

Price Theory

Road Map

Traditional Doctrine: Convexity-Based
Disentangling Three Big Ideas

Convexity: Prices & Duality
Order: Comparative Statics, Positive Feedbacks, Strategic Complements
Value Functions: Differentiability and Characterizations, Incentive Equivalence Theorems

2

Convexity at Every Step

- Global or local convexity conditions imply
 - Existence of prices
 - Comparative statics, using second-order conditions
 - Dual representations, which lead to...
 - Hotelling's lemma
 - Shephard's lemma
 - Samuelson-LeChatelier principle

"Convexity" is at the core idea on which the whole analysis rests.

Samuelson-LeChatelier Principle

- Idea: Long-run demand is "more elastic" than short-run demand.
- Formally, the statement applies to smooth demand functions for sufficiently small price changes.
- Let p=(p_x,w,r) be the current vector of output and input prices and let p' be the long-run price vector that determined the current choice of a fixed input, say capital.
- ★ <u>Theorem</u>: If the demand for labor is differentiable at this point, then: $\frac{\partial I^{L}}{\partial w} \bigg|_{v} \leq \frac{\partial I^{s}}{\partial w} \bigg|_{v \in V} \leq 0$

5

Varian's Proof

- Long- and short-run profit functions defined: $\pi^{L}(p) = \max_{k,l} p_{x}f(k,l) wl rk$ $\pi^{S}(p,p') = \max_{l} p_{x}f(k^{*}(p'),l) wl rk^{*}(p')$
- Long-run profits are higher:
 - $\pi^{L}(p) \ge \pi^{S}(p,p')$ for all p,p' and $\pi^{L}(p) = \pi^{S}(p,p)$

 $\frac{\partial^2 \pi^L}{\partial w^2}\Big|_p \ge \frac{\partial^2 \pi^S}{\partial w^2}\Big|_{p,p'=p} \ge 0 \text{ and } \frac{\partial I^L}{\partial w}\Big|_p \le \frac{\partial I^S}{\partial w}\Big|_{p,p'=p} \le 0$

♦ So, long-run demand "must be" more elastic:

A Robust "Counterexample"

The production set consists of the convex hull of these three points, with free disposal allowed:

Capital	Labor	Output
0	0	0
1	1	1
0	2	1

- ◆ Fix the price of output at 9 and the price of capital at 3, and suppose the wage rises from *w*=2 to *w*=5. Demands are:
 I^L(2) = 2, *I*^S(5, 2) = 0, *I*^L(5) = 1
- Long run labor demand falls <u>less</u> than short-run labor demand.
- Robustness: Tweaking the numbers or "smoothing" the production set does not alter this conclusion.

An Alternative Doctrine

Disentangling Three Ideas

eparating the Elements	
 Convexity Proving existence of prices Dual representations of convex sets Dual representations of optima Order Comparative statics Positive feedbacks (LeChatelier principle) Strategic complements Envelopes Useful with dual functions Multi-stage optimizations Characterizing information parts 	
Characterizing information rents	

Invariance Chart

Conclusions about $\max_{x \in S} f(x,t)$	Transformations of Choice Variable
Supporting ("Lagrangian") prices exist	Linear ("convexity preserving")
Optimal choices increase in parameter	Order-preserving
Long-run optimum change is larger, same direction	Order-preserving
Value function derivative formula: $V'(t) = f_2(x^*(t), t)$	One-to-one

Pure Applications of Convexity

Separating Hyperplane Theorem	
 Existence of prices 	
 Existence of probabilities 	
 Existence of Dual Representations 	
 Example: Bondavera-Shapley Theorem Example: Linear programming duality 	
"Alleged" Applications of Duality	
 Hotelling's lemma 	
 Shephard's lemma 	

Separating Hyperplane Theorem

- ♦ <u>Theorem</u>. Let *S* be a non-empty, closed convex set in \mathbb{R}^N and $x \notin S$. Then there exists $p \in \mathbb{R}^N$ such that
 - $p \cdot x > \max\{p \cdot y \mid y \in S\}$
- ♦ <u>Proof</u>. Let $y \in S$ be the nearest point in *S* to *x*. Let

p = (x - y)/||x - y||

- Argue that such a point y exists.
- Argue that p·x>p·y.
- Argue that if z∈S and p·z>p·y, then for some small positive t, tz+(1-t)y is closer to x than y is.

