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1 Notation 

• G = (S, A) a symmetric, 2-player game where 

• S is the strategy space; 

• Ai,j = u1(si, sj ) =  u2(sj, si); 

• x, y ∈ ∆ are mixed strategies; u(x, y) =  xT Ay; 

• u(ax + (1 − a)y, z) =  au(x, z) + (1 − a)u(y, z). 

2 ESS 

Definition: A (mixed) strategy x is said to be evo-

lutionarily stable iff, given any y 6= x, there exists 

² y > 0 s.t. 

u(x, (1 − ε)x + εy) > u(y, (1 − ε)x + εy), 

for each ε in (0, ²y]. 

Fact: x is evolutionarily stable iff, ∀y 6= x, 

1. u(x, x) ≥ u(y, x), and 

2. u(x, x) =  u(y, x) =⇒ u(x, y) > u(y, y). 



3 Replicator dynamics 

• pi(t) = #people who plays si at t. 

• p(t) = total population at t. 

• xi(t) =  pi(t) 
p(t) ; x(t) = (x1(t), . . . xk(t)) . 

• 

ẋi = [u(si, x) − u(x, x)] xi = u(si − x, x)xi. 

4 RD in Rock-Scissors-Paper game 

R S P 
R 1,1 2+a,0 0,2+a 
S 0,2+a 1,1 2+a,0 
P 2+a,0 0,2+a 1,1 

• Unique Nash Equilibrium (s ∗ , s  ∗), 
where x ∗ = 
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3, 
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. 

• Define h(x) = log(x1x2x3). 

• 

ḣ(x) =  
a 

2 
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• minx kxk = 1, arg min =  
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. 



4.1 Dynamics 

Three scenarios: 

1. a = 0 – original RSP; all trajectories are cycles. 

2. a <  0 –  x ∗ is unstable. 

3. a >  0 –  x ∗ is stable. 

5 Rationalizability 

• ξ(t, x0) is the solution to replicator dynamics start-

ing at x0. 

Theorem: If a pure strategy i is strictly dominated (by 

y), then limt ξi(t, x0) = 0 for any interior x0. 

Proof: Define vi(x) = log(xi) − 
P 
j yj log(xj). Then, 

dvi(x(t)) 

dt 
= 

ẋi 
xi 
− 
X 

j 
yj 
ẋj 

xj 

= u(si − x, x) − 
X 

j 
yju(sj − x, x) 

= u(si − y, x) ≤ −² <  0. 

Hence, vi(ξ(t, x0)) → −∞, so ξi(t, x0) → 0. 

Theorem: If i is not rationalizable, then limt ξi(t, x0) =  

0 for any interior x0. 



6 Theorems 

Theorem: Every ESS x is an asymptotically stable 

steady state of replicator dynamics. 

(If the individuals can inherit the mixed strate-

gies, the converse is also true.) 

Proof: Define C = supp(x), Q = {y|C ⊂ supp(y)}, 
H(y) =  

P 
i∈C xi log(yi). 

1. x is a local maximum of H, and 

2. ∃ a neighborhood n(x) s.t. H is increasing along 

any trajectory in Q ∩ n(x). 

Ḣ = 
X 

i∈C 
xi 
ẏi 
yi 
= 
X 

i∈C 
xiu(si−y, y) =  u(x−y, y) > 0. 

NE → Steady state in RD; 

Stable SS in RD → NE. 

Theorem: If x is an asymptotically stable steady state 
of replicator dynamics, then (x, x) is a perfect Nash 
equilibrium. 

Proof: 

1. (x, x) is a Nash equilibrium. 

(a) x is stable => ẋi = u(si − x, x)xi = 0. 

(b) Suppose (x, x) 6∈ NE. 

(c) ∃i 6∈ supp(x) :  u(si − x, x) > 0. [by 1 and 2] 

(d) ∃δ > 0, n(x) :  u(si − y, y) > δ ∀y ∈ n(x). 

(e) ξi(t, y
0) > y0 

i e
δt if ξi(·, y0) remained in n(x). 

2. x is not weakly dominated (since ASS). 



7 Non-ESS asymptotic stability 

L M R 
L 0,0 1,-2 1,1 
M -2,1 0,0 4,1 
R 1,1 1,4 0,0 

• NE  = 
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; mutant =  
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. 

• RD is asymptotically stable. 

• Note: If mixed strategies can be inherited, 
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becomes instable. 

8 General dynamics 

Definition: A process is payoff monotone iff, at each 

interior x, 

u(si, x) > u(sj , x) ⇔ 
ẋi 
xi 
> 
ẋj 

xj 
. 

Theorem: Under any any “regular” payoff monotone 

dynamics, if strategy i is eliminated by the process of 

iterated pure strategy strict dominance, then limt xi(t) =  

0. 



9 Social learning 

• Ask around; if the other person does better, adopt 

his strategy. 

Emulation dynamics (“medium-enhancing”): 

Player 2 is a dummy, p(L) =  1 
3. 

L R 
U 9,0 0,0 
D 2,0 2,0 

• Ask around; if the other makes u0 and you make 

u, then switch with probability max{0, b(u0 − u)}. 

• Aspiration levels. 

10 Stimulus-response 

• u(x, y) ∈ [0, 1] 

• xk 
i (t+1) = (1−γu(sk(t), ·))xk 

i (t)+F (sk(t), i)γu(sk(t), ·), 
where 

F (sk(t), i) = 1  if sk(t) =  i, 

F (sk(t), i) = 0  otherwise. 

• Result: As γ goes to 0, trajectories converge to 

the RD trajectories. 


