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A Synopsis of the Theory of Choice

This note summarizes the elements of the expected-utility theory. For a detailed ex-

position of the first four sections, see Kreps (1988); for the last section see Savage (1954). 

We will first define a choice function and present the necessary and sufficient conditions 

a choice function must satisfy in order to be represented by a preference relation – 

revealed preferences. We will then present the necessary and sufficient conditions that 

such a preference relation must satisfy in order to be represented by a utility function – 

ordinal representation. Next, we present the expected utility theories of Von Neuman 

and Morgenstern, Anscombe and Auman, and Savage, where the representing utility 

function takes some form of expectation – cardinal representation. 

1 Revealed Preferences 

We consider a set X of alternatives. Alternatives are mutually exclusive in the sense 

that one cannot choose two distinct alternatives at the same time. We also take the set 

of feasible alternatives exhaustive so that a player’s choices will always be defined. 

Definition 1 By a choice function, we mean a function c : 2X \ {∅} → 2X \ {∅} such 

that 

c (A) ⊆ A for each A ∈ 2X \ {∅} . 

Here c (A) consists of the alternatives the agent may choose if he is constrained to 

A; he will choose only one of them. Note that c (A) is assumed to be non-empty. 

Our second construct is a preference relation. Take a relation º on X, i.e., a subset 

of X × X. A  relation º is said to be complete if and only if, given any x, y ∈ X, either 

x º y or y º x. A  relation º is said to be transitive if and only if, given any x, y, z ∈ X, 

[x º y and y º z] ⇒ x º z. 
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Definition 2 A relation is a preference relation if and only if it is complete and tran-

sitive. 

Given any preference relation º, we can define strict preference Â by 

x Â y ⇐⇒ [x º y and y 6º x], 

and the indifference ∼ by 

x ∼ y ⇐⇒ [x º y and y º x]. 

Now consider the choice function c (·; º) of an agent who wants to choose the best 

available alternative with respect to a preference relation º. This function is defined by 

c (A; º) =  {x ∈ A|x º y ∀y ∈ A} . 

Note that, since º is complete and transitive, c (A; º) 6= ∅ whenever A is finite. Consider 

a set A with members x and y such that our agent may choose x from A (i.e., x º y). 

Consider also a set B from which he may choose y (i.e., y º z for each z ∈ B). Now, 

if x ∈ B, then he may as well choose x from B (i.e., x º z for each z ∈ B). That is, 

c (·; º) satisfies the following axiom by Hauthakker: 

Axiom 1 ( Hauthakker) Given any A,B with x, y ∈ A ∩ B, if x ∈ c (A) and y ∈ c (B), 

then x ∈ c (B). 

It turns out that any choice function c that satisfies Hauthakker’s axiom can be 

considered coming from an agent who tries to choose the best available alternative with 

respect to some preference relation º c. Such a preference relation can be defined by 

x º c y ⇐⇒ x ∈ c ({x, y}) . 

Theorem 1 If º is a preference relation, then c (·; º) satisfies Hauthakker’s axiom. 
Conversely, if a  choice function c satisfies Hauthakker’s axiom, then there exists a pref-

erence relation º c such that c = c (·; º c). 
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2 Ordinal representation 

We are interested in preference relations that can be represented by a utility function 

u : X → R in the following sense: 

x º y ⇐⇒ u(x) ≥ u(y) ∀x, y ∈ X. (OR) 

Clearly, when the set X of alternatives is countable, any preference relation can be 

represented in this sense. The following theorem states further that a relation needs to 

be a preference relation in order to be represented by a utility function. 

Theorem 2 Let X be finite (or countable). A relation º can be represented by a utility 

function U in the sense of (OR) if and only if º is a preference relation. Moreover, if 

U : X → R represents º, and if f : R → R is a strictly increasing function, then f ◦ U 

also represents º. 
By the last statement, we call such utility functions ordinal. 

