Learning 5:

Adjustment with persistent noise

(Kandori, Mailath, Rob)

Sergei Izmalkov and Muhamet Yildiz

1 Adjustment Process

1.1 Game

- N - population size.
- 2×2 symmetric game. (A, B) - actions.
- Suppose there are 3 NE:
$(A, A) ;(B, B) ;\left(\alpha^{*} A+\left(1-\alpha^{*}\right) B, \alpha^{*} A+\left(1-\alpha^{*}\right) B\right)$.
- Suppose $\alpha^{*}<\frac{1}{2} \Rightarrow(A, A)$ - risk-dominant NE.

	A	B
A	2,2	0,0
B	0,0	1,1

Here $\alpha^{*}=\frac{1}{3}$.

1.2 State space

- $\theta_{t} \in \Theta=[0, \ldots, N]-\#$ of players using A.
- Denote

$$
u_{A}\left(\theta_{t}\right)=\frac{\theta_{t}}{N} u(A, A)+\frac{N-\theta_{t}}{N} u(A, B) ; u_{B}\left(\theta_{t}\right)=\ldots
$$

1.3 Deterministic process

- "Darwinian" dynamics: $\theta_{t+1}=P\left(\theta_{t}\right)$, where

$$
\operatorname{sgn}\left(P\left(\theta_{t}\right)-\theta_{t}\right)=\operatorname{sgn}\left(u_{A}\left(\theta_{t}\right)-u_{B}\left(\theta_{t}\right)\right)
$$

- Ex ${ }^{0}$: Best-response dynamics:

$$
\theta_{t+1}=B R\left(\theta_{t}\right)=\left\{\begin{array}{l}
N, \text { for } u_{A}\left(\theta_{t}\right)>u_{B}\left(\theta_{t}\right) \\
\theta_{t}, \text { for } u_{A}\left(\theta_{t}\right)=u_{B}\left(\theta_{t}\right) \\
0, \text { for } u_{A}\left(\theta_{t}\right)<u_{B}\left(\theta_{t}\right)
\end{array}\right.
$$

1.4 Noise

- 2ε - probability that a player "mutates" (is replaced) (*after her intended choice), independent across players.
- Note: even if only 1 players "consciously" adjusts at a time, there is a positive probability that the whole population mutates at once.
- Clearly P^{ε} is ergodic.

1.5 Limiting distribution (in Ex ${ }^{0}$)

- N^{*} is $\arg \min _{m}\left(m>N \alpha^{*}\right)$;
- $B R\left(\theta_{t} \geq N^{*}\right)=A ;$
- $D_{A}=\left\{\theta \geq N^{*}\right\}, D_{B}=\left\{\theta<N^{*}\right\}$.
- Only basins of attraction matter: Intentional play depends on which of the two states θ_{t} is and not on θ_{t} itself.

2 Result

Proposition: If N is large enough so that $N^{*}<\frac{N}{2}$, then limit φ^{*} of invariant distributions puts a point mass on $\theta_{t}=N$, corresponding to all players playing A.

Proof:

1. For any $\theta_{t} \in D_{A}\left(\in D_{B}\right)$ probability distribution $P^{\varepsilon}\left(\theta_{t}\right)$ is the same - the problem can be reduced to two states.
2. Define

$$
\begin{aligned}
q_{B A} & =\operatorname{Pr}\left(\theta_{t+1} \in D_{B} \mid \theta_{t} \in D_{A}\right) \\
q_{A B} & =\operatorname{Pr}\left(\theta_{t+1} \in D_{A} \mid \theta_{t} \in D_{B}\right)
\end{aligned}
$$

3. Solve

$$
\left[\begin{array}{c}
\varphi_{1} \\
\varphi_{2}
\end{array}\right]=\left[\begin{array}{cc}
1-q_{A B} & q_{A B} \\
q_{B A} & 1-q_{B A}
\end{array}\right]\left[\begin{array}{l}
\varphi_{1} \\
\varphi_{2}
\end{array}\right]
$$

and find

$$
\frac{\varphi_{2}}{\varphi_{1}}=\frac{q_{B A}}{q_{A B}}
$$

4. Take $\lim _{\varepsilon \rightarrow 0}$ of $\frac{\varphi_{2}}{\varphi_{1}}$.

To change $A \rightarrow B$, at least $N-N^{*}$ mutations into B are needed; for $B \rightarrow A$ at least N^{*} mutations must happen:

$$
\begin{aligned}
q_{B A} & \approx\binom{N}{N^{*}} \varepsilon^{N-N^{*}}(1-\varepsilon)^{N^{*}} \\
q_{A B} & \approx\binom{N}{N^{*}} \varepsilon^{N^{*}}(1-\varepsilon)^{N-N^{*}}
\end{aligned}
$$

Thus $\frac{\varphi_{2}}{\varphi_{1}} \rightarrow 0$ as $\varepsilon \rightarrow 0$.

3 Summary

- Selection of risk-dominant equilibrium as the unique long-run steady-state in 2×2 games (almost all models).
- "Learning" procedures tend to select equilibria that are relatively robust to mutations - different from Pareto efficiency.

	A	B
A	2,2	$-a, 0$
B	$0,-a$	1,1

(B, B) is risk-dominant if $1+a>2$.

- Probabilities (ratios of them) of escaping basins of attraction matter.

4 Local interaction (Ellison)

- If the system starts near "wrong" equilibrium the expected time of adjustment may be quite large.

In KMR model: the probability of escaping is \approx $\varepsilon^{N^{*}}$.

- Goal: to explain why stochastic adjustment processes might select the risk-dominant equilibrium in an economically relevant time frame.
- Players located on the circle and interact only with neighbors.
- Player selects an action and is matched randomly with one of the two neighbors.
- Observation: Pair of adjacent $A \mathrm{~s}$ wins the population.

4.1 Adjustment process

1. 2×2 symmetric game. (A, B) - actions.
2. $\Theta=\{A, B\}^{N}$.
3. Deterministic process: player with A switches its neighbors to A.

Steady states: "All A ", "All B ", " $A B A B \ldots-$ $B A B A \ldots$..." cycle.
4. Noise: Probability 2ε of mutating.
5. Limiting distribution: "All A ",

Convergence: Minimal cost of transition from "all $B^{\prime \prime}$ is 2 if N is even and is 1 if N is odd. (number of mutations it takes to switch to "all A ".)

