Price Theory Encompassing

MIT 14.126, Fall 2001

Road Map

Traditional Doctrine: Convexity-Based

- Disentangling Three Big Ideas
- Convexity: Prices \& Duality
- Order: Comparative Statics, Positive Feedbacks, Strategic Complements
- Value Functions: Differentiability and Characterizations, Incentive Equivalence Theorems

Convexity at Every Step

- Global or local convexity conditions imply
- Existence of prices
- Comparative statics, using second-order conditions
- Dual representations, which lead to...
- Hotelling's lemma
- Shephard's lemma
- Samuelson-LeChatelier principle
- "Convexity" is at the core idea on which the whole analysis rests.

Samuelson-LeChatelier Principle

- Idea: Long-run demand is "more elastic" than short-run demand.
- Formally, the statement applies to smooth demand functions for sufficiently small price changes.
- Let $p=\left(\mathrm{p}_{\mathrm{x}}, \mathrm{w}, \mathrm{r}\right)$ be the current vector of output and input prices and let p^{\prime} be the long-run price vector that determined the current choice of a fixed input, say capital.
Theorem: If the demand for labor is differentiable at this point, then:

$$
\left.\frac{\partial L^{\prime}}{\partial w}\right|_{p} \leq\left.\frac{\partial I^{s}}{\partial w}\right|_{p, p^{\prime}=p} \leq 0
$$

Varian's Proof

Long- and short-run profit functions defined:

$$
\begin{aligned}
\pi^{L}(p) & =\max _{k, l} p_{x} f(k, I)-w l-r k \\
\pi^{S}\left(p, p^{\prime}\right) & =\max _{I} p_{x} f\left(k^{*}\left(p^{\prime}\right), I\right)-w l-r k^{*}\left(p^{\prime}\right)
\end{aligned}
$$

人 Long-run profits are higher: $\pi^{L}(p) \geq \pi^{s}\left(p, p^{\prime}\right)$ for all p, p^{\prime} and $\pi^{L}(p)=\pi^{s}(p, p)$

- So, long-run demand "must be" more elastic:

$$
\left.\frac{\partial^{2} \pi^{L}}{\partial w^{2}}\right|_{p} \geq\left.\frac{\partial^{2} \pi^{s}}{\partial w^{2}}\right|_{p, p^{\prime}=p} \geq 0 \text { and }\left.\frac{\partial l^{L}}{\partial w}\right|_{p} \leq\left.\frac{\partial I^{s}}{\partial w}\right|_{p, p^{\prime}=p} \leq 0
$$

- The production set consists of the convex hull of these three points, with free disposal allowed:

Capital	Labor	Output
0	0	0
1	1	1
0	2	1

- Fix the price of output at 9 and the price of capital at 3 , and suppose the wage rises from $w=2$ to $w=5$. Demands are:

$$
I^{L}(2)=2, I^{S}(5,2)=0, I^{L}(5)=1
$$

- Long run labor demand falls less than short-run labor demand.
- Robustness: Tweaking the numbers or "smoothing" the production set does not alter this conclusion.

An Alternative Doctrine

Disentangling Three Ideas

Separating the Elements

- Convexity
- Proving existence of prices
- Dual representations of convex sets
- Dual representations of optima
- Order
- Comparative statics
- Positive feedbacks (LeChatelier principle)
- Strategic complements
- Envelopes
- Useful with dual functions
- Multi-stage optimizations
- Characterizing information rents

Invariance Chart

Conclusions about $\max _{x \in S} f(x, t)$	Transformations of Choice Variable
Supporting ("Lagrangian") prices exist	Linear ("convexity preserving")
Optimal choices increase in parameter	Order-preserving
Long-run optimum change is larger, same direction	Order-preserving
Value function derivative formula: $V^{\prime}(t)=f_{2}\left(x^{*}(t), t\right)$	One-to-one

Convexity Alone

Pure Applications of Convexity

- Separating Hyperplane Theorem
- Existence of prices
- Existence of probabilities
- Existence of Dual Representations
- Example: Bondavera-Shapley Theorem
- Example: Linear programming duality
- "Alleged" Applications of Duality
- Hotelling's lemma
- Shephard's lemma

Separating Hyperplane Theorem

Theorem. Let S be a non-empty, closed convex set in R^{N} and $x \notin S$. Then there exists $p \in \mathrm{R}^{\mathrm{N}}$ such that

$$
p \cdot x>\max \{p \cdot y \mid y \in S\}
$$

- Proof. Let $y \in S$ be the nearest point in S to x. Let

$$
p=(x-y) /\|x-y\|
$$

- Argue that such a point y exists.
- Argue that $p \cdot x>p \cdot y$.
- Argue that if $z \in S$ and $\mathrm{p} \cdot \mathrm{z}>\mathrm{p} \cdot \mathrm{y}$, then for some small positive $t, t z+(1-t) y$ is closer to x than y is.

Dual Characterizations

Corollary. If S is a closed convex set, then S is the intersection of the closed "half spaces" containing it.

- Defining

$$
\pi(p)=\max \{p \cdot x \mid x \in S\}
$$

- it must be true that

$$
S=\bigcap_{p \in R^{N}}\{x \mid p \cdot x \leq \pi(p)\}
$$

Convexity and Quantification

- The following conditions on a closed set S in $\mathbf{R}^{\mathbf{N}}$ is are equivalent
- S is convex
- For every x on the boundary of S, there is a supporting hyperplane for S through x.
- For every concave objective function f there is some λ such that the maximizers of $f(x)$ subject to $x \in S$ are maximizers of $f(x)+\lambda \cdot x$ subject to $x \in \mathbf{R}^{N}$.

