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Road Map 

Traditional Doctrine: Convexity-Based 
Disentangling Three Big Ideas 
� Convexity: Prices & Duality 
� Order: Comparative Statics, Positive 

Feedbacks, Strategic Complements 
� Value Functions: Differentiability and 

Characterizations, Incentive Equivalence 
Theorems 
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Convexity and Traditional 
Price Theory 
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Convexity at Every Step 

Global or local convexity conditions imply 
� Existence of prices 
� Comparative statics, using second-order conditions 
� Dual representations, which lead to… 
� Hotelling’s lemma 
� Shephard’s lemma 
� Samuelson-LeChatelier principle 

“Convexity” is at the core idea on which the 
whole analysis rests. 
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Samuelson-LeChatelier Principle 

Idea: Long-run demand is “more elastic” than short-run 
demand. 
Formally, the statement applies to smooth demand 
functions for sufficiently small price changes. 
Let p=(px,w,r) be the current vector of output and input 
prices and let p’ be the long-run price vector that 
determined the current choice of a fixed input, say capital. 
Theorem: If the demand for labor is differentiable at this 
point, then: 
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Varian’s Proof 

Long- and short-run profit functions defined: 

Long-run profits are higher: 

So, long-run demand “must be” more elastic: 
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A Robust “Counterexample” 

The production set consists of the convex hull of these three 
points, with free disposal allowed: 

Fix the price of output at 9 and the price of capital at 3, and 
suppose the wage rises from w=2 to w=5. Demands are: 

Long run labor demand falls less than short-run labor demand. 
Robustness: Tweaking the numbers or “smoothing” the 
production set does not alter this conclusion. 
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An Alternative Doctrine 

Disentangling Three Ideas 
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Separating the Elements 

Convexity 
� Proving existence of prices 
� Dual representations of convex sets 
� Dual representations of optima 

Order 
� Comparative statics 
� Positive feedbacks (LeChatelier principle) 
� Strategic complements 

Envelopes 
� Useful with dual functions 
� Multi-stage optimizations 
� Characterizing information rents 
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Invariance Chart 

One-to-oneValue function derivative 
formula: 

Order-preservingLong-run optimum change 
is larger, same direction 

Order-preservingOptimal choices increase in 
parameter 

Linear (“convexity 
preserving”) 

Supporting (“Lagrangian”) 
prices exist 

Transformations of 
Choice Variable 

Conclusions about 
∈max ( , )x S f x  t 

* 
2( )  ( ( ), )V t  f x t t′ = 
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Convexity Alone 
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Pure Applications of Convexity 

Separating Hyperplane Theorem 
� Existence of prices 
� Existence of probabilities 
� Existence of Dual Representations 
� Example: Bondavera-Shapley Theorem 
� Example: Linear programming duality 

“Alleged” Applications of Duality 
� Hotelling’s lemma 
� Shephard’s lemma 
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Separating Hyperplane Theorem 

Theorem. Let S be a non-empty, closed convex set in 
RN and x∉S. Then there exists p∈RN such that 

Proof. Let y∈S be the nearest point in S to x. Let 

� Argue that such a point y exists. 
� Argue that p.x>p.y. 
� Argue that if z∈S and p.z>p.y, then for some small 

positive t, tz+(1-t)y is closer to x than y is. 

{ ⋅ > ⋅ max |p x y y S 

= − ( /p x x 

14 

Dual Characterizations 

Corollary. If S is a closed convex set, 
then S is the intersection of the closed 
“half spaces” containing it. 
� Defining 

� it must be true that 
{ π∈ = ⋅ ≤∩ | )Np RS p x p 

{ π = ⋅ ( )  max |p p x  x S 
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Convexity and Quantification 
The following conditions on a closed set 
S in RN is are equivalent 
� S is convex 
� For every x on the boundary of S, there is 

a supporting hyperplane for S through x. 
� For every concave objective function f 

there is some λ such that the maximizers 
of f(x) subject to x∈S are maximizers of 
f(x)+λ.x subject to x∈RN. 
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Order Alone 
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“Order” Concepts & Results 
Order-related definitions 
Optimization problems 
� Comparative statics for separable objectives 
� An improved LeChatelier principle 
� Comparative statics with non-separable “trade-offs” 

Equilibrium w/ Strategic Complements 
� Dominance and equilibrium 
� Comparative statics 
� Adaptive Learning 
� LeChatelier principle for equilibrium 
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Two Aspects of Complements 

Constraints 
� Activities are complementary if doing one enables doing the 

other… 
� …or at least doesn’t prevent doing the other. 

