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Road Map

# Traditional Doctrine: Convexity-Based

#Disentangling Three Big Ideas
= Convexity: Prices & Duality

= Order: Comparative Statics, Positive
Feedbacks, Strategic Complements

= Value Functions: Differentiability and
Characterizations, Incentive Equivalence
Theorems

Convexity and Traditional
Price Theory

Convexity at Every Step

# Global or local convexity conditions imply
= Existence of prices
» Comparative statics, using second-order conditions

= Dual representations, which lead to...
+ Hotelling’s lemma
+ Shephard'’s lemma
+ Samuelson-LeChatelier principle
# "Convexity” is at the core idea on which the
whole analysis rests.




Samuelson-LeChatelier Principle

# Idea: Long-run demand is “more elastic” than short-run

demand.

# Formally, the statement applies to smooth demand

functions for sufficiently small price changes.

@ Let p=(p,,w,r) be the current vector of output and input

prices and let p” be the long-run price vector that

determined the current choice of a fixed input, say capital.

# Theorem: If the demand for labor is differentiable at this

point, then:
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Varian’s Proof

# Long- and short-run profit functions defined:
7t (p) = max p,f(k.1)-wl —rk
7°(p.p") =maxpf (k' (p').]) - wl - rk'(p')
# Long-run profits are higher:
7' (p)=z°(p,p’) for all p,p" and 7" (p) = 7z°(p,p)

# So, long-run demand “must be” more elastic:
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A Robust “"Counterexample”

An Alternative Doctrine

The production set consists of the convex hull of these three
points, with free disposal allowed:
Capital Labor Output
0 0 0
1 1 1
0 2 1

Fix the price of output at 9 and the price of capital at 3, and
suppose the wage rises from w=2 to w=5. Demands are:
1"(2)=2,15(5,2)=0,I*(5) =1

Long run labor demand falls less than short-run labor demand.

Robustness: Tweaking the nhumbers or “smoothing” the

production set does not alter this conclusion.

Disentangling Three Ideas




Separating the Elements

# Convexity
= Proving existence of prices
= Dual representations of convex sets
= Dual representations of optima
# Order
= Comparative statics
= Positive feedbacks (LeChatelier principle)
= Strategic complements
# Envelopes
= Useful with dual functions
= Multi-stage optimizations
= Characterizing information rents

Invariance Chart

Conclusions about
maXcs f(x,t)

Transformations of
Choice Variable

Supporting (“Lagrangian”)
prices exist

Linear (“convexity
preserving”)

Optimal choices increase in
parameter

Order-preserving

Long-run optimum change
is larger, same direction

Order-preserving

Value function derivative
formula: V/(t) = f,(x (t),t)

One-to-one
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Convexity Alone

Pure Applications of Convexity

# Separating Hyperplane Theorem

= Existence of prices

= Existence of probabilities

= Existence of Dual Representations
+ Example: Bondavera-Shapley Theorem
+ Example: Linear programming duality

# "Alleged” Applications of Duality

» Hotelling’s lemma
= Shephard’s lemma




Separating Hyperplane Theorem

# Theorem. Let S be a non-empty, closed convex set in
RN and x¢ S. Then there exists peRN such that

p-x>max{p-y|yecS}
@ Proof. Let ye Sbe the nearest point in Sto x. Let
p=(x-y)|x—y|
= Argue that such a point y exists.
= Argue that px>py.
» Argue that if ze Sand p-z>p-y, then for some small
positive t, tz+(1-t)y is closer to x than y is.
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Dual Characterizations

#Corollary. If S is a closed convex set,
then S is the intersection of the closed
“half spaces” containing it.

= Defining
m(p)=max{p-x|x €S}

= it must be true that
S:ﬂpeRN{xlp-xgw(p)}
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Convexity and Quantification

#The following conditions on a closed set
S in RN is are equivalent
= S is convex

= For every x on the boundary of S, there is
a supporting hyperplane for S through x.

