Supermodular games

Sergei Izmalkov and Muhamet Yildiz

(thanks to Jonathan Levin)

1 Monotone comparative statics

Suppose $X \subset \mathbb{R}$, and T is partially ordered.

Definition: A function $f: X \times T \to \mathbb{R}$ has increasing differences in (x, t) if for all $x' \ge x$ and $t' \ge t$,

 $f(x',t') - f(x,t') \ge f(x',t) - f(x,t).$

Thus, f(x',t) - f(x,t) is nondecreasing in t.

Symmetry: f(x, t') - f(x, t) is nondecreasing in x.

Lemma: If $f \in C^2$, then f has increasing differences $\iff t' \ge t$ implies $f_x(x, t') \ge f_x(x, t)$ for all x, that is,

 $f_{xt}(x,t) \ge 0$ for all x, t.

Define

$$x(t) = \arg \max_{x \in X} f(x, t).$$

Theorem 1: (Topkis) Suppose $X \subset \mathbb{R}$ is a compact and T is partially ordered. Suppose $f : X \times T \to \mathbb{R}$ has *ID* and is upper semi-continuous in x. Then,

(i) for all t, x(t) exists, has a greatest and least elements $\bar{x}(t)$ and $\underline{x}(t)$;

(ii) for $t' \ge t$, $x(t') \ge x(t)$ in a sence $\bar{x}(t') \ge \bar{x}(t)$ and $\underline{x}(t') \ge \underline{x}(t)$.

2 Lattices

Suppose X is a partially ordered set with order \geq .

(think as $X \subset \mathbb{R}^n$ and $x \ge y \iff x_i \ge y_i$ for all i = 1, ..., n.)

Define

$$\begin{array}{rcl} \text{``join''} & : & x \lor y = \inf\{z \in X : z \ge x, z \ge y\},\\ \text{``meet''} & : & x \land y = \sup\{z \in X : z \le x, z \le y\}.\\ \text{In } \mathbb{R}^n, \end{array}$$

$$(x \lor y)_i = \max(x_i, y_i),$$

 $(x \land y)_i = \min(x_i, y_i).$

Definition: (X, \geq) is a *sub-lattice* if it is closed under \lor and \land .

3 Supermodular functions

Definition: Payoff function u_i is supermodular in x_i if, for each $x_{-i} \in X_{-i}$ and $x_i, x'_i \in X_i$

 $u(x_i, x_{-i}) + u(x'_i, x_{-i}) \le u(x_i \lor x'_i, x_{-i}) + u(x_i \land x'_i, x_{-i}).$

Note: If $x_i \ge x'_i$ (comparable) supermodularity is trivially satisfied.

Definition: Payoff function u_i is supermodular if for all $x, x' \in X$

 $u_i(x \lor x') + u_i(x \land x') \ge u_i(x) + u(x').$

Theorem: Supermodularity \Rightarrow supermodularity in x_i and increasing differences.

4 Supermodular games

Games with "strategic complementarities."

Definition: The game $(S_1, \ldots, S_I, u_1, \ldots, u_I)$ is a *supermodular game* if for all *i*: (general definition is in brackets)

- S_i is a compact subset of \mathbb{R} (S_i is sub-lattice);
- u_i is upper semi-continuous in s_i, s_{-i} (u_i is supermodular in s_i);
- u_i has increasing differences in (s_i, s_{-i}) .

Theorem 2: Suppose (S, u) is a supermodular game, let

$$BR_i(s_{-i}) = \arg \max_{s_i \in S_i} u_i(s_i, s_{-i}).$$

Then,

(i) $BR_i(s_{-i})$ has a greatest and least elements $\overline{BR}_i(s_{-i})$ and $\underline{BR}_i(s_{-i})$;

(ii) If $s'_{-i} \geq s_{-i}$, then $\overline{BR}_i(s'_{-i}) \geq \overline{BR}_i(s_{-i})$ and $\underline{BR}_i(s'_{-i}) \geq \underline{BR}_i(s_{-i})$.

5 Examples

5.1 Investment game

Firms $1, \ldots, I$ make simultaneous investments $s_i \in \{0, 1\}$ and payoffs are:

$$u_i(s_i, s_{-i}) = \begin{cases} \pi \left(\sum_{j=1}^I s_j \right) - k, & \text{if } s_i = 1, \\ 0, & \text{if } s_i = 0, \end{cases}$$

where π is increasing.

5.2 Bertrand Competition

Firms $1, \ldots, I$ simultaneously choose prices, and

$$D_i(p_i, p_{-i}) = a_i - b_i p_i + \sum_{j \neq i} d_{ij} p_j,$$

where
$$b_i, d_{ij} \ge 0$$
. Then $S_i = \mathbb{R}_+$ and
 $\pi_i(p_i, p_{-i}) = (p_i - c_i) D_i(p_i, p_{-i}),$
 $\frac{\partial^2 \pi_i}{\partial p_i \partial p_j} = d_{ij} \ge 0.$

5.3 Cournot Competition

Cournot oligopoly is supermodular only if N = 2 and $s_1 = q_1$, $s_2 = -q_2$.