� This condition is described by sets that are sublattices. 

Payoffs 
� Activities are complementary if doing one makes it weakly 

more profitable to do the other… 
� This is described by supermodular payoffs. 

� …or at least doesn’t change the other from being profitable to 
being unprofitable 
� This is described by payoffs satisfying a single crossing condition. 
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Definitions: “Lattice” 

Given a partially ordered set (X,≥), define 
� 

� 

(X,≥) is a “lattice” if 

Example: X=RN, 

{ }∨ =  ∈ ≥ ≥The " " : inf | , .join x y z X z x z y 

{ }∧ =  ∈ ≤ ≤The " " : sup | , .meet x y z X z x z y 

( ∀ ∈ ∨ ∈, x y  X x y x y X 
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Definitions, 2 

(X,≥) is a “complete lattice” if for every non-empty 
subset S, a greatest lower bound inf(S) and a least 
upper bound sup(S) exist in X. 

A function f : XÆR is “supermodular ” if 

A function f is “submodular” if –f is supermodular. 
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Definitions, 3 

Given two subsets S,T⊂X, “S is as high as T,” written 
S≥T, means 

A function x* is “isotone” (or “weakly increasing”) if 

� “Nondecreasing” is not used because… 

A set S is a “sublattice” if S≥S. 
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Sublattices of R2 

x 
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x∧y 
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Convexity, order and topology are mostly independent 
concepts. However, in R, these concepts coincide 
� Topology: S = compact set with boundary {a,b} 
� Convexity: 
� Order: 

Not Sublattices 

= ≤ ≤[ ,  ] { | }S b x a x b 
{ }α α = − ∈(1 ) | [0,1]S b 
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“Pairwise” Supermodularity 

Theorem (Topkis). Let f :RNÆR. The following are 
equivalent: 
� f is supermodular 
� For all n≠m and x-nm, the restriction f (.,.,x-nm):R2ÆR is 

supermodular. 
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Proof of Pairwise Supermodularity 

⇒ This direction follows from the definition. 
⇐ Given x≠y, suppose for notational simplicity that 

Then, 

QED 
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“Pairwise” Sublattices 

Theorem (Topkis). Let S be a sublattice of RN. Define 

Remark. Thus, a sublattice can be expressed as a 
collection of constraints on pairs of arguments. In 
particular, undecomposable constraints like 

can never describe in a sublattice. 
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Proof of Pairwise Sublattices 

QED 
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Complementarity 

Complementarity/supermodularity 
has equivalent characterizations: 
� Higher marginal returns 

� Nonnegative mixed second 
differences 

� For smooth objectives, non-
negative mixed second 
derivatives: 
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Monotonicity Theorem 

Theorem (Topkis). Let f :X×R ÆR be a supermodular 
function and define 

If t ≥t’ and S (t ) ≥ S (t’ ), then x*(t ) ≥ x*(t’ ). 
Corollary. Let f :X×R ÆR be a supermodular function 
and suppose S (t) is isotone. Then, for each t, S (t) and 
x* (t ) are sublattices. 
Proof of Corollary. Trivially, t ≥t, S (t ) ≥ S (t ) and 
x*(t ) ≥ x*(t ). QED 
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Proof of Monotonicity Theorem 

If either any of these inequalities are strict then their 
sum contradicts supermodularity: 

QED 

′ ′∈ > * 
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Necessity for Separable Objectives 

Theorem (Milgrom). Let f :RN×R ÆR be a 
supermodular function and suppose S is a sublattice. 