13

Dual Characterizations

Corollary. If S is a closed convex set, then S is the intersection of the closed "half spaces" containing it.
Defining

π(p) = max { p ⋅ x | x ∈ S }

it must be true that

S = ∩_{p∈R^N} { x | p ⋅ x ≤ π(p) }

Convexity and Quantification

- The following conditions on a closed set S in $\mathbb{R}^{\mathbb{N}}$ is are equivalent
 - S is convex
 - For every x on the boundary of S, there is a supporting hyperplane for S through x.
 - For every concave objective function f there is some λ such that the maximizers of f(x) subject to x∈S are maximizers of f(x)+λ·x subject to x∈R^N.

Order Alone

"Order" Concepts & Results

- Order-related definitions
- Optimization problems
 - Comparative statics for separable objectives
 - An improved LeChatelier principle
 - Comparative statics with non-separable "trade-offs"

17

- Equilibrium w/ Strategic Complements
 - Dominance and equilibrium
 - Comparative statics
 - Adaptive Learning
 - LeChatelier principle for equilibrium

Two Aspects of Complements

♦ Constraints
 Activities are complementary if doing one enables doing the other
 or at least doesn't prevent doing the other.
 This condition is described by sets that are <u>sublattices</u>.
Payoffs
 Activities are complementary if doing one makes it weakly more profitable to do the other
 This is described by <u>supermodular</u> payoffs.
 or at least doesn't change the other from being profitable to being unprofitable
 This is described by payoffs satisfying a single crossing condition.
18

Definitions: "Lattice"

- Given a <u>partially ordered set</u> (X_i≥), define
 The "*join*": x ∨ y = inf {z ∈ X | z ≥ x, z ≥ y}.
 The "*meet*": x ∧ y = sup{z ∈ X | z ≤ x, z ≤ y}.
- ♦ (*X*,≥) is a "*lattice*" if

 $(\forall x, y \in X) x \land y, x \lor y \in X$

Example: X=R^N,

 $x \ge y \text{ if } x_i \ge y_i, i = 1,...,N$ $(x \land y)_i = \min(x_i, y_i); i = 1,...,N$ $(x \lor y)_i = \max(x_i, y_i); i = 1,...,N$

Definitions, 2

- ♦ (X,≥) is a "<u>complete lattice</u>" if for every non-empty subset S, a greatest lower bound inf(S) and a least upper bound sup(S) exist in X.
- ♦ A function f: X→R is "supermodular" if $(\forall x, y \in X) f(x) + f(y) \le f(x \land y) + f(x \lor y)$
- ♦ A function *f* is "*submodular*" if -*f* is supermodular.

Definitions, 3

- ♦ Given two subsets S,T⊂X, "S is <u>as high as</u> T," written S≥T, means $[x \in S \text{ and } y \in T]$
 - $\Rightarrow [x \lor y \in S \text{ and } x \land y \in T]$
- ♦ A function x* is "*isotone*" (or "*weakly increasing*") if $t \ge t' \Rightarrow x^*(t) \ge x^*(t')$

21

- "Nondecreasing" is not used because...
- ♦ A set S is a "*sublattice*" if S≥S.

"Pairwise" Supermodularity

- ♦ <u>Theorem</u> (Topkis). Let $f: \mathbb{R}^{N} \rightarrow \mathbb{R}$. The following are equivalent:
 - f is supermodular
 - For all n≠m and x_{-nm}, the restriction f(.,.,x_{-nm}):R²→R is supermodular.

