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1 Monotone comparative statics

Suppose X C R, and T is partially ordered.

Definition: A function f : X x T' — R has increasing
differences in (x,t) if for all 2’ > x and t/ > ¢,

f(x/a t/) _ f(xa t/) > f(.%‘/,t) o f(xa t)
Thus, f(«',t) — f(x,t) is nondecreasing in t.

Symmetry: f(x,t') — f(z,t) is nondecreasing in .

Lemma: If f € C?, then f has increasing differences
<= t' > t implies fy(x,t') > fu(z,t) for all z, that
is,

fat(z,t) >0 for all z,t.




Define

x(t) = arg max f(z,t).

Theorem 1: (Topkis) Suppose X C R is a compact
and T is partially ordered. Suppose f : X xT — R
has ID and is upper semi-continuous in x. Then,

(2) for all ¢, x(t) exists, has a greatest and least elel’
ments Z(t) and x(t);

(i2) for t' > t, x(t') > =(t) in a sence ZT(t') > Z(t)
and x(t') > x(t).

2 Lattices

Suppose X is a partially ordered set with order > .

(think as X C R" and =z > y <= z; > y; for all
i=1,..,n.)

Define
“oin” 1 zVvVy=inf{ze X :z2>ux 2>y},
“meet” : zAy=sup{ze€ X:z<uzxz<y}

In R™,

(zVy); = max(z;,y;),
(x Ay); = min(z;,y;).

Definition: (X, >) is a sub-lattice if it is closed under
V and A.




3 Supermodular functions

Definition: Payoff function wu; is supermodular in x;
if, for each z_; € X_; and z;, 2, € X;

u(zy, o) t+u(al, o) < u(zVal, v_;)+u(ziAg), ©_;).

Note: If z; > «} (comparable) supermodularity is triv(]
ially satisfied.

Definition: Payoff function w; is supermodular if for
all z, 2/ € X

ui(x V') +ui(z A x') > ui(z) + ulz).

Theorem: Supermodularity = supermodularity in x;
and increasing differences.

4  Supermodular games

Games with ‘“strategic complementarities.”

Definition: The game (S1,...,S,u1,...,us) is a su-
permodular game if for all i: (general definition is in
brackets)

e S, is a compact subset of R (.S; is sub-lattice);

e wu; is upper semi-continuous in s;,s_; (u; is sull
permodular in s;);

e u; has increasing differences in (s;, s_;).




5 Examples

5.1 Investment game

Theorem 2: Suppose (S, u) is a supermodular game,
let

Firms 1,...,I make simultaneous investments s; €
BR;(s_;) = arg max u;i(85,5_5). {0, 1} and payoffs are:
I N oo —
Then, w855 5) = T (ijl sj.) k, if s; =1,
0, if s; =0,

(i) BR;(s_;) has a greatest and least elements BR;(s_;) where 7 is increasing.
and BR;(s_;);
(Zl) If S/—i > s_;, then B_RZ(S/_Z) > B_Ri(s—i) and
BR;(s" ;) > BR;(s—;). 5.2 Bertrand Competition

Firms 1,..., I simultaneously choose prices, and

Di(pi»p—i) = a; — bip; + Y _ dijpj,
JFi




where b;,d;; > 0. Then S; =R and

mi(pi,p—i) = (pi — ¢;) Di(pi, p—i),
0?n;
Op;Op;

= d;; >0.

5.3 Cournot Competition

Cournot oligopoly is supermodular only if N =2 and
§1 =41, 82 = —Qq2.

5.4 Diamond search model

I agents exerting effort searching for trading partners:

e; and c(e;) — effort and cost of effort for agent 1,
uilej, e ;) = e~y ej —c(e;)
J7#1

has increasing differences in e;, e_;.

6 Solving Bertrand game.

Suppose there are 2 firms, D;(p;,p;) =1 — 2p; + pj,
and ¢ = 0. Suppose S? = [0, 1].

mi(pi,p—i) = pi(1—2p; +pj),
aﬂ-i(piap—i)

= 1—4p;+p;.
Opi P: TPy

Iterated elimination of strictly dominated strategies
gives:

e Any p; < % is strictly dominated by p;, = %; any
pi > % is strictly dominated by p; = %

Thus, S} = [},3]. Note that S} = BR;(S9).

e Repeating the procedure we have SZI“' = BRZ-(S;?’_I).

).

Wl

e Converges to the point (%,




7 Main result
7.1 Proof of Theorem 3

Theorem 3: Let (S, u) be a supermodular game. Then

; .. . . . Iterate best- ing.
the set of strategies surviving iterated strict domil] ¢ fterate best-response mapping
nance has greatest and least elements s and s; and
5, s are both Nash equilibria. .
= q o SO0 =5; 50 = (s9,...,59) — largest element in
SO.

Corollary:
sl=H 7J(sgl), Sl-l = {si € S? s < s}}
1. Pure strategy Nash equilibrium exist in supermod!(]

ular games.
e Any s; & Sil is dominated by 32l because
2. The largest and the smallest strategies compatible u;(85,5_;) — ui(s%, 5_;)
with iterated strict dominance, rationalizability, 0 10
o o Y < wy(si, s2;) — wi(si, s2;) <O.
correlated equilibrium, and Nash equilibrium are
the same.
BD.(k—1y. _ k—1 . k—1
° sf::BRi(s_i ),Szk—{siESi :5; < s; }
3. If a supermodular game has a unique NE, then P
it is dominance solvable (and so a lot of learning kzsl = 8 ki 1 N
or adjustment rules will converge to it (e.g. best- Si+ = BR;(sY;) > BRy(s”;") = s; .

response dynamics)).




Define
k

5, = lim s;.

k—oo

Only strategies s; < 5; are undominated.

5=(51,...,57) — Nash equilibrium, indeed

wi(sTL R > wi(ss, s),

w;(55,5-3) > wu;(s;,5-;).

Similarly define s = (s9,...,5%) — smallest elel]
ment in S9;

S% = BR(SQZ»); Sil = {si € S? D8 > szl} and so
on...

Obtain s = (s1,...,s87), prove that it is Nash
Equilibrium.

8 Properties of supermodular games

Idea: Use monotonicity to obtain comparative statics
results.

e A supermodular game (S,u) is indexed by t if
each players payoff function is indexed by t € T,
some ordered set, and for all ¢, u;(s;,s_;,t) has
increasing differences in (s;,t).

Proposition: Suppose (S, ) is a supermodular game
is indexed by t. The largest and smallest Nash equil]
libria are increasing in t.

e A supermodular game (S, u) has positive spillovers
if for all 4, u(s;,s_;) is increasing in s_j;.

Proposition: Suppose (S, ) is a supermodular game
with positive spillovers. Then the largest Nash equil’
librium is Pareto-preferred.