Then, the following are equivalent: 
� f is supermodular 
� 

Remarks: 
� This is a “robust monotonicity” theorem. 
� 
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Proof 

⇒ Follows from Topkis’s theorem. 
⇐ It suffices to show “pairwise supermodularity.” Hence, it is 
sufficient to show that supermodularity is necessary when N=2. 
We treat the case of two choice variables; the treatment of a 
choice variable and parameter is similar. 

Fix −∞ ∉ 
 ∧ = = =  

∧ = = 
 

if { , } 
( ( )  if , 1

( )  
( ( )  if y , 2 

0 otherwise 

i i 

i 
i 

i 

z y 
f x  y f x z x i 

g z  
f x  y f y z i 

( 
+ ∧ + ∨ = ∧ 

¬ 

* 

* 

If ( ) ( ) ( ) ( ), then { , , } 

is not a sublattice, so ( ) ( ) .  QED 
gf x  f y f x  y f x y x x y x y 

x t  x t  

∈ℜ  > <2 
1 2 2Let ,  be unordered: ,x y y x y 

so 

′ ∈ * 

′ ∈ 

′ ∨ 

> ( ( 

+ ( t 

, g g 

= ) )
n

− 

− 

) 
) 

i 

i 
i 

i 

x 

) 
> 

≥ * 

1 x 



33 

Application: Production Theory 

Problem: 

Suppose that L is supermodular in the natural order, 
for example, L(l,w)=wl. 
� Then, -L is supermodular when the order on l is reversed. 
� l*(w) is nonincreasing in the natural order. 

If f is supermodular, then k*(w) is also nonincreasing. 
� That is, capital and labor are “price theory complements.” 

If f is supermodular with the reverse order, then 
capital and labor are “price theory substitutes.” 

− 
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Application: Pricing Decisions 

A monopolist facing demand D (p,t) produces at unit 
cost c. 

p*(c,t ) is always isotone in c. It is also isotone int if 
log(D (p,t)) is supermodular in (p,t), which is the 
same as being supermodular in (log(p),t), which 
means that increases in t make demand less elastic: 
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Application: Auction Theory 

A firm’s value of winning an item at price p is U(p,t), 
where t is the firm’s type. (Losing is normalized to 
zero.) A bid of p wins with probability F(p). 
Question: Can we conclude that p(t) is nondecreasing, 
without knowing F? 

Answer: Yes, if and only if log(U (p,t)) is supermodular. 
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Long v Short-Run Demand 

Notation. Let l S(w,w’ ) be the short-run 
demand for labor when the current wage is w 
and the wage determining fixed inputs is w’. 
Setting w =w’ in l S gives the long run 
demands. 
Samuelson-LeChatelier principle: 

� which can be restated revealingly as: 

≥ 10 , ) ( , ). dl w  w l w w
dw 

≥ 20 , ).l w  w 

− 
) 

) 

− 

− D 

) + ≥( 

( 



37 

Milgrom-Roberts Analysis 

Remarks: 
� This analysis involves no assumptions about convexity, 

divisibility, etc. 
� For smooth demands, symmetry of the substitution matrix 

implies that, locally, one of the two cases above applies. 

Complements Substitutes 

Labor 

Capital 

Wage 
-

-

-
Labor 

Capital 

Wage 
+ 

-

+ 
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Improved LeChatelier Principle 

Theorem (Milgrom & Roberts). x* is isotone in both 
arguments. In particular, if t >t’ , then 

Let ( , , ) be supermodular and a sublattice.H x  y t S 
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Proof 

By the Topkis Monotonicity Theorem, 
Applying the same theorem again, for all t,t” >t’ 

Setting t=t” completes the proof. 
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Long v Short-Run Demand 

Theorem. Let w>w’. Suppose capital and labor are 
complements, i.e., f (k,l ) is supermodular in the 
natural order. If demand is single-valued at w and 
w’ , then 

Theorem. Let w>w’. Suppose capital and labor are 
substitutes, i.e., f (k,l ) is supermodular when 
capital is given its reverse order. If demand is 
single-valued at w and w’ , then 
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Non-separable Objectives 

Consider an optimization problem featuring 
“trade-offs” among effects. 
� x is the real-valued choice variable 
� B (x) is the “benefits production function” 
� Optimal choice is 

( π 
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= * ( ) argmax , ( ),B x X 
x t  x B x t 
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Robust Monotonicity Theorem 

Define: 

Theorem. Suppose π is continuously differentiable 
and π2 is nowhere 0. Then: 
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Application: Savings Decisions 

By saving x, one can consume F (x ) in period 2. 