Proof of Pairwise Supermodularity

"Pairwise" Sublattices

♦ <u>Theorem</u> (Topkis). Let <i>S</i> be a sublattice of R ^N . Define $S_{ii} = \{x \in \Re^N \mid (\exists z \in S) x_i = z_i, x_i = z_i\}$	ne
Then, $S = \bigcap_{i,j} S_{ij}$.	
♦ <u>Remark</u> . Thus, a sublattice can be expressed as a collection of constraints on pairs of arguments. In particular, undecomposable constraints like $x_1 + x_2 + x_3 \le 1$	
can never describe in a sublattice.	
	26

Proof of Pairwise Sublattices

Monotonicity Theorem

♦ <u>Theorem (Topkis</u>). Let $f:X \times \mathbb{R} \rightarrow \mathbb{R}$ be a supermodular function and define

 $x^{*}(t) \equiv \operatorname*{argmax}_{x \in S(t)} f(x,t).$

If $t \ge t'$ and $S(t) \ge S(t')$, then $x^*(t) \ge x^*(t')$.

- ♦ <u>Corollary</u>. Let $f:X \times \mathbb{R} \rightarrow \mathbb{R}$ be a supermodular function and suppose S(t) is isotone. Then, for each t, S(t) and $x^*(t)$ are sublattices.
- ♦ <u>Proof of Corollary</u>. Trivially, $t \ge t$, so $S(t) \ge S(t)$ and $x^*(t) \ge x^*(t)$. **QED**

29

Proof of Monotonicity Theorem

Suppose	that f is supermodular
and that	$x \in x^{*}(t), x' \in x^{*}(t'), t > t'.$
🔷 Then, (x)	$\land x') \in S(t'), (x \lor x') \in S(t)$
So, <i>f</i> (<i>x</i> , <i>t</i>)	$\geq f(x \lor x',t)$ and $f(x',t') \geq f(x \land x',t')$.
If either a	any of these inequalities are strict then their
sum conti	radicts supermodularity:
f(x,t	$+f(x',t')>f(x\wedge x',t')+f(x\vee x',t).$
QED	

Necessity for Separable Objectives

♦ <u>Theorem (Milgrom)</u>. Let $f: \mathbb{R}^{N} \times \mathbb{R} \rightarrow \mathbb{R}$ be a supermodular function and suppose S is a sublattice.

Let $x_{g,S}^{*}(t) \equiv \arg\max_{x\in S} f(x,t) + \sum_{i=1}^{N} g_{n}(x_{n}).$

- Then, the following are equivalent:
 - *f* is supermodular
 - For all $g_1, \dots, g_N : \mathfrak{R} \to \mathfrak{R}, x^*_{g,S}(t)$ is isotone.
- Remarks:
 - This is a "robust monotonicity" theorem.
 - The function $g(x) \equiv \sum g_n(x_n)$ is "modular": $g(x) + g(y) = g(x \land y) + g(x \lor y).$

Proof

- $\blacklozenge \Rightarrow$ Follows from Topkis's theorem.
- — It suffices to show "pairwise supermodularity." Hence, it is
 sufficient to show that supermodularity is necessary when N=2.
 We treat the case of two choice variables; the treatment of a
 choice variable and parameter is similar.

• Let
$$x, y \in \mathbb{R}^2$$
 be unordered: $x_1 > y_1, x_2 < y_2$
• Fix $(-\infty \text{ if } z \notin \{x, y\})$

$$g_i(z_i) = \begin{cases} -\infty \text{ if } z_i \notin \{x_i, y_i\} \\ f(x \land y) - f(x) \text{ if } z_i = x_i, i = 1 \\ f(x \land y) - f(y) \text{ if } z_i = y_i, i = 2 \\ 0 \text{ otherwise} \end{cases}$$

• If
$$f(x) + f(y) > f(x \land y) + f(x \lor y)$$
, then $x_g^* = \{x, y, x \land y\}$

is not a sublattice, so $\neg (x^*(t) \ge x^*(t))$. QED

Application: Production Theory

Problem:

 $\max_{k,l} pf(k,l) - L(l,w) - K(k,r)$

- Suppose that L is supermodular in the natural order, for example, L(I, W) = WI.
 - Then, -*L* is supermodular when the order on / is reversed.
 - /*(w) is nonincreasing in the natural order.
- If f is supermodular, then $k^*(w)$ is also nonincreasing.
 - That is, capital and labor are "price theory complements."

33

If f is supermodular with the reverse order, then capital and labor are "price theory substitutes."