= For every concave objective function f
there is some A such that the maximizers
of f(x) subject to xeS are maximizers of
f(x)+X1-x subject to xeRN,

Order Alone




“Order” Concepts & Results

# Order-related definitions

# Optimization problems

= Comparative statics for separable objectives

= An improved LeChatelier principle

= Comparative statics with non-separable “trade-offs”
# Equilibrium w/ Strategic Complements

= Dominance and equilibrium

» Comparative statics

= Adaptive Learning

» LeChatelier principle for equilibrium
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Two Aspects of Complements

# Constraints
= Activities are complementary if doing one enables doing the
other...
= ...0r at least doesn’t prevent doing the other.
+ This condition is described by sets that are sublattices.

# Payoffs
= Activities are complementary if doing one makes it weakly
more profitable to do the other...
+ This is described by supermodular payoffs.
= ...0r at least doesn’t change the other from being profitable to
being unprofitable
+ This is described by payoffs satisfying a single crossing condition.
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Definitions: “Lattice”

# Given a partially ordered set (X;>), define
= The "join": xvy=inf{ze X|z2x,z>y}.

"The "meet": x Ay =sup{ze X|z<x,z<yj}.

@ (X>) is a “lattice' if
(Vx,ye X)xny,xvyeX

# Example: X=RN,
x2yifx,2y,i=1...N
(xAy), =min(x,,y,; )i =1....N
(xvy), =max(x;,y;);i=1...N

Definitions, 2

@ (X>) is a “complete lattice’ if for every non-empty
subset S, a greatest lower bound inf(S) and a least
upper bound sup(S) exist in X

# A function 7: X=>R is “supermodular” if
(Vx,y € X)F(x)+f(y)<F(xAy)+f(xvy)

@ A function fis “submodular”if —fis supermodular.




Definitions, 3

@ Given two subsets S,TcX, 'S is as high as T,” written
S>T, means
[xeSandyeT]

=[xVyeSandxAyeT]

# A function x* is “fsotone” (or “weakly increasing”’) if
t>t = x(t)> x (t')
= “Nondecreasing” is not used because...

#® A set S is a “sublattice’ if S>S.
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Sublattices of R2

o
z
o
X XVy
o o
XAY y
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Not Sublattices

# Convexity, order and topology are mostly independent
concepts. However, in R, these concepts coincide
= Topology: S = compact set with boundary {a,5}
= Convexity: S={aa+(1-a)b|a €[0,1]}
= Order: S=[ab]l={x|a<x<b}

“Pairwise” Supermodularity

# Theorem (Topkis). Let /:RN->R. The following are
equivalent:
= fis supermodular

= For all nm and x_,,, the restriction 7(.,.,X.,,):R*>R is
supermodular.




Proof of Pairwise Supermodularity

# = This direction follows from the definition.
# < Given x=y, suppose for notational simplicity that
.- {max(x,-,y,) fori=1....,n
min(x;,y;) fori=n+1...,N

# Then,

n
> ziz1[f(x1,...,X,-,y,-+1,...y,,,x,,+1,...xN)

Xt Xy 1YY Xy e X )]

QED  =(()-xy)
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“Pairwise” Sublattices

>

# Theorem (Topkis). Let Sbe a sublattice of RN. Define
S; ={XEERN |(3z€S)x =z,x; =zj}
Then, S = ﬂi’js,,-.
# Remark. Thus, a sublattice can be expressed as a
collection of constraints on pairs of arguments. In

particular, undecomposable constraints like
Xy + Xg + X3 <1

can never describe in a sublattice.
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Proof of Pairwise Sublattices

It is immediate that S = ﬂijS,-j. For the reverse,

suppose X € ﬂ S;. Then, (32’7 e S)z{f = X;-and z}f = X;.
i.j

Define Z' :vjz’/ eS.Forallj, z/ > xj,z,f =X;.

So, z=A,;Z' € S satisfies z; = x; for all i.

QED

Complementarity

# Complementarity/supermodularity
has equivalent characterizations:

= Higher marginal returns
f(xv y)=f(x) 2 f(y)-f(x ny) -
= Nonnegative mixed second y
differences
[f(xvy)-f(x)]-[f(y)-f(xAny)]=0 XAY X

= For smooth objectives, non-
negative mixed second
derivatives:
o°f
OX;0X;

>0 forij=j



‘Monotonicity Theorem

# Theorem (Topkis). Let :XxR =R be a supermodular

function and define
x'(t)= argmsa(?gf(x,t).
If t>t"and S(¢) > S(¢), then x(¢t) = x(¢).
# Corollary. Let 7:XxR >R be a supermodular function

and suppose S(¢) is isotone. Then, for each ¢ S(£) and

X*(t) are sublattices.