When X is uncountable, some preference relations may not represented by any utility 

function, such as the lexicographic preferences on R2 .1 If the preferences are continuous 

they can be represented by a (continuous) utility function even when X is uncountable. 

Definition 3 Let X be a metric space. A preference relation º is said to be continuous 

iff, given any two sequences (xn) and (yn) with xn → x and yn → y, 

[xn º yn ∀n] =⇒ x º y. 

Theorem 3 Let X be a separable metric space, such as Rn . A relation º on X can be 

represented by some continuous utility function U : X → R in the sense of (OR) iff º 

is a continuous preference relation. 

When a player chooses between his strategies, he does not know which strategies the 

other players choose, hence he is uncertain about the consequences of his acts (namely, 

strategies). To analyze the players’ decisions in a game, it would be useful then to 

have a theory of decision making that allows us to express an agent’s preferences on 

the acts with uncertain consequences (strategies) in terms of his attitude towards the 

consequences. 
1In fact, some form of countability is necessary for representability. X must be separable with respect 

to the order topology of º, i.e., it must contain a countable subset that is dense with respect to the 

order topology. (See Theorem 3.5 in Kreps, 1988.) 
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3 Cardinal representation 

Consider a finite set Z of consequences (or prizes). Let S be the set of all states of the 

world. Take a set F of acts f : S → Z as the set of alternatives (i.e., set X = F ). Each 

state s ∈ S describes all the relevant aspects of the world, hence the states are mutually 

exclusive. Moreover, the consequence f (s) of act f depends on the true state of the 

world, thus the agent may be uncertain about the consequences of his acts. We would 

like to represent the agent’s preference relation º on F by some U : F → R such that 

U (f ) ≡ E [u ◦ f ] 

(in the sense of (OR)) where u : Z → R is a “utility function” on Z and E is an 

expectation operator on S. That is, we want 

f º g ⇐⇒ U (f ) ≡ E [u ◦ f ] ≥ E [u ◦ g] ≡ U (g) . (EUR) 

In the formulation of Von Neumann and Morgenstern, the probability distribution (and 

hence the expectation operator E) is objectively given. In fact, they formulate acts 

as lotteries, i.e, probability distributions on Z. In such a world, they characterize the 

conditions (on º) under which º is representable in the sense of (EUR). 

For the cases of our concern, there is no objectively given probability distribution 

on S. For instance, the likelihood of the strategies that will be played by the other 

players is not objectively given. We therefore need to determine the agents’ (subjective) 

probability assessments on S. 

Anscombe and Aumann develop a tractable model in which the agent’s subjective 

probability assessments are determined using his attitudes towards the lotteries (with 

objectively given probabilities) as well as towards the acts with uncertain consequences. 

To do this, they consider the agents’ preferences on the set P S of all “acts” whose 

outcomes are lotteries on Z, where P is the set of all lotteries (probability distributions 

on Z). 

In this set up, it is straightforward to determine the agent’s probability assessments. 

Consider a subset A of S and any two consequences x, y ∈ Z with x Â y. Consider 

the act fA that yields the sure lottery of x on A,2 and the sure lottery of y on S\A. 
(See Figure 1.) Under the sufficient continuity assumptions (which are also necessary for 

2That is, fA (s) =  δx whenever s ∈ A where δx assigns the probability 1 to the outcome x. 
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representability), there exists some πA ∈ [0, 1] such that the agent is indifferent between 

fA and the act gA that always yield the lottery pA that gives x with probability πA and 

y with probability 1 − πA. Then, πA is the (subjective) probability the agent assigns 

to the event A – under the assumption that πA does not depend on which alternatives 

x and y are used. In this way, we obtain a probability distribution on S. Using the 

theory of Von Neumann and Morgenstern, we then obtain a representation theorem in 

this extended space where we have both subjective uncertainty and objectively given 

risk. 

