Courtesy of Paul

Bargaining Theory I

MIT 14.126 Game Theory
Paul Milgrom
Muhamet Yildiz

Bargaining Theory

- Cooperative (Axiomatic) • Non-cooperative
- Edgeworth
- Nash Bargaining (*)
- Variations of Nash
- Kalai-Smorodinsky
- Maschler-Perles
- Egalitarian-Equivalent
- Utilitarian, etc.
- Shapley Value (*)
- Rubinstein-Stahl (*)
(complete info)
- Asymmetric info
- Rubinstein, AdmatiPerry, Cramton, ...
- Non-common priors
- Posner, Bazerman, Yildiz (*), \ldots

Nash Bargaining Problem

- $\mathrm{N}=\{1,2\}$ - the agents
- $\mathrm{S} \subset \mathrm{R}^{\mathrm{N}}$-- the set of feasible expected-utility pairs
- $\mathrm{d}=\left(\mathrm{d}_{1}, \mathrm{~d}_{2}\right) \in \mathrm{S}$ - the disagreement payoffs
- A bargaining problem is any (S, d) where
- S is compact and convex, and
$-\exists x \in S$ s.t. $x_{1}>d_{1}$ and $x_{2}>d_{2}$.
- B is the set of all bargaining problems.
- A bargaining solution is any function
$\mathrm{f}: \mathrm{B} \rightarrow \mathrm{R}^{\mathrm{N}}$ s.t. $f(\mathrm{~S}, \mathrm{~d}) \in \mathrm{S}$ for each (S, d).

Nash Axioms

1. Expected-utility Axiom [EU] (invariance under affine transformations): $\forall(S, d), \forall\left(S^{\prime}, d^{\prime}\right), a_{\mathrm{i}}>0$
$\left.\begin{array}{l}S^{\prime}=\left\{s^{\prime} \mid s_{i}^{\prime}=a_{i} s_{i}+b_{i} \forall i \in N\right\} \\ d_{i}^{\prime}=a_{i} d_{i}+b_{i} \forall i \in N\end{array}\right\} \Rightarrow f_{i}\left(S^{\prime}, d^{\prime}\right)=a_{i} f_{i}(S, d)+b_{i} \forall i \in N$
2. Symmetry [Sy]: Let (S,d) be symmetric: $\mathrm{d}_{1}=\mathrm{d}_{2}$ and $\left[\left(x_{1}, x_{2}\right) \in S\right.$ iff $\left.\left(x_{2}, x_{1}\right) \in S\right]$. Then,

$$
\mathrm{f}_{1}(\mathrm{~S}, \mathrm{~d})=\mathrm{f}_{2}(\mathrm{~S}, \mathrm{~d})
$$

3. Independence of Irrelevant alternatives [IIA]: if $T \subset S$ and $f(S, d) \in T$, then $f(T, d)=f(S, d)$.
4. Pareto - Optimality $[P O]:$ if $x, y \in S$ and $y>x$, then $\mathrm{f}(\mathrm{S}, \mathrm{d}) \neq \mathrm{x}$.

Expected-utility Axiom

Symmetry

Nash Bargaining Solution

$$
f^{*}(S, d)=\arg \max \left(s_{1}-d_{1}\right)\left(s_{2}-d_{2}\right) .
$$

$s \equiv\left(s_{1}, s_{2}\right) \in S$
$s>d$

Nash's Theorem
Theorem: A bargaining solution f satisfies the Nash Axioms (EU,Sy,IIA,PO) if and only if

$$
f=f^{*} .
$$

Nash Axioms

1. Expected-utility Axiom (invariance under affine transformations): $\forall(S, d), \forall\left(S^{\prime}, d^{\prime}\right), a_{\mathrm{i}}>0$
$\left.\begin{array}{l}S^{\prime}=\left\{s^{\prime} \mid s_{i}^{\prime}=a_{i} s_{i}+b_{i} \forall i \in N\right\} \\ d_{i}^{\prime}=a_{i} d_{i}+b_{i} \forall i \in N\end{array}\right\} \Rightarrow f_{i}\left(S^{\prime}, d^{\prime}\right)=a_{i} f_{i}(S, d)+b_{i} \forall i \in N$
2. Symmetry: Let (S, d) be symmetric: $d_{1}=d_{2}$ and $\left[\left(x_{1}, x_{2}\right) \in S\right.$ iff $\left.\left(x_{2}, x_{1}\right) \in S\right]$. Then,

$$
\mathrm{f}_{1}(\mathrm{~S}, \mathrm{~d})=\mathrm{f}_{2}(\mathrm{~S}, \mathrm{~d})
$$

3. Independence of Irrelevant alternatives: if $T \subset S$ and $f(S, d) \in T$, then $f(T, d)=f(S, d)$.
4. Pareto - Optimality: if $x, y \in S$ and $y>x$, then $f(S, d) \neq x$.