Order Alone

"Order" Concepts \& Results

- Order-related definitions
- Optimization problems
- Comparative statics for separable objectives
- An improved LeChatelier principle
- Comparative statics with non-separable "trade-offs"
- Equilibrium w/ Strategic Complements
- Dominance and equilibrium
- Comparative statics
- Adaptive Learning
- LeChatelier principle for equilibrium

Two Aspects of Complements

- Constraints
- Activities are complementary if doing one enables doing the other...
- ...or at least doesn't prevent doing the other.
- This condition is described by sets that are sublattices.
\checkmark Payoffs
- Activities are complementary if doing one makes it weakly more profitable to do the other...
- This is described by supermodular payoffs.
- ...or at least doesn't change the other from being profitable to being unprofitable
- This is described by payoffs satisfying a single crossing condition.

Definitions: "Lattice"

Definitions, 2

- Given a partially ordered set (X, \geq), define
- (X, \geq) is a "complete lattice" if for every non-empty subset S, a greatest lower bound $\inf (S)$ and a least upper bound $\sup (S)$ exist in X.
- A function $f: \mathrm{X} \rightarrow \mathbf{R}$ is "supermodular" if

$$
(\forall x, y \in X) f(x)+f(y) \leq f(x \wedge y)+f(x \vee y)
$$

- A function f is "submodular" if $-f$ is supermodular.

Definitions, 3

Sublattices of \mathbf{R}^{2}

- Given two subsets $\mathrm{S}, \mathrm{T} \subset \mathrm{X}$, " S is as high as T ," written $S \geq T$, means

$$
\begin{aligned}
& {[x \in S \text { and } y \in T] } \\
\Rightarrow & {[x \vee y \in S \text { and } x \wedge y \in T] }
\end{aligned}
$$

- A function x^{*} is "isotone" (or "weakly increasing') if

$$
t \geq t^{\prime} \Rightarrow x^{*}(t) \geq x^{*}\left(t^{\prime}\right)
$$

- "Nondecreasing" is not used because...
- A set S is a "sublattice" if $\mathrm{S} \geq \mathrm{S}$.

Not Sublattices

\Rightarrow Convexity, order and topology are mostly independent concepts. However, in R, these concepts coincide

- Topology: $S=$ compact set with boundary $\{a, b\}$
- Convexity: $S=\{\alpha a+(1-\alpha) b \mid \alpha \in[0,1]\}$
- Order: $S=[a, b]=\{x \mid a \leq x \leq b\}$

"Pairwise" Supermodularity

Theorem (Topkis). Let $f: \mathbf{R}^{N} \rightarrow \mathbf{R}$. The following are equivalent:

- f is supermodular
- For all $\mathrm{n} \neq \mathrm{m}$ and $\mathrm{x}_{-\mathrm{nm}}$, the restriction $f\left(\ldots,, \mathrm{x}_{-\mathrm{nm}}\right): \mathbf{R}^{2} \rightarrow \mathbf{R}$ is supermodular.

Proof of Pairwise Supermodularity

$\Delta \Rightarrow$ This direction follows from the definition.
$\diamond \Leftarrow$ Given $x \neq y$, suppose for notational simplicity that

$$
x_{i}=\left\{\begin{array}{l}
\max \left(x_{i}, y_{i}\right) \text { for } i=1, \ldots, n \\
\min \left(x_{i}, y_{i}\right) \text { for } i=n+1, \ldots, N
\end{array}\right.
$$

* Then,

$$
\begin{aligned}
f(x \vee y)-f(y)= & \sum_{i=1}^{n}\left(f\left(x_{1}, \ldots, x_{i}, y_{i+1}, \ldots, y_{N}\right)-f\left(x_{1}, \ldots, x_{i-1}, y_{i}, \ldots, y_{N}\right)\right) \\
\geq & \sum_{i=1}^{n}\left[f\left(x_{1}, \ldots, x_{i}, y_{i+1}, \ldots y_{n}, x_{n+1}, \ldots x_{N}\right)\right. \\
& \left.-f\left(x_{1}, \ldots, x_{i-1}, y_{i}, \ldots y_{n}, x_{n+1}, \ldots x_{N}\right)\right] \\
\text { QED } \quad & f(x)-f(x \wedge y)
\end{aligned}
$$

"Pairwise" Sublattices

, Theorem (Topkis). Let S be a sublattice of \mathbf{R}^{N}. Define

$$
S_{i j}=\left\{x \in \mathfrak{R}^{N} \mid(\exists z \in S) x_{i}=z_{i}, x_{j}=z_{j}\right\}
$$

Then, $S=\bigcap_{i, j} S_{i j}$.

- Remark. Thus, a sublattice can be expressed as a collection of constraints on pairs of arguments. In particular, undecomposable constraints like

$$
x_{1}+x_{2}+x_{3} \leq 1
$$

can never describe in a sublattice.

Proof of Pairwise Sublattices

It is immediate that $S \subset \bigcap_{i, j} S_{i j}$. For the reverse,
suppose $x \in \bigcap_{i, j} S_{i j}$. Then, $\left(\exists z^{i j} \in S\right) z_{i}^{i j}=x_{i}$ and $z_{j}^{i j}=x_{j}$.
Define $z^{i}=v_{j} z^{i j} \in S$. For all $j, z_{i}^{j} \geq x_{j}, z_{i}^{i}=x_{i}$.
So, $z=\wedge_{i} z^{i} \in S$ satisfies $z_{i}=x_{i}$ for all i.