Application: Pricing Decisions

A monopolist facing demand D(p,t) produces at unit cost *c*.

 $p^{*}(t) = \operatorname{argmax}_{p}(p-c)D(p,t)$

 $= \arg\max_{p>c} \log(p-c) + \log(D(p,t))$

 $\frac{\partial \log D(p,t)}{\partial \log(p)}$ nondecreasing in t

Application: Auction Theory

- A firm's value of winning an item at price p is U(p,t), where t is the firm's type. (Losing is normalized to zero.) A bid of p wins with probability F(p).
- Question: Can we conclude that p(t) is nondecreasing, without knowing F?

 $p_F^*(t) = \arg\max_p U(p,t)F(p)$

 $= \arg\max_{p} \log(U(p,t)) + \log(F(p))$

• Answer: Yes, if and only if log(U(p,t)) is supermodular.

Long v Short-Run Demand

- Notation. Let /^s(w,w') be the short-run demand for labor when the current wage is w and the wage determining fixed inputs is w'.
- Setting w = w' in /s gives the long run demands.

 Samuelson-LeChatelier principle: 0 ≥ l₁(w,w) ≥ d/dw l(w,w).
 which can be restated revealingly as: 0 ≥ l₂(w,w).

Improved LeChatelier Principle

♦ Let H(x, y, t) be supermodular and S a sublattice. ♦ Let $(x^*(t), y^*(t)) = \max \arg \max_{(x,y) \in S} H(x, y, t)$

 $\text{ Let } x^{*}(t,t') = \max \arg \max_{x \in \left\{ x' \mid (x',y^{*}(t')) \in S \right\}} H(x,y^{*}(t'),t)$

★ <u>Theorem (Milgrom & Roberts</u>). x^{*} is isotone in both arguments. In particular, if t > t', then $x^{*}(t) = x^{*}(t,t) \ge x^{*}(t,t') \ge x^{*}(t',t') = x^{*}(t')$

Long v Short-Run Demand

Theorem. Let w>w'. Suppose capital and labor are complements, i.e., f(k,/) is supermodular in the natural order. If demand is single-valued at w and w', then

 $I^{\mathcal{S}}(W,W) \leq I^{\mathcal{S}}(W,W') \leq I^{\mathcal{S}}(W',W')$

• <u>Theorem</u>. Let w > w'. Suppose capital and labor are **substitutes**, i.e., f(k, l) is supermodular when capital is given its reverse order. If demand is single-valued at w and w', then

 $I^{\mathcal{S}}(W,W) \leq I^{\mathcal{S}}(W,W') \leq I^{\mathcal{S}}(W',W')$

Non-separable Objectives

- Consider an optimization problem featuring "trade-offs" among effects.
 - *x* is the real-valued choice variable
 - B(x) is the "benefits production function"
 - Optimal choice is

 $x_{B}^{*}(t) = \arg\max_{x \in X} \pi(x, B(x), t)$

Robust Monotonicity Theorem

• Define:
$$x_B^*(t) = \arg\max_{x \in V} \pi(x, B(x), t)$$

• Theorem. Suppose π is continuously differentiable	3
and π_2 is nowhere 0. Then:	
$\left[(\forall x, y) \frac{\pi_1(x, y, t)}{ \pi_2(x, y, t) } \text{ is increasing in } t \right]$	
\Rightarrow [For all <i>B</i> , $x_{B}^{*}(t)$ is isotone]	
$\Rightarrow \left[(\forall x, y) \frac{\pi_1(x, y, t)}{ \pi_2(x, y, t) } \text{ is nondecreasing in } t \right]$	
	42

Application: Savings Decisions

41

• By saving x, one can consume F(x) in period 2.

 $V(w) = \max_{0 \le x \le w} U(w - x, F(x))$

 $x_F^*(w) = \max \arg\max_{0 \le x \le w} U(w - x, F(x))$

- Define: $\pi(x, y, t) = U(t x, y)$
- <u>Analysis</u>. If MRS_{xy} increases with x, then optimal savings are isotone in wealth:

 $\left\lfloor \frac{U_1(x,y)}{U_2(x,y)} \text{ increasing in } x \right\rfloor \Rightarrow \dot{x_F}(w) \text{ isotone}$

- This is the same condition as found in price theory, when F is restricted to be linear. Here, F is unrestricted.
 - Also applies to Koopmans consumption-savings model.