Proof of Nash's Theorem

1. Check: f^{*} satisfies the Nash axioms. (easy)
2. Take any (S, d). Transform it to ($\left.\mathrm{S}^{\prime}, \mathrm{d}^{\prime}\right)$ so that $\mathrm{d}^{\prime}=0$, and $f^{*}\left(\mathrm{~S}^{\prime}, \mathrm{d}^{\prime}\right)=(1,1)$. Under [Sy,IIA,PO], $f\left(\mathrm{~S}^{\prime}, \mathrm{d}^{\prime}\right)=$ $f^{*}\left(\mathrm{~S}^{\prime}, \mathrm{d}^{\prime}\right)=(1,1) . \& E \mathrm{U} \Rightarrow f(\mathrm{~S}, \mathrm{~d})=f^{*}(\mathrm{~S}, \mathrm{~d}) . \mathrm{QED}$

$$
\begin{aligned}
& \cdot \mathrm{S}^{*} \text { is symmetric. (how) } \\
& \cdot \& \mathrm{Sy} \& \mathrm{PO} \Rightarrow f\left(\mathrm{~S}^{*}, \mathrm{~d}^{\prime}\right)=(1,1) \in \mathrm{S}^{\prime} \\
& \cdot \& \mathrm{IIA} \Rightarrow f\left(\mathrm{~S}^{\prime}, \mathrm{d}^{\prime}\right)=(1,1)=f^{*}\left(\mathrm{~S}^{\prime}, \mathrm{d}^{\prime}\right) \\
& \cdot \& \mathrm{EU} \Rightarrow f(\mathrm{~S}, \mathrm{~d})=f^{*}\left(\mathrm{~S}^{\prime}, \mathrm{d}^{\prime}\right)
\end{aligned}
$$

An extension of Nash

5. Individual Rationality [IR]: $\mathrm{f}(\mathrm{S}, \mathrm{d}) \geq \mathrm{d}$.

Theorem: There are precisely two bargaining solutions that satisfy axioms EU,Sy,IIA, and IR: f^{*} and D with $\mathrm{D}(., \mathrm{d}) \equiv \mathrm{d}$.
Proof: [EU\&IIA\&IR] => (PO or D(.,d) 引d). QED

Asymmetric Nash

Theorem: Let $\mathrm{A}=\left\{\mathrm{x} \geq 0 \mid \mathrm{x}_{1}+\mathrm{x}_{2} \leq 1\right\}$. For any a in (0,1), there exists a unique b.s. f^{a} that satisfies Axioms EU,IIA, and IR, and $f^{a}(\mathrm{~A}, 0)=(a, 1-a)$;

$$
f^{a}(S, d)=\underset{s \in S, s \geq d}{\arg \max }\left(s_{1}-d_{1}\right)^{a}\left(s_{2}-d_{2}\right)^{1-a}
$$

Variations of Nash

Changing the Nash's axioms, many characterized various b.s. with various axioms, e.g.,

1. Kalai-Smorodinsky

- Monotonicity, EU, Sy, PO

2. Egalitarian:
$\operatorname{maxmin}\left\{\mathrm{x}_{1}, \mathrm{x}_{2}\right\}$

3. Utilitarian: $\max a \mathrm{x}_{1}+b \mathrm{x}_{2}$

Shapley Value - n person bargaining

- A coalitional game (N, v), where $\mathrm{v}: 2^{\mathrm{N}} \rightarrow \mathrm{R}$. $v(S)$ is the maximum total utility the coalition S can get in the case of disagreement with NIS.
- A bargaining solution (or a value) is any function f that assigns an allocation $f(S, v)$ in R^{S} for each coalition S, where $\Sigma_{i} \mathrm{f}_{\mathrm{i}}(\mathrm{S}, \mathrm{v})=\mathrm{v}(\mathrm{S})$.
- The marginal contribution of i to S with $\mathrm{i} \notin \mathrm{S}$ is

