Forward Induction, Signaling and Reputation

14.126 Game Theory
Sergei Izmalkov
Muhamet Yildiz

Road Map

1. Forward Induction
2. Signaling games
3. Sequential Equilibria
4. Intuitive Criteria
5. Reputation
6. Chain-store paradox, finitely repeated games
7. Centipede game with incomplete information
8. Finitely repeated entry-deterrence game with incomplete information.

Forward Induction

The Battle of the Sexes with outside options

Forward Induction

- One ought to interpret the actions as outcomes of conscious choice even off the path.
- Intuitive criterion
- Mistaken theories

Strong belief in rationality

At any history of the game, each agent is assumed to be rational if possible. (That is, if there are two strategies s and s' of a player i that are consistent with a history of play, and if s is strictly dominated but s ' is not, at this history no player j believes that i plays s.)

Burning Money

Table for the bidding game

$$
\mathrm{U}_{\mathrm{i}}=20\left(2+2 \mathrm{~min}_{\mathrm{j}} \mathrm{bid}_{\mathrm{j}}-\mathrm{bid}_{\mathrm{i}}\right)
$$

min	1	2	3
1	60	-	-
2	40	80	-
3	20	60	100

Nash equilibria of bidding game

- 3 equilibria: $\mathrm{s}^{1}=$ everybody plays $1 ; \mathrm{s}^{2}=$ everybody plays 2 ; $\mathrm{s}^{3}=$ everybody plays 3 .
- Assume each player trembles with probability $\varepsilon<1 / 2$, and plays each unintended strategy w.p. $\varepsilon / 2$, e.g., w.p. $\varepsilon / 2$, he thinks that such other equilibrium is to be played.
$-s^{3}$ is an equilibrium iff
$-s^{2}$ is an equilibrium iff
$-\mathrm{s}^{1}$ is an equilibrium iff

Bidding game with entry fee

Each player is first to decide whether to play the bidding game (E or X); if he plays, he is to pay a fee $\mathrm{p}>60$.

$\underbrace{}_{\text {Bid }} \min$	1	2	3
1	60	-	-
2	40	80	-
3	20	60	100

For each $m=1,2,3, \exists$ SPE: $(\mathrm{m}, \mathrm{m}, \mathrm{m})$ is played in the bidding game, and players play the game iff $20(2+\mathrm{m}) \geq \mathrm{p}$.
Forward induction: when $20(2+\mathrm{m})<\mathrm{p},(\mathrm{Em})$ is strictly dominated by (Xk). After E, no player will assign positive probability to \min bid $\leq \mathrm{m}$. FI-Equilibria: (Em,Em,Em) where $20(2+\mathrm{m}) \geq \mathrm{p}$.
What if an auction before the bidding game?

Signaling

Model

- Players: (S)ender, (R)eceiver

1. Nature selects t from T - the probability distribution is π;
2. S observes t, and sends message m from a set M;
3. R observes $\mathrm{m}-$ but not $\mathrm{t}-$ and takes an action a;
4. S gets $\mathrm{U}^{\mathrm{S}}(\mathrm{t}, \mathrm{m}, a)$ and R gets $\mathrm{U}^{\mathrm{R}}(\mathrm{t}, \mathrm{m}, a)$.

This is common knowledge.

Beer - Quiche

Good equilibrium

Bad equilibrium

Cho -- Kreps

- $\mathrm{T}(\mathrm{m}) ; \mathrm{M}(\mathrm{t}) ; \mathrm{A}(\mathrm{m})$
- Action set is finite;
- $\rho(\mathrm{m} ; \mathrm{t})=$ the probability that t sends m ;
- $\phi(\mathrm{a} ; \mathrm{m})=$ the probability that R chooses a , receiving m ;
- $B R(\mu, m)=\arg \max _{a \in A(m)} \sum_{t \in T(m)} U^{R}(t, m, a) \mu(t)$
- MBR

$$
B R(I, m)=\bigcup_{\{\mu \mu(I)=1\}} B R(\mu, m)
$$

Sequential equilibrium

- Beliefs: $\mu(t \mid m)=\left\{\begin{array}{cc}\frac{\pi(t) \rho(m ; t)}{\sum_{t \in T(m)} \pi\left(t^{\prime}\right) \rho\left(m ; t^{\prime}\right)} & \text { if } \\ \text { something } & \sum_{r \in T(m)} \pi\left(t^{\prime}\right) \rho\left(m ; t^{\prime}\right)>0 \\ \text { otherwise }\end{array}\right.$
- $\rho(\mathrm{m}, \mathrm{t})>0=>\Sigma_{\mathrm{a}} \mathrm{U}^{\mathrm{S}}(\mathrm{t}, \mathrm{m}, \mathrm{a}) \phi(\mathrm{a} ; \mathrm{m})$ is maximized at m ;
- $\phi(. ; \mathrm{m})$ is in $\operatorname{MBR}(\mu(. \mid \mathrm{m}), \mathrm{m})$

Testing an equilibrium

- $\quad U^{*}(t)=$ expected utility of type t in equilibrium;

1. Pick a criterion, saying that particular out-of equilibrium message (OEM) cannot be sent by some type t. Also, say that a will not bet taken in response to m if a is not in $\operatorname{BR}(\mathrm{T}(\mathrm{m}), \mathrm{m})$. Iterate. [$\mathrm{T}^{\mathrm{s}}(\mathrm{m})$]
2. For each OEM m , consider all sequential equilibrium responses of R to m in the original game. Are all of of these are sequentially rational, given $\mathrm{T}^{\mathrm{s}}(\mathrm{m})$. If not, FAIL.