Savage develops a theory with purely subjective uncertainty. Without using any 

objectively given probabilities, under certain assumptions of “tightness”, he derives a 

unique probability distribution on S that represent the agent’s beliefs embedded in his 

preferences, and then using the theory of Von Neumann and Morgenstern he obtain a 

representation theorem – in which both utility function and the beliefs are derived from 

the preferences. 

We will now present the theories of Von Neumann and Morgenstern and Savage. 

4 Von Neumann and Morgenstern 

We consider a finite set Z of prizes, and the set P of all probability distributions p : Z → P 
[0, 1] on Z, where z∈Z p(z) = 1. We call these probability distributions lotteries. We 

would like to have a theory that constructs a player’s preferences on the lotteries from 

his preferences on the prizes. A preference relation º on P is said to be represented by 

a von Neumann-Morgenstern utility function u : Z → R if and only if 

p º q ⇐⇒ U (p) ≡

X 

z∈Z 

u(z)p(z) ≥

X 

z∈Z 

u(z)q(z) ≡ U (q) (1)


for each p, q ∈ P . Note that U : P → R represents º in ordinal sense. That is, the 

agent acts as if he wants to maximize the expected value of u. 

The necessary and sufficient conditions for a representation as in (1) are as follows: 

Axiom 2 º is complete and transitive. 

This is necessary by Theorem 2, for U represents º in ordinal sense. The second 

condition is called independence axiom, stating that a player’s preference between two 
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lotteries p and q does not change if we toss a coin and give him a fixed lottery r if “tail” 

comes up. 

Axiom 3 For any p, q, r ∈ P , and any a ∈ (0, 1], ap + (1 − a)r Â aq + (1 − a)r ⇐⇒ 

p Â q. 

Let p and q be the lotteries depicted in Figure 2. Then, the lotteries ap + (1 − a)r 

and aq + (1 − a)r can be depicted as in Figure 3, where we toss a coin between a fixed 

lottery r and our lotteries p and q. Axiom 3 stipulates that the agent would not change 

his mind after the coin toss. Therefore, our axiom can be taken as an axiom of “dynamic 

consistency” in this sense. 

The third condition is continuity axiom. It states that there are no “infinitely good” 
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Figure 4: Indifference curves on the space of lotteries 

or “infinitely bad” prizes. [Some degree of continuity is also required for ordinal repre-

sentation.] 

Axiom 4 For any p, q, r ∈ P , if p Â q Â r, then there exist a, b ∈ (0, 1) such that 

ap + (1 − a)r Â q Â bp + (1 − r)r. 

Axioms 3 and 4 imply that, given any p, q, r ∈ P and any a ∈ [0, 1], 

if p ∼ q, then ap + (1 − a) r ∼ aq + (1 − a)r. (2) 

This has two implications: 

1. The indifference curves on the lotteries are straight lines. 

2. The indifference curves, which are straight lines, are parallel to each other. 
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To illustrate these facts, consider three prizes z0, z1, and z2, where z2 Â z1 Â z0. 

A lottery p can be depicted on a plane by taking p (z1) as the first coordinate (on 

the horizontal axis), and p (z2) as the second coordinate (on the vertical axis). p (z0) 

is 1 − p (z1) − p (z2). [See Figure 4 for the illustration.] Given any two lotteries p 

and q, the convex combinations ap + (1 − a) q with a ∈ [0, 1] form the line segment 

connecting p to q. Now, taking r = q, we can deduce from (2) that, if p ∼ q, then 

ap + (1 − a) q ∼ aq + (1 − a)q = q for each a ∈ [0, 1]. That this, the line segment 

connecting p to q is an indifference curve. Moreover, if the lines l and l0 are parallel, 

then α/β = |q0| / |q|, where |q| and |q0| are the distances of q and q0 to the origin, 

respectively. Hence, taking a = α/β, we compute that p0 = ap + (1 − a) δz0 and q0 = 

aq + (1 − a) δz0 , where δz0 is the lottery at the origin, and gives z0 with probability 1. 