Introduction to Supermodular Games

Formulation

N players (infinite is okay)

- Strategy sets X_n are complete sublattices
 - $\underline{\mathbf{x}}_n = \min X_n, \overline{\mathbf{x}}_n = \max X_n$
- $Payoff functions U_n(x) are$
 - Continuous
 - "Supermodular with isotone differences" $(\forall n)(\forall x_n, x'_n \in X_n)(\forall x_{-n} \ge x'_{-n} \in X_{-n})$ $U_n(x) + U_n(x') \le U_n(x \land x') + U_n(x \lor x')$

Bertrand Oligopoly Models

Linear/supermodular Oligopoly:
Demand: $Q_n(x) = A - ax_n + \sum_{j \neq n} b_j x_j$
Profit: $U_n(x) = (x_n - c_n)Q_n(x)$
$\frac{\partial U_n}{\partial x_m} = b_m (x_n - c_n) \text{ which is increasing in } x_n$
Log-supermodular Oligopoly:
$\log U_n(x) = \log (x_n - c_n) + \log Q_n(x)$
$\frac{\partial^2 U_n}{\partial x_m \partial x_n} \ge 0 \Leftrightarrow \frac{\partial^2 \log Q_n(x)}{\partial \log x_n \partial \log x_m} \ge 0$

Linear Cournot Duopoly

Inverse Demand: $P(x) = A - x_1 - x_2$ $U_n(x) = x_n P(x) - C_n(x_n)$ $\frac{\partial U_n}{\partial x_m} = -x_n$

Linear Cournot duopoly (but not more general oligopoly) is supermodular if one player's strategy set is given the reverse of its usual order.

45

Rationalizability & Equilibrium

Theorem (Milgrom & Roberts): The smallest rationalizable strategies for the players are given by

 $\underline{z} = \lim_{\substack{k \to \infty \\ \text{players are given by}}} b^k(\underline{x})$

 $\overline{z} = \lim_{k \to \infty} B^{k}(\overline{x})$ Both are Nash equilibrium profiles.

Proof

OED

49

- Notice that b^k(<u>x</u>) is an isotone, bounded sequence, so its limit <u>z</u> exists.
- By continuity of payoffs, its limit is a fixed point of b, and hence a Nash equilibrium.
- Any strategy less than <u>z</u>_n is less than some b^k_n(<u>x</u>) and hence is deleted during iterated deletion of dominated strategies.

Comparative Statics

• <u>Theorem</u>. (Milgrom & Roberts) Consider a family of supermodular games with payoffs parameterized by t. Suppose that for all n, x_{-n} , $U_n(x_n, x_{-n};t)$ is supermodular in (x_n,t) . Then______

 $\overline{z}(t), \underline{z}(t)$ are isotone.

• <u>Proof</u>. By Topkis's theorem, $b_t(x)$ is isotone in *t*. Hence, if t > t',

 $\boldsymbol{b}_{t}^{k}(\underline{\boldsymbol{x}}) \geq \boldsymbol{b}_{t'}^{k}(\underline{\boldsymbol{x}})$

 $\underline{\mathbf{z}}(t) = \lim_{k \to \infty} b_t^k(\underline{\mathbf{x}}) \ge \lim_{k \to \infty} b_{t'}^k(\underline{\mathbf{x}}) \ge \underline{\mathbf{z}}(t')$

and similarly for \overline{z} . QED

Adaptive Learning

- Player n's behavior is called "<u>consistent with adaptive</u> <u>learning</u>" if for every date t there is some date t'after which n does not play a strategy that is strictly dominated in the game in which others are restricted to play only strategies they have played since date t.
- Theorem (Milgrom & Roberts). In a finite strategy game, if every player's behavior is consistent with adaptive learning, then all eventually play only rationalizable strategies.