QED

Complementarity

- Complementarity/supermodularity has equivalent characterizations:
- Higher marginal returns
$f(x \vee y)-f(x) \geq f(y)-f(x \wedge y)$
- Nonnegative mixed second differences
$[f(x \vee y)-f(x)]-[f(y)-f(x \wedge y)] \geq 0$

- For smooth objectives, nonnegative mixed second derivatives:

$$
\frac{\partial^{2} f}{\partial x_{i} \partial x_{j}} \geq 0 \text { for } i \neq j
$$

Monotonicity Theorem

Theorem (Topkis). Let $f: X \times \mathbf{R} \rightarrow \mathbf{R}$ be a supermodular function and define

$$
x^{*}(t) \equiv \underset{x \in S(t)}{\operatorname{argmax}} f(x, t) .
$$

If $t \geq t^{\prime}$ and $S(t) \geq S\left(t^{\prime}\right)$, then $x^{*}(t) \geq x^{*}\left(t^{\prime}\right)$.
Corollary. Let $f: X \times \mathbf{R} \rightarrow \mathbf{R}$ be a supermodular function and suppose $S(t)$ is isotone. Then, for each $t, S(t)$ and $x^{*}(t)$ are sublattices.
Proof of Corollary. Trivially, $t \geq t$, so $S(t) \geq S(t)$ and $x^{*}(t) \geq x^{*}(t)$. QED

Proof of Monotonicity Theorem

\diamond Suppose that f is supermodular and that $x \in x^{*}(t), x^{\prime} \in x^{*}\left(t^{\prime}\right), t>t^{\prime}$.
\diamond Then, $\left(x \wedge x^{\prime}\right) \in S\left(t^{\prime}\right),\left(x \vee x^{\prime}\right) \in S(t)$
So, $f(x, t) \geq f\left(x \vee x^{\prime}, t\right)$ and $f\left(x^{\prime}, t^{\prime}\right) \geq f\left(x \wedge x^{\prime}, t^{\prime}\right)$.
人 If either any of these inequalities are strict then their sum contradicts supermodularity:

$$
f(x, t)+f\left(x^{\prime}, t^{\prime}\right)>f\left(x \wedge x^{\prime}, t^{\prime}\right)+f\left(x \vee x^{\prime}, t\right) .
$$

QED

Necessity for Separable Objectives

Theorem (Milgrom). Let $f: \mathbf{R}^{N} \times \mathbf{R} \rightarrow \mathbf{R}$ be a supermodular function and suppose S is a sublattice.
Let $x_{g, S}^{*}(t) \equiv \arg \max _{x \in S} f(x, t)+\sum_{n=1}^{N} g_{n}\left(x_{n}\right)$.
Then, the following are equivalent:

- f is supermodular
- For all $g_{1}, \ldots, g_{N}: \mathfrak{R} \rightarrow \mathfrak{R}, x_{g, S}^{*}(t)$ is isotone.
- Remarks:
- This is a "robust monotonicity" theorem.
- The function $g(x) \equiv \sum g_{n}\left(x_{n}\right)$ is "modular":

$$
g(x)+g(y)=g(x \wedge y)+g(x \vee y) .
$$

Proof

- Follows from Topkis's theorem.
- \Leftarrow It suffices to show "pairwise supermodularity." Hence, it is sufficient to show that supermodularity is necessary when $\mathrm{N}=2$. We treat the case of two choice variables; the treatment of a choice variable and parameter is similar.
- Let $x, y \in \mathfrak{R}^{2}$ be unordered: $x_{1}>y_{1}, x_{2}<y_{2}$
- Fix

$$
g_{i}\left(z_{i}\right)=\left\{\begin{array}{l}
-\infty \text { if } z_{i} \notin\left\{x_{i}, y_{i}\right\} \\
f(x \wedge y)-f(x) \text { if } z_{i}=x_{i}, i=1 \\
f(x \wedge y)-f(y) \text { if } z_{i}=y_{i}, i=2 \\
0 \text { otherwise }
\end{array}\right.
$$

- If $f(x)+f(y)>f(x \wedge y)+f(x \vee y)$, then $x_{g}^{*}=\{x, y, x \wedge y\}$ is not a sublattice, so $\neg\left(x^{*}(t) \geq x^{*}(t)\right)$. QED

Application: Production Theory

- Problem:

$$
\max _{k, I} p f(k, I)-L(I, w)-K(k, r)
$$

Suppose that L is supermodular in the natural order, for example, $L(I, w)=w /$.

- Then, $-L$ is supermodular when the order on /is reversed.
- $I^{*}(w)$ is nonincreasing in the natural order.
\Rightarrow If f is supermodular, then $k^{*}(w)$ is also nonincreasing.
- That is, capital and labor are "price theory complements."
Δ If f is supermodular with the reverse order, then capital and labor are "price theory substitutes."

Application: Pricing Decisions

A monopolist facing demand $D(p, t)$ produces at unit cost c.

$$
\begin{aligned}
& p^{*}(t)=\operatorname{argmax} \\
& p \\
&=\underset{p>c}{\operatorname{argmax}} \log (p-c) D(p, t) \\
&
\end{aligned}
$$

$\diamond p^{*}(c, t)$ is always isotone in c. It is also isotone int if $\log (D(p, t))$ is supermodular in (p, t), which is the same as being supermodular in $(\log (p), t)$, which means that increases in t make demand less elastic:

$$
\frac{\partial \log D(p, t)}{\partial \log (p)} \text { nondecreasing in } t
$$

Application: Auction Theory

- A firm's value of winning an item at price p is $U(p, t)$, where t is the firm's type. (Losing is normalized to zero.) A bid of p wins with probability $F(p)$.
Question: Can we conclude that $p(t)$ is nondecreasing, without knowing F?

$$
\begin{aligned}
p_{F}^{*}(t) & =\underset{p}{\operatorname{argmax}} U(p, t) F(p) \\
& =\underset{p}{\operatorname{argmax}} \log (U(p, t))+\log (F(p))
\end{aligned}
$$

Answer: Yes, if and only if $\log (U(p, t))$ is supermodular.