$$
D_{i}(S)=v(S \cup\{i\})-v(S)
$$

Shapley Value -- definition

- A coalition $\mathrm{S}_{\mathrm{i}}=\{1,2, \ldots, \mathrm{i}\}$
- formed in the order $\{1\} \rightarrow$ $\{1,2\} \rightarrow\{1,2,3\} \rightarrow \ldots \rightarrow$ $\{1,2, \ldots, \mathrm{i}-1\} \rightarrow\{1,2, \ldots, \mathrm{i}-1, \mathrm{i}\}$;
- the new-comer has all the bargaining power.
- Then, $\mathrm{f}_{1}\left(\mathrm{~S}_{\mathrm{i}}, \mathrm{v}\right)=\mathrm{v}(\{1\})$, $\mathrm{f}_{2}\left(\mathrm{~S}_{\mathrm{i}}, \mathrm{v}\right)=\mathrm{D}_{2}(\{1\})=$ $\mathrm{v}(\{1,2\})-\mathrm{v}(\{1\}), \ldots$, $\mathrm{f}_{\mathrm{i}}\left(\mathrm{S}_{\mathrm{i}}, \mathrm{v}\right)=\mathrm{D}_{\mathrm{i}}\left(\mathrm{S}_{\mathrm{i}-1}\right)=$ $v(\{1,2\})-v(\{1\})$.
- Coalition S
- formed in a random order where each permutation is equally likely - there are |S|! Perms.;
- the new-comer has all the bargaining power.
- Then, Shapley Value (φ):
$\varphi_{i}(S, v)=\frac{1}{|S|!} \sum_{R} D_{i}\left(S_{i}(R)\right)$
where R is any permutation, $S_{i}(R)=\{R(1), R(2), \ldots, i\}$.

Example -- Firm

- $\mathrm{N}=\{\mathrm{c}\} \cup \mathrm{W} ; \mathrm{c}$ owns a factory; $w \in W$ is a worker. Without c, workers produce 0 ; with c, m workers produce $\mathrm{p}(\mathrm{m})$; p is concave, increasing, and $p(0)=0$.
- $\mathrm{v}(\mathrm{S})=\mathrm{p}(|\mathrm{S} \cap \mathrm{W}|)$ if $\mathrm{c} \in$
$S ; v(S)=0$ otherwise.
[O\&R;259.3]
- $\varphi(\mathrm{c})=\varphi(\omega)=0$;
- $\mathrm{A}_{\mathrm{m}}=\left\{\mathrm{c}, \mathrm{w}_{1}, \mathrm{w}_{2}, \ldots, \mathrm{w}_{\mathrm{m}}\right\}$
- $\varphi_{c}\left(\mathrm{~A}_{\mathrm{m}}\right)=$ $(\mathrm{p}(1)+\ldots+\mathrm{p}(\mathrm{m})) /(\mathrm{m}+1)$;
- $\varphi_{\mathrm{w}}\left(\mathrm{A}_{\mathrm{m}}\right)=$
$\left(\mathrm{p}(\mathrm{m})-\varphi_{\mathrm{c}}\left(\mathrm{A}_{\mathrm{m}}\right)\right) / \mathrm{m}$.

Example -- Market

- $\mathrm{N}=\{1,2,3\} ; 1$ is seller; 2,3 are buyers:
- $\mathrm{v}(\mathrm{i})=0 ; \mathrm{v}(1,2)=\mathrm{v}(1,3)=\mathrm{v}(1,2,3)=1$; $v(2,3)=0$.
- $\varphi_{i}(i)=0 ; \varphi_{1}(1, i)=\varphi_{i}(1, i)=1 / 2 ; \varphi_{i}(2,3)=0$;
$\varphi_{1}(1,2,3)=2(0+1+1) / 3!=2 / 3 ;$
$\varphi_{2}(1,2,3)=\varphi_{3}(1,2,3)=1 / 3!=1 / 6$.
[the price is $2 / 3$, and buyers have equal probability of buying]
- $\operatorname{Core}(\mathrm{N}, \mathrm{v})=\{(1,0,0)\}$.

Shapley value \& the Core

Theorem: For any convex game (N, v), the Shapley value (φ) is in the core.