Analysis. If MRSxy increases with x, then optimal savings are 
isotone in wealth: 

This is the same condition as found in price theory, when F is 
restricted to be linear. Here, F is unrestricted. 
� Also applies to Koopmans consumption-savings model. 
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Introduction to 
Supermodular Games 
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Formulation 

N players (infinite is okay) 
Strategy sets Xn are complete sublattices 
� 

Payoff functions Un(x) are 
� Continuous 

� “Supermodular with isotone differences” 

= min , maxn n nx x X 
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Bertrand Oligopoly Models 

Linear/supermodular Oligopoly: 

Log-supermodular Oligopoly: 
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Linear Cournot Duopoly 

Linear Cournot duopoly (but not more general 
oligopoly) is supermodular if one player’s strategy set 
is given the reverse of its usual order. 
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Analysis of Supermodular Games 

Extremal Best Reply Functions 

� By Topkis’s Theorem, these are isotone functions. 

Lemma: 

Proof. 
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Rationalizability & Equilibrium 

Theorem (Milgrom & Roberts): The smallest 
rationalizable strategies for the players are given by 

Similarly the largest rationalizable strategies for the 
players are given by 

Both are Nash equilibrium profiles. 

→∞ 
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Proof 

Notice that bk(x) is an isotone, bounded sequence, so 
its limit z exists. 
By continuity of payoffs, its limit is a fixed point of b, 
and hence a Nash equilibrium. 
Any strategy less than zn is less than some bk 

n(x) and 
hence is deleted during iterated deletion of 
dominated strategies. 
QED 
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Comparative Statics 

Theorem. (Milgrom & Roberts) Consider a family of 
supermodular games with payoffs parameterized by t. 
Suppose that for all n, x-n, Un(xn,x-n;t) is supermodular 
in (xn,t). Then 

Proof. By Topkis’s theorem, bt(x) is isotone in t. 
Hence, if t >t’, 

and similarly for QED 
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Adaptive Learning 

Player n’s behavior is called “consistent with adaptive 
learning” if for every date t there is some date t’ after 
which n does not play a strategy that is strictly 
dominated in the game in which others are restricted 
to play only strategies they have played since date t. 
Theorem (Milgrom & Roberts). In a finite strategy 
game, if every player’s behavior is consistent with 
adaptive learning, then all eventually play only 
rationalizable strategies. 
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tk 
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Equilibrium LeChatelier Principle 

Formulation 
� Consider a parameterized family of supermodular games 

with payoffs parameterized by t. Suppose that for all n, x-n, 
Un(xn,x-n;t) is supermodular in (xn,t). 

� Fixing player 1’s strategy at z1(t’) induces a supermodular 
game among the remaining players. Let y(t,t’) be the 
smallest Nash equilibrium in the induced game, with 
y1(t,t’)=z1(t’). 

Theorem. 
� 

� 

′ ′> ≥If then ( ) ( , ) ( ).t t  z t y t t z t 
′ ′< ≤If then ( ) ( , ) ( ).t t  z t y t t z t 

…and a similar conclusion applies to the maximum equilibrium. 
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Proof 

Observe (exercise) that 

Suppose t>t’. 
� By the comparative statics theorem, z is isotone, so: 

� Hence, by the comparative statics theorem applied again, y 
is isotone, so: 

QED 

′ ′ = ( )  ( , ), ( ) ( , ).z t  y t t z t y t t 

′≥( )  ( ).z t  z t  

′ ′≥ ( ,  ) ( , ) ( , ).y t  t y t t y t  t 
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Envelope Functions Alone 

Based on “Envelope Theorems for 
Arbitrary Choice Sets” by Paul 
Milgrom & Ilya Segal 
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What are “Envelope Theorems”? 