Long v Short-Run Demand

Notation. Let $I^{S}\left(w, w^{\prime}\right)$ be the short-run demand for labor when the current wage is w and the wage determining fixed inputs is w^{\prime}.
Setting $w=w^{\prime}$ in $/ s$ gives the long run demands.
Samuelson-LeChatelier principle:

$$
0 \geq I_{1}(w, w) \geq \frac{d}{d w} I(w, w)
$$

- which can be restated revealingly as:

$$
0 \geq I_{2}(w, w)
$$

Milgrom-Roberts Analysis

Complements

- Remarks:
- This analysis involves no assumptions about convexity, divisibility, etc.
- For smooth demands, symmetry of the substitution matrix implies that, locally, one of the two cases above applies.

Improved LeChatelier Principle

- Let $H(x, y, t)$ be supermodular and S a sublattice.
- Let $\left(x^{*}(t), y^{*}(t)\right)=\max \arg \max _{(x, y) \in S} H(x, y, t)$

Let $x^{*}\left(t, t^{\prime}\right)=$ maxarg $\max _{x \in\left\{x \mid\left(x, y^{\prime}\left(t^{\prime}\right)\right) \in S\right\}} H\left(x, y^{*}\left(t^{\prime}\right), t\right)$

- Theorem (Milgrom \& Roberts). x^{*} is isotone in both arguments. In particular, if $t>t^{\prime}$, then

$$
x^{*}(t)=x^{*}(t, t) \geq x^{*}\left(t, t^{\prime}\right) \geq x^{*}\left(t^{\prime}, t^{\prime}\right)=x^{*}\left(t^{\prime}\right)
$$

Proof

By the Topkis Monotonicity Theorem, $y^{*}(t) \geq y^{*}\left(t^{\prime}\right)$

- Applying the same theorem again, for all $t, t^{\prime \prime}>t^{\prime}$

$$
\begin{aligned}
& x^{*}\left(t^{\prime}, t^{\prime}\right)=\operatorname{maxarg} \max _{x \in\left\{x \mid\left(x^{\prime}, y^{\prime}\left(t^{\prime}\right)\right) \in S\right\}} H\left(x, y^{*}\left(t^{\prime}\right), t^{\prime}\right) \\
& \leq x^{*}\left(t, t^{\prime}\right)=\operatorname{maxarg} \max _{\left.x\left\{x|x| x^{\prime}, y^{\prime}\left(t^{\prime}\right)\right) \in S\right\}} H\left(x, y^{*}\left(t^{\prime}\right), t\right) \\
& \leq x^{*}\left(t, t^{\prime \prime}\right)=\operatorname{maxarg} \max _{\left.x\left\{x \| x^{\prime}, y^{\prime}\left(t^{\prime}\right)\right) \in S\right\}} H\left(x, y^{*}\left(t^{\prime \prime}\right), t\right)
\end{aligned}
$$

Setting $t=t^{\prime \prime}$ completes the proof.

Long v Short-Run Demand

- Theorem. Let $w>w^{\prime}$. Suppose capital and labor are complements, i.e., $f(k, /)$ is supermodular in the natural order. If demand is single-valued at w and w^{\prime}, then

$$
I^{s}(w, w) \leq I^{s}\left(w, w^{\prime}\right) \leq I^{s}\left(w^{\prime}, w^{\prime}\right)
$$

- Theorem. Let $\mathrm{w}>\mathrm{w}$ '. Suppose capital and labor are substitutes, i.e., $f(k, /)$ is supermodular when capital is given its reverse order. If demand is single-valued at w and w^{\prime}, then

$$
I^{s}(w, w) \leq I^{s}\left(w, w^{\prime}\right) \leq I^{s}\left(w^{\prime}, w^{\prime}\right)
$$

Non-separable Objectives

Consider an optimization problem featuring "trade-offs" among effects.

- x is the real-valued choice variable
- $B(x)$ is the "benefits production function"
- Optimal choice is

$$
x_{B}^{*}(t)=\underset{x \in X}{\operatorname{argmax}} \pi(x, B(x), t)
$$

Robust Monotonicity Theorem

Define: $x_{B}^{*}(t)=\arg \max _{x \in X} \pi(x, B(x), t)$
Theorem. Suppose π is continuously differentiable and π_{2} is nowhere 0 . Then:

$$
\begin{aligned}
& {\left[(\forall x, y) \frac{\pi_{1}(x, y, t)}{\left|\pi_{2}(x, y, t)\right|} \text { is increasing in } t\right] } \\
\Rightarrow & {\left[\text { For all } B, x_{B}^{\prime}(t) \text { is isotone }\right] } \\
\Rightarrow & {\left[(\forall x, y) \frac{\pi_{1}(x, y, t)}{\left|\tau_{2}(x, y, y)\right|} \text { is nondecreasing in } t\right] }
\end{aligned}
$$

Application: Savings Decisions

- By saving x, one can consume $F(x)$ in period 2 .

$$
\begin{aligned}
V(w) & =\max _{0 \leq x \leq w} U(w-x, F(x)) \\
x_{F}^{*}(w) & =\max \arg \max _{0 \leq x \leq w} U(w-x, F(x))
\end{aligned}
$$

- Define: $\pi(x, y, t)=U(t-x, y)$
- Analysis. If $\mathrm{MRS}_{x y}$ increases with x , then optimal savings are isotone in wealth:

$$
\left[\frac{U_{1}(x, y)}{U_{2}(x, y)} \text { increasing in } x\right] \Rightarrow x_{F}^{*}(w) \text { isotone }
$$

- This is the same condition as found in price theory, when F is restricted to be linear. Here, F is unrestricted.
- Also applies to Koopmans consumption-savings model.

