14.126 Game Theory Problem Set 4

Due after Class #21

1. Consider the following Hawk-Dove game, where doves also incur some small cost t when they meet each other:

$$\begin{array}{c|cccc} H & D \\ H & (v-w)/2, (v-w)/2 & v, 0 \\ D & 0, v & v/2 - t, v/2 - t \end{array}$$

- (a) Assuming that w > v and t > 0 find all evolutionarily stable strategies.
- (b) Now consider a third type, B, who plays H if he is the first to come to a territory and plays D (without incurring the cost t) if he is the second:

	Н	D	В
Η	(v-w)/2, (v-w)/2	v, 0	3v/4 - w/4, (v-w)/4
D	0, v	v/2-t, v/2-t	v/4 - t/2, 3v/4 - t/2
В	(v-w)/4, 3v/4 - w/4	3v/4 - t/2, v/4 - t/2	v/2, v/2

For which values of v, w, and t, B is an evolutionarily stable strategy?

2. Let $\underline{z} = (\underline{z}_1, \ldots, \underline{z}_n)$ be the smallest rationalizable strategy profile in a given supermodular game. Let also \underline{y} be the smallest Nash equilibrium of the game that is created by fixing Player 1's strategy at \underline{z}_1 . Show that

$$\underline{z} = \underline{y}.$$

- 3. Consider the following "ultimatum game," where Player 1 offers some $a \in A = \{0.01, 0.02, \ldots, 1\}$, and Player 2 demands some $b \in A$. If $a \ge b$ (i.e., if Player 2 accepts the offer a), then the payoffs are (1 a, a); otherwise, the payoffs are (0, 0).
 - (a) Compute all Nash equilibria.
 - (b) Now consider an evolutionary process in which the members of a population are matched in pairs to play this ultimatum game where each agent is equally likely to play the roles of Player 1 and Player 2. Assume that the growth of the strategies in this role-playing game follows the replicator dynamics. Find all asymptotically stable strategies.

- 4. Consider a linear Cournot duopoly with the true inverse demand function P = a Q and zero marginal costs, where P is price, a > 0, and $Q = q_1 + q_2$ is the total supply of a good. Now imagine that each firm $i \in N = \{1, 2\}$ perceives the inverse demand function as $P = a + b_i Q$, where $b_i \in R$ is the bias in *i*'s perception. Let $G(b_1, b_2)$ be the game game in which b_1 and b_2 are common-knowledge.
 - (a) Show that $G(b_1, b_2)$ has a unique rationalizable strategy profile. Compute the true payoffs $u_1(b_1, b_2)$ and $u_2(b_1, b_2)$ at the rationalizable strategy profile computed by using P = a Q.
 - (b) Consider the meta game $\Gamma = (N, \mathbb{R}, \mathbb{R}, u_1, u_2)$, where the strategies are choices of b_1 and b_2 , and u_1 and u_2 are as in (a). Show that Γ is supermodular in a proper order, has a unique Nash equilibrium b^* , and that $b_i^* > 0$ for each $i \in N$. Show that the replicator dynamics for Γ (using the true payoffs) converges to b^* .
 - (c) Now consider an evolutionary learning process in which the agents not only develop their perceptions (i.e., b_1 and b_2) but also learn how to play the game $G(b_1, b_2)$ given perceptions. Assume that the learning process is a "two-tiered" replicator dynamics in which they learn how to play $G(b_1, b_2)$ infinitely faster than they change their perceptions, i.e., given any perception-pair (b_1, b_2) , the play converges to the limit of the dynamics for fixed (b_1, b_2) before they change their perceptions. What is the limit of this "two-tiered" replicator dynamics?
 - (d) Briefly discuss these results.

[**Hint:** Throughout this exercise, assume that the result of Samuelson and Zhang (i.e., Theorem 3.1 in Weibull) applies.]