Envelope theorems deal with the properties of 
the value function: 
Answer questions about… 
� when V is differentiable, directionally differentiable, 

Lipschitz, or absolutely continuous 
� when V satisfies the “envelope formula” 

“Traditional” envelope theorems assume that 
set X is convex and the objective f (.,t ) is 
concave and differentiable. 

∈ 
≡( )  max ( , )

x X  
V t x t 

′ = ∈ *( )  ( , )  for ( )tV t  f x t x x t 

′ ≥ , 
′ ≤ , 

′ =

′ ≥

f 
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Intuitive Argument 

When X={x1,x2,x3}… 
� V is left- and right-

differentiable 
everywhere 

� if ft (x,t) is constant on 
x∈x*(t), then V is 
differentiable at t 

� envelope formulas 
apply for 
� V’ (t )=ft (x* (t ),t ) 
� V’ (t+) and V’ (t-) 

f (x1,t) 

f (x3,t) 

f (x2,t) 

V (t) 

t 
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Envelope Derivative Formula 

Theorem 1. Take t ∈[0,1] and x∈x*(t), and suppose 
that ft(x,t) exists. 
� If t<1 and V’ (t+) exists, then V’ (t+) ≥ ft (x,t). 
� If t>0 and V’ (t -) exists, then V’ (t-) ≤ ft (x,t). 
� If t∈(0,1) and V’ (t ) exists, then V’ (t ) = ft (x,t ). 

Proof: 

V 

t 

f (x,t) 
V 

t 

f (x,t) 
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Absolute Continuity 

Theorem 2(A). Suppose that 
� f (x,.) is is differentiable (or just 

absolutely continuous) for all x∈X with 
derivative (or density) ft . 

� there exists an integrable function b(t ) 
such that |ft (x,.)| ≤ b(t ) for all x∈X and 
almost all t∈[0,1]. 

Then V is absolutely continuous with 
density satisfying |V’ (t )|≤ b(t ). 
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Proof of Theorem 2(A) 

Define 

Then for t” > t’ : 

It suffices to prove the theorem for intervals, because open 
intervals are a basis for the open sets. QED 

∈ 

′′ ′′ 

′ ∈ 

′′ 

′ 

′′ ′ ′′ ′− − 

= 

′′ ′≤ − 

∫ 

∫ 

| (  ) ( ) | sup | ( , ) ( , ) | 

sup ( , ) sup ( , ) 

( )  ( ) ( ) 

x X  

t 
t 

t x X  x X  

t 

t 

V t  V t  f x t f x t 

f x  t dt f x t dt 

b t dt B t  B t  

= ∫0( )  ( ) 
t 

B t  b s ds 

′ ∈ 

≤ 

≤ 

= 

∫ 
t 

t 
t
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Why do we need b (.)? 
Let X=(0,1] and f (x,t )=g (t /x), where g is smooth 
and single-peaked with unique maximum at 1. 
� V (0)=g (0), V (t )=g (1): V is discontinuous at 0. 
� This example has no integrable bound b (t ): 

( 
∈ ∈ ∈ 

′ = 1 

(0, ) (0, ) (0, ) 
sup ( , ) sup ( ) sup ( )t 

t t x t 
x x 

f x  t g xg x 

t 

V 

f (x,t) 

g(1) 

g(0) 
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Envelope Integral Formula 

Theorem 2(B). Suppose that, in addition to 
the assumptions of 2(A), the set of 
optimizers x*(t) is non-empty for all t. Then 
for any selection x (t)∈x*(t), 

= ∫0( )  (0) ( ( ), ) . 
s 

tV s f x t t dt 

63 

Equi-differentiability 

Definition. A family of functions 
{f (x,.)}x∈X is “equi -differentiable” 
at t∈(0,1) if 

If X is finite, this is the same as 
simple differentiability. 

