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1 Adjustment Process 

1.1 Game 

• N — population size. 

• 2 × 2 symmetric game. (A, B) — actions. 

• Suppose there are 3 NE: 

(A, A); (B, B); (α ∗ A+(1−α ∗ )B, α ∗ A+(1−α ∗ )B). 

• Suppose α∗ < 1 
2 ⇒ (A, A) — risk-dominant NE. 

A B 
A 2,2 0,0 
B 0,0 1,1 

Here α∗ = 1 
3. 



1.2 State space 

• θt ∈ Θ = [0, . . . , N  ] — # of players using A. 

• Denote 

uA(θt) =  
θt 

N 
u(A, A)+ 

N − θt 
N 

u(A, B); uB(θt) =  . . . .  

1.3 Deterministic process 

• “Darwinian” dynamics: θt+1 = P (θt), where 

sgn(P (θt) − θt) =  sgn(uA(θt) − uB(θt)). 

• Ex0: Best-response dynamics: 

θt+1 = BR(θt) =  

   

N, for uA(θt) > uB(θt), 
θt, for uA(θt) =  uB(θt), 
0, for uA(θt) < uB(θt). 

1.4 Noise 

• 2ε — probability that a player “mutates” (is re-

placed) (*after her intended choice), independent 

across players. 

• Note: even if only 1 players “consciously” adjusts 

at a time, there is a positive probability that the 

whole population mutates at once. 

• Clearly P ε is ergodic. 



1.5 Limiting distribution (in Ex0) 

• N ∗ is arg minm(m > N  α ∗); 

• BR(θt ≥ N ∗) =  A; 

• DA = {θ ≥ N ∗}, DB = {θ < N  ∗}. 

• Only basins of attraction matter: Intentional play 

depends on which of the two states θt is and not 

on θt itself. 

2 Result 

Proposition: If N is large enough so that N ∗ < N 
2 , 

then limit ϕ ∗ of invariant distributions puts a point 

mass on θt = N , corresponding to all players playing 

A. 

Proof: 

1. For any θt ∈ DA (∈ DB) probability distribution 

P ε(θt) is the same – the problem can be reduced 
to two states. 

2. Define 

qBA = Pr(θt+1 ∈ DB|θt ∈ DA); 

qAB = Pr(θt+1 ∈ DA|θt ∈ DB). 



3. Solve " 
ϕ1 
ϕ2 

# 

= 

" 
1 − qAB qAB 
qBA 1 − qBA 

# "  
ϕ1 
ϕ2 

# 

and find 
ϕ2 

ϕ1 
= 
qBA 

qAB 
. 

4. Take limε→0 of 
ϕ2 
ϕ1 
. 

To change A → B, at least N − N ∗ mutations into B 

are needed; for B → A at least N ∗ mutations must 

happen: 

qBA ≈ 

Ã 
N 
N ∗ 

! 

εN −N ∗ 
(1 − ε)N ∗ 

; 

qAB ≈ 

Ã 
N 
N ∗ 

! 

εN ∗ 
(1 − ε)N −N ∗ 

. 

Thus ϕ2 
ϕ1 
→ 0 as ε → 0. 

3 Summary 

• Selection of risk-dominant equilibrium as the unique 

long-run steady-state in 2 × 2 games (almost all 

models). 

• “Learning” procedures tend to select equilibria 

that are relatively robust to mutations – different 
from Pareto efficiency. 

A B 
A 2,2 −a,0 
B 0,−a 1,1 

(B, B) is risk-dominant if 1 + a >  2. 

• Probabilities (ratios of them) of escaping basins 

of attraction matter. 



4 Local interaction (Ellison) 

• If the system starts near “wrong” equilibrium the 
expected time of adjustment may be quite large. 

In KMR model: the probability of escaping is ≈ 
εN ∗ 

. 

• Goal: to explain why stochastic adjustment processes 
might select the risk-dominant equilibrium in an 
economically relevant time frame. 

• Players located on the circle and interact only 
with neighbors. 

• Player selects an action and is matched randomly 
with one of the two neighbors. 

• Observation: Pair of adjacent As wins the popu-
lation. 

4.1 Adjustment process 

1. 2 × 2 symmetric game. (A, B) — actions. 

2. Θ = {A, B}N . 

3. Deterministic process: player with A switches its 
neighbors to A. 

Steady states: “All A”, “All B”, “ABAB . . .  − 
BABA . . .” cycle. 

4. Noise: Probability 2ε of mutating. 

5. Limiting distribution: “All A”, 

Convergence: Minimal cost of transition from “all 
B” is 2 if N is even and is 1 if N is odd. (number 
of mutations it takes to switch to “all A”.) 