Equilibrium LeChatelier Principle

Formulation

- Consider a parameterized family of supermodular games with payoffs parameterized by t. Suppose that for all n, x_{-n}, U_n(x_n,x_{-n};t) is supermodular in (x_n,t).
- Fixing player 1's strategy at $\underline{z}_1(t')$ induces a supermodular game among the remaining players. Let $\underline{y}(t,t')$ be the smallest Nash equilibrium in the induced game, with $\underline{y}_1(t,t') = \underline{z}_1(t')$.

◆ Theorem.

- If t > t', then $\underline{z}(t) \ge y(t,t') \ge \underline{z}(t')$.
- If t < t', then $\underline{z}(t) \le \underline{y}(t,t') \le \underline{z}(t')$.

...and a similar conclusion applies to the maximum equilibrium.

53

Proof $\ensuremath{\circledast}$ Observe (exercise) that $\underline{z}(t) = \underline{y}(t,t), \underline{z}(t') = \underline{y}(t',t').$ $\ensuremath{\circledast}$ Suppose t>t'. $\ensuremath{\bowtie}$ By the comparative statics theorem, \underline{z} is isotone, so: $\underline{z}(t) \ge \underline{z}(t').$ $\ensuremath{\bowtie}$ Hence, by the comparative statics theorem applied again, \underline{y} is isotone, so:

QED

$\underline{y}(t,t) \geq \underline{y}(t,t') \geq \underline{y}(t',t').$

What are "Envelope Theorems"?

- Envelope theorems deal with the properties of the value function: $V(t) = \max_{x \in V} f(x,t)$
 - Answer questions about...
 - when *V* is differentiable, directionally differentiable, Lipschitz, or absolutely continuous
 - when V satisfies the "envelope formula" $V'(t) = f_t(x,t)$ for $x \in x^*(t)$
 - "Traditional" envelope theorems assume that set X is convex and the objective $f(\cdot, t)$ is concave and differentiable.

Envelope Functions Alone

Based on "Envelope Theorems for Arbitrary Choice Sets" by Paul Milgrom & Ilya Segal

Envelope Derivative Formula

Absolute Continuity

- ♦<u>Theorem 2(A)</u>. Suppose that
 - *f*(*x*,·) is is differentiable (or just absolutely continuous) for all *x*∈*X* with derivative (or density) *f*_t.
 - there exists an integrable function b(t)such that $|f_t(x,\cdot)| \le b(t)$ for all $x \in X$ and almost all $t \in [0,1]$.

Then *V* is absolutely continuous with density satisfying $|V'(t)| \le b(t)$.

Proof of Theorem 2(A)

 It suffices to prove the theorem for intervals, because open intervals are a basis for the open sets. QED

Why do we need $b(\cdot)$?

- Let X=(0,1] and f(x,t)=g(t/x), where g is smooth and single-peaked with unique maximum at 1.
 - V(0)=g(0), V(t)=g(1): V is discontinuous at 0.
 - This example has no integrable bound b(t):

61

Envelope Integral Formula

◆ <u>Theorem 2(B)</u>. Suppose that, in addition to the assumptions of 2(A), the set of optimizers $x^*(t)$ is non-empty for all t. Then for any selection $x(t) \in x^*(t)$,

$$V(s) = V(0) + \int_0^s f_t(x(t), t) dt.$$

Equi-differentiability

♦ Definition. A family of functions ${f(x, \cdot)}_{x \in X}$ is "*equi-differentiable*" at $t \in (0, 1)$ if

$$\lim_{t'\to t}\sup_{x}\left|\frac{f(x,t')-f(x,t)}{t'-t}-f_t(x,t)\right|=0$$

If X is finite, this is the same as simple differentiability.