→′ 

−′ − −′ 
( ,  ) ( , )lim sup ( , ) 0tt t x 

f x t f x t f x tt t  
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Directional Differentiability 

Theorem 3. If 
� (i) {f (x,.)}x∈X is equi-differentiable at t0, 
� (ii) x* (t ) is non-empty for all t, and 
� (iii) supx|ft (x,t0)|<∞, 

then for any selection x (t )∈ x* (t ), V is left- and 
right-differentiable at t0∈(0,1) and the derivatives 
satisfy 

→ +  

→ −  

′ + =  

′ − =  
0 

0 

0 

0 

( ) lim ( ( ), ) 

( ) lim ( ( ), ) 

tt t  

tt t  

V t x t t 

V t x t t 

)
∞ ∞ ∞ 

′= 1 t 
x 

x 

+ V 

= 

0 

0 

f 

f 
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Role of “Equi-differentiability” 

-1 

-0.5 

0 

0.5 

1 

Simple differentiability (rather than equi-
differentiability) is not enough for V to have left-
and right-derivatives: 
� 

� 

π π= > − − 

= −  

= 

Let ( )  sinlog( ), ( , ) ( )  if exp( / 2 2 ), 
( ,  )  otherwise. 

Then, ) ( ) 

g t t f x t g t t x 
f x  t t 

V t  g t 
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Continuous Problems 
Theorem 4. Suppose X is a non-empty compact space, 
f is upper semi-continuous on X and ft is continuous in 
(x,t). Then, 
� V is directionally differentiable 

� In particular, 
� V is differentiable at t if any of the following hold: 
� V is concave (because V’(t+)≤V’(t-)) 
� t is a maximum of V(.) (because V’ (t+) ≤ V’ (t-) 
� x*(t ) is a singleton (because V’ (t+)=V’ (t-)) 

∈ 

∈ 

′ + =  ∈ 

′ − =  ∈ 

*( ) 

*( ) 

( )  max ( , )  for [0,1) 

( )  min ( , )  for (0,1] 

t x x  t 

t x x  t 

V t x t t 

V t x t t 

′ + ≥  −( )  ( ).V t t 
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Contrast to a “Traditional” Approach 

In some approaches, the differentiability of x* is 
used in the argument. However,V can be 
differentiable even when x* is not. This often 
happens, for example, in strictly convex 
problems: 

X 

f 
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Applications 

= 

( 

t f 

f 

′V 
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Hotelling’s Lemma 

Define: 

Theorem. Suppose X is compact. Then, π ′(p) exists if 
and only if x*(p) is a singleton, and in that case π ′(p) 
= x*(p). 

π 
∈ 

∈ 

= 

= * 

( )  max 

( )  argmax 
x X  

x X  

p p x  

x p  p x 
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Shephard’s Lemma 

Define: 

Remark: The variable x1 represents “output” and the 
other variables represent inputs, measured as 
negative numbers. 
Theorem. Suppose X is compact. Then, ∂C/∂p exists 
if and only if x*(p) is a singleton, and in that case 
∂C/∂p = x*(p). 

− ∈ 

− ∈ 

= ⋅ 

= ⋅ 
1 

1 

1 , 

* 
1 , 

( ,  ) min 

( )  arg min 

x X  x y 

x X  x y 

C y p  p x 

x p  p x 

71 

Multi-Stage Maximization 

Stage 1: choose investment t ≥ 0. 
Stage 2: choose action vector x∈X ≠∅ 
Assume: 
� f(x,t) is equidifferentiable in t and t*>0 
� f(x,t) is u.s.c. in x and X is compact 
Conclusion: the value function V (t ) is 
differentiable at t* and V’ (t* )=0. 
� Proof: Apply theorem 4. 
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Mechanism Design 

Y=set of outcomes 
Agent’s type is t, utility is f (x,t). 
M=message space. h:M→Y is outcome function. 
X=h(M) is set of “accessible outcomes.” 

Assume that each type has an optimal choice 

∈ 
∈( )  argmax ( , )

x X  
x t  f x t 

⋅ 

⋅

−= 

−= 

− 

− 

1 

1 
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Analysis 

Corollary 1. Suppose that the agent’s utility function 
f (x,t) is differentiable and absolutely continuous in t 
for all x∈Y, and that supx∈Yft(x,t) is integrable on 
[0,1]. V in any 
mechanism implementing a given choice rule x must 
satisfy the following integral condition. 