Therefore, by (2), if l is an indifference curve, l0 is also an indifference curve, showing 

that the indifference curves are parallel. 

Line l can be defined by equation u1p (z1)+  u2p (z2) =  c for some u1, u2, c  ∈ R. Since 
l0 is parallel to l, l0 can also be defined by equation u1p (z1) +  u2p (z2) =  c0 for some c0 . 

Since the indifference curves are defined by equality u1p (z1) +  u2p (z2) =  c for various 

values of c, the preferences are represented by 

U (p) =  0 + u1p (z1) +  u2p (z2) 

≡ u(z0)p(z0) +  u(z1)p (z1) +  u(z2)p(z2), 

where 

u (z0) = 0, 

u(z1) =  u1, 

u(z2) =  u2, 

giving the desired representation. 

This is true in general, as stated in the next theorem: 

Theorem 4 A relation º on P can be represented by a von Neumann-Morgenstern 

utility function u : Z → R as in (1) if and only if º satisfies Axioms 2-4. Moreover, u 

˜ ˜and u represent the same preference relation if and only if u = au + b for some a >  0 

and b ∈ R. 
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By the last statement in our theorem, this representation is “unique up to affine 

transformations”. That this, an agent’s preferences do not change when we change his 

von Neumann-Morgenstern (VNM) utility function by multiplying it with a positive 

number, or adding a constant to it; but they do change when we transform it through a 

non-linear transformation. In this sense, this representation is “cardinal”. Recall that, 

in ordinal representation, the preferences wouldn’t change even if the transformation 

were non-linear, so long as it was increasing. 

5 Savage 

Take a set S of states s of the world, a finite set Z of consequences (x, y, z), and take 

the set F = ZS of acts f : S → Z as the set of alternatives. Fix a relation º on F . We 

would like to find necessary and sufficient conditions on º so that º can be represented 

by some U in the sense of (EUR); i.e., U (f ) =  E[u ◦ f ]. In this representation, both the 

utility function u : Z → R and the probability distribution p on S (which determines 

E) are derived from º. Theorems 2 and 3 give us the first necessary condition: 

P 1  º is a preference relation. 

The second condition is the central piece of Savage’s theory: 

The Sure-thing Principle If an agent prefers some act f to some act g when he 

knows that some event A ⊂ S occurs, and if he prefers f to g when he knows that A 

does not occur, then he must prefer f to g when he does not know whether A occurs or 

not. This is the informal statement of the sure-thing principle. Once we determine the 

agent’s probability assessments, it will give us the independence axiom, Axiom 3, of Von 

Neumann and Morgenstern. The following formulation of Savage, P2, not only implies 

this informal statement, but also allows us to state it formally, by allowing us to define 

conditional preferences. (The conditional preferences are also used to define the beliefs.) 

P 2  Let f, f 0, g, g0 ∈ F and B ⊂ S be such that 

f (s) =  f 0 (s) and g (s) =  g 0 (s) at each s ∈ B 
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and 

f (s) =  g (s) and f 0 (s) =  g 0 (s) at each s 6∈ B. 

If f º g, then f 0 º g0 . 

Conditional preferences Using P2, we can define the conditional preferences as 

follows. Given any f, g, h ∈ F and B ⊂ S, define acts f| 
h
B and g| 

h
B by 

f| 
h
B (s) =  

( 
f (s) if s ∈ B 

h (s) otherwise 

and 

g| 
h
B (s) =  

( 
g (s) if s ∈ B

. 
h (s) otherwise 

That is, f| 
h
B and g| 

h
B agree with f and g, respectively, on B, but when B does not occur, 

they yield the same default act h. 

Definition 4 (Conditional Preferences) f º g given B iff f| 
h
B º g| 

h
B . 