@ Proof of Corollary. Trivially, £>¢ so S(t) > S(t) and
xX(t) = x(t). QED
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_Proof of Monotonicity Theorem

# Suppose that f is supermodular
and that x e x (t),x" e x (t'),t > t'.
@ Then, (x A x")e S(t'),(x v x") e S(t)
So, f(x,t)>f(xv x',t) and f(x',t") > f(x A x',t').
# If either any of these inequalities are strict then their
sum contradicts supermodularity:
f(x,t)+f(x,t")>f(x A X, t")+f(x Vv X',t).

QED
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Necessity for Separable Objectives

# Theorem (Milgrom). Let 7:R"xR >R be a
supermodular function and suppose S is a sublattice.
N

Let x, 5(t)=arg maxf(x,t)+ > 9,(x,).

n=1

# Then, the following are equivalent:

= fis supermodular

= Forall g,,....gy : R > R, x_(t) is isotone.
# Remarks:

= This is a “robust monotonicity” theorem.

= The function g(x) = ZQn(xn) is "modular":

g(x)+g(y)=g(xAy)+g(xvy).

/ Proof

# = Follows from Topkis's theorem.
# < It suffices to show “pairwise supermodularity.” Hence, it is

sufficient to show that supermodularity is necessary when N=2.
We treat the case of two choice variables; the treatment of a
choice variable and parameter is similar.

@ Let x,y e R* be unordered: X, > y,, X, <y,
¢ Fix —oo if Z ¢ {Xuyi}

f(xany)-f(x)ifz, =x,i=1
f(xny)-fy)ifz =y, i=2
0 otherwise

gi(zi):

® Iff(x)+f(y)>f(xAny)+f(xvy), then x; ={X,y,x Ay}

is not a sublattice, so —.(x'(t) > x'(t)). QED




Application: Production Theory

# Problem:
max pf(k,1)—L(I,w)—K(k,r)

# Suppose that L is supermodular in the natural order,
for example, L(/,w)=wi.
= Then, -L is supermodular when the order on /is reversed.
= /X{w) is nonincreasing in the natural order.

# If fis supermodular, then £*{w) is also nonincreasing.

= That is, capital and labor are “price theory complements.”

@ If fis supermodular with the reverse order, then
capital and labor are “price theory substitutes.”
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Application: Pricing Decisions

# A monopolist facing demand D(p,{) produces at unit
cost ¢

p(t)= argm?x(p —¢)D(p,t)

=argmaxlog(p—c¢)+log(D(p,t))
p>c

& p'(ct) is always isotone in ¢ It is also isotone intif
log(D(p,t)) is supermodular in (p,£), which is the
same as being supermodular in (log(p), £), which

means that increases in £ make demand less elastic:
dlogD(p,t)

nondecreasing in ¢
dlog(p)
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Application: Auction Theory

4 A firm’s value of winning an item at price p is U(p,t),
where t is the firm’s type. (Losing is normalized to
zero.) A bid of p wins with probability F(p).

4 Question: Can we conclude that p(t) is nondecreasing,
without knowing F?

Pr(t) = argmaxU(p,t)F(p)
=arg m?xlog(U(p,t)) +log(F(p))

4 Answer: Yes, if and only if log(U(p, ) is supermodular.

Long v Short-Run Demand

# Notation. Let /°(w,w”) be the short-run
demand for labor when the current wage is w
and the wage determining fixed inputs is w~

# Setting w=w’ in /4 gives the long run
demands.

# Samuelson-LeChatelier principle:

0=/(w,w)>——I(w,w).
aw
= which can be restated revealingly as:
02=/,(w,w).




“Milgrom-Roberts Analysis

Complements Substitutes
Wage | Labor | Wage — > Labor
+ +A _ _ A
Capital Capital
# Remarks:

= This analysis involves no assumptions about convexity,
divisibility, etc.