Formulation

- N players (infinite is okay)
-Strategy sets X_{n} are complete sublattices
- $\underline{X}_{n}=\min X_{n}, \bar{x}_{n}=\max X_{n}$
\diamond Payoff functions $U_{n}(x)$ are
- Continuous
- "Supermodular with isotone differences"

$$
\begin{aligned}
& (\forall n)\left(\forall x_{n}, x_{n}^{\prime} \in X_{n}\right)\left(\forall x_{-n} \geq x_{-n}^{\prime} \in X_{-n}\right) \\
& U_{n}(x)+U_{n}\left(x^{\prime}\right) \leq U_{n}\left(x \wedge x^{\prime}\right)+U_{n}\left(x \vee x^{\prime}\right)
\end{aligned}
$$

Linear Cournot Duopoly

- Inverse Demand: $P(x)=A-x_{1}-x_{2}$

$$
\begin{aligned}
& U_{n}(x)=x_{n} P(x)-C_{n}\left(x_{n}\right) \\
& \frac{\partial U_{n}}{\partial x_{m}}=-x_{n}
\end{aligned}
$$

- Linear Cournot duopoly (but not more general oligopoly) is supermodular if one player's strategy set is given the reverse of its usual order.

Bertrand Oligopoly Models

- Linear/supermodular Oligopoly:

Demand: $Q_{n}(x)=A-a x_{n}+\sum_{j \neq n} b_{j} x_{j}$
Profit: $U_{n}(x)=\left(x_{n}-c_{n}\right) Q_{n}(x)$
$\frac{\partial U_{n}}{\partial x_{m}}=b_{m}\left(x_{n}-c_{n}\right)$ which is increasing in x_{n}

- Log-supermodular Oligopoly:

$$
\begin{aligned}
& \log U_{n}(x)=\log \left(x_{n}-c_{n}\right)+\log Q_{n}(x) \\
& \frac{\partial^{2} U_{n}}{\partial x_{m} \partial x_{n}} \geq 0 \Leftrightarrow \frac{\partial^{2} \log Q_{n}(x)}{\partial \log x_{n} \partial \log x_{m}} \geq 0
\end{aligned}
$$

Analysis of Supermodular Games

- Extremal Best Reply Functions

$$
\begin{aligned}
& B_{n}(x)=\max \left(\underset{x_{n} \in X_{n}}{\arg } U_{n}\left(x_{n}^{\prime}, x_{-n}\right)\right) \\
& b_{n}(x)=\min \left(\underset{x_{n} \in X_{n}}{\left.\arg U_{n}\left(x_{n}^{\prime}, x_{-n}\right)\right)}\right.
\end{aligned}
$$

- By Topkis's Theorem, these are isotone functions.
\checkmark Lemma:
$\neg\left[x_{n} \geq b_{n}(\underline{x})\right] \Rightarrow\left[x_{n}\right.$ is strictly dominated by $\left.b_{n}(\underline{x}) \vee x_{n}\right]$
Δ Proof. If $\neg\left[x_{n} \geq b_{n}(\underline{x})\right]$, then
$U_{n}\left(x_{n} \vee b_{n}(\underline{x}), x_{-n}\right)-U_{n}\left(x_{n}, x_{-n}\right) \geq U_{n}\left(b_{n}(\underline{x}), \underline{x}_{-n}\right)-U_{n}\left(x_{n} \wedge b_{n}(\underline{x}), \underline{x}_{-n}\right)>0$

Rationalizability \& Equilibrium

Theorem (Milgrom \& Roberts): The smallest rationalizable strategies for the players are given by

$$
\underline{z}=\lim _{k \rightarrow \infty} b^{k}(\underline{x})
$$

Similarly the largest ${ }^{k \rightarrow \infty}$ rationalizable strategies for the players are given by

$$
\bar{z}=\lim _{k \rightarrow \infty} B^{k}(\bar{x})
$$

Both are Nash equilibrium profiles.

Proof

- Notice that $\mathrm{b}^{\mathrm{k}}(\underline{\mathrm{x}})$ is an isotone, bounded sequence, so its limit $\underline{\underline{x}}$ exists.
By continuity of payoffs, its limit is a fixed point of b, and hence a Nash equilibrium.
- Any strategy less than \underline{z}_{n} is less than some $b^{k}{ }_{n}(\underline{x})$ and hence is deleted during iterated deletion of dominated strategies.
- QED

Comparative Statics

Adaptive Learning

- Theorem. (Milgrom \& Roberts) Consider a family of supermodular games with payoffs parameterized by t . Suppose that for all $n, x_{-n}, U_{n}\left(x_{n}, x_{-n} ; t\right)$ is supermodular in $\left(x_{n}, t\right)$. Then

$$
\bar{z}(t), \underline{z}(t) \text { are isotone. }
$$

- Proof. By Topkis's theorem, $b_{t}(x)$ is isotone in t. Hence, if $t>t^{\prime}$,

$$
\begin{aligned}
& b_{t}^{k}(\underline{x}) \geq b_{t}^{k}(\underline{x}) \\
& \underline{z}(t)=\lim _{k \rightarrow \infty} b_{t}^{k}(\underline{x}) \geq \lim _{k \rightarrow \infty} b_{t}^{k}(\underline{x}) \geq \underline{z}\left(t^{\prime}\right)
\end{aligned}
$$

- Player n's behavior is called "consistent with adaptive learning" if for every date t there is some date t^{\prime} 'after which n does not play a strategy that is strictly dominated in the game in which others are restricted to play only strategies they have played since date t.
- Theorem (Milgrom \& Roberts). In a finite strategy game, if every player's behavior is consistent with adaptive learning, then all eventually play only rationalizable strategies.
and similarly for \bar{z}. QED