P2 guarantees that f º g given B is well-defined, i.e., it does not depend on the 

default act h. To see this, take any h0 ∈ F , and define f| 
h
B 
0 
and g| 

h
B 
0 
accordingly. Check 

that 

f| 
h
B (s) ≡ f (s) ≡ f| 

h
B 
0 
(s) and g| 

h
B (s) ≡ g (s) ≡ g| 

h
B 
0 
(s) at each s ∈ B 

and 

f| 
h
B (s) ≡ h (s) ≡ g| 

h
B (s) and f| 

h
B 
0 
(s) ≡ h0 (s) ≡ g| 

h
B 
0 
(s) at each s 6∈ B. 

Therefore, by P2, f| 
h
B º g| 

h
B iff f| 

h
B 
0 º g| 

h
B 
0 
. 

Note that P2 precisely states that f º g given B is well-defined. To see this, take f 

and g0 arbitrarily. Set h = f and h0 = g0 . Clearly, f = f| 
h
B and g0 = gh

0 
|B . Morevoer, the 

conditions in P2 define f 0 and g as f 0 = f| 
h
B 
0 
and g = g| 

h
B . Thus, the conclusion of P2, 

“if f º g, then f 0 º g0”, is the same as “if f| 
h
B º g| 

h
B , then f| 

h
B 
0 º g| 

h
B 
0 
. 

Exercise 1 Show that the informal statement of the sure-thing principle is formally 

true: given any f1, f2 ∈ F , and any B ⊆ S, 

[(f1 º f2 given B) and (f1 º f2 given S\B)] ⇒ [f1 º f2] . 

[Hint: define f := f1 = f1 
f 
| 
1 
B = f1 

f 
| 
1 
S\B , g

0 := f2 = f2 
f 
| 
2 
B = f2 

f 
| 
2 
S\B , f 0 := f1 

f 
| 
2 
B = f2 

f 
| 
1 
S\B , and 

g := f2 
f 
| 
1 
B = f1 

f 
| 
2 
S\B . Notice that you do not need to invoke P2 (explicitly).] 
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Recall that our aim is to develop a theory that relates the preferences on the acts 

with uncertain consequences to the preferences on the consequences. (The preference 

relation º on F is extended to Z by embedding Z into F as constant acts. That is, 

we say x º x0 iff f º f 0 where f and f 0 are constant acts that take values x and x0 , 

respectively.) The next postulate does this for conditional preferences: 

P 3  Given any f, f 0 ∈ F , x, x0 ∈ Z, and B ⊂ S, if f ≡ x, f 0 ≡ x0, and B 6= ∅, then 

f º f 0 given B ⇐⇒ x º x 0 . 

For B = S, P3 is rather trivial, a matter of definition of a consequence as a constant 

act. When B 6= S, P3 is needed as an independent postulate. Because the conditinal 

preferences are defined by setting the outcomes of the acts to the same default act when 

the event does not occur, and two distinct constant acts cannot take the same value. 

Representing beliefs with qualitative probabilities We want to determine our 

agent’s beliefs embedded in º. Towards this end, given any two events A and B, we 

want to determine which event our agent thinks is more likely. To do this, let us take 

any two consequences x, x0 ∈ Z with x Â x0 . Our agent is asked to choose between the 

two gambles (acts) fA and fB with ( 
x if s ∈ A 

fA (s) =  , (3) 
x0 otherwise ( 
x if s ∈ B 

fB (s) =  
x0 otherwise 

.


If our agent prefers fA to fB , we can infer that he finds event A more likely than event 

B, for he prefers to get the “prize” when A occurs, rather than when B occurs. 

Definition 5 Take any x, x0 ∈ Z with x Â x0. Given any A,B ⊆ S, we say that A is at 

least as likely as B (and write A º̇B) iff fA º fB , where fA and fB defined by (3). 