� This had previously been shown only with (sometimes 
“weak”) additional conditions. 

= ∫0( )  (0) ( ( ), ) . 
t 

tV t f x s s ds 
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Mechanism Design Applications 

Models in which payoffs are v .p-π, so 

Theorems 
� Green-Laffont Theorem 
� Uniqueness of Dominant Strategy Mechanisms 

� Holmstrom-Williams Theorem 
� Bayesian Revenue Equivalence 

� Myerson-Satterthwaite Theorem 
� Necessity of Bargaining Inefficiency 

� Jehiel-Moldovanu Theorem 
� Impossibility of Efficiency with Value Interdependencies 

= ⋅∫
1 * 

0
( )  (0) ( ) .U v  U v p sv ds 
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Green-Laffont Theorem 

“Uniqueness of dominant strategy implementation.” 
Theorem (Holmstrom’s variation). Suppose that 
� M is a direct mechanism to implement the efficient outcome 

in dominant strategies 
� the type space is smoothly path-connected. 

Then, 
� the payment function for player j in mechanism M is equal to 

the payment function of the Vickrey-Clarke-Groves pivot 
mechanism plus some function gj(v-j) (which depends only 
on the other player’s types). 
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Green-Laffont Theorem 

Given any value vector v, let {vj(t)|t∈[0,1]} be a smooth path 
connecting some fixed value vj to vj= vj(1). By the Envelope 
Theorem applied to the path parameter t , 

So, Xj is fully determined by the functions p and fj . 

( ( ( 
( ( ) 

( ( ( ) 
( 

− − 

− 
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− 

= − 

′= ⋅ 
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Then the agent’s equilibrium utility 
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Holmstrom-Williams’ Theorem 

Theorem: Any mechanism that Bayes-Nash implements 
efficient outcomes on a smoothly path-connected type 
space entails the same expected payments as the Vickrey 
mechanism, plus some bidder-specific constant. 
Proof. Let {vj(s),s∈[0,1]} be a path from some fixed value 
vector to any other value vector. By the Envelope Theorem, 

Hence, Xj(v) is uniquely determined by Uj(0). It is equal to 
Uj(0) plus the expected payment in the Vickrey mechanism. 

( ( 
( ( ) 

= − 

′= ⋅∫0 

( )  ( )  ( )  ( ( )) 

(0) ( ) ( ) 

j j j j j 

t 

j j j j 

U v t p v t  v t  X v t 

U v  p v s v s ds 
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Two-Person Bargaining 

Assume 
� there is a buyer with value v distributed on [0,1] 
� there is a seller with cost c distributed on [0,1] 

The Vickrey-Clarke-Groves mechanism 
� has each party report its value 
� entails p*(v,c)=1 if v>c and p*(v,c)=0 otherwise 
� payments are 
� if p*(v,c)=0, no payments 
� if p*(v,c)=1, buyer pays c and the seller receives v 
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Myerson-Sattherthwaite Theorem 

Expected profits are: 
� UB(v)=E[(v-c)1{v>c}|v], so E[UB(v)]=E[(v-c)1{v>c}] 
� US(c)=E[(v-c)1{v>c}|s], so E[US(c)]=E[(v-c)1{v>c}] 
� each bidder expects to receive the entire social surplus. 

Apply Holmstrom-Williams theorem: 
Theorem (Myerson-Satterthwaite). There is no 
mechanism and Bayesian Nash equilibrium such that 
the mechanism implements for all v,c with v>c and 
� UB(0)=US(1)=0 (“voluntary participation by worst type”) 
� E[UB(v)]+E[US(c)]≤E[(v-c)1{v>c}] (“balanced expected 

budget”) 
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Subtleties 

Consider a model in which: 

Q: Why doesn’t simply trading at price p=1 
violate the theorem in this model? 
A: Because it prescribes trade even when c>v! 

{ } { }> < Pr 1 Pr 1 1v 
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