14.126 Game Theory Problem Set \#2

Due in Class \#12

1. Apply the iterative elimination procedure below to the following game. We have two players, 1 and 2, who will play the Battle of the Sexes game (BoS) with payoff matrix

$1 \backslash 2$	O	B
O	3,1	ϵ, ϵ
B	ϵ, ϵ	1,3

where ϵ is a small but positive number. Before playing this game, first, player 1 decides on whether or not to burn a utile in which case his payoffs will decrease 1 at each strategy profile of BoS. Then, knowing whether 1 has burned a utile, 2 decides on whether or not to burn a utile in which case her payoffs will decrease 1 at each strategy profile of BoS. Then, they play the Battle of the Sexes game - when it is common knowledge which players burned a utile.
The elimination procedure: Let S be the strategy space.

- Let $S^{0}=S$.
- At any $t \in\{0,1, \ldots\}$, given any player i, let Δ_{i}^{t} be the set of all probability assessments μ_{i} of i on S_{-i} such that, for any $s_{-i} \in S_{-i}$ and for any information set I of i, if $\mu_{i}\left(s_{-i} \mid I\right)>0$, then $s_{-i} \in S_{-i}^{t}$ and there exists $s_{i} \in S_{i}$ such that information set I is reached under $\left(s_{i}, s_{-i}\right)$. For each player i, and each pure strategy s_{i}, eliminate s_{i} iff there does not exists any $\mu_{i} \in \Delta_{i}^{t}$ such that s_{i} is sequentially rational with respect to μ_{i}. Let S^{t+1} be the set of all remaining strategy profiles.
- Iterate this until there is no strategy to eliminate.

The following exercises are from Osbourne and Rubinstein $[\mathrm{OR}]$ and Fudenberg and Tirole [FT]. If you need texts of the problems you will be accommodated.

Exercises:
146.1 (OR)
152.1 (OR)
5.10 (FT)