Equilibrium LeChatelier Principle

- Formulation
- Consider a parameterized family of supermodular games with payoffs parameterized by t. Suppose that for all n, x_{-n}, $U_{n}\left(X_{n}, X_{-n} ; t\right)$ is supermodular in $\left(x_{n}, t\right)$.
- Fixing player 1 's strategy at $\underline{z}_{1}\left(\mathrm{t}^{\prime}\right)$ induces a supermodular game among the remaining players. Let $y\left(t, t^{\prime}\right)$ be the smallest Nash equilibrium in the induced game, with $\mathrm{y}_{1}\left(\mathrm{t}, \mathrm{t}^{\prime}\right)=\mathrm{z}_{1}\left(\mathrm{t}^{\prime}\right)$.
- Theorem.
- If $t>t^{\prime}$, then $\underline{z}(t) \geq \underline{y}\left(t, t^{\prime}\right) \geq \underline{z}\left(t^{\prime}\right)$.
- If $t<t^{\prime}$, then $\underline{z}(t) \leq \underline{y}\left(t, t^{\prime}\right) \leq \underline{z}\left(t^{\prime}\right)$.
....and a similar conclusion applies to the maximum equilibrium.

Proof

- Observe (exercise) that

$$
\underline{z}(t)=\underline{y}(t, t), \underline{z}\left(t^{\prime}\right)=\underline{y}\left(t^{\prime}, t^{\prime}\right) .
$$

Δ Suppose $t>t^{\prime}$.

- By the comparative statics theorem, \underline{z} is isotone, so:

$$
\underline{z}(t) \geq \underline{z}\left(t^{\prime}\right) .
$$

- Hence, by the comparative statics theorem applied again, \underline{y} is isotone, so:

$$
\underline{y}(t, t) \geq \underline{y}\left(t, t^{\prime}\right) \geq \underline{y}\left(t^{\prime}, t^{\prime}\right)
$$

QED

Envelope Functions Alone

> Based on "Envelope Theorems for Arbitrary Choice Sets" by Paul Milgrom \& Ilya Segal

What are "Envelope Theorems"?

- Envelope theorems deal with the properties of the value function: $V(t) \equiv \max _{x \in X} f(x, t)$
Answer questions about...
- when Vis differentiable, directionally differentiable, Lipschitz, or absolutely continuous
- when V satisfies the "envelope formula"

$$
V^{\prime}(t)=f_{t}(x, t) \text { for } x \in x^{*}(t)
$$

"Traditional" envelope theorems assume that set X is convex and the objective $f(\cdot, t)$ is concave and differentiable.

Intuitive Argument

-When $X=\left\{x_{1}, x_{2}, x_{3}\right\} \ldots$

- V is left- and rightdifferentiable everywhere
- if $f_{t}(x, t)$ is constant on $x \in X^{*}(t)$, then V is differentiable at t
- envelope formulas apply for

- $V^{\prime}(t)=f_{t}\left(x^{*}(t), t\right)$
- $V^{\prime}(t+)$ and $V^{\prime}(t-)$

Envelope Derivative Formula

Theorem 1. Take $t \in[0,1]$ and $x \in X^{*}(t)$, and suppose that $f_{t}(x, t)$ exists.

- If $\mathrm{t}<1$ and $V^{\prime \prime}(t+)$ exists, then $V^{\prime}(t+) \geq f_{t}(x, t)$.
- If $\mathrm{t}>0$ and $V^{\prime}(t-)$ exists, then $V^{\prime}(t-) \leq f_{t}(x, t)$.
- If $t \in(0,1)$ and $V^{\prime}(t)$ exists, then $V^{\prime}(t)=f_{t}(x, t)$.
- Proof:

Absolute Continuity

Theorem 2(A). Suppose that

- $f\left(x_{i}\right)$ is is differentiable (or just absolutely continuous) for all $x \in X$ with derivative (or density) f_{t}.
- there exists an integrable function $b(t)$ such that $\left|f_{t}\left(x_{i}\right)\right| \leq b(t)$ for all $x \in X$ and almost all $t \in[0,1]$.
Then V is absolutely continuous with density satisfying $\left|V^{\prime}(t)\right| \leq b(t)$.

Proof of Theorem 2(A)

- Define

$$
B(t)=\int_{0}^{t} b(s) d s
$$

- Then for $t^{\prime \prime}>t^{\prime}$:

$$
\begin{aligned}
& \left|V\left(t^{\prime \prime}\right)-V\left(t^{\prime}\right)\right| \leq \sup _{x \in X}\left|f\left(x, t^{\prime \prime}\right)-f\left(x, t^{\prime}\right)\right| \\
& =\sup _{x \in X}\left|\int_{t^{\prime \prime}}^{t^{\prime \prime}} f_{t}(x, t) d t\right| \leq \int_{t^{\prime}}^{t^{\prime \prime}} \sup _{x \in X} f_{t}(x, t) \mid d t \\
& \leq \int_{t^{\prime}}^{t^{\prime \prime}} b(t) d t=\left|B\left(t^{\prime \prime}\right)-B\left(t^{\prime}\right)\right|
\end{aligned}
$$

- It suffices to prove the theorem for intervals, because open intervals are a basis for the open sets. QED

Why do we need $b(\cdot)$?

Let $X=(0,1]$ and $f(x, t)=g(t / x)$, where g is smooth and single-peaked with unique maximum at 1.