We want to make sure that this gives us well-defined beliefs. That is, it should not 

be the case that, when we use some x and x0 , we infer that agent finds A strictly more 

likely than B, but when we use some other y and y0 , we infer that he finds B strictly 
˙more likely than A. Our next assumption guaranties that º is well-defined. 
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P 4  Given any x, x0, y, y0 ∈ Z with x Â x0 and y Â y0, define fA, fB , gA, gB by ( 
x if s ∈ A if s ∈ A 

fA (s) =  
x0 otherwise 

, gA (s) =  

( 

y

y 
0 otherwise ( 

x if s ∈ B if s ∈ B 
fB (s) =  

x0 otherwise 
, gB (s) =  

( 

y

y 
0 otherwise 

. 

Then, 

fA º fB ⇐⇒ gA º gB . 

Finally, make sure that we can find x and x0 with x Â x0: 

P 5  There exist some x, x0 ∈ Z such that x Â x0 . 

˙We have now a well-defined relation º that determines which of two events is more 
˙likely. It turns out that, º is a qualitative probability, defined as follows: 

˙Definition 6 A relation º between the events is said to be a qualitative probability iff 

˙1. º is complete and transitive; 

2. given any B,C,D ⊂ S with B ∩ D = C ∩ D = ∅, we have 

ºC ⇐⇒ B ∪ D ˙B ˙ ºC ∪ D; 

3. B ˙ Â∅.º∅ for each B ⊂ S, and S ˙ 

˙Exercise 2 Show that, under the postulates P1-P5, the relation º defined in Definition 

5 is a qualitative probability. 

Quantifying the qualitative probability assassments Savage uses finitely-additive 

probability measures on the discrete sigma-algebra: 

Definition 7 By a probability measure, we mean a function p : 2S → [0, 1] with 

1. if B ∩ C = ∅, then p (B ∪ C) =  p (B) +  p (C), and 

2. p (S) = 1. 
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˙We would like to represent our qualitative probability º with a (quantitative) prob-

ability measure p in the sense that 

B º̇C ⇐⇒ p (B) ≥ p (C) ∀B,C ⊆ S. (QPR) 

˙Exercise 3 Show that, if a relation º can be represented by a probability measure, then 

º̇ must be a qualitative probability. 

˙When S is finite, since º is complete and transitive, by Theorem 2, it can be repre-

sented by some function p, but there might be no such function satisfying the condition 1 

in the definition of probability measure. Moreover, S is typically infinite. (Incidentally, 

the theory that follows requires S to be infinite.) 

We are intersted in the preferences that can be considered coming from an agent 

who evaluates the acts with respect to their expected utility, using a utility function on 

Z and a probability measure on S that he has in his mind. Our task at this point is 

to find what probability p (B) he assigns to some arbitrary event B. Imagine that we 

ask this person whether p (B) ≥ 1/2. Depending on his sincere answer, we determine 

whether p (B) ∈ [1/2) or p (B) ∈ [0, 1/2, 1]. Given the interval, we ask whether p (B) 

is in the upper half or the lower half of this interval, and depending on his answer, 

we obtain a smaller interval that contains p (B). We do this ad infinitum. Since the 

length of the interval at the nth iteration is 1/2n, we learn p (B) at the end. For 

example, let’s say that p (B) = 0.77. We first ask if p (B) ≥ 1/2. He says Yes. We 

ask now if p (B) ≥ 3/4. He says Yes. We then ask if p (B) ≥ 7/8. He says No. 

Now, we ask if p (B) ≥ 13/16 = (3/4 + 7/8) /2. He says No again. We now ask if 

p (B) ≥ 25/32 = (3/4 + 7/8) /2. He says No. Now we ask if p (B) ≥ 49/64. He says 

=0.765 ≤ p (B) < 25/32=0.781. As we askYes now. At this point we know that 49/64˜ ˜ 

further we get a better answer. 

