







# Forward Induction

- One ought to interpret the actions as outcomes of conscious choice even off the path.
- Intuitive criterion
- Mistaken theories

### Strong belief in rationality

At any history of the game, each agent is assumed to be rational if possible. (That is, if there are two strategies s and s' of a player i that are consistent with a history of play, and if s is strictly dominated but s' is not, at this history no player j believes that i plays s.)





## Table for the bidding game

 $U_i = 20(2 + 2\min_i bid_i - bid_i)$ 

| bid 1 60<br>2 40 80 - | min | 1  | 2  | 3   |
|-----------------------|-----|----|----|-----|
|                       | bid |    |    |     |
| 2 40 80 -             | 1   | 60 | -  | -   |
|                       | 2   | 40 | 80 | -   |
| 3 20 60 100           | 3   | 20 | 60 | 100 |

### Nash equilibria of bidding game

- 3 equilibria: s<sup>1</sup> = everybody plays 1; s<sup>2</sup> = everybody plays 2; s<sup>3</sup> = everybody plays 3.
- Assume each player trembles with probability  $\varepsilon < 1/2$ , and plays each unintended strategy w.p.  $\varepsilon/2$ , e.g., w.p.  $\varepsilon/2$ , he thinks that such other equilibrium is to be played.
  - $-s^3$  is an equilibrium iff
  - $-s^2$  is an equilibrium iff
  - s<sup>1</sup> is an equilibrium iff



### Bidding game with entry fee

Each player is first to decide whether to play the bidding game (E or X); if he plays, he is to pay a fee p > 60.

| min | 1  | 2  | 3   |
|-----|----|----|-----|
| Bid |    |    |     |
| 1   | 60 | -  | -   |
| 2   | 40 | 80 | -   |
| 3   | 20 | 60 | 100 |

For each m =1,2,3,  $\exists$ SPE: (m,m,m) is played in the bidding game, and players play the game iff  $20(2+m) \ge p$ .

Forward induction: when 20(2+m) < p, (Em) is strictly dominated by (Xk). After E, no player will assign positive probability to min bid  $\leq$  m. FI-Equilibria: (Em,Em,Em) where  $20(2+m) \ge p$ .

What if an auction before the bidding game?

















## Testing an equilibrium

- U\*(t) = expected utility of type t in equilibrium;
- 1. Pick a criterion, saying that particular out-of equilibrium message (OEM) cannot be sent by some type t. Also, say that a will not bet taken in response to m if a is not in BR(T(m),m). Iterate.  $[T^{s}(m)]$
- For each OEM m, consider all sequential equilibrium responses of R to m in the original game. Are all of of these are sequentially rational, given T<sup>s</sup>(m). If not, FAIL.



























If 2's payoff at any n is x and 2 is mixing,  
then  

$$x = \mu_{n}(x+1) + (1 - \mu_{n})[(x-1)p_{n} + (1 - p_{n})(x+1)]$$

$$= \mu_{n}(x+1) + (1 - \mu_{n})[(x+1) - 2p_{n}]$$

$$= x+1 - 2p_{n}(1 - \mu_{n})$$

$$\Leftrightarrow (1 - \mu_{n}) p_{n} = 1/2$$

$$\mu_{n-1} = \frac{\mu_{n}}{\mu_{n} + (1 - \mu_{n})(1 - p_{n})} = \frac{\mu_{n}}{\mu_{n} + (1 - \mu_{n}) - p_{n}(1 - \mu_{n})} = 2\mu_{n}$$

$$\mu_{n} = \frac{\mu_{n-1}}{2}$$