- $V(0)=g(0), V(t)=g(1): V$ is discontinuous at 0 .
- This example has no integrable bound $b(t)$:
$\sup _{x \in(0, \infty)}\left|f_{t}(x, t)\right|=\sup _{x \in(0, \infty)}\left|\frac{1}{t}\left(\frac{t}{x} g^{\prime}\left(\frac{t}{x}\right)\right)\right|=\frac{1}{t} \sup _{x \in(0, x)}\left|x g^{\prime}(x)\right|$

Envelope Integral Formula

Theorem 2(B). Suppose that, in addition to the assumptions of 2(A), the set of optimizers $x^{*}(t)$ is non-empty for all t. Then for any selection $x(t) \in x^{*}(t)$,

$$
V(s)=V(0)+\int_{0}^{s} f_{t}(x(t), t) d t
$$

Equi-differentiability

Directional Differentiability

Definition. A family of functions $\left\{f\left(x_{i}\right)\right\}_{\mathrm{X} \in \mathrm{X}}$ is "equi-differentiable" at $t \in(0,1)$ if

$$
\lim _{t^{\prime} \rightarrow t} \sup _{x} \left\lvert\, \frac{f\left(x, t^{\prime}\right)-f(x, t)}{t^{\prime}-t}-f_{t}(x, t)=0\right.
$$

- If X is finite, this is the same as simple differentiability.
- Theorem 3. If
- (i) $\left\{f\left(x_{r}\right)\right\}_{\mathrm{x} \in \mathrm{X}}$ is equi-differentiable at $t_{o r}$
- (ii) $x^{*}(t)$ is non-empty for all t, and
- (iii) $\sup _{\mathrm{x}}\left|f_{t}\left(x, t_{0}\right)\right|<\infty$,
then for any selection $x(t) \in x^{*}(t), V$ is left- and right-differentiable at $t_{0} \in(0,1)$ and the derivatives satisfy

$$
\begin{aligned}
& V^{\prime}\left(t_{0}+\right)=\lim _{t \rightarrow t_{0}+t} f_{t}\left(x(t), t_{0}\right) \\
& V^{\prime}\left(t_{0}-\right)=\lim _{t \rightarrow t_{0}-} f_{t}\left(x(t), t_{0}\right)
\end{aligned}
$$

Role of "Equi-differentiability"

Simple differentiability (rather than equidifferentiability) is not enough for V to have leftand right-derivatives:

- Let $g(t)=t \sin \log (t), f(x, t)=g(t)$ if $t>\exp (-\pi / 2-2 \pi x)$, $f(x, t)=-t$ otherwise.
- Then, $V(t)=g(t)$

Continuous Problems

Theorem 4. Suppose X is a non-empty compact space, f is upper semi-continuous on X and f_{t} is continuous in (x, t). Then,

- V is directionally differentiable

$$
\begin{aligned}
& V^{\prime}(t+)=\max _{x \in \times \times *}(t) f_{t}(x, t) \text { for } t \in[0,1) \\
& V^{\prime}(t-)=\min _{x \in x^{*}(t)} f_{t}(x, t) \text { for } t \in(0,1]
\end{aligned}
$$

- In particular, $V^{\prime}(t+) \geq V^{\prime}(t-)$.
- V is differentiable at t if any of the following hold:
- V is concave (because $\left.\mathrm{V}^{\prime}(\mathrm{t}+) \leq \mathrm{V}^{\prime}(\mathrm{t}-)\right)$
- t is a maximum of $\mathrm{V}(\cdot)$ (because $V^{\prime}(t+) \leq V^{\prime}(t-)$
- $x^{*}(t)$ is a singleton (because $\left.V^{\prime}(t+)=V^{\prime}(t-)\right)$

Contrast to a "Traditional" Approach

- In some approaches, the differentiability of x^{*} is used in the argument. However, V can be differentiable even when x^{*} is not. This often happens, for example, in strictly convex problems:

Applications

Hotelling's Lemma

\checkmark Define:

$$
\begin{aligned}
& \pi(p)=\max _{x \in X} p \cdot x \\
& x^{*}(p)=\operatorname{argmax} \max _{x \in X} p \cdot x
\end{aligned}
$$

Theorem. Suppose X is compact. Then, $\pi^{\prime}(p)$ exists if and only if $x^{*}(p)$ is a singleton, and in that case $\pi^{\prime}(p)$ $=x^{*}(p)$.

Shephard's Lemma

- Define:

$$
\begin{aligned}
& C(y, p)=\min _{x \in X, x_{1}=y}-p_{-1} \cdot x_{-1} \\
& x^{*}(p)=\arg \min _{x \in X, x_{1}=y}-p_{-1} \cdot x_{-1}
\end{aligned}
$$

- Remark: The variable x_{1} represents "output" and the other variables represent inputs, measured as negative numbers.
Theorem. Suppose X is compact. Then, $\partial C \partial p$ exists if and only if $x^{*}(p)$ is a singleton, and in that case $\partial C \partial p=x^{*}(p)$.

Multi-Stage Maximization

-Stage 1: choose investment $t \geq 0$.

- Stage 2: choose action vector $x \in X \neq \varnothing$
-Assume:
- $\mathrm{f}(\mathrm{x}, \mathrm{t})$ is equidifferentiable in t and $t^{*}>0$
- $f(x, t)$ is u.s.c. in x and X is compact

Conclusion: the value function $V(t)$ is differentiable at t^{*} and $V^{\prime}\left(t^{*}\right)=0$.

- Proof: Apply theorem 4.

Mechanism Design

- $\mathrm{Y}=$ set of outcomes
- Agent's type is t , utility is $f(x, t)$.
- $M=$ message space. $\mathrm{h}: \mathrm{M} \rightarrow \mathrm{Y}$ is outcome function.
- $\mathrm{X}=\mathrm{h}(\mathrm{M})$ is set of "accessible outcomes."
- Assume that each type has an optimal choice

$$
x(t) \in \arg \max _{x \in X} f(x, t)
$$

Analysis

- Corollary 1. Suppose that the agent's utility function $f(x, t)$ is differentiable and absolutely continuous in t for all $x \in Y$, and that $\sup _{\mathrm{x} \in \mathrm{Y}} f_{\mathrm{t}}(x, t)$ is integrable on $[0,1]$. Then the agent's equilibrium utility V in any mechanism implementing a given choice rule x must satisfy the following integral condition.

$$
V(t)=V(0)+\int_{0}^{t} f_{t}(x(s), s) d s
$$

- This had previously been shown only with (sometimes "weak") additional conditions.