5.4 Diamond search model

I agents exerting effort searching for trading partners:

 e_i and $c(e_i)$ – effort and cost of effort for agent i,

$$u_i(e_i, e_{-i}) = e_i \cdot \sum_{j \neq i} e_j - c(e_i)$$

has increasing differences in e_i , e_{-i} .

6 Solving Bertrand game.

Suppose there are 2 firms, $D_i(p_i, p_j) = 1 - 2p_i + p_j$, and c = 0. Suppose $S_i^0 = [0, 1]$.

$$\pi_i(p_i, p_{-i}) = p_i(1 - 2p_i + p_j),$$

 $rac{\partial \pi_i(p_i, p_{-i})}{\partial p_i} = 1 - 4p_i + p_j.$

Iterated elimination of strictly dominated strategies gives:

• Any $p_i < \frac{1}{4}$ is strictly dominated by $p_i = \frac{1}{4}$; any $p_i > \frac{1}{2}$ is strictly dominated by $p_i = \frac{1}{2}$.

Thus, $S_i^1 = \begin{bmatrix} \frac{1}{4}, \frac{1}{2} \end{bmatrix}$. Note that $S_i^1 = BR_i(S_j^0)$.

- Repeating the procedure we have $S_i^k = BR_i(S_j^{k-1})$.
- Converges to the point $\left(\frac{1}{3}, \frac{1}{3}\right)$.

7 Main result

Theorem 3: Let (S, u) be a supermodular game. Then the set of strategies surviving iterated strict dominance has greatest and least elements \overline{s} and \underline{s} ; and \overline{s} , \underline{s} are both Nash equilibria.

Corollary:

- 1. Pure strategy Nash equilibrium exist in supermodular games.
- 2. The largest and the smallest strategies compatible with iterated strict dominance, rationalizability, correlated equilibrium, and Nash equilibrium are the same.
- 3. If a supermodular game has a unique NE, then it is dominance solvable (and so a lot of learning or adjustment rules will converge to it (e.g. bestresponse dynamics)).

7.1 Proof of Theorem 3

- Iterate best-response mapping.
- $S^{0} = S$; $s^{0} = (s_{1}^{0}, \dots, s_{I}^{0})$ largest element in S^{0} . $s_{i}^{1} = \overline{BR}_{i}(s_{-i}^{0})$; $S_{i}^{1} = \left\{s_{i} \in S_{i}^{0} : s_{i} \leq s_{i}^{1}\right\}$.
- Any $s_i \not\in S_i^1$ is dominated by s_i^1 because $u_i(s_i, s_{-i}) - u_i(s_i^1, s_{-i})$ $\leq u_i(s_i, s_{-i}^0) - u_i(s_i^1, s_{-i}^0) < 0.$

•
$$s_i^k = \overline{BR}_i(s_{-i}^{k-1}); S_i^k = \left\{ s_i \in S_i^{k-1} : s_i \leq s_i^{k-1} \right\}.$$

 $s_i^k \leq s^{k-1} \Longrightarrow$
 $s_i^{k+1} = \overline{BR}_i(s_{-i}^k) \geq \overline{BR}_i(s_{-i}^{k-1}) = s_i^k.$

• Define

$$\bar{s}_i = \lim_{k \to \infty} s_i^k.$$

Only strategies $s_i \leq \bar{s}_i$ are undominated.

•
$$\bar{s} = (\bar{s}_1, \dots, \bar{s}_I)$$
 - Nash equilibrium, indeed
 $u_i(s_i^{k+1}, s_{-i}^k) \ge u_i(s_i, s_{-i}^k),$
 $u_i(\bar{s}_i, \bar{s}_{-i}) \ge u_i(s_i, \bar{s}_{-i}).$

Similarly define s⁰ = (s⁰₁,...,s⁰_I) - smallest element in S⁰;

 $s_i^1 = \underline{BR}(s_{-i}^0); \; S_i^1 = \left\{s_i \in S_i^0: s_i \geq s_i^1\right\}$ and so on...

• Obtain $\underline{s} = (\underline{s}_1, \dots, \underline{s}_I)$, prove that it is Nash Equilibrium.

8 Properties of supermodular games

Idea: Use monotonicity to obtain comparative statics results.

 A supermodular game (S, u) is indexed by t if each players payoff function is indexed by t ∈ T, some ordered set, and for all i, u_i(s_i, s_{-i}, t) has increasing differences in (s_i, t).

Proposition: Suppose (S, u) is a supermodular game is indexed by t. The largest and smallest Nash equilibria are increasing in t.

• A supermodular game (S, u) has positive spillovers if for all i, $u(s_i, s_{-i})$ is increasing in s_{-i} .

Proposition: Suppose (S, u) is a supermodular game with positive spillovers. Then the largest Nash equilibrium is Pareto-preferred.