Courtesy of Paul Milgrom and Muhamet Yildiz. Used with permission.

## Bargaining Theory I

MIT 14.126 Game Theory Paul Milgrom Muhamet Yildiz

# **Bargaining Theory**

- Cooperative (Axiomatic) Non-cooperative
  - Edgeworth
  - Nash Bargaining (\*)
  - Variations of Nash
    - Kalai-Smorodinsky
    - Maschler-Perles
    - Egalitarian-Equivalent
    - Utilitarian, etc.
  - Shapley Value (\*)

- - Rubinstein-Stahl (\*) (complete info)
  - Asymmetric info
    - · Rubinstein, Admati-Perry, Cramton, ...
  - Non-common priors
    - · Posner, Bazerman, Yildiz (\*), ...

#### Nash Bargaining Problem

- $N = \{1,2\}$  the agents
- $S \subset R^N$  -- the set of feasible expected-utility pairs
- $d = (d_1, d_2) \in S$  the disagreement payoffs
- A bargaining problem is any (S,d) where
  - S is compact and convex, and
  - $-\exists x \in S \text{ s.t. } x_1 > d_1 \text{ and } x_2 > d_2.$
- B is the set of all bargaining problems.
- A bargaining solution is any function
   f: B → R<sup>N</sup> s.t. f(S,d) ∈ S for each (S,d).

3

#### Nash Axioms

**1. Expected-utility Axiom [EU]** (invariance under affine transformations):  $\forall (S,d), \forall (S',d'), a_i > 0$ 

$$S' = \left\{ s' \mid s'_i = a_i s_i + b_i \ \forall i \in N \right\}$$

$$d'_i = a_i d_i + b_i \ \forall i \in N$$

$$\Rightarrow f_i(S', d') = a_i f_i(S, d) + b_i \ \forall i \in N$$

- 2. Symmetry [Sy]: Let (S,d) be symmetric:  $d_1 = d_2$  and  $[(x_1,x_2) \in S \text{ iff } (x_2,x_1) \in S]$ . Then,  $f_1(S,d) = f_2(S,d)$ .
- 3. Independence of Irrelevant alternatives [IIA]: if  $T \subset S$  and  $f(S,d) \in T$ , then f(T,d) = f(S,d).
- **4.** Pareto Optimality [PO]: if  $x,y \in S$  and y > x, then  $f(S,d) \neq x$ .







# Nash Bargaining Solution

$$f^*(S,d) = \underset{\substack{s = (s_1, s_2) \in S \\ s > d}}{\text{max}} (s_1 - d_1)(s_2 - d_2).$$



## Nash's Theorem

**Theorem:** A bargaining solution f satisfies the Nash Axioms (EU,Sy,IIA,PO) if and only if  $f=f^*$ .

#### **Nash Axioms**

**1. Expected-utility Axiom** (invariance under affine transformations):  $\forall (S,d), \forall (S',d'), a_i > 0$ 

$$S' = \{s' \mid s'_i = a_i s_i + b_i \ \forall i \in N\}$$

$$d'_i = a_i d_i + b_i \ \forall i \in N$$

$$\Rightarrow f_i(S', d') = a_i f_i(S, d) + b_i \ \forall i \in N$$

- 2. Symmetry: Let (S,d) be symmetric:  $d_1 = d_2$  and  $[(x_1,x_2) \in S \text{ iff } (x_2,x_1) \in S]$ . Then,  $f_1(S,d) = f_2(S,d)$ .
- 3. Independence of Irrelevant alternatives: if  $T \subset S$  and  $f(S,d) \in T$ , then f(T,d) = f(S,d).
- **4.** Pareto Optimality: if  $x,y \in S$  and y > x, then  $f(S,d) \neq x$ .

