Learning 5:

Adjustment with persistent noise

```
(Kandori, Mailath, Rob)
```

Sergei Izmalkov and Muhamet Yildiz

- 1 Adjustment Process
- 1.1 Game
 - N population size.
 - 2×2 symmetric game. (A, B) actions.
 - Suppose there are 3 NE:
 - $(A, A); (B, B); (\alpha^*A + (1 \alpha^*)B, \alpha^*A + (1 \alpha^*)B).$
 - Suppose $\alpha^* < \frac{1}{2} \Rightarrow (A, A)$ risk-dominant NE.

	Α	В
А	2,2	0,0
В	0,0	1,1

Here $\alpha^* = \frac{1}{3}$.

1.2 State space

- $\theta_t \in \Theta = [0, \dots, N] \#$ of players using A.
- Denote

$$u_A(\theta_t) = \frac{\theta_t}{N} u(A, A) + \frac{N - \theta_t}{N} u(A, B); \ u_B(\theta_t) = \dots$$

1.3 Deterministic process

- "Darwinian" dynamics: $\theta_{t+1} = P(\theta_t)$, where $sgn(P(\theta_t) - \theta_t) = sgn(u_A(\theta_t) - u_B(\theta_t)).$
- Ex⁰: Best-response dynamics:

 $\theta_{t+1} = BR(\theta_t) = \begin{cases} N, \text{ for } u_A(\theta_t) > u_B(\theta_t), \\ \theta_t, \text{ for } u_A(\theta_t) = u_B(\theta_t), \\ 0, \text{ for } u_A(\theta_t) < u_B(\theta_t). \end{cases}$

1.4 Noise

- 2ε probability that a player "mutates" (is replaced) (*after her intended choice), independent across players.
- Note: even if only 1 players "consciously" adjusts at a time, there is a positive probability that the whole population mutates at once.
- Clearly P^{ε} is ergodic.

- 1.5 Limiting distribution (in Ex^0)
 - N^* is arg min_m $(m > N\alpha^*)$;
 - $BR(\theta_t \ge N^*) = A;$
 - $D_A = \{\theta \ge N^*\}, \ D_B = \{\theta < N^*\}.$
 - Only basins of attraction matter: Intentional play depends on which of the two states θ_t is and not on θ_t itself.

2 Result

Proposition: If N is large enough so that $N^* < \frac{N}{2}$, then limit φ^* of invariant distributions puts a point mass on $\theta_t = N$, corresponding to all players playing A.

Proof:

1. For any $\theta_t \in D_A$ ($\in D_B$) probability distribution $P^{\varepsilon}(\theta_t)$ is the same — the problem can be reduced to two states.

2. Define

$$q_{BA} = \Pr(\theta_{t+1} \in D_B | \theta_t \in D_A);$$

$$q_{AB} = \Pr(\theta_{t+1} \in D_A | \theta_t \in D_B).$$

$$\begin{bmatrix} \varphi_1 \\ \varphi_2 \end{bmatrix} = \begin{bmatrix} 1 - q_{AB} & q_{AB} \\ q_{BA} & 1 - q_{BA} \end{bmatrix} \begin{bmatrix} \varphi_1 \\ \varphi_2 \end{bmatrix}$$

and find

$$\frac{\varphi_2}{\varphi_1} = \frac{q_{BA}}{q_{AB}}.$$

4. Take $\lim_{\varepsilon \to 0}$ of $\frac{\varphi_2}{\varphi_1}$.

To change $A \to B$, at least $N - N^*$ mutations into B are needed; for $B \to A$ at least N^* mutations must happen:

3 Summary

- Selection of risk-dominant equilibrium as the unique long-run steady-state in 2 × 2 games (almost all models).
- "Learning" procedures tend to select equilibria that are relatively robust to mutations different from Pareto efficiency.

	А	В
Α	2,2	-a,0
В	0 ,- <i>a</i>	1,1

⁽B, B) is risk-dominant if 1 + a > 2.

• Probabilities (ratios of them) of escaping basins of attraction matter.

4 Local interaction (Ellison)

• If the system starts near "wrong" equilibrium the expected time of adjustment may be quite large.

In KMR model: the probability of escaping is $\approx \varepsilon^{N^*}.$

- Goal: to explain why stochastic adjustment processes might select the risk-dominant equilibrium in an economically relevant time frame.
- Players located on the circle and interact only with neighbors.
- Player selects an action and is matched randomly with one of the two neighbors.
- Observation: Pair of adjacent As wins the population.

4.1 Adjustment process

- 1. 2×2 symmetric game. (A, B) actions.
- 2. $\Theta = \{A, B\}^N.$
- 3. Deterministic process: player with A switches its neighbors to A.

Steady states: "All A", "All B", "ABAB... - BABA..." cycle.

- 4. Noise: Probability 2ε of mutating.
- 5. Limiting distribution: "All A",

Convergence: Minimal cost of transition from "all B" is 2 if N is even and is 1 if N is odd. (number of mutations it takes to switch to "all A".)