This is what we will do, albeit in a very abstract setup. Assume that S is infinitely 
˙divisible under º. That is, S has 

• a partition {D1
1,D1

2} with D1
1 ˙1 ∪ D1

2 = S and D1∼D1
2 , 

• a partition {D2
1,D2

2, D2
3,D2

4} with D2
1∪D2

2 = D1
1 , and D1∼D2∼D3∼D4 

1 , D2
3∪D2

4 = D2
2 ˙ 2 ˙ 2 ˙ 2 , 

. .• . 
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• a partition 
© 
D1 

n, · · ·  , D2n 

n 

ª 
with D1 

n n−1, . . . ,  D
2k−1 ∪ D2k = Dk 

n ∪ D2 = D1 
n n n−1, . . ., 

and D1 ∼ · · ·  ∼D2n 
,n ˙ ˙ n 

.
.
.
•


ad infinitum. 

S 

D1 
1 D2 

1 

D1 
2 D2 

2 D3 
2 D4 

2 
. . . 

. . . 
. . . 

. . . 

º is represented by some p, then we must have p (DrExercise 4 Check that, if ˙ n) = 1/2
n . 

Given any event B, for each n, define 
r 

º 
[ 

Dik (n,B) = max 

(
r|B ˙ n

) 

, 
i=1 

where we use the convention that ∪ri=1Di = ∅ whenever r <  1. Definen 

p (B) := lim 
k (n,B) 

. (4) 
n→∞ 2n 

Check that k (n,B) /2n ∈ [0, 1] is non-decreasing in n. Therefore, limn→∞ k (n,B) /2n is 

well-defined. 

Since º is transitive, if B ˙˙ ºC, then k (n,B) ≥ k (n,C) for each n, yielding p (B) ≥ 

p (C). This proves the =⇒ part of (QPR) under the assumption that S is infinitely-

divisibile. The other part (⇐) is implied by the following assumption: 

P 6’ If B ˙ ÂC ∪ÂC, then there exists a finite partition {D1, . . . , Dn} of S such that B ˙ 

Dr for each r. 

Under P1-P5, P6’ also implies that S is infinitely-divisibile. (See the definition of 

“tight” and Theorems 3 and 4 in Savage.) Therefore, P1-P6’ imply (QPR), where p is 

defined by (4). 

˙Exercise 5 Check that, if º is represented by some p0, then 

k (n,B) ≤ p 0 (B) <
k (n,B) + 1  

2n 2n 

˙at each B. Hence, if both p and p0 represent º, then p = p0 . 
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Postulate 6 will be somewhat stronger than P6’. (It is also used to obtain the 

continuity axiom of Von Neumann and Morgenstern.) 

P 6  Given any x ∈ Z, and any g, h ∈ F with g Â h, there exists a partition {D1, . . . , Dn}
of S such that 

x g Â hxi and gi Â h 

for each i ≤ n where 

x if s ∈ Di x if s ∈ Di 
xhxi (s) =  

( 

h (s) otherwise 
and gi (s) =  

( 

g (s) otherwise 
.


Take g = fB and h = fC (defined in (3)) to obtain P6’. 

Theorem 5 Under P1-P6, there exists a unique probability measure p such that 

B º̇C ⇐⇒ p (B) ≥ p (C) ∀B,C ⊆ S. (QPR) 

In Chapter 5, Savage shows that, when Z is finite, Postulates P1-P6 imply Axioms 

2-4 of Von Neumann and Morgenstern –as well as their modeling assumptions such as 

only the probability distributions on the set of prizes matter. In this way, he obtains 

the following Theorem:3 

Theorem 6 Assume that Z is finite. Under P1-P6, there exist a utility function u : 

Z → R and a probability measure p : 2S → [0, 1] such that 

f º g ⇐⇒

X 

p ({s|f (s) =  z}) u (z) ≥ 
z∈Z 

X 
p ({s|g (s) =  z}) u (z) 

z∈Z 

for each f, g ∈ F . 

3For the inifinte prize-set Z, we need the infinite version of the sure-thing principle: 

P 7  If we have f º g (s) given B for each s ∈ B, then f º g given B. Likewise, if f (s) º g given B 

for each s ∈ B, then f º g given B. 

Under P1-P7, we get the expected utility representation for general case. 
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