Proof:

1. \quad Since (N, v) is convex, \forall perm. R, g^{R} with $g_{i}{ }^{R}(N, v)=$ $D_{i}\left(S_{i}(R)\right)$ is in the Core (previous lecture).
2. Shapley value is the average of g^{R} 's: $\varphi=\Sigma_{R} g^{R} /|N|$!
3. The Core is convex.
4. Shapley value is in the Core. QED

Shapley Axioms

1. Symmetry: If i and j are interchangeable (i.e., $D_{i}=D_{j}$), then

$$
\mathrm{f}_{\mathrm{i}}(., \mathrm{v})=\mathrm{f}_{\mathrm{j}}(., \mathrm{v}) .
$$

2. Dummy: If i is dummy (i.e., $D_{i}=v(\{i\})$), then

$$
\mathrm{f}_{\mathrm{i}}(., \mathrm{v})=\mathrm{v}(\{\mathrm{i}\}) .
$$

3. Additivity: $\mathrm{f}(., \mathrm{v}+\mathrm{w})=\mathrm{f}(., \mathrm{v})+\mathrm{f}(., \mathrm{w})$.

Theorem (Shapley)

The Shapley value (φ) is the unique bargaining solution (or value) that satisfies the Shapley axioms (namely, symmetry, dummy, and additivity).

Proof:

1. Check: φ satisfies the Shapley axioms.
2. There exists a unique value f that satisfies the Shapley axioms. QED

Proof (Step 2)

1. Fix N. So, $(N, v) \equiv v \in R^{\left[\mathbb{V}^{N} \mid-1\right.}$.
2. Define v_{T} by $\mathrm{v}_{\mathrm{T}}(\mathrm{S})=1$ if $\mathrm{S} \subseteq \mathrm{T} ; \mathrm{v}_{\mathrm{T}}(\mathrm{S})=0$ otherwise.
3. $\left(\mathrm{v}_{\mathrm{T}}\right)_{\not \subset \neq \mathrm{T} \cong \mathrm{N}}$ is a basis for $R^{2^{\mid N-1}-1}$:
4. Suppose $\Sigma_{\mathrm{S}} \mathrm{b}_{\mathrm{S}} \mathrm{v}_{\mathrm{S}}=0$, but $\mathrm{b}_{\mathrm{T}} \neq 0$.
5. $\exists \mathrm{T}^{*} \subseteq \mathrm{~T}$ s.t. $\mathrm{b}_{\mathrm{T}} \neq 0$ \& $\mathrm{b}_{\mathrm{T}}=0 \forall \mathrm{~T}^{\prime} \subset \mathrm{T}^{*}$.
6. $\Sigma_{\mathrm{S}} \mathrm{b}_{\mathrm{S}} \mathrm{v}_{\mathrm{S}}\left(\mathrm{T}^{*}\right)=\mathrm{b}_{\mathrm{T}^{*} \neq 0}$, a contradiction.
7. $\forall v \in R^{2^{[N /-1}}, \exists$ a unique $b \in R^{2^{|N|}-1}$ s.t. $v=\Sigma_{\mathrm{S}} \mathrm{b}_{\mathrm{S}} \mathrm{v}_{\mathrm{S}}$.
8. $\mathrm{A} 1 \& \mathrm{~A} 2 \Rightarrow \mathrm{f}_{\mathrm{i}}\left(a \mathrm{v}_{\mathrm{T}}\right)=a /|\mathrm{T}|$ if $\mathrm{i} \in \mathrm{T} ; 0$ otherwise.
9. $\& A 3=>\mathrm{f}_{\mathrm{i}}(\mathrm{v})=\mathrm{f}_{\mathrm{i}}\left(\Sigma_{\mathrm{S}} \mathrm{b}_{\mathrm{S}} \mathrm{v}_{\mathrm{S}}\right)=\Sigma_{\mathrm{S}} \mathrm{f}_{\mathrm{i}}\left(\mathrm{b}_{\mathrm{S}} \mathrm{v}_{\mathrm{S}}\right)=\Sigma_{\mathrm{S} ; \mathrm{i}} \mathrm{b}_{\mathrm{S}} /|\mathrm{S}|$.

Balanced Contributions

A value f satisfies the balanced contributions property iff $\forall(\mathrm{N}, \mathrm{v}), \forall \mathrm{i}, \mathrm{j}$ in N ,

$$
\mathrm{f}_{\mathrm{i}}(\mathrm{~N}, \mathrm{v})-\mathrm{f}_{\mathrm{i}}(\mathrm{~N} \backslash\{\mathrm{i}\})=\mathrm{f}_{\mathrm{j}}(\mathrm{~N}, \mathrm{v})-\mathrm{f}_{\mathrm{j}}(\mathrm{~N} \backslash\{\mathrm{j}\}) .
$$

Theorem: The Shapley value is the only bargaining solution that satisfies the balanced contributions property.
Proof: 1. If f and f^{\prime} satisfy the property, then $f=f^{\prime}$.
2. Shapley value satisfies the property. QED