= For smooth demands, symmetry of the substitution matrix
implies that, locally, one of the two cases above applies.
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Improved LeChatelier Principle

4 Let H(x,y,t) be supermodular and S a sublattice.
# Let (x*(t),y*(t)) = maxarg(ma)éH(x,y,t)
X,y )e

@ Letx'(t,t')=maxarg max H(x,y (t'),t)

XG{x'|(x', y’(t'))es}

# Theorem (Milgrom & Roberts). x*is isotone in both
arguments. In particular, if £>¢’, then

X (t)=x'(t,t)> x (t,t") > x (t't')= x (')
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/ Proof

4 By the Topkis Monotonicity Theorem, y'(t) > y'(t')
# Applying the same theorem again, for all £¢”>¢’

x (t,t)y=maxarg max H(x,y (t),t)

XG{xq(x',y'(t'))es}

<x'(t,t')=maxarg max H(x,y (t)t)

XE{x'|(x',y'(t'))es}

<x'(t,t")=maxarg max H(x,y (t").t)

xe{x'|( x’,y' (t" ))ES}

# Setting t=t” completes the proof.

Long v Short-Run Demand

# Theorem. Let w>w’. Suppose capital and labor are
complements, i.e., f(k,/) is supermodular in the
natural order. If demand is single-valued at wand
w’, then

I15(w,w) < IS (w,w') < I5(w',w')

# Theorem. Let w>w'. Suppose capital and labor are
substitutes, i.e., f(k/) is supermodular when
capital is given its reverse order. If demand is
single-valued at wand w’, then

15 (w,w) < IS (w,w') < IS (w',w')




Non-separable Objectives

# Consider an optimization problem featuring
“trade-offs” among effects.
= X is the real-valued choice variable
= B(x) is the “benefits production function”
= Optimal choice is

xg(t) = argn;g(x;r(x,B(x),t)
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Robust Monotonicity Theorem

@ Define: x;(t):argma}(Xn(x,B(x),t)

# Theorem. Suppose 7z is continuously differentiable
and 7, is nowhere 0. Then:

{(ny)(*iii?)' is increasing in t}
(X, Y,

= [For all B, x,(t) is isotone]

=|(vxy) uALAY) is nondecreasing in t
|7[2(X1y’t)|
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Application: Savings Decisions

# By saving x, one can consume £ (x) in period 2.
V(w)= EnaxU(w - x,F(x))

x;(w)=maxarg BnaxU(W - X,F(x))

@ Define: z(x,y,t)=U(t-x,y)
# Analysis. If MRS, increases with x, then optimal savings are
isotone in wealth:

U, (x.y)
U,(x.y)
# This is the same condition as found in price theory, when F is

restricted to be linear. Here, F is unrestricted.
= Also applies to Koopmans consumption-savings model.

increasing in x | = x.(w) isotone

" Introduction to
Supermodular Games




Formulation

#N players (infinite is okay)
#Strategy sets X, are complete sublattices

m X, =minX,,x, =max X,

n'“*n

#Payoff functions U,(x) are
= Continuous

= “Supermodular with isotone differences”
(VYn)(Vx,,x, € X,)(vx_, =X, e X ,)
U,(x)+U,(x")<U, (xAx)+U, (xvX')
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Bertrand Oligopoly Models

# Linear/supermodular Oligopoly:
Demand: Q,(x)=A-ax, + Z#n b

Profit: U, (x)=(x, —¢,)Q,(x)

ZUH =b,,(x, —c,) which is increasing in x,
Xm

# Log-supermodular Oligopoly:
logU, (x)=log(x, —c,)+logQ,(x)
2 2
o°uU, S0 o 0°10gQ,(x)
0X,,0X,, dlogx,ologx,,

>0
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‘Linear Cournot Duopoly

#Inverse Demand: P(x)=A-x,— X,
U,(x) = x,P(x)-C,(x,)
ou,
ox, "

# Linear Cournot duopoly (but not more general
oligopoly) is supermodular if one player’s strategy set
is given the reverse of its usual order.

