects are zero. Theorem: (Fudenberg, Maskin) Suppose dim $V = \#\mathcal{I}$. Then for any $\mathbf{v} \in V$, with $v_i > \underline{v}_i$ for all i, there exists a $\delta^* < 1$, such that for all $\delta \in (\delta^*, 1)$ there exist SPE of $G(\delta)$ with payoffs \mathbf{v} .

Proof: Idea is to reward punishers. Suppose for all considered v, there exists a, $g(\mathbf{a}) = \mathbf{v}$. Since dim $V = \#\mathcal{I}$, $\exists \mathbf{v}' \in V$, $\underline{v}_i < v'_i < v_i$ for all i, and $\mathbf{v}'(i) \in V$, that

 $\mathbf{v}'(i) = \left(v'_1 + \varepsilon, \dots, v'_{i-1} + \varepsilon, v'_i, v'_{i+1} + \varepsilon, \dots, v'_I + \varepsilon\right).$ Suppose $\mathbf{a}'(i)$ exist that $g(\mathbf{a}'(i)) = \mathbf{v}'(i).$

Phase 1. Play a until realized action is a or differs from a in ≥ 2 components. If $a'_j \neq a_j$, switch to Phase 2_j .

Phase 2_j . Play \mathbf{m}^j for N periods as long as realized action is \mathbf{m}^j or differs from \mathbf{m}^j in ≥ 2 components. Switch to Phase 3_j . If some k deviates switch to Phase 2_k . Phase 3_j . Play $\mathbf{v}'(j)$ forever as long as realized action is $\mathbf{a}'(j)$ or differs from $\mathbf{a}'(j)$ in ≥ 2 components. If bidder k deviates switch to Phase 3_k .

Use one-time deviation principle.

Problem: If a'(i) is mixed, the same continuation payoff has to be guaranteed for all actions in support.

Theorem: (Abreu, Dutta, Smith) NEU condition instead of dim V = # I.

Definition: *NEU* (non-equivalent utilities) is satisfied if for any (i, j), $\exists c, d \in \mathbb{R}_+$ that $g_i(\mathbf{a}) = c + dg_j(\mathbf{a})$ for all $\mathbf{a} \in A$.

Proof: NEU $\implies \exists \left[\mathbf{v}^1, \dots, \mathbf{v}^I \right]$, such that $\forall i, j, v_i^i < v_i^j$.

Roughly: Substitute \mathbf{v}^i in place of $\mathbf{v}'(i)$.

2.3 Finite Games

Theorem: (Benoit, Krishna) Time-averaging criterion. Suppose $\forall i$ exists static Nash $\alpha^*(i)$ with $g_i(\alpha^*(i)) > \underline{v}_i$. Then the set of Nash eqm payoffs of the G^T converges as $T \to \infty$ to the set of feasible, IR payoffs of G^{∞} .

Proof: Terminal reward phase. $R \times I$ cycle:

 $([\alpha^*(1),\ldots,\alpha^*(I)])^R$ —Nash-eqm path.

Gives strictly more than \underline{v}_i to each *i*. For large *R* the threat of minimaxing over *RI* periods prevents all deviations.

Fix $\varepsilon > 0$. Exists T, such that payoff over T - RI periods approximates v_i for all i within ε

2.4 Varying opponents

2.4.1 Short-Run vs Long-Run players

If Short-Run players move first, "cooperation" is attainable.

Principle: S-R player(s) plays C, L-R player(s) responds C as long as (C, C) was played in the past. Otherwise D.

Simultaneous moves: S-R player always plays BR.