Directional Differentiability

♦ Theorem 3. If

- (i) $\{f(x, \cdot)\}_{x \in X}$ is equi-differentiable at t_{0}
- (ii) $x^*(t)$ is non-empty for all t, and
- (iii) $\sup_{\mathbf{x}} |f_t(\mathbf{x}, t_0)| < \infty$,

then for any selection $x(t) \in x^*(t)$, *V* is left- and right-differentiable at $t_0 \in (0,1)$ and the derivatives satisfy $\frac{V'(t+1)}{1-1} = \lim_{t \to \infty} f(x(t), t)$

$$V'(t_0-) = \lim_{t \to t_0-} f_t(x(t), t_0)$$

Role of "Equi-differentiability"

- Simple differentiability (rather than equidifferentiability) is not enough for *V* to have leftand right-derivatives:
 - Let $g(t) = t \operatorname{sinlog}(t), f(x,t) = g(t)$ if $t > \exp(-\pi/2 2\pi x),$ f(x,t) = -t otherwise.

65

• Then, V(t) = g(t)

Continuous Problems

Theorem 4. Suppose X is a non-empty compact space, f is upper semi-continuous on X and ft is continuous in (x,t). Then,
V is directionally differentiable
V'(t+) = max ft(x,t) for t ∈ [0,1)
V'(t-) = min ft(x,t) for t ∈ (0,1]
In particular, V'(t+) ≥ V'(t-).
V is differentiable at t if any of the following hold:

V is concave (because V'(t+)≤V'(t-))
t is a maximum of V(·) (because V'(t+)≤ V'(t-))
x*(t) is a singleton (because V'(t+)=V'(t-))

Contrast to a "Traditional" Approach

X

In some approaches, the differentiability of x* is used in the argument. However, I/ can be differentiable even when x* is not. This often happens, for example, in strictly convex problems:

Applications

Hotelling's Lemma

Define: $\pi(p) = \max_{x \in X} p \cdot x$ $x^*(p) = \arg\max_{x \in X} p \cdot x$

• <u>Theorem</u>. Suppose X is compact. Then, $\pi'(p)$ exists if and only if $x^*(p)$ is a singleton, and in that case $\pi'(p) = x^*(p)$.

69

Multi-Stage Maximization

♦ Stage 1: choose investment $t \ge 0$. ♦ Stage 2: choose action vector $x \in X \neq \emptyset$

Assume:

- f(x,t) is equidifferentiable in t and $t^*>0$
- f(x,t) is u.s.c. in x and X is compact
- Conclusion: the value function V(t) is differentiable at t^* and $V'(t^*)=0$.
 - Proof: Apply theorem 4.

Shephard's Lemma

 ◆ Define:
 C(y, p) = min → p → 1 ⋅ X → 1 x*(p) = arg min → p → 1 ⋅ X → 1 x*(p) = arg min → p → 1 ⋅ X → 1
 ◆ <u>Remark</u>: The variable x₁ represents "output" and the other variables represent inputs, measured as negative numbers.
 ◆ <u>Theorem</u>. Suppose X is compact. Then, ∂C/∂p exists if and only if x*(p) is a singleton, and in that case ∂C/∂p = x*(p).

Mechanism Design

- Y=set of outcomes
- Agent's type is t, utility is f(x,t).
- M=message space. h:M \rightarrow Y is outcome function.
- X=h(M) is set of "accessible outcomes."
- Assume that each type has an optimal choice

 $x(t) \in \operatorname*{argmax}_{x \in X} f(x,t)$

Analysis

♦ Corollary 1. Suppose that the agent's utility function f(x,t) is differentiable and absolutely continuous in t for all $x \in Y$, and that $\sup_{x \in Y} f_t(x,t)$ is integrable on [0,1]. Then the agent's equilibrium utility V in any mechanism implementing a given choice rule x must satisfy the following integral condition.

$$V(t) = V(0) + \int_0^t f_t(x(s), s) ds$$

 This had previously been shown only with (sometimes "weak") additional conditions.

73

Mechanism Design Applications

• Models in which payoffs are $\nu \cdot p - \pi$, so	
$U(v) = U(0) + \int_{0}^{1} v \cdot p^{*}(sv) ds.$	
◆ Theorems	
 Green-Laffont Theorem Uniqueness of Dominant Strategy Mechanisms Holmstrom-Williams Theorem Bayesian Revenue Equivalence 	
 Myerson-Satterthwaite Theorem Necessity of Bargaining Inefficiency Jehiel-Moldovanu Theorem Impossibility of Efficiency with Value Interdepend 	encies
impossibility of Efficiency with value interdepend	74

Green-Laffont Theorem

- "Uniqueness of dominant strategy implementation."
- Theorem (Holmstrom's variation). Suppose that
 - M is a direct mechanism to implement the efficient outcome in dominant strategies
 - the type space is smoothly path-connected.
- Then,

the payment function for player j in mechanism M is equal to the payment function of the Vickrey-Clarke-Groves pivot mechanism plus some function g_j(v_{-j}) (which depends only on the other player's types).