Dominance

- For any OEM m, eliminate t if $\exists \mathrm{m}$ ' s.t.

$$
\min _{a \in A\left(m^{\prime}\right)} U^{S}\left(t, m^{\prime}, a\right)>\max _{a \in A(m)} U^{S}(t, m, a)
$$

Equilibrium Dominance \& Intuitive Criterion

Equilibrium Domination: $\forall \mathrm{OEM} \mathrm{m}$, eliminate (t, m) if

$$
U^{*}(t)>\max _{a \in A(m)} U^{S}(t, m, a)
$$

Intuitive Criterion: $\forall \mathrm{OEM} \mathrm{m}$, define
$\widetilde{T}(m)=\left\{t \mid U^{*}(t)>\max _{a \in B R(T(m), m)} U^{S}(t, m, a)\right\}$. If $\exists\left(\mathrm{t}^{\prime}, \mathrm{m}\right)$ s.t.

$$
U^{*}\left(t^{\prime}\right)<\min _{a \in B R(T(m) \backslash \widetilde{T}(m), m)} U^{S}\left(t^{\prime}, m, a\right)
$$

then the equilibrium fails the Intuitive Criterion.

Good equilibrium

Reputation

Entry deterrence

Facts about the Centipede

- Every information set of 2 is reached with positive probability.
- 2 always goes across with positive probability.
- If 2 strictly prefers to go across at n , then
- 1 must strictly prefer to go across at $\mathrm{n}+1$,
- 2 must strictly prefer to go across at $\mathrm{n}+2$,
- her posterior at n is her prior.
- For any $\mathrm{n}>2,1$ goes across with positive probability. If 1 goes across w/p 1 at n, then 2's posterior at $\mathrm{n}-1$ is her prior.

If 2's payoff at any n is x and 2 is mixing, then

$$
\begin{gathered}
\mathrm{x}=\mu_{\mathrm{n}}(\mathrm{x}+1)+\left(1-\mu_{\mathrm{n}}\right)\left[(\mathrm{x}-1) \mathrm{p}_{\mathrm{n}}+\left(1-\mathrm{p}_{\mathrm{n}}\right)(\mathrm{x}+1)\right] \\
=\mu_{\mathrm{n}}(\mathrm{x}+1)+\left(1-\mu_{\mathrm{n}}\right)\left[(\mathrm{x}+1)-2 \mathrm{p}_{\mathrm{n}}\right] \\
=\mathrm{x}+1-2 \mathrm{p}_{\mathrm{n}}\left(1-\mu_{\mathrm{n}}\right) \\
\Leftrightarrow\left(1-\mu_{\mathrm{n}}\right) \mathrm{p}_{\mathrm{n}}=1 / 2 \\
\mu_{n-1}=\frac{\mu_{n}}{\mu_{n}+\left(1-\mu_{n}\right)\left(1-p_{n}\right)}=\frac{\mu_{n}}{\mu_{n}+\left(1-\mu_{n}\right)-p_{n}\left(1-\mu_{n}\right)}=2 \mu_{n} \\
\mu_{n}=\frac{\mu_{n-1}}{2}
\end{gathered}
$$

Entry-deterrence with doubt

- Incumbent is as before.
- Each day there is a new entrant.
- Two types of entrants:
$-\mathrm{W} / \mathrm{pq}<1 / 2$, tough, $\mathrm{u}($ enter, fight $)=1$;
$-W / p 1-q$, weak, $u($ enter, fight $)=1$.

Sequential Equilibrium

- Tough entrant (tE) always enters; strong incumbent (sI) always fights.
- If any entrant (E) is accommodated; it becomes common knowledge that incumbent (I) is weak
- In the last period,
- wI accommodates;
- wE enters iff
$-1 \mu_{0}+\left(1-\mu_{0}\right) \geq 0 \Leftrightarrow \mu_{0} \leq 1 / 2$
- if $\mu_{0}<1 / 2$, at $\mathrm{n}=1$, wI accommodates $=>\mu_{0}=1$.
- if $\mu_{0}>1 / 2$, at $\mathrm{n}=1$, wI fights $=>\mu_{0}=0.001$.
- $\mu_{0}=1 / 2$.
- $\mu_{0}=\mu_{1} /\left(\mu_{1}+\phi_{1}\left(1-\mu_{1}\right)\right)=1 / 2$
$\Leftrightarrow \mu_{1}=\phi_{1}\left(1-\mu_{1}\right)$
$=>\operatorname{Prob}\left(\right.$ fight $\left.\mid \mu_{1}\right)=2 \mu_{1}$.
$\Rightarrow>$ at $n=1$, wE enters iff $2 \mu_{1}<1 / 2$ i.e., $\mu_{1}<1 / 4$.
- Similarly, $\mu_{1}=1 / 4$.
- Proceed as before.