Mechanism Design Applications

- Models in which payoffs are $v \cdot p-\pi$, so

$$
U(v)=U(0)+\int_{0}^{1} v \cdot p^{*}(s v) d s .
$$

- Theorems
- Green-Laffont Theorem
- Uniqueness of Dominant Strategy Mechanisms
- Holmstrom-Williams Theorem
- Bayesian Revenue Equivalence
- Myerson-Satterthwaite Theorem
- Necessity of Bargaining Inefficiency
- Jehiel-Moldovanu Theorem
- Impossibility of Efficiency with Value Interdependencies

Green-Laffont Theorem

Green-Laffont Theorem

- "Uniqueness of dominant strategy implementation."
- Theorem (Holmstrom's variation). Suppose that
- M is a direct mechanism to implement the efficient outcome in dominant strategies
- the type space is smoothly path-connected.
- Then,
- the payment function for player j in mechanism M is equal to the payment function of the Vickrey-Clarke-Groves pivot mechanism plus some function $\mathrm{g}_{\mathrm{j}}\left(V_{-j}\right)$ (which depends only on the other player's types).
- Given any value vector v, let $\left\{v_{j}(t) \mid t \in[0,1]\right\}$ be a smooth path connecting some fixed value v_{j} to $v_{j}=v_{j}(1)$. By the Envelope Theorem applied to the path parameter t,

$$
\begin{aligned}
U_{j}\left(v_{j}(t), v_{-j}\right) & =p_{j}\left(v_{j}(t), v_{-j}\right) \cdot v_{j}-X_{j}\left(v_{j}(t), v_{-j}\right) \\
& =U_{j}\left(\underline{v}_{j}, v_{-j}\right)+\int_{0}^{t} p_{j}\left(v_{j}(s), v_{-j}\right) \cdot v_{j}^{\prime}(s) d s \\
\therefore X_{j}\left(v_{j}(1), v_{-j}\right) & =f_{j}\left(v_{-j}\right)+p_{j}\left(v_{j}(1), v_{-j}\right) \cdot v_{j}-\int_{0}^{1} p_{j}\left(v_{j}(s), v_{-j}\right) \cdot v_{j}^{\prime}(s) d s \\
\text { where } f\left(v_{-j}\right) & =-U_{j}\left(\underline{v}_{j}, v_{-j}\right)
\end{aligned}
$$

So, X_{j} is fully determined by the functions p and f_{j}.

Holmstrom-Williams' Theorem

- Theorem: Any mechanism that Bayes-Nash implements efficient outcomes on a smoothly path-connected type space entails the same expected payments as the Vickrey mechanism, plus some bidder-specific constant.
Proof. Let $\left\{\mathrm{v}_{\mathrm{j}}(\mathrm{s}), \mathrm{s} \in[0,1]\right\}$ be a path from some fixed value vector to any other value vector. By the Envelope Theorem,

$$
\begin{aligned}
U_{j}\left(v_{j}(t)\right) & =p_{j}\left(v_{j}(t)\right) \cdot v_{j}(t)-X_{j}\left(v_{j}(t)\right) \\
& =U_{j}\left(v_{j}(0)\right)+\int_{0}^{t} p_{j}\left(v_{j}(s)\right) \cdot v_{j}^{\prime}(s) d s
\end{aligned}
$$

- Hence, $X_{j}(v)$ is uniquely determined by $U_{j}(0)$. It is equal to $U_{j}(0)$ plus the expected payment in the Vickrey mechanism.

Two-Person Bargaining

- Assume

- there is a buyer with value v distributed on $[0,1]$
- there is a seller with cost c distributed on [0,1]

The Vickrey-Clarke-Groves mechanism

- has each party report its value
- entails $p^{*}(v, c)=1$ if $v>c$ and $p^{*}(v, c)=0$ otherwise
- payments are
- if $p^{*}(v, c)=0$, no payments
- if $p^{*}(v, c)=1$, buyer pays c and the seller receives v

Myerson-Sattherthwaite Theorem

- Expected profits are:
- $U_{B}(v)=E\left[(v-c) 1_{\{v>c\}} \mid v\right]$, so $E\left[U_{B}(v)\right]=E\left[(v-c) 1_{\{v>c\}}\right]$
- $\mathrm{U}_{\mathrm{s}}(\mathrm{c})=\mathrm{E}\left[(\mathrm{v}-\mathrm{c}) 1_{\{v>c\}} \mid \mathrm{s}\right]$, so $\mathrm{E}\left[\mathrm{U}_{\mathrm{s}}(\mathrm{c})\right]=\mathrm{E}\left[(\mathrm{v}-\mathrm{c}) 1_{\{v>c\}}\right]$
- each bidder expects to receive the entire social surplus.
\Leftrightarrow Apply Holmstrom-Williams theorem:
Theorem (Myerson-Satterthwaite). There is no mechanism and Bayesian Nash equilibrium such that the mechanism implements for all v, c with $v>c$ and
- $\mathrm{U}_{\mathrm{B}}(0)=\mathrm{U}_{\mathrm{S}}(1)=0$ ("voluntary participation by worst type")
- $E\left[U_{B}(v)\right]+E\left[U_{S}(c)\right] \leq E\left[(v-c) 1_{\{v>c\}}\right]$ ("balanced expected budget")

Subtleties

- Consider a model in which:

$$
\operatorname{Pr}\{v>1\}=\operatorname{Pr}\{c<1\}=1
$$

Q: Why doesn't simply trading at price $p=1$ violate the theorem in this model?
A: Because it prescribes trade even when c>v!

