14.126 Game Theory Problem Set 3

Due after Class \#17

1. Given any finite event E and two agents 1 and 2 , show that there exists some integer \bar{n} such that for any chain $i_{0} \neq i_{1} \neq i_{2} \neq \cdots \neq i_{n-1} \neq i_{n}$ with $n \geq \bar{n}$, the event

$$
F=K_{i_{0}} K_{i_{1}} K_{i_{2}} \cdots K_{i_{n-1}} K_{i_{n}} E
$$

is a public event between 1 and 2 , i.e., $C K_{1,2} F=F$.
2. There are three players, 1,2 , and 3 , and three states, a, b, and c. The information partitions of players 1,2 , and 3 are $\{\{a\},\{b\},\{c\}\},\{\{a, b\},\{c\}\}$, and $\{\{a\},\{b, c\}\}$, respectively. There is a (random) variable v such that $v(a)=v(b)=-1$, and $v(c)=2$. Is it common knowledge at state a that v is -1 ? Assume that players have a common prior, according to which each state is equally likely. Under this information structure, players play the following game. First 1 chooses between Left and Right. If he chooses Left, the game ends, yielding the payoff vector $(1,1,1)$. If he chooses Right, then 2 is to choose between Left and Right. If 2 chooses Left, the game ends, when the payoff vector is $(0,2,0)$. If 2 chooses Right, then 3 is to choose between Left and Right, ending the game. If 3 chooses Left, the payoff vector is $(2,0, v)$; if he chooses Right the payoff vector is $(3,3,0)$. Describe all sequential equilibria in pure strategies.
3. Consider a Cournot duopoly where the inverse-demand function is given by

$$
P=1-Q
$$

where P is the price of a good and $Q=q_{1}+q_{2}$ where q_{i} is the supply of firm $i \in N=\{1,2\}$. The marginal cost of firm i is denoted by c_{i}, so that its payoff function is

$$
u_{i}\left(q_{1}, q_{2}\right)=q_{i}\left(1-q_{1}-q_{2}-c_{i}\right) .
$$

The inverse demand and payoff functions are common knowledge. The marginal costs are privately known by the firms themselves. Construct a general infinite hierarchy of beliefs about the marginal costs such that a player's beliefs are independent from the other players' beliefs and from their own beliefs at other orders. Write t_{i} for the generic type of player i.
(a) Define a strategy.
(b) Define a Nash equilibrium. For the remainder of the question fix a Nash equilibrium q^{*} of this game.
(c) For each i and t_{i}, write the first order condition that $q_{i}^{*}\left(t_{i}\right)$ must satisfy. (Make sure that $q_{i}^{*}\left(t_{i}\right)$ is written as a function of c_{i} and the expectation of q_{j}^{*} according to i.)
(d) Now recognize that q_{j}^{*} must satisfy a similar equation. Substituting this into the previous one, write $q_{i}^{*}\left(t_{i}\right)$ in terms of c_{i}, i 's expectation of c_{j}, and i 's expectation of j 's expectation of q_{i}^{*}.
(e) Generalizing the procedure above, compute $q_{i}^{*}\left(t_{i}\right)$ (in terms of the costs and higher order expectations about these costs).
(f) How can you generalize this to all two-person games with quadratic utility functions, where $u_{i}\left(s_{i}, s_{j}, a_{i}\right)=-\left(s_{i}-a_{i}-b_{i} s_{j}\right)^{2}$ for some real numbers a_{i} and b_{i} where b_{i} is common knowledge. What happens if the equilibrium is unstable?
4. For two players, find (i) a common utility function u for some underlying uncertainty θ and (ii) an incomplete information model, such that it is common knowledge that (1) the players are rational, and (2) they play different strategies. [Here, if a player plays x, then he gets $u(x, \theta)$.]