Analysis of Supermodular Games

# Extremal Best Reply Functions
B,,(x)zmax(argm@(xun(x;,xfn))

b,(x)= min(argma}(x U,(x;,x_, ))

= By Topkis's Theorem, these are isotone functions.
@ Lemma:

=[x, = b,(x)] =[x, is strictly dominated by b,(x) v X, ]
# Proof. If —1[xn > bn()_()], then

Un(xn Vbn()_()vx—n)_Un(Xn’X—n)ZUn(bn()_()v)_(—n) U (X nb (l) _—n)>0




Rationalizability & Equilibrium

# Theorem (Milgrom & Roberts): The smallest
rationalizable strategies for the players are given by
z = lim b¥(x)
Similarly the Iargesﬁationalizable strategies for the
players are given by
Z= L'El B*(x)

Both are Nash equilibrium profiles.
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Proof

# Notice that b¥(x) is an isotone, bounded sequence, so
its limit z exists.

# By continuity of payoffs, its limit is a fixed point of b,
and hence a Nash equilibrium.

# Any strategy less than z, is less than some bk (x) and

hence is deleted during iterated deletion of
dominated strategies.

# QED
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Comparative Statics

# Theorem. (Milgrom & Roberts) Consider a family of
supermodular games with payoffs parameterized by t.
Suppose that for all n, x_,, U,(X,,X.;t) is supermodular
in (x,,t). Then

Z(t),z(t) are isotone.

# Proof. By Topkis's theorem, bH(x) is isotone in &
Hence, if t>¢)

b (x) > by (x)

2(t) = lim b (x) > lim b (x) > 2(t')

and similarly for z. QED

Adaptive Learning

# Player n’s behavior is called “ consistent with adaptive
learning” if for every date ¢there is some date ¢t“after
which n does not play a strategy that is strictly
dominated in the game in which others are restricted
to play only strategies they have played since date &

# Theorem (Milgrom & Roberts). In a finite strategy
game, if every player’s behavior is consistent with
adaptive learning, then all eventually play only
rationalizable strategies.




Equilibrium LeChatelier Principle

4 Formulation

= Consider a parameterized family of supermodular games
with payoffs parameterized by t. Suppose that for all n, x_,,
U, (X, X;t) is supermodular in (x,,t).

= Fixing player 1’s strategy at z,(t") induces a supermodular

game among the remaining players. Let y(t,t") be the
smallest Nash equilibrium in the induced game, with

Yi(tt)=2,(t).
@ Theorem.
« Ift >t then z(t)> y(t,t') = z(t').
= If t <t', then z(t) < y(t,t') < z(t').
...and a similar conclusion applies to the maximum equilibrium.
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IN IV

Proof

# Observe (exercise) that
z(t)=y(t,t),z(t') = y(t',t").
@ Suppose t>t".
= By the comparative statics theorem, z is isotone, so:
z(t) = z(t').
= Hence, by the comparative statics theorem applied again, y
is isotone, so:

y(tt) > y(tt)> y(t,t).
QED
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Envelope Functions Alone

Based on “Envelope Theorems for
Arbitrary Choice Sets” by Paul
Milgrom & Ilya Segal

What are “Envelope Theorems”?

# Envelope theorems deal with the properties of
the value function: V(¢) = max f(x,t)
# Answer questions about...

= When Vis differentiable, directionally differentiable,
Lipschitz, or absolutely continuous

= when V satisfies the “envelope formula”
V'(t) = fi(x,t) for x € x"(t)
# "Traditional” envelope theorems assume that
set Xis convex and the objective 7(:,¢) is
concave and differentiable.




Intuitive Argument

® When X={x,,X%,X}...

= Vis left- and right-
is and rig %0

differentiable

everywhere / ! \ f(x,0
w if £(x 0 is constant on £,

xe x*(?), then Vis

differentiable at ¢ (X%, 0

= envelope formulas
apply for
» V(O)=FH(x*(8),0) t
* V(t+) and V(¢)
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Envelope Derivative Formula

4 Theorem 1. Take ¢ <[0,1] and xex*(£), and suppose
that f(x ¢) exists.
n If t<1 and V(&) exists, then V(&) > F(xf).
s If >0 and V{¢-) exists, then V(&) < f(x£).
s If £e(0,1) and V1(¢) exists, then V(&) = fi(xb).
4 Proof:

b | T A
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Absolute Continuity

#Theorem 2(A). Suppose that
» f(x,) is is differentiable (or just
absolutely continuous) for all xe X'with
derivative (or density) ;.
» there exists an integrable function b(¢)
such that |7 (x;-)| < b(¢) for all xe Xand
almost all £<[0,1].