11

#### Proof of Nash's Theorem

- 1. Check: f\* satisfies the Nash axioms. (easy)
- 2. Take any (S,d). Transform it to (S',d') so that d' = 0, and  $f^*(S',d') = (1,1)$ . Under [Sy,IIA,PO],  $f(S',d') = f^*(S',d') = (1,1)$ . &EU  $\Rightarrow f(S,d) = f^*(S,d)$ . QED





#### An extension of Nash

**5.** Individual Rationality [IR]:  $f(S,d) \ge d$ .

**Theorem:** There are precisely two bargaining solutions that satisfy axioms EU,Sy,IIA, and IR:  $f^*$  and D with D(.,d)  $\equiv$  d.

**Proof:** [EU&IIA&IR]  $\Rightarrow$  (PO or D(.,d)  $\equiv$  d). QED

### Asymmetric Nash

Theorem: Let  $A = \{x \ge 0 | x_1 + x_2 \le 1\}$ . For any a in (0,1), there exists a unique b.s.  $f^a$  that satisfies Axioms EU,IIA, and IR, and  $f^a(A,0) = (a,1-a)$ ;

$$f^{a}(S,d) = \underset{s \in S, s \ge d}{\arg \max} (s_{1} - d_{1})^{a} (s_{2} - d_{2})^{1-a}$$

15

#### Variations of Nash

Changing the Nash's axioms, many characterized various b.s. with various axioms, e.g.,

- 1. Kalai-Smorodinsky
  - Monotonicity, EU, Sy, PO
- 2. Egalitarian:  $maxmin\{x_1,x_2\}$
- 3. Utilitarian:  $\max ax_1 + bx_2$



### Shapley Value – n person bargaining

• A coalitional game (N,v), where  $v: 2^N \rightarrow R$ . v(S) is the maximum total utility the coalition S can get in the case of disagreement with N\S.



- A bargaining solution (or a value) is any function f that assigns an allocation f(S,v) in R<sup>S</sup> for each coalition S, where  $\Sigma_i f_i(S, v) = v(S)$ .
- The marginal contribution of i to S with  $i \notin S$  is  $D_i(S) = v(S \cup \{i\}) - v(S).$

17

## Shapley Value -- definition

- A coalition  $S_i = \{1, 2, ..., i\}$  Coalition S
  - formed in the order  $\{1\} \rightarrow$  $\{1,2\} \rightarrow \{1,2,3\} \rightarrow \dots \rightarrow$  $\{1,2,...,i-1\} \rightarrow \{1,2,...,i-1,i\};$
  - the new-comer has all the bargaining power.
- Then,  $f_1(S_i, v) = v(\{1\}),$  $f_2(S_i, v) = D_2(\{1\}) =$  $v(\{1,2\}) - v(\{1\}), \dots,$  $f_i(S_i, v) = D_i(S_{i-1}) =$  $v(\{1,2\}) - v(\{1\}).$
- - formed in a random order where each permutation is equally likely – there are |S|! Perms.;
  - the new-comer has all the bargaining power.
- Then, Shapley Value ( $\varphi$ ):

$$\varphi_i(S,v) = \frac{1}{|S|!} \sum_{R} D_i(S_i(R))$$

where R is any permutation,  $S_i(R) = \{R(1), R(2), ..., i\}.$ 

### Example -- Firm

- N = {c}∪W; c owns a factory; w∈W is a worker. Without c, workers produce 0; with c, m workers produce p(m); p is concave, increasing, and p(0) = 0.
- $v(S) = p(|S \cap W|)$  if  $c \in S$ ; v(S) = 0 otherwise.