Green-Laffont Theorem

• Given any value vector v, let $\{v_j(t)|t \in [0,1]\}$ be a smooth path connecting some fixed value \underline{v}_j to $v_j = v_j(1)$. By the Envelope Theorem applied to the path parameter t,

$$\boldsymbol{U}_{j}\left(\boldsymbol{v}_{j}(t),\boldsymbol{v}_{-j}\right)=\boldsymbol{\rho}_{j}\left(\boldsymbol{v}_{j}(t),\boldsymbol{v}_{-j}\right)\cdot\boldsymbol{v}_{j}-\boldsymbol{X}_{j}\left(\boldsymbol{v}_{j}(t),\boldsymbol{v}_{-j}\right)$$

$$= U_j \left(\underline{v}_j, v_{-j} \right) + \int_0^t p_j \left(v_j(s), v_{-j} \right) \cdot v'_j(s) ds$$

$$\therefore X_j \left(v_j(1), v_{-j} \right) = f_j(v_{-j}) + p_j \left(v_j(1), v_{-j} \right) \cdot v_j - \int_0^1 p_j \left(v_j(s), v_{-j} \right) \cdot v_j'(s) ds$$

where $f(v_{-j}) = -U_j \left(\underline{v}_j, v_{-j} \right)$

• So, X_i is fully determined by the functions p and f_i .

Holmstrom-Williams' Theorem

- Theorem: Any mechanism that Bayes-Nash implements efficient outcomes on a smoothly path-connected type space entails the same <u>expected</u> payments as the Vickrey mechanism, plus some bidder-specific constant.
- Proof. Let {v_j(s),s∈[0,1]} be a path from some fixed value vector to any other value vector. By the Envelope Theorem,

 $U_j(v_j(t)) = p_j(v_j(t)) \cdot v_j(t) - X_j(v_j(t))$

 $= U_j(v_j(0)) + \int_0^t p_j(v_j(s)) \cdot v'_j(s) ds$

77

• Hence, $X_{f}(v)$ is uniquely determined by $U_{f}(0)$. It is equal to $U_{f}(0)$ plus the expected payment in the Vickrey mechanism.

Two-Person Bargaining

Assume	
 there is a buyer with value v distributed on [0,1]
 there is a seller with cost c distributed on [0,1] 	
The Vickrey-Clarke-Groves mechanism	
 has each party report its value 	
entails p*(v,c)=1 if v>c and p*(v,c)=0 otherwise	se
 payments are 	
 if p*(v,c)=0, no payments 	
 if p*(v,c)=1, buyer pays c and the seller receives v 	
	78

Myerson-Sattherthwaite Theorem

Expected profits are:

- $U_B(v)=E[(v-c)1_{\{v>c\}}|v]$, so $E[U_B(v)]=E[(v-c)1_{\{v>c\}}]$
- U_S(c)=E[(v-c)1_{v>c}|s], so E[U_S(c)]=E[(v-c)1_{{v>c}}]
- each bidder expects to receive the *entire social surplus*.
- Apply Holmstrom-Williams theorem:
- Theorem (Myerson-Satterthwaite). There is no mechanism and Bayesian Nash equilibrium such that the mechanism implements for all v,c with v>c and
 - U_B(0)=U_S(1)=0 ("voluntary participation by worst type")
 - E[U_B(v)]+E[U_S(c)]≤E[(v-c)1_{{v>c}}] ("balanced expected budget")

Subtleties

- Consider a model in which:
 - $Pr\{v > 1\} = Pr\{c < 1\} = 1$
- Q: Why doesn't simply trading at price p=1 violate the theorem in this model?
- ♦ A: Because it prescribes trade even when c>v!