Then Vis absolutely continuous with
density satisfying | V{(¢)|< b(¢).

Proof of Theorem 2(A)

#® Define

# Then for t7> t':
[V(t")-V(t')|< sup [ f(x.t") - F(x.t')]
xeX

p
< I sup|f;(x,t) dt

.
j f,(x,t)dt
t t' xeX

=sup
xeX

.
< I b(t)dt = |B(t") - B(t")
.

# It suffices to prove the theorem for intervals, because open
intervals are a basis for the open sets. QED




Why do we need bH(:)?

# Let X=(0,1] and Ax,t)=g (t/x), where gis smooth
and single-peaked with unique maximum at 1.
s 1/(0)=g(0), V(£)=g (1): Vis discontinuous at 0.
= This example has no integrable bound b6(¢):

sup |f,(x,t)|= sup [L(£g'(£)) =+ sup |xg'(x)
xe(0,») xe(0,0) xe(0,0)

V

g(1)

f(x0)
g(0)
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Envelope Integral Formula

# Theorem 2(B). Suppose that, in addition to
the assumptions of 2(A), the set of
optimizers x*(¢) is non-empty for all £ Then
for any selection x(£)ex*(?),

V(s)=V(0)+ [ f(x(t),t)at.
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Equi-differentiability

# Definition. A family of functions
{F(x)}x IS “equi-differentiable’
at £e(0,1) if

: F(x,t)-rf(x,t)_ !
Amsup g fl(x,£) =0

#If Xis finite, this is the same as
simple differentiability.

Directional Differentiability

# Theorem 3. If
s (i) {F(x)}x is equi-differentiable at ¢,
n (i) x*(¢) is non-empty for all ¢ and
 (iii) sup,| £ (x,t)| <oo,
then for any selection x(¢)e x*(t), Vis left- and

right-differentiable at ¢,e(0,1) and the derivatives
satisfy

V(t4) = fim £(x(E),8,)
V'(t,-) = tllmift(x(t)rto)




Role of “Equi-differentiability”

# Simple differentiability (rather than equi-
differentiability) is not enough for I/to have left-
and right-derivatives:

s Let g(¢) =tsinlog(t),f(x,t)=g(t) if t >exp(-z/2-27nx),
f(x,t) = -t otherwise.
= Then; V(t) = g(¢)
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Continuous Problems

# Theorem 4. Suppose X'is a hon-empty compact space,
fis upper semi-continuous on Xand £ is continuous in

(x,©). Then,
= Vis directionally differentiable
V'(t+) = ma*(>§)fll(x,t) for t €[0,1)

V'(t-) = mila)ﬁ(x,t) for t €(0,1]

» In particular, V'(¢+) = V'(¢-).
= Vis differentiable at £if any of the following hold:
+ Vis concave (because V'(t+)<V'(t-))
+ tis a maximum of V(:) (because V(&)< V(&)
* xX(t) is a singleton (because V(&)= V(t))
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Contrast to a “Traditional” Approach

# In some approaches, the differentiability of x* is
used in the argument. However, I/can be
differentiable even when x*is not. This often
happens, for example, in strictly convex
problems:

Applications




Hotelling’s Lemma

# Define:
z(p) = max p - x

xX'(p) = argmax p - x

# Theorem. Suppose Xis compact. Then, ='(p) exists if
and only if xX{(p) is a singleton, and in that case ='(p)

= xAp).
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Shephard’s Lemma

# Define:
Cly,p)= min —p,-x,

X'(p)=arg min - p,-x,
eX, X1=

# Remark: The variable x, represents “output” and the
other variables represent inputs, measured as
negative numbers.

# Theorem. Suppose Xis compact. Then, 0 op exists
if and only if X(p) is a singleton, and in that case
odop = x(p).
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Multi-Stage Maximization

#Stage 1: choose investment £> 0.
#Stage 2: choose action vector xe X=J
#Assume:
s f(X,t) is equidifferentiable in £ and £*>0
» f(X,t) is u.s.c. in xand Xis compact

#Conclusion: the value function V(¢) is
differentiable at £*and VV’(£*)=0.

= Proof: Apply theorem 4.

Mechanism Design

@ Y=set of outcomes

@ Agent’s type is t, utility is 7(x, ).