 $1, \ldots, l - L-R$ players,

 $l+1,\ldots,I-S-R$ players,

$$B : \times_{i=1}^{l} \mathcal{A}_{i} \to \times_{j=l+1}^{I} \mathcal{A}_{j} - \mathsf{BR} \text{ correspondence.}$$
$$\underline{\mathbf{v}}_{i} = \min_{\alpha \in \mathsf{graph}(B)} \left[\max_{a_{i}} g_{i}(a_{i}, \alpha_{-i}) \right],$$
$$V = \mathsf{c.h.} \left\{ \mathbf{v} = (g_{i}(\mathbf{a}))_{i=1}^{l} \in \mathbb{R}^{l}, \text{ for } \alpha \in \mathsf{graph}(B) \right\}.$$

Observability of mixed actions is important. Long-Run players have to be indifferent between the pure actions they assign positive probabilities.

$$\bar{\mathsf{v}}_i = \max_{\alpha \in \mathsf{graph}(B)} \left[\min_{a_i \in \mathsf{supp}(\alpha_i)} g_i(a_i, \alpha_{-i}) \right].$$

Theorem: (Fudenberg, Kreps, Maskin).

Suppose dim V = l.

For any $\mathbf{v} \in V$, with $\overline{\mathbf{v}}_i > v_i > \underline{\mathbf{v}}_i$ for all i, there exists a $\delta^* < 1$, such that for all $\delta \in (\delta^*, 1)$ there exist SPE of $G(\delta)$ with payoffs \mathbf{v} .

2.4.2 Overlapping generations

Players live for T periods. Every generation has the same mass.

Actions are observable: work or shirk (IR,static NE). All work is efficient.

Payoffs are averages over lifetime.

Result (Crémer): Nash eqm exists where all except the oldest work.

Folk theorems: Candori, Smith.

2.4.3 Random matching

What is observable? What is remembered? Public vs Private information.

Prisoner's dilemma: Play C as long as (C, C) was played. D otherwise.

Supportable as long as δ is high enough and some info about opponent is known.

If only past private outcomes are observable, with N high enough, "contagion" strategies may not be an equilibrium.

Reason: Responding C on D slows contagion.

2.5 Pareto-Perfection

 $Eff(C) = \{x \in C, \nexists y \in C, y \ge x, y \neq x\}.$

Definition: (Bernheim, Peleg, Whinston) Consider G^T , P^T is the set of pure-strategy SPE payoffs of G^T . $Q^1 = P^1$, $R^1 = Eff(P^1)$.

For T > 1, $Q^T \subseteq P^T$ —the set of pure-strategy perfect equilibrium payoffs enforced by R^{T-1} . Let $R^T = Eff(Q^T)$.

SPE σ is *Pareto-Perfect* if, $\forall t$ and $\forall h^t$, continuation payoffs implied by σ are in R^{T-t} .

Example: (Benoit, Krishna) $\delta = 1$.

	b_1	b_2	b_3	b_4
a_1	0,0	2,4	0,0	5.5, 0
a_2	4,2	0,0	0,0	0,0
a_3	0,0	0,0	3, 3	0,0
a_4	0, 5.5	0,0	0,0	5, 5

- 3 Repeated Games with Imperfect Public Information
- 3.1 The Model

 $\mathbf{a} \in A \to \Delta(y)$, $y \in Y$ —publicly observable.

 $\pi_y(a) \in \Delta(y); \pi(a)$

 $r_i(a_i, y)$ —payoff to i, (!) independent of a_{-i} .

 $g_i(a) = \sum_y \pi_y(a) r_i(a_i, y).$

 $h^t = (y^0, y^1, \dots, y^{t-1})$ —public history.

 z_i^t —private history (past actions).

Strategy (mixed) $\sigma_i \equiv (\sigma_i^t), \ \sigma_i^t : H^t \times Z_i^t \to \mathcal{A}_i.$

Definition: σ_i is a public strategy if $\sigma_i(h^t, z_i^t) = \sigma_i(h^t, \tilde{z}_i^t) \ \forall t, h^t, z_i^t, \tilde{z}_i^t$.

Observation: Pure-Strategy eqm payoff can be supported as a payoff of an equilibrium in Public strategies.

Definition: σ is a *perfect public equilibrium* if for all i, σ_i is a public strategy, and $\forall t, h^t$, strategies $\sigma|_{h^t}$ form Nash eqm.