[O&R;259.3]

- $\varphi(c) = \varphi(\omega) = 0$ ;
- $A_m = \{c, w_1, w_2, ..., w_m\}$
- $\varphi_c(A_m) = (p(1)+...+p(m))/(m+1);$
- $\varphi_{w}(A_{m}) =$   $(p(m)-\varphi_{c}(A_{m}))/m.$

19

### Example -- Market

- $N = \{1,2,3\}$ ; 1 is seller; 2, 3 are buyers:
- v(i) = 0; v(1,2) = v(1,3) = v(1,2,3) = 1; v(2,3) = 0.
- $\phi_i(i) = 0$ ;  $\phi_1(1,i) = \phi_i(1,i) = \frac{1}{2}$ ;  $\phi_i(2,3) = 0$ ;  $\phi_1(1,2,3) = 2(0+1+1)/3! = 2/3$ ;  $\phi_2(1,2,3) = \phi_3(1,2,3) = 1/3! = 1/6$ .

[the price is 2/3, and buyers have equal probability of buying]

• Core(N,v) =  $\{(1,0,0)\}.$ 

## Shapley value & the Core

**Theorem:** For any convex game (N,v), the Shapley value  $(\phi)$  is in the core.

#### **Proof:**

- 1. Since (N,v) is convex,  $\forall$  perm. R,  $g^R$  with  $g_i^R(N,v) = D_i(S_i(R))$  is in the Core (previous lecture).
- 2. Shapley value is the average of  $g^R$ 's:  $\varphi = \sum_R g^R / |N|!$
- 3. The Core is convex.
- 4. Shapley value is in the Core. QED

21

## **Shapley Axioms**

1. Symmetry: If i and j are interchangeable (i.e.,  $D_i = D_j$ ), then

$$f_i(.,v) = f_i(.,v).$$

- **2. Dummy:** If i is dummy (i.e.,  $D_i = v(\{i\})$ ), then  $f_i(.,v) = v(\{i\})$ .
- **3.** Additivity: f(.,v+w) = f(.,v) + f(.,w).

### Theorem (Shapley)

The Shapley value ( $\varphi$ ) is the unique bargaining solution (or value) that satisfies the Shapley axioms (namely, symmetry, dummy, and additivity).

#### **Proof:**

- 1. Check: φ satisfies the Shapley axioms.
- 2. There exists a unique value f that satisfies the Shapley axioms. QED

23

## Proof (Step 2)

- 1. Fix N. So,  $(N, v) \equiv v \in R^{2^{|N|}-1}$ .
- 2. Define  $v_T$  by  $v_T(S) = 1$  if  $S \subseteq T$ ;  $v_T(S) = 0$  otherwise.
- 3.  $(\mathbf{v}_{\mathsf{T}})_{\varnothing\neq\mathsf{T}\subseteq\mathsf{N}}$  is a basis for  $R^{2^{|N|}-1}$ :
  - 1. Suppose  $\Sigma_S b_S v_S = 0$ , but  $b_T \neq 0$ .
  - 2.  $\exists T^* \subseteq T \text{ s.t. } b_{T^*} \neq 0 \& b_{T^*} = 0 \ \forall T^* \subseteq T^* \ .$
  - 3.  $\Sigma_S b_S v_S(T^*) = b_{T^*} \neq 0$ , a contradiction.
- 4.  $\forall v \in R^{2^{|N|}-1}$ ,  $\exists$  a unique  $b \in R^{2^{|N|}-1}$  s.t.  $v = \Sigma_S b_S v_S$ .
- 5. A1&A2 =>  $f_i(av_T) = a/|T|$  if  $i \in T$ ; 0 otherwise.
- 6. &A3 =>  $f_i(v) = f_i(\Sigma_S b_S v_S) = \Sigma_S f_i(b_S v_S) = \Sigma_{S \ni i} b_S / |S|$ .

#### **Balanced Contributions**

A value f satisfies the balanced contributions property iff  $\forall (N,v), \forall i,j \text{ in } N,$ 

$$f_i(N,v) - f_i(N \setminus \{i\}) = f_i(N,v) - f_i(N \setminus \{j\}).$$

**Theorem:** The Shapley value is the only bargaining solution that satisfies the balanced contributions property.

Proof: 1. If f and f' satisfy the property, then f = f'. 2. Shapley value satisfies the property. QED