# M=message space. h:M-Y is outcome function.
# X=h(M) is set of “accessible outcomes.”

# Assume that each type has an optimal choice

x(t) e arg max f(x,t)




Analysis

# Corollary 1. Suppose that the agent’s utility function
f(x,t) is differentiable and absolutely continuous in ¢
for all xe ¥; and that sup,_y/{x,?) is integrable on
[0,1]. Then the agent’s equilibrium utility Vin any
mechanism implementing a given choice rule x must
satisfy the following integral condition.

V(t) =V (0) + J'Otft(x(s), 5)ds.

= This had previously been shown only with (sometimes
“weak”) additional conditions.
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Mechanism Design Applications

# Models in which pa1yoffs are v-p-z, SO
U(v)=U(0) + jov .p’(sv)ds.

# Theorems
= Green-Laffont Theorem
+ Uniqueness of Dominant Strategy Mechanisms
= Holmstrom-Williams Theorem
+ Bayesian Revenue Equivalence
= Myerson-Satterthwaite Theorem
+ Necessity of Bargaining Inefficiency
= Jehiel-Moldovanu Theorem

+ Impossibility of Efficiency with Value Interdependencies
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Green-Laffont Theorem

# “Uniqueness of dominant strategy implementation.”

# Theorem (Holmstrom’s variation). Suppose that

= M is a direct mechanism to implement the efficient outcome
in dominant strategies

= the type space is smoothly path-connected.

# Then,

= the payment function for player j in mechanism M is equal to
the payment function of the Vickrey-Clarke-Groves pivot
mechanism plus some function g;(v.,) (which depends only
on the other player’s types).

Green-Laffont Theorem

@ Given any value vector v, let {v,(t)|te[0,1]} be a smooth path
connecting some fixed value y; to v;= vj(1). By the Envelope
Theorem applied to the path parameter ¢,

U (vi)vy) = py (vithv. ) v, = X (vt
- U, (zj,vfj)+J-;pj(V].(S),ij)-vj'-(s)ds

=X (v ) = Fv )+ ey (v ) v, - fpf (vi(s)v.;)-vi(s)ds

0
where f(v_;)=-U,(v,,v ;)

# S0, X; is fully determined by the functions pand 7.




Holmstrom-Williams’ Theorem

@ Theorem: Any mechanism that Bayes-Nash implements
efficient outcomes on a smoothly path-connected type
space entails the same expected payments as the Vickrey
mechanism, plus some bidder-specific constant.

@ Proof. Let {v,(s),s€[0,1]} be a path from some fixed value
vector to any other value vector. By the Envelope Theorem,

Uj (Vj(t)) =Pp; (Vj(t))'vj(t)_ Xj(vj(t))
= U, (v,(0)+ [, p; (v)(5))-v}(s)ds

@ Hence, X(v) is uniquely determined by U(0). It is equal to
U(0) plus the expected payment in the Vickrey mechanism.
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Two-Person Bargaining

# Assume
= there is a buyer with value v distributed on [0,1]
= there is a seller with cost c distributed on [0,1]
# The Vickrey-Clarke-Groves mechanism
= has each party report its value
= entails p*(v,c)=1 if v>c and p*(v,c)=0 otherwise
= payments are
« if p*(v,c)=0, no payments
« if p*(v,c)=1, buyer pays c and the seller receives v
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Myerson-Sattherthwaite Theorem

@ Expected profits are:
» Ug(V)=E[(v-C)14qIV], O E[Ug(V)]=E[(v-C)15q]
» Ug(c)=E[(v-C)1yqls], SO E[Us(C)]=E[(V-C)1(5q]
= each bidder expects to receive the entire social surplus.

# Apply Holmstrom-Williams theorem:

# Theorem (Myerson-Satterthwaite). There is no
mechanism and Bayesian Nash equilibrium such that
the mechanism implements for all v,c with v>c and

= Ug(0)=U¢(1)=0 (“voluntary participation by worst type”)

n E[Ug(V)]+E[Us(C)I<E[(v-C)1,,5q] (Mbalanced expected
budget”)

Subtleties

# Consider a model in which:
Pr{v>1=Pr{c<1}=1

# Q: Why doesn’t simply trading at price p=1
violate the theorem in this model?

# A: Because it prescribes trade even when c>V!




