Learning 3:

Replicator dynamics & Adjustment with persistent noise

Sergei Izmalkov and Muhamet Yildiz

Road Map

1. Definition

- 2. Asymptotic behavior of Replicator dynamics
 - (a) RD vs. Rationalizability
 - (b) RD vs. ESS
 - (c) RD vs. Perfect equilibria
- 3. Generalization of RD
- 4. Learning foundations of RD
 - (a) Social learning
 - (b) Stimulus-response
- 5. Adjustment models with persistent randomness

1 Notation

- G = (S, A) a symmetric, 2-player game where
- S is the strategy space;
- $A_{i,j} = u_1(s_i, s_j) = u_2(s_j, s_i);$
- $x, y \in \Delta$ are mixed strategies; $u(x, y) = x^T A y$;
- u(ax + (1 a)y, z) = au(x, z) + (1 a)u(y, z).

2 ESS

for

Definition: A (mixed) strategy x is said to be *evolutionarily stable* iff, given any $y \neq x$, there exists $\epsilon_y > 0$ s.t.

$$u(x,(1-arepsilon)x+arepsilon y)>u(y,(1-arepsilon)x+arepsilon y),$$
each $arepsilon$ in $(0,\epsilon_y].$

Fact: x is evolutionarily stable iff, $\forall y \neq x$,

1. $u(x,x) \ge u(y,x)$, and

2. $u(x,x) = u(y,x) \Longrightarrow u(x,y) > u(y,y).$

3 Replicator dynamics

- $p_i(t) = \#$ people who plays s_i at t.
- p(t) = total population at t.
- $x_i(t) = \frac{p_i(t)}{p(t)}; x(t) = (x_1(t), \dots x_k(t)).$
- •

 $\dot{x}_i = [u(s_i, x) - u(x, x)] x_i = u(s_i - x, x) x_i.$

4 RD in Rock-Scissors-Paper game

	R	S	Р
R	1,1	2+a,0	0,2+a
S	0,2+a	1,1	2+a,0
Ρ	2+a,0	0,2+a	1,1

- Unique Nash Equilibrium (s^*, s^*) , where $x^* = (\frac{1}{3}, \frac{1}{3}, \frac{1}{3})$.
- Define $h(x) = \log(x_1 x_2 x_3)$.
 - $\dot{h}(x) = rac{a}{2} \left(3 ||x||^2 1
 ight).$
- $\min_x ||x|| = 1$, $\arg \min = \left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}\right)$.

4.1 Dynamics

Three scenarios:

1. a = 0 — original RSP; all trajectories are cycles.

2. $a < 0 - x^*$ is unstable.

3. $a > 0 - x^*$ is stable.

5 Rationalizability

 ξ(t, x₀) is the solution to replicator dynamics starting at x₀.

Theorem: If a pure strategy *i* is strictly dominated (by y), then $\lim_t \xi_i(t, x_0) = 0$ for any interior x_0 .

Proof: Define $v_i(x) = \log(x_i) - \sum_j y_j \log(x_j)$. Then,

$$egin{aligned} rac{dv_i(x(t))}{dt} &= rac{\dot{x}_i}{x_i} - \sum_j y_j rac{\dot{x}_j}{x_j} \ &= u(s_i - x, x) - \sum_j y_j u(s_j - x, x) \ &= u(s_i - y, x) \leq -\epsilon < 0. \end{aligned}$$
Hence, $v_i(m{\xi}(t, x_0)) o -\infty$, so $m{\xi}_i(t, x_0) o 0.$

Theorem: If *i* is not rationalizable, then $\lim_t \xi_i(t, x_0) = 0$ for any interior x_0 .

6 Theorems

Theorem: Every ESS x is an asymptotically stable steady state of replicator dynamics.

(If the individuals can inherit the mixed strategies, the converse is also true.)

Proof: Define C = supp(x), $Q = \{y | C \subset supp(y)\}$, $H(y) = \sum_{i \in C} x_i \log(y_i)$.

- 1. x is a local maximum of H, and
- 2. \exists a neighborhood n(x) s.t. H is increasing along any trajectory in $Q \cap n(x)$.

$$\dot{H} = \sum_{i \in C} x_i \frac{\dot{y}_i}{y_i} = \sum_{i \in C} x_i u(s_i - y, y) = u(x - y, y) > 0.$$

 $NE \rightarrow Steady state in RD;$

Stable SS in RD \rightarrow NE.

Theorem: If x is an asymptotically stable steady state of replicator dynamics, then (x, x) is a perfect Nash equilibrium.

Proof:

- 1. (x, x) is a Nash equilibrium.
 - (a) x is stable $=> \dot{x}_i = u(s_i x, x)x_i = 0.$
 - (b) Suppose $(x, x) \notin NE$.
 - (c) $\exists i \notin supp(x) : u(s_i x, x) > 0$. [by 1 and 2]
 - (d) $\exists \delta > 0, n(x) : u(s_i y, y) > \delta \ \forall y \in n(x).$
- (e) $\xi_i(t, y^0) > y_i^0 e^{\delta t}$ if $\xi_i(\cdot, y^0)$ remained in n(x).
- 2. x is not weakly dominated (since ASS).

7 Non-ESS asymptotic stability

	L	М	R
L	0,0	1,-2	1,1
Μ	-2,1	0,0	4,1
R	1,1	1,4	0,0

- $NE = \left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}\right)$; mutant $= \left(0, \frac{1}{2}, \frac{1}{2}\right)$.
- RD is asymptotically stable.
- Note: If mixed strategies can be inherited, $(\frac{1}{3}, \frac{1}{3}, \frac{1}{3})$ becomes instable.

8 General dynamics

Definition: A process is *payoff monotone* iff, at each interior x,

$$u(s_i,x)>u(s_j,x)\Leftrightarrow rac{\dot{x}_i}{x_i}>rac{\dot{x}_j}{x_j}.$$

Theorem: Under any any "regular" payoff monotone dynamics, if strategy i is eliminated by the process of iterated pure strategy strict dominance, then $\lim_{t} x_i(t) = 0$.

9 Social learning

• Ask around; if the other person does better, adopt his strategy.

Emulation dynamics ("medium-enhancing"):

Player 2 is a dummy, $p(L) = \frac{1}{3}$.

	L	R
U	9,0	0,0
D	2,0	2,0

- Ask around; if the other makes u' and you make u, then switch with probability max $\{0, b(u'-u)\}$.
- Aspiration levels.

10 Stimulus-response

- $u(x,y) \in [0,1]$
- $x_i^k(t+1) = (1 \gamma u(s^k(t), \cdot))x_i^k(t) + F(s^k(t), i)\gamma u(s^k(t), \cdot),$ where

$$F(s^{k}(t), i) = 1$$
 if $s^{k}(t) = i$,

 $F(s^k(t), i) = 0$ otherwise.

• Result: As γ goes to 0, trajectories converge to the RD trajectories.